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ABSTRACT In the advanced metering infrastructure, smart meters are deployed at the consumers’ side to
regularly transmit fine-grained electricity consumption readings to the system operator (SO) for billing and
real-time load monitoring and energy management. However, fraudulent consumers may compromise their
meters to launch electricity-theft cyberattacks by reporting low-consumption readings to reduce their bills.
These false readings not only cause financial losses but also degrade the grid’s performance because they are
used for energy management and load estimate. The existing solutions in the literature focus only on securing
the billing, so they are not designed to detect the attacks in real time, and thus the SO may use false readings
for a long period of time in load monitoring and energy management until they are identified. In this paper,
we propose a general ensemble-based deep-learning detector that enables the SO to detect false readings in
real time. To do that, we first train several deep learning models on samples generated from a sliding window
of the readings. Then, we use the best-performing model to train several models on different ratios of false
readings and use them in our ensemble-based detector. Extensive experiments are conducted, and the results
indicate that comparing to the literature, our detector can detect the false readings after sending a few false
readings (around 15) comparing to the existing daily and weekly detection approaches that need 144 and

1,008 readings, respectively.

INDEX TERMS Security, false readings detection, electricity theft, AMI networks, and smart power grid.

I. INTRODUCTION

The smart grid’s vision aims to upgrade the existing power
grid by incorporating sensing, computation, and communi-
cation in the operation of the grid to improve reliability,
efficiency, and resilience [1], [2]. The advanced metering
infrastructure (AMI) is an important part of the smart grid.
In AMI, smart meters (SMs) are deployed at the consumers
to measure and transmit fine-grained power consumption
readings to the system operator (SO). These readings are
used for estimating the future load, i.e., energy demand,
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to manage the electricity supply in real-time [3], [4]. They
are also used to enable dynamic billing, where the electricity
prices change during the day to encourage consumers to
reduce the consumption during peak hours to balance energy
supply and demand [3]. However, fraudulent consumers may
compromise their meters to launch electricity theft cyberat-
tacks by reporting low-consumption readings to reduce their
electricity bills illegally [5].

The electrical utility will suffer from financial losses
because of these attacks. Actually, electricity theft is a major
problem in the existing power grid. It is estimated that there
is a global annual loss of 89.3 billion US dollars for utility
companies occurring due to electricity theft [6], of which
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6.4 billion dollars are in the US and Puerto Rico [3], [7].
In addition to the financial losses, the false readings may
also degrade the grid performance because they are used
for energy management and load monitoring. Therefore, the
detection of the false readings is essential to guarantee the
proper operation of the smart grid.

To detect the false-reading attacks, several machine-
learning models have been investigated in the literature
[31, [7]-[13]. The idea of these models is that consumers
have normal consumption patterns that are relevant to their
activities and lifestyle. Therefore, machine learning models
are trained on benign and malicious datasets to learn normal
and abnormal consumption patterns, and they use the fine-
grained readings reported by the consumers to evaluate the
models and identify the fraudulent consumers. However, the
existing solutions in the literature focus only on securing the
billing, so they are not designed to detect fraudulent con-
sumers in real time, and thus, the SO may use false readings
for a long period in load monitoring and energy management
until they are identified. Specifically, the existing solutions
aim to detect electricity theft every day [3], [14]-[16] or week
[11], [17] by processing the daily or weekly consumption
patterns.

Therefore, in this paper, we propose a general ensemble-
deep-learning detector that enables SO to detect false read-
ings in real time to secure not only billing but also energy
management and load monitoring. Comparing to the litera-
ture, our problem is more challenging because the existing
detectors focus only on improving the accuracy while we
aim to create detectors that are not only accurate but also
fast in the detection of false readings. To do that, we have
used a combination of approaches, such as deep and ensemble
learning, training models on different ratios of false readings,
hyper parameter optimization, etc.

Our approach comprises of three phases: dataset prepara-
tion and analysis, detector design, and performance evalua-
tion. A real power consumption dataset, which is provided
by the smart project [18], is used to create the benign and
malicious datasets needed to train and evaluate our detector.
To create the benign dataset, we have used a sliding win-
dow with 40 readings size to create benign samples. Then,
to create the malicious dataset, we applied an electricity theft
cyberattack on the benign samples to compute the malicious
samples. To detect false readings fast with high accuracy,
we train several models on different ratios of false readings
and use them in our ensemble-based detector. We train a gen-
eral detector that can be used for all consumers. In addition,
because our detector may detect the attacks after sending a
few false readings, it produces confidence scores that can be
used to make more accurate load monitoring and prediction.
Extensive experiments have been executed to evaluate our
detector’s performance in terms of accuracy and the time
needed to detect the false readings. The results indicate that
our detector can detect the false readings accurately and
fast. Comparing to the literature, our detector can detect the
false readings after sending a few false readings (around 15)
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comparing to the existing daily detection approaches that
need 144 readings and the existing weekly detection
approaches that need 1,008 readings.

This paper makes the following main contributions.

« To the best of our knowledge, this paper is the first work
that focuses on the real-time detection of false readings
in AMI to secure both the energy management and
billing. Specifically, the existing papers in the literature
aims at securing the billing, so they detect electricity
theft every long time which can be a week or a day,
and hence the false readings are used for a long time in
energy management and load estimate, which may lead
to the inefficient operation of the grid and disturbance of
the supply.

« We analyzed a dataset for real energy consumption and
we found that the data has time-series and periodic
nature. Based on this analysis, we propose a novel deep
and ensemble-based deep learning detector to improve
the accuracy of the detector and detect the false readings
fast. The detector also provides confidence scores which
express the credibility of the readings. These scores can
be used to secure the energy management system by
giving more weight to the highly credible readings.

« We conduct extensive experiments to evaluate our detec-
tor’s performance, and the results demonstrate that the
detector accurately detects the false-readings in much
less time than the existing papers in the literature.

