
Received March 20, 2022, accepted April 18, 2022, date of publication April 28, 2022, date of current version May 5, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3170918

A Cost and Energy Efficient Task Scheduling
Technique to Offload Microservices Based
Applications in Mobile Cloud Computing
ABID ALI 1 AND MUHAMMAD MUNWAR IQBAL 2
1Department of Computer Science, University of Engineering and Technology, Taxila, Taxila 47080, Pakistan
2Department of Computer Science, Government Akhtar Nawaz Khan (Shaheed) Degree College KTS, Haripur 22620, Pakistan

Corresponding author: Abid Ali (abid.ali3@students.uettaxila.edu.pk)

This work was supported by the University of Engineering and Technology, Taxila, Pakistan.

ABSTRACT The number of smartphone users and mobile devices has increased significantly. The Mobile
Cloud Applications based on cloud computing have also been increased. The mobile apps can be used in
Augmented Reality, E-Transportation, 2D/3-D Games, E-Healthcare, and Education. The modern cloud-
based frameworks provide such services on Virtual Machines. The existing frameworks worked well,
but these suffered the problems such as overhead, resource utilization, lengthy boot-time, and cost of
running Mobile Applications. This study addresses these problems by proposing a Dynamic Decision-Based
Task Scheduling Technique for Microservice-based Mobile Cloud Computing Applications (MSCMCC).
The MSCMCC runs delay-sensitive applications and mobility with less cost than existing approaches.
The study focused on Task Scheduling problems on heterogeneous Mobile Cloud servers. We further
propose Task Scheduling and Microservices based Computational Offloading (TSMCO) framework to
solve the Task Scheduling in steps, such as Resource Matching, Task Sequencing, and Task Scheduling.
Furthermore, the experimental results elaborate that the proposed MSCMCC and TSMCO enhance the
Mobile Server Utilization. The proposed system effectively minimizes the cost of healthcare applications
by 25%, augmented reality by 23%, E-Transport tasks by 21%, and 3-D games tasks by 19%, the average
boot-time of microservices applications by 17%, resource utilization by 36%, and tasks arrival time by 16%.

INDEX TERMS Cloud computing, mobile cloud computing, task offloading, task sequencing, task schedul-
ing, microservices.

I. INTRODUCTION
Mobile Cloud Computing (MCC) enhanced the tasks
scheduling and task processing capabilities of Mobile
Devices. Peoples use Mobile Devices to perform business
tasks.MCC allows people to perform resource-intensive tasks
on the cloud near mobile devices. Although tasks scheduling
is part of the Mobile Devices, based on the modern applica-
tion’s size processing power they consume, tasks scheduling
is one of the main concerns for mobile applications [1].
The mobile applications are somewhat like Augmented Real-
ity, E-Transport, E-Healthcare, 2D/3D E-Gaming, and many
more features needed to extract and process intelligent
devices [2], [3]. Task Scheduling is proposed to migrate
these complete tasks from resource-limited mobile devices to
powerful MCC Virtual Machines (VMs). The mobile devices

The associate editor coordinating the review of this manuscript and

approving it for publication was Eyuphan Bulut .

are now smart enough to collect, handle, and transmit the data
without interruption for the concerned, intelligent devices
and their effective environment [4]. This paper aims to out-
spread the Task Scheduling capabilities of mobile devices
using Mobile Cloud Computing (MCC) [5]. However, intel-
ligent mobile devices still face bandwidth utilization, power
and battery capacity, poor CPU speed, and lower power
and intensive operational capacities. Smart devices offload
the computational-rich processes towards MCC for execu-
tion [6]. The goal of mobile cloud frameworks in research
is to enhance the application performance and improve or
save battery life for reserves restraint devices [7], [8]. These
frameworks enhance the application interactivity and provide
significant MCC to control the execution of these devices.
According to the study, the boot time of the MCC Virtual
Machines (VMs) is 28 seconds, so overheads are involved in
inter-process communication among these heavy load frame-
works [9]. These limitations provide us with the boost to

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 46633

https://orcid.org/0000-0003-2917-6598
https://orcid.org/0000-0001-7212-1408
https://orcid.org/0000-0003-4744-9211

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

design an exceptional framework for Microservices based
tasks during offloading [10].

Microservices are a collection of services for a sin-
gle mobile app. This paper develops Augmented Reality,
E-Transport, E-Healthcare, and 2D/3D E-Gaming applica-
tions onmicroservices architecture.Microservices effectively
architect the application and provides frequent, rapid, and
reliable application. In Mobile Devices, resource-intensive
and battery-intensive applications have grown progressively
in the last few years when online games, cloud-linked appli-
cations, and other resource-intensive applications are eval-
uated [11]. The services offered by these applications are
very lightweight and oblige very tinny local services to exe-
cute them to process them correctly. The minimum delay is
observed when these tinny services are offered.

On the other hand, the current oppressed heavyweight
VMs provides high-level assistance for user-centric machines
applications. As these services are paid according to their
use model, mobility, cost, and interactivity are the main chal-
lenges to the existing MCC paradigm. Another challenge for
the MCC paradigm for microservices-based applications is
cost-efficient resource scheduling for Mobile processes/tasks
[12]. Task Scheduling is one of the most concerning top-
ics in mobile cloud computing due to the limited capabili-
ties of mobile devices, storage restrictions, Task processing
capabilities, and network bandwidth requirements. On the
other hand, cloud-based Mobile Cloud Computing has huge
processing capabilities, unlimited bandwidth, and no storage
restrictions, making us use task scheduling for mobile-based
microservices applications.

This paper encounters the cost-efficient task scheduling
problem in MCC for IoT applications. We consider the
MCC-based cloud network. The goal of the research is
to curtail the cost of the services of mobile applications.
We selected the computation and communication cost over-
head involved in the persistent problem of task scheduling and
task offloading. In Mobile applications, we have independent
and fine-grained sub-tasks. Fine-grained means that every
task has its attributes and data, which runs independently
and effectively utilizes the workload. The associated vector
attributes include every task, CPU instructions, data size, and
execution deadline. We have considered the MCC services
based on their price and speed.

The main contribution of the proposed system is to save
time and computational energy using the mobile cloud com-
puting approach as follows.
(i). We proposed a novel microservices container-based

MCC system (MSCMCC) to implement the docker
container to improve the VM’s workload and enhance
performance. MCSMCC gains are less overhead for
services and lower boot time for VMs.

(ii). We consider MCC servers with attributes, and we also
consider different Quality of Service (QoS) require-
ments for every task individually. We selected the
MCC servers with VMs to meet the services demand.
Based on the services and tasks, a service matching

algorithm is proposed to compare and execute the
instructions based on services requirements.

(iii). FCFC and SJF effectively sequence the task generated
randomly to reduce slack time and task size.

(iv). We set up the fine-grained tasks from the local mobile
device towards MCC VM to schedule the tasks.
We proposed a microservices-based cost-efficient task
scheduler for task scheduling to handle this problem.
The proposed algorithm reduces mobile tasks’ over-
head cost to MCC servers.

(v). The tasks requiring special consideration during
offloading are at the highest priority consideration, and
sequencing is performed based on the highest priority
order, a novel contribution.