The rest of the paper is organized as follows. The network
and threat models are discussed in Section II. In Section III,
we explain the preparation of the dataset produced for training
our detector. Section IV presents the details of our detector
used for the real-time detection of false-reading attacks. Fol-
lowing that, in Section V, we discuss the performance evalua-
tions of our detector. Furthermore, in Section VI, the existing
studies in the literature that investigate the detection of the
electricity theft attacks in the AMI network are discussed.
Finally, we conclude the paper in Section VII.

1. NETWORK/THREAT MODELS AND DESIGN GOALS

A. NETWORK MODEL

As illustrated in Fig. 1, the network model considered in
this paper has smart meters forming an AMI, where SM =
SM;,1 < i < |SM]|, and a system operator (SO). The
SMs are deployed at the consumers’ side and they transmit
fine-grained power consumption readings to the SO, i.e., one
reading every 10 minutes. The SO uses these readings to
estimate future loads, and then manage energy supply. The
readings are also used for computing bills based on dynamic
tariff, where the electricity prices may change during a day
multiple time to balance supply and demand, i.e., the prices
are high during peak hours to reduce the demand.

B. THREAT MODEL
As shown in Fig. 1, some consumers are fraudulent and they
report low energy consumption to reduce their bills illegally.
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FIGURE 1. The advanced metering infrastructure (AMI) consists of many
smart meters and a system operator (SO). The SO collects the smart
meters’ readings and computes the real-time demand to estimate the
supply, and sends the consumption measurement to the utility
companies for billing. The electricity theft attacks aim to reduce the
readings to reduce the electricity bills, which causes financial losses and
disturb the supply/demand balance.
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This misbehavior may result in not only hefty financial losses
to the utility but also disturbance to the energy management
system by making bad decisions because the consumption
readings are used for forecasting future energy demand. Prac-
tically, this attack may be launched in different ways. One
way is by developing a malicious firmware that reports false
readings and installing it in the SMs [19]. Several tools, such
as Terminator, are being used to access the SMs and down-
load new firmware [19]. In another way, recent research has
revealed that false-reading attacks can be launched by attack-
ing the communication network of the AMI [20]. Therefore,
in this paper, a deep and ensemble learning-based detector is
proposed to identify false readings in real time by processing
the readings reported by the consumers’ SMs.

C. DESIGN GOALS
In this paper, we aim to achieve the following goals:

¢ (G1) Develop a general detector that can be used for all
consumers to identify false readings.

o (G2) Real-time detection of the false readings. This is
measured by the number of false readings that need to
be sent by the fraudulent consumer so that the detector
can identify the attack.

¢ (G3) Confidence scores should be computed for each
consumer’s readings. The higher the score, the more
confident the detector in the credibility of the readings.
These scores can be used in load forecasting to secure
the energy management system, where more weights are
given to the more credible readings.
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o (G4) False readings should be detected with high accu-
racy and low false positive.

1Il. DATASET PREPARATION AND ANALYSIS

A real dataset for power consumption readings issued by
the Smart Project [18] is used to create the benign and
malicious samples which are needed to train and evaluate
the proposed detector. This dataset is available online and
it includes the real power consumption readings of 114 resi-
dential apartments for 349 days in 2016, from 1st January to
14th December, with one minute granularity. Using this
one-minute granularity dataset, we have derived another
dataset with ten-minute granularity by aggregating the read-
ings, which results in 144 readings for every SM in each day.
Then, to create the benign dataset, we used the readings of
40 consumers for 110 days and a sliding window with the
size of 40 readings, each sample corresponds to 40 readings,
and by shifting the window by one reading, a new sample
is generated. Note that we tried different sizes for the win-
dows and we found that 40 readings give the best results.
As a result, the cumulative number of benign samples is
633,600 (144 x 40 x 110), where each smart meter has about
15,840 samples. Fig. 2 shows the fine-grained readings of
three randomly selected consumers for one year, while Fig. 3
shows the fine-grained readings of a consumer in a single day
and four weeks.

To train our detector, we need both benign and malicious
samples but all the given power consumption readings in
the dataset are for honest consumers. Since actual malicious
samples for SMs are unavailable, we used a partial reduc-
tion based electricity theft attack, proposed in [3], to mimic
the behavior of fraudulent consumers and create malicious
dataset. The false readings reported by the fraudulent con-
sumers are computed as follows:

rilj] = a x trifj] ey

where 7r;[j] denotes the j™ true electricity consumption read-
ing in one day for smart meter (SM;), r;[j] denotes the cor-
responding reading reported by the meter, and « is a flat
reduction factor. Therefore, the attacker reports the true read-
ing reduced by the factor of « to achieve financial gains.
To generate the malicious dataset, we select o randomly for
each fraudulent consumer, where it is uniformly distributed
in [0.3, 0.8]. Obviously, the lower «, the more financial gains
the attacker can achieve.

To create the malicious dataset, we apply the attack on the
633,600 begin samples of the 40 smart meters for 110 days.
After applying the attack, each smart meter has 31,680 sam-
ples including 15,840 benign samples and 15,840 malicious
samples, where each sample has 40 readings with ten-minute
granularity. As the number of SMs is 40, the total number
of samples of the dataset is 31,680 x 40 = 1,267,200. The
dataset is balanced where half of the samples are malicious
and the other half are benign, i.e., 633,600 samples for each
one. Then, we use these samples to create two datasets for
training and testing purposes, where 80% of the dataset
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FIGURE 2. The power consumption readings of three randomly selected
consumers.

(1,013,760 samples) are used for training, while 20% of the
dataset (253,440 samples) are used for testing.

In addition, to design a good detector, we need to analyze
the dataset first. To do that, we utilize the autocorrelation
function (ACF) to assess the relation between the successive
readings of the meters, i.e., the ACF offers the correlation
between sequences of readings at various delay of time. Fig. 4
displays the ACFs of the readings shown in Fig. 2. The shady
section of Fig. 4 represents the confidence intervals of around
95% used to assess the importance of autocorrelation at a
particular time lag. We can observe from the figure that the
consumption readings are time series and thus the detector
should have the capability to capture and learn the time-
series relation to provide accurate classifications. We can also
observe from Fig. 3 that the readings have periodic patterns,
so to obtain accurate classifications, the detector should learn
these patterns to be able to identify anomalous patterns due
to sending false readings.
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FIGURE 3. Energy consumption of consumer 23. (a) Single day
consumption with 10 min granularity. (b) Consumption by week.