The rest of the paper is organized as follows. Section 2
presents the related work on task scheduling and fault tol-
erance. Then, in Section 3, we outline our approach for the
research and proposed solutions to the relevant problems
encountered in Section 1 of the paper. Then, in Section 4,
we present the proposed method with simulations using an
MCSMCC approach. Section 5 concludes our proposed sys-
tem, highlighting that our technique is straightforward for
fault tolerance methodology.

II. LITERATURE REVIEW
With the increase of Mobile Devices and Mobile Applica-
tions, the computational offloading of mobile applications
has increased and gained popularity among mobile cloud
users. It allows the computationally intensive mobile devices
to offload their tasks towards the cloud for mobile cloud
server execution. The offloading of the tasks is performed
after executing trustable tasks from the task schedular. These
task offloading is improved but with limited knowledge
about task microservices. [13]. The battery and mobile
device performance could be improved by offloading mobile
tasks. Efforts are made to perform the intensive application
tasks to offload through mobile cloud support. Past stud-
ies made efforts to improve mobile application performance
and save computational cost and mobile device processing
power. Energy consumptions and executions time is consid-
ered in this approach for task scheduling in the provided
environment [14].

In [15], the authors propose a microservices-based task
offloading framework called the CEMOTS framework. The
proposed technique is a mobility-aware task offloading
framework that minimizes the cost of application transfer-
ring towards the cloud environment. The authors effectively
reduce the application cost but do not work on VM fault
rate, CPU, and resource utilization. The [16] authors pro-
posed container-based latency and aware reliability schedul-
ing (LRLBAS) algorithms. The Particle Swarm Optimization
algorithm balances the load on edge servers and provides an
effective methodology for task offloading. Another approach
called MAUI performs computational offloading strategies
using profiling technologies. The main difference is to take
the excellent decision to offload the task either locally run or

46634 VOLUME 10, 2022

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

on the mobile cloud server. The approach’s primary purpose
is to offload the task at its run time [17].

To the best of our knowledge, the microservices-based
MCC framework for delay-sensitive fined-grained work is
not proposed yet. We proposed an MCSMCC mobile cloud
computing framework that executes the tasks with minimum
cost and energy. Additionally, we proposed a cost-aware
(CCCOF) framework to optimize the cost-centric and com-
putational offloading framework. CCCOF provides the com-
putational offloading with QoS, executes the services under
specified deadlines, and minimizes resources costs. In [18],
the authors presented another approach called ThinkAir.
ThinkAir is the computational offloading framework to
offload the mobile device tasks towards the mobile cloud.
The idea is simple to offload the tasks when using mobile vir-
tualization technology. Moreover, some meta-heuristic algo-
rithmic approaches are also produced to address the task
scheduling problems [19], [20].

Due to cloud network latencies, the resolution of compu-
tation offloading frameworks is not a sustainable solution.
So, the cloudlet-based computational offloading resources for
the wireless-based latency access network are more problem-
oriented. Cloudlet frameworks brought proximity to mobile
devices. In [21], Satyanarayanan et al. proposed a virtual
machine-based Cloudlet framework. Cloudlets provide elas-
ticity, scalability, and mobility. Cloudlets are very near to
mobile phones like single hope towards the cell phones.
Another researcher presented Rattrap [22] proposed an
Android Cloud-based system to offload the mobile device’s
computational tasks to the mobile cloud by placing VMs
with containers. The research aims to reduce the boot time
of monolithic services for the cloud platforms using a mobile
cloud-centric environment. Although the approach reduces
the boot time of the services effectively, all the techniques
mentioned earlier do not meet the mobile device’s fine-
grained requirements for resource-intensive applications.

Some research contributions contribute to and enhance
the cost efficiency of mobile application services. In [23],
the authors use heterogeneous mobile cloudlet services to
improve cost-efficiency. The Authors consider this frame-
work’s computation time, communication time, and deadline
cost. In [24]–[26], investigate, cost-efficient, and energy-
efficient task offloading in mobile cloud computing are effec-
tively probed. The focus of the research is to save the battery
life of mobile devices by offloading tasks to the mobile cloud.
The authors consider resources as storage. The presented
computing model effectively presents the mobile cloud-based
computational offloading framework for task scheduling. The
[14], [27], [28] investigate the resource consumption model
for mobile device applications in mobile cloud computing.
Cost pricing models are addressed in these studies to pro-
vide effective collaboration for resource consumption. For
example, spot instance, on-demand, and on-reserved systems
are produced. The achievement of these studies is to reduce
resource renting costs and executemobile services under their
deadlines.

Furthermore, the authors in [29]–[31] investigate the cost
efficiency and cost-effective real-time analysis to overcome
the application running cost during task scheduling. These
studies aim to enhance the performance of mobile cloud
applications and provide effective workflow categories to
execute the tasks efficiently. Moreover, data transfer time
and execution time are enhanced. Additionally, the studies
considered the computational cost and communication cost
of mobile device services during task scheduling in MCC
[32]. In [33], the authors use mobile edge computing to
minimize service latency, revenue optimization, and high
quality of services. The authors share maximum revenue
and services utilization features. The authors improve the
utilization, service latency, revenue, and utility value but
do not consider cost management, resource matching, task
deadline handling, server utilization ratio, and microservices
boot time. Authors in [34] design a microservice schedul-
ing framework. The framework implements mathematics to
improve the satisfaction level, network delay, energy con-
sumption, average price, failure rate, and network through-
put for the proposed technique. Still, it does not work on
services delivery latency, cost management of microser-
vices, resource matching, task failure ratio, servicer utiliza-
tion, and task sequencing. Another technique presented in
[35] is the author’s auction mechanism to model to interact
between Mobile Edge Computing systems. The performance
is measured for each offloading task by the management
of these tasks for justified methodology. Table 1 shows
the literature in summary form. We have considered Task
Sequencing, Server Utilization, Task Failure Ratio, Handling
Tasks Deadlines, Boot Time, Cost Management, Resource
Matching, and Services Delivery. These parameters are con-
sidered in this approach which is not considered by pre-
vious approaches as defined. The hypothesis/Baseline is
illustrated in Table 1 based on the below-defined H1 to H11
hypothesis.
• H1: Schedule tasks based on Sequencing, Server Uti-
lization, Fault Tolerance, Time, and Cost.

• H2: Task Scheduling over Sequencing, Utilization, Boot
Time, and Services Delivery Latency.

• H3: Schedule Task Based on Sequencing, Server Uti-
lization, Failure Ratio, Boot Time, and ServicesDelivery
Latency.

• H4: Task Scheduling over Sequencing, Server Utiliza-
tion, Failure Ratio, Deadline, Cost, Resources, and Ser-
vices Delivery.

• H5: Task Scheduling using Task Sequences and Server
Utilization Ratio.

• H6: Task scheduling for Sequencing, Network Latency,
and deadline handling for tasks.

• H7: Task Scheduling for Sequencing, Time Manage-
ment, Fault Tolerance, and Resource Matching.

• H8: Task Scheduling to Handle Sequencing, Fault Tol-
erance, and Latency values.

• H9: Scheduling for Task Scheduling, Deadline Han-
dling, and Task Delivery Ratio.

VOLUME 10, 2022 46635

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

TABLE 1. Comparison of related work based on characteristics with proposed system.

• H10: The scheduling for tasks to get Fault Tolerance,
Cost Management, and Deadline of Task to process in
specified time.