IV. PROPOSED DETECTOR

In this section, we first give an overview for the proposed
electricity theft detector and then discuss the rationale behind
the architecture of our detector. After that, we give some
details on the building blocks of the detector.
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FIGURE 4. The ACFs of three randomly selected consumers.

A. OVERVIEW

Our approach comprises of three phases: dataset preparation
and analysis, detector design, and performance evaluation.
A real power consumption dataset, which is provided by the
smart project [18], is used to create the benign and malicious
datasets needed to train and evaluate our detector. To create
the benign dataset, we have used a sliding window with
40 readings size to create benign samples. We tried different
sizes for the window and we found that our detector gives
good results when the window size is 40 readings. Then,
to create the malicious dataset, we applied an electricity theft
cyberattack on the benign samples to compute the malicious
samples. Our analysis to the dataset indicates that the power
consumption readings are time-series and have periodicity
due to the periodic activities of the consumers, and thus, the
detector should be able to capture and learn the time-series
and periodic nature of the consumption patterns.

We first train several deep-learning models, including the
feed forward neural network (FFN), the gated recurrent unit
neural network (GRU), the convolutional neural network
(CNN), and the long-short term memory neural network
(LSTM), on the benign and malcious datasets to create binary
classifiers. Then, to improve the accuracy, we use the best-
performing model (GRU-based classifier) consisting of a
GRU layer followed by a fully connected neural network.
The GRU layer can capture the correlation between the fine-
grained smart meter readings, while the fully connected neu-
ral network is used to make more accurate decisions. After
that, to detect false readings fast with high accuracy, we train
several models on different ratios of false readings and use
them in our ensemble-based detector. Ensemble learning can
make a strong model using several weak models.
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Instead of training a single detector for each consumer,
we train a general detector that can be used for all consumers.
Single detectors need much computations to train a large
number of models and they cannot detect zero-day attacks
because the SO needs to collect sufficient data from each
consumer to train the models. In addition, because our detec-
tor may detect the attacks after sending a few false readings,
it produces confidence scores that can be used to make more
accurate load monitoring and prediction. The readings are
more credible when their score is high and thus more weight
should be given to these readings in load forecasting to secure
the energy management system.

B. RATIONALE BEHIND THE DESIGN OF OUR DETECTOR
1) MACHINE LEARNING

Several approaches that are based on game theory and state
estimation to detect false readings in smart grid AMI have
been presented in the literature, but machine learning-based
detectors give better results than other approaches [21].

2) GENERAL DETECTOR

In the literature, there are two types of detectors; consumer-
specific and general. Consumer-specific detectors are trained
on the consumption readings of a specific consumer and it can
only be used to detect the false readings of this consumer,
while the general detectors are trained on the readings of
many consumers and it can be used for detecting the false
readings of all consumers. Our detector should be general
because consumer-specific detectors suffer from three main
problems [21]. First, because there are too many consumers
and one model should be trained for each consumer, too much
computation power is needed to train many models. Second,
to train a model, we need to wait to collect enough data
from each consumer. Third, consumer-specific detectors are
vulnerable to zero-day attacks, where they cannot detect the
new consumers who attack the system from the first day.

3) DEEP LEARNING

Our detector should use deep learning because it can capture
complex patterns and accurately classify input data com-
paring to shallow learning techniques like support vector
machine, decision tree, and logic regression. Recently, deep
learning has been widely used in many applications and it
proved that it can perform well comparing to other learning
techniques [22], [23]. Moreover, we need also to use a hyper-
parameter optimization technique to improve the accuracy
of the model by finding the best possible parameters for the
model.

4) ENSEMBLE LEARNING

Ensemble learning is a machine learning approach that uses
several weak models that are usually trained on different data,
to create a strong model by combining the outputs of the
models to compute the final output that gives better result.
Recently, ensemble learning has been widely used in many
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applications due to its ability to boost the accuracy of the
machine learning models [24], [25].

5) CAPTURING THE TIME CORRELATIONS

Our analysis indicates that the fine-grained power consump-
tion readings are time-series, and thus the machine learning
model used should be able to capture and learn this time-
series relation to provide accurate classifications.

6) BRIEF DESCRIPTION FOR OUR DETECTOR

Since our goal is not only training an accurate model but also a
fast model in the detection of the false readings, we may need
a combination of techniques and models to be able to achieve
this goal. Based on the discussion above, our detector should
be general in the sense that it can be used for every consumer,
including the new consumers. The proposed detector should
use deep-learning model that is able to capture the temporal
correlations in the consumption readings. As shown in Fig. 5,
the deep-learning model used in our detector consists of
recurrent neural network (RNN) which uses a GRU layer
followed by fully connected neural network. Since the smart
meter’s readings are time-series data with correlations among
consecutive readings, the GRU architecture is used due to its
capability of capturing this temporal correlation. As will be
explained in Section V, we will try different deep-learning
models and GRU-based model will give the best results.
In training the model, hyper-parameter optimization will be
used to optimize its performance. In the next subsections,
we will provide more details. Finally, an ensemble learning
methodology is used in order to improve the performance of
the detector. As shown in Fig. 6, our detector uses multiple
versions of the GRU-based models trained on different ratios
of false readings. To detect the false readings attack, as shown
in Fig. 7, in every time slot, we input a window of the most
recent 40 readings to our detector, so, a decision is made every
time slot. A brief description on the models and methods
used in the proposed detector is presented in the following
subsections.

C. DEEP LEARNING

Basically, deep learning models are based on neural networks
that usually comprises three types of layers: input, hidden,
and output [11]. Convolutional neural network (CNN), multi-
layer perceptron (MLP), and recurrent neural network (RNN)
are few examples of deep learning models that can be used
for detecting false readings in smart grid. To train the deep
learning models, the input data (or features) is fed into the
model layers. Then, for a predetermined number of iter-
ations, the features progressively are mapped into higher
order abstractions through iterative update via the model’s
intermediate layers. Finally, these mapping abstractions are
used by the output layer to make the final decision. The
objective of training a model is to learn the weight and bias
parameters of the model’s layers and this can be achieved by
defining an objective function and using an optimizer. Using
the gradients of the objective function, the weights and biases
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FIGURE 6. The architecture of the proposed ensemble-based detector.

of the model are updated after every iteration using back
propagation algorithm, and then the corresponding output
parameters of the model are observed to get the best possible
results for optimizing the objective function. To minimize
the objective function, which is an ultimate goal, the error
is fed back into layers to modify the weights. Categorical
cross-entropy cost function is widely used in the classification
problems to measure the loss between the learned distribution
and the true distribution.

1) ACTIVATION FUNCTIONS

In neural networks, each neuron receives inputs from the
previous layer’s neurons, and then it uses an activation func-
tion to compute the output (or activation) of the neuron.
It is important to choose good activation functions because
they have great influence on the model’s convergence speed
and accuracy. Among the activation functions used in the
literature, the non-linear functions are widely used because

47546

they generate complex mappings between the inputs and the
outputs [26]. In our experiments, we will use the following
activation functions.

o Rectified Linear Unit (ReLU): The ReLU function
returns zero if the input is negative, and it returns the
same input value if it is positive. Therefore, the ReLU
function can be implemented using max function as
follows.

ReLU (x) = max(0, x) 2)

« Softmax: For a given input vector z = [z[1], . ..., z[N]]
with N elements, the output of the function is computed
as follows.

Zi

Z{\;l ey

Softmax(z;) = fori={1,....,N} (3)
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FIGURE 7. A sliding window is used to input a sample containing a number of readings to our detector.

This activation function is usually used in the output
layer of the multi-class classifiers, where N is the num-
ber of classes.

2) HYPER-PARAMETER OPTIMIZATION

The performance of the machine learning models can be
improved by choosing the best possible parameters of the
models such as the number of layers, the number of neurons
in each layer, and the type of optimizer. The tuning of the
hyperparameters of a model is a highly computationally and
complicated process which necessaites the use of optimiza-
tion techniques to find the optimal parameters. The optimiza-
tion process should calculate the optimum hyperparameters
of the model that offer lowest false alarm rate (FA) and high-
est detection rate (DR). The false alarm rate calculates the
proportion of benign samples that are wrongly identified as
malicious, while the detection rate calculates the proportion
of the accurately detected false readings. So, the objective
of this process is to find the best hyper-parameters that can
maximize the difference between detection rate and false
alarm rate. For our models, we used hyperopt [27] to find
the parameters that provide the best results for the models.
Next, we briefly describe the deep neural network (DNN)
models which will be used in our experiments discussed
in Section V.

3) FEEDFORWARD NEURAL NETWORK (FFN)

This network is widely used because it shows high accuracy
and can solve complex non-linear problems. It is also called
multilayer perceptron (MLP) [28] and comprises three layers,
named input, hidden, and output, as shown in Fig. 8. In FFN,
the information travels only forward from the input nodes
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FIGURE 8. Typical FFN’s architecture.

to the output nodes passing through the hidden layers. The
details of these layers are as follows.

o Input Layer: The first layer receives input data by nodes,
called neurons, and passes them to the succeeding layers.
In the input layer, the number of neurons is equal to the
number of attributes of the input data.

o Hidden Layer: The intermediate layer of an FFN is
called hidden layer. The layer has multiple neurons
which use the input data and an activation function to
compute the output and pass it to the next layer. For
simplicity, only one layer is shown in Fig. 8, but in fact,
an FFN may have multiple hidden layers and the number
of layers is usually an optimization parameter. In this
case, every single neuron in a hidden layer is linked
with all neurons of the succeeding layer and every link
may have a different weight. The best weights that can
optimize the model’s accuracy are determined during the
training process of the model.
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o Output Layer: This final layer provides the classification
of the model in case of multi-class classifiers. In our
models, we will use Softmax activation function in this
layer.

4) CONVOLUTIONAL NEURAL NETWORK (CNN)

CNN is widely used in many applications, such as image,
speech, and language processing [29] due to its capability
of capturing complex patterns and extracting important fea-
tures from the input data. The structure of the CNN model
comprises various layers namely: input, convolution, pooling,
fully connected, and output, as illustrated in Fig. 9. The
convolution layer extracts the important features from the
input data by sliding small-size filters over the input data, and
a non-linear activation function is used to allow the model to
make accurate decisions and solve difficult problems. Then,
the pooling layer is used to reduce the dimension of the output
of the convolution layer while retaining the important infor-
mation by sub-sampling the feature maps. Finally, a single
or multiple fully connected layers and an output layer are
used to process the output of the pooling layer and decide
the classification, respectively.

5) GATED RECURRENT UNIT NETWORK (GRU)

GRU is a type of recurrent neural networks (RNN). It uses
hidden states, called hidden memory, to process and learn
variable-length sequences of the inputs. Due to its ability
to correlate a sequence of inputs, GRU is widely used in
text generation applications to predict the next word of a
sentence of words by processing the previous words [30].
An illustration for a GRU is given in Fig. 10. The main
component in any RNN is the transition function. For each
time step ¢, the function takes the preceding hidden state H,_|
and the current time information X; to update the current
hidden state as below.

H; = F(X;, Hi—1) “

F represents a non-linear activation function. Similarly,
H;_ considered the input at time ¢ — 1 and the state at time
t —2 (H;—»), and thus, each state considers the previous states
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FIGURE 10. Typical architecture of RNN, GRU, and LSTM.

and inputs which enables the GRU to process a sequence of
data. To decide the important information that should be kept
and the information that should be ignored, GRU uses two
gates, called update and reset. Due to its ability to capture the
correlations among input data, we will use GRU to train our
model.