• H11: Task Scheduling through Server Utilization, Time
Management to process for task Handling.

• H12: The proposed approach handles the Hypothesis for
Task Sequencing, Server Utilization Ratio, Task Failure
Ratio, Handling Task Deadline, Boot Time, Cost Man-
agement, Fault Tolerance, Services Delivery Ratio, and
Resource Matching.

The hypothesis is linked with the proposed approach to
achieve more results than the state-of-the-art techniques. The
results described in the proposed approach are discussed
based on the hypothesis.

Most of the algorithms are proposed in this related work
section. The problem we identify to address in our proposed
methodology is the migration of microservices based on
heavy content-sensitive applications. We address those mul-
tiple techniques proposed to address the mentioned problem
but do not address the computational cost capabilities accord-
ing to the requirements and demands of future needs. In the
next section, we address the standardmethods used to address
the problem and detail about problem description.

As microservices-based tasks are growing on mobile
devices, the tasks are very resource-intensive in the mod-
ern environment. So, we only need to perform the desired
operation of tasks rather than whole tasks. The main rea-
son for the microservices-based task offloading is VM-based
resources and cost-effectiveness. Existing studies focus on
task scheduling for microservices only on collective tasks
with individual services. Still, we take both cost-effectiveness
and resource handling for every individual microservices.

The tasks are offloaded towards the MCC VM in this
approach.

The Dynamic Decision-Based Task Scheduling Approach
for Microservice-based Mobile Cloud Computing Applica-
tions framework has not been suggested to the best of our
knowledge. This research proposes the MSCMCC frame-
work for mobile devices’ microservices-based tasks execu-
tion at a very low cost. Furthermore, through the MSCMCC
framework, we ensure the Quality of Service (QoS) for
microservices-based.

Mobile device applications over mobile cloud
computing. MSCMCC framework enhances application
efficiency and provides the effective resource con-
straints framework to enhance application-based efficiency,
execute tasks under deadline, and minimize application
cost.

A. PROBLEM DESCRIPTION
We study task offloading in mobile cloud computing [46],
but task scheduling is an issue when mobile applications
are designed through microservices containers architecture.
Most current techniques focus on computational offloading
frameworks to minimize the services delay, time, and cost.
None of the existing techniques considers the microservices-
based inter-dependent tasks and minimizes the existing cost
of resource distribution, server utilization, deadline of tasks,
boot time, cost management, latency, resource matching, and
fault tolerance in the proposed approach. We have considered
communication, offloading cost, and processing power dur-
ing scheduling and offloading in CCCOF. The paper aims
to reduce the computation and communication cost with
processing power at MCC and Mobile Devices. In the next

46636 VOLUME 10, 2022

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

FIGURE 1. Proposed MSCMCC system architecture with three layers, i.e., Mobile users layer, task scheduling layer, and mobile cloud layer.

section of the paper, we explain the detail of the proposed
architecture.

III. PROPOSED MICROSERVICES-BASED MCC
ARCHITECTURE
The proposed Microservices Container-Based Mobile Cloud
Computing (MSCMCC) contains Mobile Users Layer, Task
Scheduling Layer, and Mobile Cloud Layer, as shown in
figure 1. Generally, mobile users generate tasks for offload-
ing. Due to their heterogeneous nature in future correspon-
dence, these tasks are passed from the API. After passing
from the API, these tasks arrived at the Task Scheduling
Layer. Task Scheduling Layer consisted of four main mod-
ules. These modules receive offloaded tasks to Task Schedul-
ing Layer. The Cloud Computing Agent (CCA) is the main
module responsible and accountable for managing and han-
dling all the offloaded tasks. The Cloud Computing Agent
also assisted the System Monitoring Agent, Task Sequences,
and Task Scheduling Handler. CCA is a specialized Agent
which exists between mobile devices and system resources.
CCA collects data fromAPIs ofMobile Devices, such as con-
figuration information, metrics, and logs. All these objects
that inhabit on MCC virtual network exist on MCC servers.
These are System Monitoring Agent, Task Sequences, and
Task Scheduling Agent. CCA utilized all these three modules
for performance measurement and requested workload.

Primarily, we have used FCFC and SJF algorithms to
sequence the tasks coming from Mobile devices. It is
to note that, in this scheduling, every task contains vec-
tor attributes such as execution time, execution deadline,
data size, and CPU instructions. Task sequences rules are
proposed. Sequences rules are based on sorting algorithms

to ensure the minimum cost overhead rules are occupied.
SystemMonitoring Agent contains a table that includes tasks
and their resources list. After every event in Task Scheduling
Layer, the table is updated with resources consumed or left
from the system or task completion. On Mobile Cloud Layer,
the task is swapped from one MCC server to another, the
early task scheduling is improved, and the cost function is
enhanced. The task swapping among MCC servers enhances
resource handling and other task provision mechanisms.

The Mobile Cloud Layer consisted of heterogeneous
Mobile Cloud servers with VMs to execute and handle
resource provision. All VMs resides at the top layer of MCC
server layers. Internally, on every VM, the MCC Server
engine adds or removes the microservices to offload the
tasks. All these microservices are handled through contain-
ers. The container MCC Server Engine communicates with
microservices through REST-API services. DB/Libraries are
connected with the MCC servers to load any data and func-
tions required to fulfil the Microservices offloading. All tasks
are running independently and do contain their data and pro-
cesses. Based on the characteristics of these tasks, every task
contains a deadline for execution, data size, and CPU time
to execute before scheduling from MCC. A random method
loads these tasks onto the task scheduling and communication
mechanism. Randomly these tasks are loaded onto the MCC
system as these tasks before scheduling are not preempted
on MCC.

A. TASKS MOBILITY
We attached the MCC cloud servers at the end of the MCC
network. In CCA, we introduced a Mobility Module that
allows the MCC network to select the mobile users or

VOLUME 10, 2022 46637

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

subscribers for data packets delivery. Location Management
is one of the packets delivery ratios schemes. CCA also
maintains the connection of all mobile subscribers, which
contains the attachment points for the final task scheduling.
HandoffManagement is one of themain points which decides
the scenario for handoff management. The Task Mobility
Section handles the glitches and functionalities of location
and handoff management problems. In MCC, the Mobile
Devices change their position using Mobility options, which
trigger their connection from one access point to another. This
process is Handoff Management. In MCC Mobile Devices
connections, we divide the handoff management into three
main stages. (i) Mobile Devices, MCC network agent, and
MCC network changing condition causes handoff activation
process ofMCCMobile Devices. (ii)Whenever a newMobile
Device connection happens, CCA performs new or additional
routing and discovers a new-fangled handoff connection tool.
(iii) The delivery of data from old connection points to other
connection points to support the QoS operations and handling
procedures. The old connection means the connection of
Mobile Devices in the previous handoff process. The new
connection means handoff towards the new MCC access
point.

B. MICROSERVICES BASED MCC SERVERS
CHARACTERIZATION OF RESOURCES
In theMCC paradigm,Mobile Cloud Layer containers are the
trivial methodology. This newly thriving application method-
ology is especially to run theMobile Applications in theMCC
network. Classically, the administration of group containers
grows in different ways, and crucial growth is observed. The
deployment of themicroservices containers through theMCC
server layer is the fundamental problem. Microservices are
tiny self-governing services inside mobile applications that
communicate with external resources through well-defined
APIs. Self-established teams own these microservices in
MSCMCC. We consider the heterogeneous mobile cloud
servers with VMs with every heterogeneous server to exploit
these VMs. The MCC server engine is deployed, quickly
adding, or removing the microservices. We have a hetero-
geneous MCC server containing devices and processors in
the Mobile Cloud Layer. Every processor and device contain
computational capabilities, bandwidth, runtime, costs, and
VMs (container microservices).

C. RUNTIME MICROSERVICES IN MSCMCC
In microservices, the protocols are lightweight, and every
service is fine-grained. In MSCMCC, every MCC server
consisted of a single VM. On the other hand, every VM
can support many of the microservices at a single time.
Every MCC Server VM runs a single microservice accord-
ing to the microservices architecture. CCA works with cost-
efficient microservices with requested computational tasks
to deliver efficient results. Inside CCA, every microservice
(any computational task) holds libraries and resources asso-
ciated with every task. Mobile Application tasks are handled

TABLE 2. Notations with description.

through fine-grained microservices architectures during the
task offloading in MSCMCC.

D. PROBLEM FORMULATION
Initially, we set the delay-sensitive tasks T = {t1,
t2, , tn} to be offloaded to the MCC server. These tasks
are scheduled through the MCC server. As we handled the
microservices, so each task consisted of attributes. Attributes
associated with tasks are ti = {Tw, Tdata, Td , Tstorage. Tw
denotes the task workload, Tdata shows the data of task during
the transmission from the mobile device to the MCC server
VM, Td illustrate the task deadline, and Tstorage Shows the
task storage requirements.

Based on the MCC cloud configuration, we assume that
we have N number of MCC servers, i.e., M = {m1,
m2 ,N}. Every MCC server mj has the following
attributes i.e.mj= {BwjMCC , ξj, Scj,VM

j
mic }, whereB

wj
MCC is the

bandwidth between the MCC Centric Agent and MCC server
during the task offloading, ξj demonstrates the computing
rates of Jth MCC server, Scj Demonstrates the total storage
of the MCC server j in the method. VM j

mic Demonstrates
the deployed VMs for microservices through MCC server
j with the same capability to handle tasks. Each VM j

mic It
comprises multiple containers to execute the microservices
to execute multiple tasks. Each microservice has its database
and libraries to be executed during the execution.

When a task is scheduled atMCC server j,we illustrate that
Bji does the task demand the total bandwidth ti. The resources

46638 VOLUME 10, 2022

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

such as Storage, RAM, Bandwidth, etc., ti is the offloaded
task towards MCC server cost, i.e., j, and the state of the
task is yj = 1 are denoted by Cj. Due to limited page space,
this paper shows a limited explanation of the notation, and
the remaining notations are illustrated in Table 2. Equation 1
illustrates that through binary variable sij either the task ti
scheduling through the MCC server Mj Or not. sij can be
either zero or one for tasks scheduling overall tasks from all
applications. The decision about tasks is made through the
proposed servers.

Sij =

{
1, ti← Mi

0, otherwise
(1)

Moreover, each task in this problem context is assigned to one
Mj. On the other hand, the MCC server schedules one task
simultaneously. Equation 2 shows the task assignment ti to
MCC serverM . The one indicates the ready tasks assigned to
the MCC server for processing on its VMs. The value 1 indi-
cates the positive task assignment to the appropriate server
VM from 1 to N tasks.

N∑
j=1

Sij = 1 (2)

EveryMCC server has limited capability regarding resources.
Therefore, the task offloading requirements do not exceed the
MCC server capabilities. Equation 3 represents the scenario
to check the task offloading capabilities about tasks schedul-
ing. Task offloading capabilities are checked for scj, sij against
scj to check that no tasks processing requirements exceed the
MCC server.

N∑
i=1

Scj ∗ Sij ≤ Scj (3)

The MCC resource server has the capabilities of limited
resources. It also has limited VM to offer its services to
execute the microservice for each task coordination. So,
equation 4 represents fewer computational tasks assignment
decision making. Every requested task (microservices tasks)
must consume less computational than VM computational
capabilities.

N∑
i=1

Tw ∗ Sij ≤ VMj
mic (4)

Every task is scheduled on an optimal MCC serverMj. Cloud
Computing Agent decides where to schedule the designated
task ti Towards the MCC server VM. The task execution on
the MCC server Mj is illustrated through equation 5. It illus-
trates that task with resources, storage, and time responsible
for selecting the appropriate server Mj to follow for final
decision.

Te
ti =

M∑
j=1

Tw

RMj

∗ Sij (5)

Therefore, after the decision of the Cloud Computing Agent,
when a task ti It is scheduled towards the MCC server for
computation; the task gains extra computational offloading
possibilities and sends the results back to the Mobile Device
from the MCC server. The computational work is illustrated
through equation 6.

RT
T =

T− Dateenteri

Bwj up
MCCij

+
T− Dateleavei

Bwj down
MCCij

 (6)

In equation 6 the T − Dateenteri illustrate the task ti input
data size and T − Dateleavei shows the task ti the output data
size after being processed by the MCC serverMj. B

wj up

MCCij and

Bwj
down

MCCij Shows bandwidth of uplink and downlink of link
rates from Mobile device offloading to MCC server and gets
results back to the mobile device after computation. RTT is
the Round-Trip Time, i.e., the time between data sending and
receiving fromMobile Device to MCC serverMj For all tasks
(microservices). Now we measured the bandwidth required
for the measurement of each task. Equation 7 illustrates the
bandwidth requirements for every task forRTT . The bandwidth
requirements are checked against each task to best fit MCC
server VM processing capabilities and data communication
with tasks.

Sij
(
RT
T + Te

ti

)
≤ Td (7)

The above equation 7 defines the bandwidth require-
ments, but as every task is different, the bandwidth differs.
We obtained inequality bandwidth of task ti is illustrated in
equation 8. The bandwidth is checked against the Time, Data,
The computational speed of individual VM under the MCC
server Mj. The inequality bandwidth is measured through
equation 8.

Bwij
MCC>

T− datai

Td−
Tiw
ξj

(8)

To achieve the performance of the proposed system, we make
sure that all the tasks ti Originated from Mobile Devices
should be finished before their respective deadlines. This pro-
cess minimizes the MCC ServerMj Cost. The required com-
munication bandwidth between the MCC server and Mobile
application is calculated in equation 9. After inequality band-
width of task ti. The communication bandwidth is computed
to check the actual and expected communication bandwidth
required for the task to offload.

Bwij
MCC =

T− datai

Td−
Tiw
ξj

(9)

Besides the individual task bandwidth, every MCC serverMj
has limited bandwidth with limited VMs. The allocation of
the tasks to the MCC server Mj it should contain less band-
width consumed as compared to the server itself. Equation 10
illustrates total bandwidth of the tasks should be less than
or equal to the bandwidth required to MCC for wj tasks.

VOLUME 10, 2022 46639

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

wij shows the bandwidth required to execute the tasks for
proper ordering.