6) LONG SHORT-TERM MEMORY NETWORK (LSTM)

Like GRU, LSTM is also a type of RNN. RNNs suf-
fer from the problem of vanishing gradients and LSTM is
designed to solve this problem. In this problem, the gradi-
ent becomes smaller and smaller and the parameter updates
become insignificant which means no real learning is done.
As illustrated in Fig. 10, LSTM comprises different mem-
ory blocks (rectangles) called cells. Memory cells are self-
connected and two states, called cell state and hidden state,
are transferred to the next cell. The memory block is respon-
sible for memorizing information to support the prediction
of the next value in a sequence. The temporal sequences are
stored by multiplicative units, called gates. The function of
the gates are as follows
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« Input gate: The incorporation of the information to the
cell state is controlled by the input gate.

e Output gate: The output gate extracts important fea-
tures from the current cell state and produces the output
values.

« Forget gate: This gate decides the useful information that
should be kept for memorizing the sequence, and the
information that should be removed.

D. ENSEMBLE LEARNING

Ensemble learning is a machine learning approach that uses
several weak models, that are usually trained on different
data, to create a strong model by combining the outputs of all
the models to compute the final output that gives better result.
The rationale of the ensemble learning is that every machine
learning model may perform differently, i.e., works effec-
tively on some data and less accurately on others, so the use
of multiple models trained on different data can negate each
other’s weaknesses. In our ensemble-based detector, we use
a bagging approach for combining the models. The bagging
approach usually considers homogeneous weak models that
learn independently from each other in parallel and then
combines the outputs by averaging or voting to produce the
final output.

In this paper, we will investigate an ensemble-based detec-
tor where the models used in the detector are similar to the
model shown in Fig. 5. Specifically, we trained multiple
GRU-based models and the output of each model is either
malicious or benign, and then the decisions of all models
are combined to produce a final output as shown in Fig. 6.
As shown in Fig. 6, we will investigate two techniques
to combine the outputs of the models. The first technique
computes the final output based on the majority of the votes,
i.e., asample is benign if the majority of the individual models
classify it benign; otherwise, it is malicious. The second
approach averages the outputs of the individual models to
compute the final output, and then determine the class based
on the value of the final output.

V. EVALUATIONS

We conduct three experiments to evaluate our detector. The
goal of the first experiment is to explore the use of vari-
ous machine learning models to detect false readings in the
case that all the readings of a sample are false. The second
experiment, on the other hand, examines the performance of
the best performing model in the first experiment trained on
different ratios of false readings. Finally, the models trained
in the second experiment are used to create our ensemble-
based detector and the third experiment will evaluate the
performance of this detector.

A. EXPERIMENTAL SETUP

In this paper, all experiments are carried out using one
NVIDIA Tesla K80 GPU in a high-performance clus-
ter (HPC) of the Tennessee Tech University. In order to fine-
tune the models’ hyperparameters, e.g., the number of units
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per layer, the batch size, learning rate, the activation function
of each layer, etc, the hyperopt-tool [27] was used on a
validation dataset during the learning phase of the models.
Adam optimizer [31] is also used to train the models for
150 epochs while using the categorical-cross-entropy as the
loss function. In addition, we have also used several Python3
libraries as follow. Our dataset is prepared with Numpy,
while for training and evaluating the models, Keras [32] and
Scikit-learn [33] are used, respectively. Furthermore, for data
visualization, Matplotlib [34] is used.

B. EVALUATION METRICS

The detection of false readings may be regarded as a binary
classification problem. The performance of our models are
evaluated by the following widely-used metrics, where the
true positive (7P) refers to the number of samples that are
correctly sorted out as malicious, the true negative (TN ) refers
to the number of samples correctly categorized as honest, the
false positive (FP) refers to the number of honest samples
wrongly categorized as malicious, and the false negative (FN)
refers to the number of malicious samples wrongly catego-
rized as honest.

e Accuracy (ACC). It estimates the proportion of hon-
est/malicious samples which are identified as hon-
est/malicious. The following expression can be used to
represent it.

TP + TN
TP+ TN + FP + FN x
o Detection rate (DR). It represents the proportion of
malicious samples that are categorized as malicious in
comparison to the total number of malicious samples

included in the dataset. The following expression can be
used to represent it.

ACC(%) = 100

DR(%) = 100

P
— X
TP + FN
« False Alarm (FA). It evaluates the proportion of honest

samples that are misclassified as malicious compared
to the number of honest samples in the dataset. The
following expression can be used to represent it.

FA(%) = x 100

FP+TN

« Highest difference (HD). It measures the difference
between the detection rate and the false alarm rate.

HD(%) = DR(%) — FA(%)

C. RESULTS OF EXPERIMENT 1

In this experiment, we aim to compare the performance of
four deep-learning-based detectors when all the readings of
the malicious samples are false by applying the attack in
Eq. (1) to all the readings of the benign samples. Specifi-
cally, the following detectors are trained: FFN, CNN, GRU,
and LSTM. We used the dataset discussed in Section III to
train and evaluate these detectors, where the detectors are
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TABLE 1. Comparison between the performance of different detectors
when all the readings are false.

Metrics
Architecture
AcC | DR | FA | HD
FFN 86.9 86.5 15.41 71.09
CNN 90 91 11 80
GRU 96.61 97.68 4.45 93.22
LSTM 96.29 96.74 4.17 92.57

trained on both benign and malicious samples and 20% of the
dataset’s samples are selected randomly for evaluation and
80% of the samples are used for training. We tried different
sizes for the sliding window and we found that the size of
40 readings for each sample gives the best results. Therefore,
in the three experiments, the size of all the benign and mali-
cious samples are 40 readings, and thus, the input of all the
models trained are also 40 readings.

1) RESULTS AND DISCUSSION

Table 1 gives the performance metrics of the different deep
learning-based detectors. First, it can be seen from the given
results that FFN-based detector achieves the lowest perfor-
mance in identifying the malicious samples, while both the
GRU-based and LSTM-based detectors provide better perfor-
mance compared to the FFN-based and CNN-based detectors
because GRU and LSTM have a good ability to capture the
temporal correlation between the consecutive power con-
sumption readings, which can enhance the detector’s perfor-
mance. Since GRU gives the best performance, we will use it
in the design of our detector, as will be explained later.

The optimal hyper-parameters of the four detectors and
the execution time of each detector are given in Table 2.
As can be seen from the table, the GRU and LSTM detectors
have longer execution time since they have more complex
structure and perform more complicated operations than the
FFN and CNN.

D. RESULTS OF EXPERIMENT 2

Unlike Experiment 1 in which all the readings of the mali-
cious samples are false, in Experiment 2, we train four GRU-
based detectors on samples with different ratios of false
readings. Specifically, the first detector (40M) is trained on
detecting the attacks when receiving 40 false readings, i.e.,
the malicious samples have 40 consecutive false readings.
The second detector (20M) is trained on detecting the attacks
when receiving 20 false readings, and the third (10M) and
fourth (SM) detectors are trained on detecting the attacks
when receiving 10 and 5 false readings, respectively. Consid-
ering that the size of the sliding window is 40 readings, i.e.,
each sample has 40 readings, the ratio of the false readings in
the malicious samples used to train the 40M, 20M, 10M, and
5M detectors are 100%, 50%, 25%, and 12.5%, respectively.
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To train these detectors, we use the same benign dataset
discussed in Section III, but for the malicious dataset, we have
created new samples by manipulating a number of readings
using Eq. (1) based on each detector. We want to detect
the false readings as quickly as possible, so detecting the
false readings after 5 false readings is better than detecting
them after 10 and 20 readings. However, when the number
of false readings in a sample is low, it may be difficult for
the detector to differentiate between benign and malicious
samples. Therefore, as will be explained in Experiment 3, the
detectors trained in Experiment 2 will be used in an ensemble-
based architecture to detect the false readings fast with high
accuracy and low false positives. As an example, the optimal
hyper-parameters of the 10M GRU-based detector are given
in Table 4.

1) RESULTS AND DISCUSSION

To assess the performance of the four detectors, we evaluate
them using samples with different number of false readings.
Fig. 11 presents the probability of identifying the malicious
samples as the number of false readings increase. The given
results indicate that although the SM detector detects the false
readings earlier than the other detectors, its detection rate is
lower than the other models. Furthermore, Fig. 12 shows the
Receiver Operating Characteristics (ROC) curves of the four
detectors trained on 5, 10, 20, and 40 false readings. The
area under the ROC curve (AUC) is usually used to assess
the accuracy of the model’s classification, where a higher
AUC reflects a better performance. The figure shows that the
AUC increases as the detector is trained on malicious samples
with a larger ratio of false readings, i.e., SM detector has the
lowest AUC while the 40M detector has the highest AUC.
The justification for these results is that as the number of false
readings increases in a malicious sample, as it is easier for the
detector to identify the sample.

Moreover, Table 3 presents the performance of the four
detectors in terms of ACC, DR, FA, and HD. It can be seen
that as the model is trained on a higher number of false
readings, as the performance is better, i.e., higher accuracy
and detection rate and lower false alarm, but it takes a longer
time to detect the false readings as shown in Fig. 11. This is
because as the number of false readings increases in a sample,
as it becomes more different from the benign samples, and
thus, the detector can identify the sample more successfully.
As can be seen in the table, 40M detector gives much better
results than the 5SM detector because the malicious samples
are closer to the benign samples, but with longer detection
time. We can conclude that there is an obvious tradeoff
between the detection time and the accuracy of the model and
to alleviate this tradeoff, in the next experiment, we will use
multiple classifiers instead of only one to make the decision.

E. RESULTS OF EXPERIMENT 3

In this subsection, we compare the performance of the
ensemble-based false readings detector to the performance of
the four detectors discussed in Experiment 2, i.e., we want to
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TABLE 2. The optimal hyper-parameters of different detector architectures and their execution time.

. Hyper-parameters Execution
Architecture % m
Input layer ‘ Hidden layers Output layer time
FFN 40, Linear) | (D-64Relw),(D256,Sigmoid),(D,128,Elu), (2,Softmax) | 0.002 ms
(D,256,Sigmoid),(D,256,Relu),(D,128,Elu)
CNN (40, Linear) | (C,64,Relu),(M,2,-),(D,128,Tanh),(D,512,Tanh) | (2,Sigmoid) 0.032 ms
GRU (40, Linear) (G,128,Tanh),(D,64,Relu),(D,128,Relu) (2,Softmax) 0.18 ms
LSTM (40, Linear) (L,128,Tanh),(D,512,Tanh),(D,256,Sigmoid) (2,Softmax) 0.25 ms

Note: in the hidden layer column, each (x,y,z) layer is corresponding to the following. x: type of hidden layer (D: Dense, C: Convolution, G:

GRU, and L: LSTM), y: the number of units, and z: the activation function. The consecutive hidden layers are separated by “,
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FIGURE 11. The probability of identifying the malicious samples (%) as
the number of false readings increases using the four detectors 5M, 10M,
20M, and 40M.

TABLE 3. Comparison between the performance of the 5M, 10M, 20M,
and 40M detectors.

Maetrics
Detector
aAcc | DR | FA | HD
40M 96.61 97.68 4.45 93.22
20M 95.8 97.14 5.52 91.62
10M 93.69 93.77 6.39 87.38
M 89.39 90.08 11.29 78.79

study the impact of the ensemble learning on the performance
of the detector. As shown in Fig. 6, our ensemble-based
detector consists of three GRU-based classifiers trained on
samples with 5, 10, and 20 false readings. We excluded the
classifier trained on samples with 40 false readings discussed
in Experiment 2 because as shown in Fig. 11, it is slow in
the detection of the false readings and thus using it may also
slow the ensemble-based detector. To combine the outputs
of the classifiers, we try both majority voting (Maj) and
average voting (Avg) techniques. In the first technique, the
final decision is based on the majority votes of the three
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TABLE 4. The optimal hyper-parameters of the 10M detector.