N∑
i=1

Bwij
MCC ∗ Sij ≤ Bwj

MCC (10)

Cloud Computing Agent (CCA) is an instigator that connects
and monitors theMCC server. CCAmonitors its performance
during every time interval. MCC Server’s cost depends on
twomain elements: State and resources required formicroser-
vices for every offloaded task on the MCC server. User
Mobile application tasks are handled through CCA. Its cost
is not only dependent on its On State, but it only charges for
the requested computational capabilities of the MCC server.
To show the status of the MCC Server, we adopted a binary
variable ∂j To show state through equation 11. ∂j shows the
on and off condition of the server for tasks processing.

∂j =

{
1, Mj← on
0, off,

(11)

E. MCC COST MODEL
Microservices are not individual computational applica-
tions. These included the cost model, which explains the
on-demand resource access method, ensuring connectivity
based on the business applications framework. Equation 12
illustrate the on-demand cost model for mobile application
(Typically the business applications). This model computed
the processing demand for every selected application used in
the simulation.

Cj = δj ∗ Sij ∗ Te
ti (12)

In table 2, we show the δj Values as unit price for com-
putational work for every individual MCC server. Now it
is time to compute the resource constraints for every MCC
server. The formulated constraints are computed through
equations 13 to 25. These equations collectively compute the
resources constrained for MCC servers MCC1 to MCC3.
The state of every server is monitored through ∂j CPU
costs, bandwidth requirements, and microservices-based pro-
cessing tasks must be distributed against every resource.
Finally, the Sij = {0, 1} decides about the task offload-
ing using selected parameters in table 3. Equation 13 com-
putes the min Rc for every task for the resources demand.
min Rc depended on On-Demand δj and MCC Server State
∂j. Equation 14 compute min Rc for the task to compute.
Equation 16 computes the time for resources to compute
every task on j server. Similarly, equation 17 computes
the ith the task of mobile applications for task tasks from
table 3. Equation 18 and 19 computes mobile Cloud-based
resources tasks comparison and execution and resources
required to compete against each task. Moreover, equa-
tion 20 and 21 computes that jth MCC server capacity for
resources and set it equal to 1, which shows that resources
are convinced to offload the task towards MCC servers.
Equations 22, 23, and 24 decide about server, bandwidth,

and VM-based resources required for every microservices-
based task to offload towards the cloud. The final decision is
computed in Sij = {0, 1} to get the task for offloading with
required resources.

min Rc =

M∑
i=1

N∑
j=1

∂j ∗ Cj ∀ i ∈ N (13)

subject to min Rc =

M∑
i=1

N∑
j=1

Sij ∗ ∂j ∗ Cj ∀ i ∈ N (14)

Tj
0 = 0, ∀ {j = 1, 2,,N} (15)

Tj
k = Tj

k − 1 ∗
N∑

k=1

Sjk ∗ T
e
tk

∀ {j = 1, 2,N} (16)

Te
ti =

N∑
j=1

Sij ×
Tw

ξj

∀ {i = 1, 2,N} (17)

MCi =

N∑
j=1

Tj
k ∗ Sij

∀ {i = 1, 2,N} (18)

MCi + RT
T ≤ Ti

d (19)
N∑
j=1

Sij = 1, ∀ {i = 1, 2,M}

(20)
M∑
j=1

Sij = 1, ∀ {i = 1, 2,N}

(21)
M∑
i=1

Sij ∗ Sci ≤ Scj, ∀ j ∈ 1, 2,N

(22)
M∑
i=1

Sij ≤ VMj
mic, ∀ j ∈ 1, 2,N,

(23)
M∑
i=1

Sij ∗ B
j
i ≤ Bwj

MCC, ∀ j ∈ 1, 2,N,

(24)

Sij = {0, 1} (25)

F. PROPOSED ALGORITHM FRAMEWORK FOR SYSTEM
Task Scheduling and Microservices based Computational
Offloading (TSMCO) framework comprises several com-
ponents. Figure 2 shows the TSMCO framework compo-
nents. The first module of the framework is the resource
matching from incoming tasks from mobile devices and then
matching for MCC servers for their pair-wise processing.
Task Sequencing is one of the most critical components of

46640 VOLUME 10, 2022

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

TABLE 3. MCC servers unit price.

FIGURE 2. TSMCO framework to get microservices-based tasks from
mobile devices with resource matching algorithm and task scheduling
algorithm is implemented to offload task, and MCC Schedular uses VMs
to process the offloaded task.

the TSMCO framework. It uses sorting algorithms to sort
the tasks into different to perform cost-effective schedul-
ing. Task sequencing provides input to the tasks scheduled.
The task sequence ti to be scheduled on the MCC server
MC j if Sij = 1, or else Sij = 0. The task sequences
process continues until all the tasks are scheduled and pro-
cessed according to their deadlines using MSCMCC. All the
mobile tasks are passed and processed from multiple com-
ponents and complete their executions. We have heteroge-
neous MCC servers deployed to process the scheduled tasks
on each VM. We define Algorithm 1 to best schedule for
tasks. Task Scheduling Mobile Cloud Computing Optimiza-
tion (TSMCO) algorithm is declared for task scheduling on
MCC servers. This algorithm takes G, T, and j/M as input,
and output returns resource constraints for everyMCC server.
Initially, the decision schemes are called with server state ∂j,
cost Cj, and Services Sij. In steps 2 and 3, tasks scheduling
and sequencing are performed using said parameters, i.e., G,
T, M. The array of tasks from mobile nodes is defined on
the empty step. Initially, it was set to NULL with no entries.
All the processes continue for M, G, and T on steps 5, 6,
and 7. Steps 8 and 9 define checking for time. If defined,

then time for CPU, data, execution of tasks, and limit for
tasks execution is declared. This checks resources also to
be identified for provided time. Next, in steps 10 and 11,
the tasks list is checked. If not empty, then sequencing of
ready tasks is performed for M, T, and G parameters. Step 12
shows an array of tasks ready for offloading decision. Then, in
steps 13 to 15, the resource costRc is computed for every task
found in the array of ready tasks and returned to the system
for further actions.

Algorithm 1 : TSMCO
Input: G = {g1, g2,, gn}, T = {t1, t2, , tn},
j ∈ M = {m1, m2 ,N}.
Output: minRc
Steps
1.
∑M

i=1
∑N

j=1 Sij∗∂ j ∗ Cj Call (Decision Scheme)
2. task_schedule(G,T,M)
3. task_sequence(M,T,G)
4. TMobile

LIST []← NULL
5. while(M) do
6. while(G) do
7. while(T)
8. if (T 6= ϕ)then
9. resource_algo(Ttime

exe ,T
limit
exe ,T

req
data,T

ins
cpu)

10. if(TMobile
LIST [] 6= ϕ)then

11. task_sequence(M,T,G)
12. task_sequence(M ,T ,G)

13. Rc∗ ← (
M∑
i=1

N∑
j=1
∂j ∗ Cj) ∗ ← TMobile

LIST []

14. Rc← Rc∗

15. Return Rc;
16. End Loop;

G. MCC SERVER RESOURCE ATTAINING
We deal with the cost optimization problem [47] and het-
erogeneous MCC servers. The most effective and interesting
is selecting the best edge MCC server to process all the
extended sequential tasks. The object of our task scheduling
for microservices applications is to reduce MCC’s process-
ing and computation costs. The MCC server selection with
minimum cost δj Is one of the challenging ways. Equation 26
and equation 27 illustrates the unit cost δj And smaller MCC
server costs, respectively.

δj =
Cj

ρj
(26)

In equation 26 the ρj define the size of the MCC server
Mj. The cost of the server in respect of processing power,
memory, and tasks processing size. The output of equation 26
is the total cost from the selected MCC server. The unit
cost δj is determined through equation 27. The unit cost is
determined through MCC tasks demand, MCC VM demand,
and MCC bandwidth handling demand. This originated for

VOLUME 10, 2022 46641

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

tasks to be offloaded with computed cost.

ρj =
MCCScj
N∑
i=1

Scj

+

MCC
VMj

mic∑N
i=1VM

j
mic

+

MCC
Bwj
MCC∑N

i=1 B
wj
MCC

(27)

After successful processing from the servers, the remaining
resourcing is not needed to waste. ¯µMi are considered as
remaining resources on the MCC server Mi After initial
level task scheduling. There is a task that maximizes the
products and their primary operations, so we denoted it dot
product γi. The determined values of γi is computed through
equations 28, 29, 30, and 31. These equations show complete
declarations for the proposed system.

γi = µMi ∗ βτij (28)

γi = Sci∗Rl
j ∗ qi + qi ∗ νlj+c∗b

l
j ∗ qi (29)

µMi =

(
Rl
j ∗ qi ∗ ν

l
j ∗ qi, b

l
j ∗ qi

)
(30)

µMi = YMj −

∑
βt∗j (31)

βt∗j illustrate the tasks resource management to schedule on
the MCC server Mj. There are different types and resources
on the MCC server system. Resource matching is used to
allocate the optimal and best available resource for each
task in the MCC server in heterogeneous nature. The tasks
contain vector attributes such as task deadline, data size, and
workload. On the other hand, the resources contain vector
attributes such as bandwidth, cost, VM capacity, and stor-
age. Resource matching is one of the problems that must be
addressed. We select Techniques for Order of Preference by
Similarity to Ideal Solution (TOSS) model and Analytic hier-
archy processing (AHP) model as resource matching algo-
rithms. Algorithm 2 is designed for MCC server resources
matching. It takes resources and tasks (in sequential order) as
input. The output of the algorithm is the FLIST [] frequent list
array. FLIST [] after fulfilment of the requirements of the task
linked with resources, store these on the MCC server MC j.
The detailed explanation of algorithm 2 is as follows.

In algorithm 2, step 4 verified the needs of the MCC
server for all incoming tasks ti If the resources are matched
according to the MCC server, the algorithm returns true,
otherwise returns false. After the return of true results, we add
the matching list to Frequent List PLIST [kj, ti]. Step 4 repeats
all the possible tasks coming from mobile devices to match
the heterogeneous MCC server requirements.

H. MCC SERVER TASK SEQUENCING
All tasks arrived randomly because mobile devices originated
from different devices. The arrival rate of the tasks is followed
through Poisson Process. The task sequences do not follow
any rule to allow the task to allocate exclusive of any sequence
randomly. All the arrived tasks must be sequenced first to
be distinguished from non-sequenced and sequenced tasks.
The sequenced must be in proper format and provided in
proper sequential order. The company task sequencedmethod
consists of four rule-based. The method is deployed in the

Algorithm 2 : Resource Matching on MCC Server
Input: G = {g1, g2,, gn}, T = {t1, t2, , tn},
ti←{Scj, Tw, Td}, kj← \ {Rl

j, ν
l
j , ν

l
j}

Output: FLIST[]
Steps
1. Start
2. while(G) do
3. while(T) do
4. if(ti ≡ kj)then
5. AHP(Rl

j, ν
l
j , ν

l
j);

6. TOSS(Scj,Tw,Td);
7. add(PLIST[kj, ti]);
8. else
9. gotoStep4;

10. store(PLIST(kj, ti);
11. Return PLIST[kj, ti];
12. End Loop;
13. End;

current system. We take task size, deadline, and slack time
as three parameters to sequence the tasks. Four rules are
developed and deployed to sort all incoming un-ordered tasks.
The rules are as under: -

1) First Come, First Served (FCFS): We sort the task
according to their arrival time. All the tasks sort accord-
ing to their incoming time to queue. No such priority is
maintained due to its FCFS nature. Late tasks are sorted
according to their incoming time. The tasks lateness
through FCFS is accessed according to the effective
way [34].

FCFS =Td−Mi (32)

1) Shortest Job First (SJF): The tasks are sorted according
to their computational time. The shortest lateness tasks
are scheduled first, and lengthy executed tasks are exe-
cuted later.

2) Shortest Size First (SSF): In this strategy, all the tasks are
sorted according to the size of the task. Shorter size tasks
are arranged first, and lengthy size tasks are arranged
later. The SSF follows the strategy of pre-emptive task
scheduling for sequences of the tasks, which is very
helpful for the efficient and reliable provision of the
data.

All the offloaded tasks frommobile devices randomly arrived
at MCC. Initially, FCFS arranged all these tasks in a
first-come, first-severed sequence. FCFS executes the order
sequences rules to arrange the tasks in a particular order in
a cost-efficient method. Figure 3 exploits all task sequences
techniques, from task offloading to task sequencing. Every
task sequence method, i.e., FCFS, SJF, and SSF, has different
scheduling and sequences results. However, we will select
one with the best results according to the objectives of the
problem for optimal task sequencing.

46642 VOLUME 10, 2022

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

FIGURE 3. Tasks sequences adjustment for applications based on arrival
time using cloud computing agent using FCFS, SJF, and SSJ task schedular.

I. TASK SCHEDULING
Till now, we have done the resource matching and tasks
sequencing. After that, we should get the tasks scheduling
methodology adopted to sort the problem. However, the ini-
tial implementation of the tasks scheduling is not just the
outcome of the task scheduling policies implemented in the
paper. The cost can be calculated in some different ways.
Due to concurrent changes in the MCC cloud network, the
initial selection is not suitable for task scheduling to calculate
the Mobile application cost. Another reason not to select the
initial as final is instability in the MCC resources. A new,
improved solution is required to improve task scheduling.
For example, we take tasks, i.e., T1, and T2 to execute on
heterogeneous MCC server with VM i.e. K1, and K2. The
resources required for T1, and T2 are (deadline: 24, data
size: 15Mb, and CPU required: 12) and (deadline: 50, data
size: 35Mb, and CPU required: 32) respectively. While the
resources attribute to MCC Servers K1, and K2 are (Rlj :
15, νlj : 4, b

l
j : 10) and (Rlj : 20, ν

l
j : 8, b

l
j : 20) respectively.

Initially, the task T1 is scheduled on the MCC server K1,
and task T2 is scheduled on theMCC serverK2. The total cost
of the application is the total aggregate of the twoMCC server
costs. Equation 33 depicts the total cost of the application.
The equation effectively shows the reduced cost required for
the application to offload the task.