X Hyper-parameters
Architecture

Layer Number of units AF
Input 40 Linear
GRU 128 Relu

GRU Dense 512 Relu

Dense 128 Tanh

Output 2 Softmax

detectors, e.g., the sample is malicious if at least two GRU-
based detectors (out of the three detectors) classifies it as
malicious; otherwise, it is benign. The second technique aver-
ages the output probability of the three GRU-based classifiers
to compute the final output, and hence making a decision.

1) RESULTS AND DISCUSSION

As discussed in Experiment 2, Fig. 11 shows that SM classi-
fier can detect the false readings faster than the other classi-
fiers, but Table 3 indicates that it has the highest false alarm.
The main conclusion of Experiment 2 is that there is a trade
off between the false alarm rate and the time needed to detect
the attack. In Experiment 3, we aim to evaluate whether the
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TABLE 5. Comparison between the FA of the classifiers 5M, 10M, 20M,
and 40M and our ensemble-based detector.

Architecture | FA |
Classifier 40M 4.45
Classifier 20M 5.52
Classifier 10M 6.39
Classifier 5SM 11.29
Ensemble-based detector Avg (5M, 10M, 20M) 3.69
Ensemble-based detector Maj (5M, 10M, 20M) 4.26

ensemble learning can alleviate this tradeoff. Fig. 13 gives the
probability of detecting the false readings versus the number
of false readings for the individual classifiers (SM, 10M, and
20M) and the ensemble-based classifier using the average
and majority techniques. Table 5 gives the FA values of the
5M, 10M, 20M, and 40M detectors and the ensemble-based
detector.

Based on the results given in Table 5, it can be concluded
that the ensemble-based detector offers lower FA compared
to all the GRU-based detectors, and the averaging technique
offers better FA than the majority technique. Fig. 13 shows
that although the 5M classifier can detect the false readings
faster than the ensemble-based detector, its false alarm is
11.29 which is much higher than the false alarm rate of the
ensemble-based detector (3.69), as indicated in Table 5. The
superiority of the ensemble-based detector is due to the fact
that it benefits from the strengths of the classifiers (i.e., the
fast detection of 5SM and 10M and the low FA of 20M clas-
sifier) and alleviate their weaknesses (i.e., the slow detection
of 20M and the high FA of 5M and 10M classifier).

From Fig. 13, it can be seen that the probability of failing
to detect a false sample is only 0.04, and therefore, the
probability of failing to detect n samples is (0.04)", and thus
even if the attack is not detected after one sample (which has
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low probability), it will eventually be detected after a number
of false samples, i.e., as n increases. Note that the attackers
want to reduce their bills so they need to send many false
samples.

F. COMPARISON TO THE LITERATURE

As will be explained in details in Section VI, the exist-
ing papers in the literature focus on securing the billing,
so some detectors such as [3], [14]-[16] are designed to detect
electricity theft daily by learning and processing the daily
energy consumption, while other detectors such as [11], [17]
are designed to detect electricity theft weekly by processing
the weekly consumption. Unlike these papers, we focus on
securing both billing and energy management application,
so we designed our detector to detect false readings fast
by using multiple models and methods, such as deep and
ensemble learning, training models on different ratios of
false readings, hyperparameter optimization, etc. The results
of Experiment 3 indicate that our detector can effectively
detect the false readings after sending a few false readings
(15 readings) comparing to the daily detection approaches
[3], [14]-[16] and the weekly detection approaches [11], [17]
that need 144 and 1,008 readings, respectively, to detect the
attack.

Moreover, our detector produces a confidence score that
indicates how the readings are close to the benign samples,
i.e., as the score increases, as there is more confidence that the
readings are benign. Since a few false readings need to be sent
to identify the malicious samples, to alleviate the impact of
these readings, the confidence score can be used in the energy
management and load predication to make accurate predic-
tions. The idea is that more weights are given to the readings
that have higher confidence scores. In Fig. 14, we give the
confidence scores of the readings of three consumers versus
the number of false readings. As shown in the figure, the
confidence scores decrease as the number of false readings
increases.
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VI. RELATED WORKS

In this section, we first survey the papers in the literature
that investigate the problem of electricity theft using machine
learning approaches. Then, we compare our paper to the
literature.

Various solutions have been proposed in the literature to
detect false-reading attacks in AMI. While some of these
solutions use shallow detectors [3], [10], [13], other solu-
tions use deep learning-based detectors [9], [11], [12]. Unlike
shallow detectors which need feature extraction techniques
to successfully capture the behavior of the input data, the
deep learning-based detectors can automatically extract these
features through their deep layers. Our detector uses deep
learning because it can capture complex patterns and accu-
rately classify false reading attacks comparing to shallow
learning techniques like support vector machine, decision
tree, and logic regression. Recently, deep learning has been
widely used in many applications and it has been proved
that deep learning-based detectors outperform the shallow
detectors [9], [11], [12], [22], [23].

To identify electricity theft attacks, Jokar er al. [3] have
presented a detector that processes the energy consumption
patterns of the consumers. The paper introduces six attacks
and uses them in addition to real benign samples to cre-
ate malicious samples. Two support vector machine (SVM)
detectors are trained, including a single-class SVM that is
trained only on benign samples and a multi-class SVM that is
trained on both benign and malicious samples. The electricity
theft is detected daily, i.e., the detector is designed to process
the consumption readings of a complete day. The results
indicate that the multi-class SVM exhibits better detection
rate and lower false alarm rate compared to the single-class
SVM detector.