ωtotal =
∑2

i=1
Ki ∗ Ti (33)

If all the tasks are scheduled on the MCC server K2 then
the total cost of application is solely the cost of the MCC
serverK2. Although the tasks are executed on the same server,
this reduces applications computational costs. Figure 4 shows
more than one solution for single task sequencing. We are
also ready to accept the worst solution to be adopted by the
processes. The challenge for the schedular is to pick one of
the best solutions. The schedular should pick one solution
which reduces the system’s total internal cost. In the example
mentioned above, the MCC server picked by the Schedular
has resources according to the cost mentioned in the resource

FIGURE 4. Flow chart of the complete working of the proposed system
with implementation detail of simulation work.

list. So, additional optimization is required to achieve high-
cost reduction. At the start, the MCC Server had a high cost
of available resources. The challenging thing for us is how to
reduce the resource utilization cost and utilize the maximum
resources. So, we introduce the improved Task Scheduling
methodology that significantly improves the resource utiliza-
tion of MCC servers. The main goal of the scheduling is to
schedule the tasks to MCC servers with the lowest cost at this
initial scheduling phase. This is one only way through which
the Task Scheduling Algorithm improves the performance
of the MCC server. The scheduler removed the extra and
most expensive cost at this initial collaboration stage. How-
ever, we propose task scheduling algorithms that enhance
the scheduling performance and solve the resource optimiza-
tion problem on MCC Server. Algorithm 3 defines the task
scheduling on the MCC server with optimized resource uti-
lization. The algorithm takes input tasks set to be scheduled
on a heterogeneous MCC server. Algorithm 3 is executed in
the below-mentioned task as:

J. TIME COMPLEXITY OF TSMCO
The TSMCO has different components like Resource Match-
ing, Task Sequences, and Task Scheduling. We take these

VOLUME 10, 2022 46643

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

Algorithm 3 : Task Scheduling Algorithm
Input: G = {g1, g2,, gn}, T = {t1, t2, , tn},
Mi← \ {M1, M2, M3,,Mn}
Output: Sij(TaskScheduling),γj(MCCServerState)
Steps
1. Sij← 0; : Binary Variable Declaration to zero
2. Initialize← min Rc;
3. γj← 0; : MCC Server state declaration to zero
4. VectorAttribute→ YMj ;
5. Unit Cost δj of MCC servers K ∈ Mi;
6. ωtotal =

∑2
i=1 Ki ∗ Ti : Determine the total cost

7. Jj = {}; : Exploited MCC Server Set
8. begin
9. while(G)do

10. While(T) do
11. While(Mi)do
12. if((Mi← G) 6= ∅) then
13. Resource match→ δj (smallest MCC cost)
14. ti← Mj;
15. hRt ≡ Mj;
16. ti(largestsize)→Mj
17. Ti←Ti |{ti}|;
18. Establish

{
Sij, γj

}
= 1;

19. Jj←Jj∪
{
Mj
}
;

20. minRc←Sij : Optimal Task Assignment
21. Mj = Mj∪

{
Mj
}
;

22.
{
Mgi,Mg2

}
←W;

23. if((Mg1 > Mg2)← E)then
24. swap(ti(Mg1)toti(Mg2))
25. assign(Si(g1) = 1)
26. (minRc)∗ ←Sij : Optimal Assignment
27. elseif

(
ti← Mg2 = ∅

)
then

28. setW ← W
∣∣Mg2

∣∣
29. setγf (g2) = 0; : New Fog server
30. Mg2(smaller Cost E);
31. End while;
32. End While;
33. End − Loops;

three components separately and then effectively utilize all
these components to obtain the time complexity. (1) Resource
Matching: We expect the heterogeneous servers to exploit the
TOPSIS and AHPmethods for taskmatching [44]. The calcu-
lated time complexity of the Resource Matching is O(MxT)
[45]. M is the MCC server resources for multi-criteria, and T
is the tasks arranged in the pair-wise matching. (2) Sequence
of Tasks: In Task sequencing, all the tasks are sorted with the
shortest size, deadlines, and lateness by using O(mlogn). N is
the number of sorted tasks, and M is the exploited method to
sort the tasks accordingly. (3) Task Scheduling: All the MCC
servers are scheduled according to descending order of δj,
and Cj. Although the time complexity that we have measured
is O(logM).O(logM) + N [46]. This time complexity is for
all MCC servers according to their descending order of price

and load for the task scheduling process. N shows the tasks
swapping process in the time complexity of the different
MCC servers. Figure 4 represents the entire system work,
including the simulation work.

IV. PERFORMANCE EVALUATION
To evaluate the performance of proposed TSMCO and
MSCMCC frameworks, we generate practical results from
different simulators over mobile and microservices-based
applications. Initially, we simulated task sequencing over
FCFS, SSJ, and SJF to simulate the task sequencing results of
the proposed methodology. Task sequencing is an evaluation
metric that defines the task’s actual sequencing before the
final decision. Furthermore, the CPU utilization evaluation
metric is defined to check existing resource utilization under
the common ship of different resources. Overhead time is an
evaluationmetric. Overhead time describes the framework for
microservices overhead time using performance parameters.

Task Deadlines (Execute all the tasks before the final sub-
mission of the deadlines), Cost (RPD value in percentage
to show the total cost of applications such as E-Transport,
2D/3D Games, Augmented Reality, HD Video Streaming,
and Healthcare Applications used in the proposed system
evaluation), and task failure ratio (During Scheduling Task
failed to offload, and VMs failure after offloading) evaluation
metrics are evaluated in the results section to briefly describe
the performance of the proposed microservices-based task
offloading framework. Table 4 defines the stimulation param-
eters with their description.

The process is divided into distinct parts based on the
simulation parameters defined in Table 4. (1) MSCMCC
implementation part, (2) Metric Parameters and Components
Calibration, (3) Comparison of TSMCO offloading frame-
work, and (4) Algorithms Comparison and Task Scheduling
part. In Table 5, we describe the MCC server’s resources,
and in table 6, we describe the workload analysis of Mobile
Applications. So, selecting these applications is to compare
with existing techniques from literature to get better results
for this cost-intensive application. Every application instance
is considered one task containing multiple microservices.

A. COMPARISON FRAMEWORK AND APPROACHES
To compare with the existing approach, the following pri-
mary considerations are considered to compare the obtained
results. The hypothesis means what we are trying to predict
from the baseline of the proposed outcomes. In the proposed
framework, the hypothesis defines the proposed approach
with compared results with the baseline technique.

• Hypothesis-1/Baseline-1:We implement theVM-based
offloading framework for MCC task scheduling. The
studies have implemented the [46], [43], [48], [49]
frameworks for testing results. The goal of the hypothe-
sis is to offload the entire mobile application (including
all the microservices) to the MCC cloud servers.

• Hypothesis-2/Baseline-2: Dynamic computational
offloading-based framework is implemented using

46644 VOLUME 10, 2022

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

TABLE 4. Simulation parameters.

TABLE 5. MCC server specifications.

TABLE 6. Mobile device applications workload analysis.

virtual machines. The adopted strategies are [50]–[52]
used to test and compare the testing results. The aim is
to offload complete mobile applications towards hetero-
geneous servers. The offloading is based on sufficient
available resources.

• Hypothesis-3/Baseline-3: Mobile Applications dead-
lines are implemented in the baseline for Cost andAppli-
cation deadline time. These are five selected application
types taken from table 5 [16]. These are used to test and
compare the testing results in Figures 9 and 10.