Shuan Li et al. [14] have proposed a model for automatic
electricity theft detection with hybrid convolutional neural
network and random forest (CNN-RF) model. In this hybrid
model, the CNN is used to learn the features of a smart meter’s
readings using convolution and down-sampling operations,
and RF is used to classify the samples. The Irish dataset [35]
that has benign SMs’ readings collected by electric Ireland
and sustainable energy authority of Ireland (SEAI) are used,
while the malicious samples are generated by applying dif-
ferent cyber-attack functions to the benign samples. The
proposed model is designed to detect the electricity theft by
processing the consumption readings of a complete day. The
given results indicate that the proposed hybrid model gives
better performance compared to SVM, RF, Linear Regres-
sion (LR) and Gradient-Boosted Decision Trees (GBDT)
models.

Zheng et al. [11] have developed a deep-learning tech-
nique that comprises both multi-layer perceptron (MLP)
and CNN to detect electricity theft. To train the model,
the real dataset collected by the state grid cooperation
of china (SGCC) is used [36]. The dataset contains both
benign and malicious samples where 9% of the consumers
are fraudulent. The model is designed to detect electricity
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theft every week by processing the consumption readings of
the week. The experimental results show better performance
than RF, SVM, CNN and linear regression.

A combination of a CNN and an LSTM models are used
in [17] to detect electricity theft in smart grid AMI. The
dataset used to train the detector is obtained from state grid
cooperation of China (SGCC) [36]. The paper proposes a
new method for pre-processing the dataset to calculate the
missing occurrences in the dataset. In order to resolve the
class imbalance problem, the synthetic minority sampling
method (SMOTE) is used to balance the dataset by creating
additional data points. The detector is designed to detect
electricity theft every week by processing the consumption
readings of a complete week. The experimental results indi-
cate that the proposed model gives 89% of classification
accuracy.

In [15], Takiddin et al. have investigated a deep-learning
model with vector embedding to detect electricity theft
attacks. Vector embedding helps in analyzing the relation-
ships and capturing the patterns within fine-grained power
consumption readings. To improve the model’s performance,
a sequential grid-search hyperparameter optimization algo-
rithm is used. The experimental results indicate an improved
performance compared to the existing models.

Unlike the above papers that consider the consumption
metering system, a multi-data source hybrid deep learning
based electricity theft detector is presented by Badr et al. [16]
to detect false reading attacks for net-metering systems.
In the net-metering systems, each house generates energy
using renewable resources, e.g., using solar panels on the
rooftop. The excess power generated by the house is injected
(i.e., sold) to the grid. In the consumption metering sys-
tem, each smart meter reports the amount of consumption,
while in the net-metering system, each smart meter reports
the difference between the consumed and generated power.
In addition to the smart meters’ readings, the proposed model
processes the irradiance and temperature data. The proposed
model is hybrid and it uses CNN and GRU. The benign sam-
ples are the Ausgrid SMs’ dataset [37] while the malicious
dataset is created by mimicking the behavior of fraudulent
consumers by introducing four attacks. The model is designed
to detect electricity theft by processing the SMs’ readings
of one day.

Unlike the above papers that use machine learning for
detecting electricity theft, Peng et al. [38] have presented an
approach that uses a data mining technique. The idea is
that a clustering technique is used to cluster the consumers’
readings and local outlier factor technique is used to iden-
tify the outliers in each cluster as fraudulent consumers.
However, comparing to the machine-learning approaches, the
performance of data-mining-based solutions is much lower.
This is because the machine learning solutions learn the
consumption patterns of the consumers and use these patterns
to classify the consumers, but data mining solutions can give
good results if the consumption patterns of the consumers are
same which cannot be ensured practically.
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Meters report false readings either for an intentional act,
such as compromising the meters by fraudulent consumers,
or an unintentional act due to a failure or an inaccuracy by
the meters. Similar to most of the papers in the literature
[31, [9]-[13], [22], [23], the main focus of the paper is on
the detection of reporting false readings intentionally because
it is usually harder to detect comparing to the unintentional
reporting of false readings. This is because the attackers try
to avoid being detected by crafting readings that are difficult
to detect by the utility. Moreover, the unintentional false
readings can be modeled and our detector can be trained on
them to identify them. Also, when a false reading is detected,
the electrical utility sends a technician to inspect the meter
to know if the false readings are due to the inaccuracy of the
meter or due to malicious action (e.g., due to changing the
malware of the meter.).

Based on our discussion in this section, the existing solu-
tions in the literature focus only on securing the billing,
so they are not designed to detect fraudulent consumers in
real time, and thus the SO may use false readings for a period
of time in load monitoring and energy management until they
are identified. This paper aims to not only secure the billing
but also the energy management application by investigating
the real detection of false readings. Comparing to the liter-
ature that only focuses on developing accurate models, our
problem is more challenging because we aim to develop not
only accurate model but also fast in the detection of false read-
ings. To do that, as explained earlier, we use a combination
of different techniques, models, and approaches.

VII. CONCLUSION AND FUTURE WORKS
In this paper, we focus on securing both the billing and load
monitoring and energy management applications. To do that,
we have used a combination of approaches, such as deep
and ensemble learning, training models on different ratios of
false readings, hyper parameter optimization, etc. In addition,
our detector produces confidence scores that can be used to
make accurate load predictions. We first tried several deep
learning models in Experiment I, including CNN, GRU,
FFN, and LSTM, and we found that GRU outperforms the
other models. Then, in Experiment 2, we trained a GRU-
based model, consisting of a GRU layer followed by a fully
connected neural network, on samples with different ratios of
false readings. The GRU is used to capture the correlation
between the fine-grained smart meter readings, while the
fully connected neural network is used to make accurate deci-
sions. Finally, in Experiment 3, we used GRU-based models
to create an ensemble-based detector. The results show the
the ensemble learning can reduce the FA while detecting the
false readings fast. Comparing to the literature, our detector
can effectively detect the false readings after sending a few
false readings (around 15 readings) comparing to the daily
detection approaches that need 144 readings and the weekly
detection approaches that need 1,008 readings.

In our future work, we will investigate a load forecasting
model that takes into account the confidence scores produced
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by our ensemble-based detector to make accurate predictions
even under the existing of false readings.
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