These methods work for cost, energy, and fault rate handling
using task dependency values, Cloud Assisted Mobile Edge
Computing (CAME) framework in which cloud resources are
leased to enhance the system computing capacity. Another
baseline method called Rattraap is used to compare the
proposed system results. A lightweight cloud platform that
improves the offloading performance from the cloud side.
The results are compared for boot time for microservices,
overhead cost, tasks sequences, deadline for microservices,
failure rate, and tasks rates for microservices. These results
are compared with the baseline methods for effective results
comparison. Initially, we build the model for the proposed
system and compare the selected results with existing base-
line methods. We review that our results are comprehensively
better than these baseline methods from all aspects.

B. PERFORMANCE METRICS
In this paper, the components collaborations recommend the
actual implementation plan for experimental results. The
application tasks are generated from components collabo-
ration as described in table 3. In this experiment, we take
five different applications, and their types are considered for
experimental results. Every task contains a deadline to finish
its execution. The task deadlines set in this experimental
paper setup are based on equation 34. This equation com-
putes the task deadline for task requirements and provides a
comprehensive approach to dealing with the finished time of
tasks.

Ta,i
d = Pa,i + γ + Pa,i (34)

The task deadline for T a,id is required to define the early
finished time and task deadline to finish the final task interval.
γ shows the tightness in the task deadline, which shows
the values of 0.2, 0.4, 0.6, 0.8, and 1. So every task on a
mobile device contains five different deadlines for tasks, i.e.,
D1, D2, D3, D4, and D5. Using equation 31, we verify the
algorithm performance throughout the performance metrics.
Relative Percentage Division (RPD) statistical analyses are
performed to compute the recital division method for MTOP,
VFCN, and CTOS. The paper results effectively evaluate the
power consumed by the different devices to effectively partic-
ipate and provide the algorithm to evaluate the computational
throughput for effective parameters. Equation 34 defines the
RPD estimation for the proposed technique. This equation
experience provides a percentage of task offloading.

RPD(%) =
P∗a+Pa
P∗a
×100% (35)

where, Pa shows the objective function.

C. MSCMCC IMPLEMENTATION
We implement a Mobile Cloud-based application in Mobile
Devices using Mobile Application Developer IDE, i.e.,
Android Studio, and Huawei Y9 2019 Mobile Model as
an emulator to test mobile applications. Figure 5 shows
this description for applications and scenarios. We evaluate

VOLUME 10, 2022 46645

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

FIGURE 5. MSCMCC implementation uses REST API to offload the task towards mobile cloud computing agent console. These tasks are then forwarded to
edge X foundry fog server runtime platform for final task processing on the MCC VM server.

the Edge X Foundry through an open-source platform. The
implementation of the MSCMCC framework consisted of
three main components. Mobile Users layer, Mobile Cloud
Agent Control layer, and Mobile Cloud Resources Layer.
The mobile applications offload their related tasks to Mobile
Cloud Computing Agent Console through REST API. The
JSON format is used to interpret the requests and responses
from Mobile Cloud Computing Agent through a Gateway
Interface. The console interface reads the API request prox-
imately. Based on the characteristic of the offloaded task,
the device services inform the Mobile Cloud Computing
Agent what type of services are currently required to execute
that particular task. The responsibility of the Mobile Cloud
Monitoring System is to check the tasks list and monitor
the stability of the system. Task Sequencing sequence the
tasks into some logical order, and Task schedular schedule
tasks to heterogeneous Mobile Cloud servers for execution.
The Run Time is a system operational environment based on
the system scenario. Java Runtime Virtual Machine (JVM)
runs the Java program effectively. JVM is just like Win-
dows Docker Virtual Machine. Autonomous Microservices
are created based on these containers. The containers are reg-
istered with a Mobile Cloud server through registry services
to consume all the services efficiently. REST API is benefi-
cial to inter-services communication among microservices to
achieve lower overhead.

D. COMPARISON OF OFFLOADING FRAMEWORKS
The proposed Microservices Container-Based Mobile Cloud
Computing offloading framework provides a lower bootup
time than heavyweight VM frameworks. The proposed sys-
tem effectively improves resource utilization as compared

FIGURE 6. Boot time of microservices to compare the random arrival of
tasks with the percentage of services overhead over 2000 tasks.

to existing techniques. These aspects are proved through
simulation through mentioned parameters from Table 3.
Figures 6 and 7 show the boot time results of the microser-
vices over 2000 and 3000 tasks separately. The experimen-
tal results show that the MSCMCC technique effectively
enhances the overhead of the service for the arrival of the
tasks in percentage value.

The proposed approach effectively shows less time for
microservices-based applications., In Figures 8 and 9, we
design to implement the CPU utilization of resources over
2000 and 300 random arrivals of the tasks. The tasks in
MSCMCC show less CPU usage of around 22% compared
to existing methodologies.

46646 VOLUME 10, 2022

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

FIGURE 7. Boot time of microservices to compare the random arrival of
tasks with the percentage of services overhead over 3000 tasks.

FIGURE 8. CPU utilization of resources for random arrival of tasks for the
processing resources for 2000 tasks.

FIGURE 9. CPU utilization of resources for random arrival of tasks for the
processing resources for 3000 tasks.

Moreover, figure 10 and 11 shows the improvement in boot
time. The MSCMCC shows less boot time than the existing
technique by 17% than existing techniques.

FIGURE 10. Overhead of microservices according to boot time in ms with
the number of random arrival of tasks for 2000 tasks.

FIGURE 11. Overhead of microservices according to boot time in ms with
the number of random arrival of tasks for 3000 tasks.

The results show that theMSCMCC framework effectively
improves the overhead, bootup time, and resource utiliza-
tion. The main reason behind the effective results is the
lightweight VM utilization over heavyweight when running
Mobile Applications during scheduling. Therefore, our task
scheduling framework is efficient for delay-sensitive mobile
applications. The proposed system effectively minimizes the
cost of healthcare applications by 25%, augmented reality
by 23%, E-Transport tasks by 21%, and 3-D games tasks
by 19%, the average boot-time of microservices applica-
tions by 17%, resource utilization by 36%, and tasks arrival
time by 16%.

E. TASK SEQUENCING
Task Sequencing rules such as FCFS, SJF, and SSJ
are the main components used to organize the tasks in
sequential order for scheduling. Figure 12(a) demonstrates
Task Sequencing Rules’ working, and figure 12(b) demon-
strates the Mean plot of alpha with 95% of HSD Interval
and the Mean plot for random Mobile Tasks arrival with

VOLUME 10, 2022 46647

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

FIGURE 12. Mean plot of alpha with 95% of HSD interval and mean plot for random mobile tasks arrival with 95% of HSD
intervals.

FIGURE 13. Deadlines of healthcare, augmented reality, E-transport, and 3-D game application for RPD%.

95% of HSD intervals. The proposed approach effectively
compares the results among FCFS, SJF, and SSJ, which
effectively compares and extends results for RPD value in
percentage. The proposed technique uses SSJ, which effec-
tively improves the results compared to existing methods
for proper implementation of the results. The results show
that our proposed approach effectively enhances the proposed
technique’s working with an effective scenario.

Figure 12(b) demonstrates that RPD’s significance for SSJ
is less than SSTF and SPF for practical elaboration. More-
over, it accomplished all the scheduled tasks according to
the rules of task sequencing defined in the proposed sys-
tem. The results show a lower delay in the MCC server
in a heterogeneous environment. The system dynamically
chooses the sequencing of the tasks in the Mobile Clou envi-
ronment. The selected task sequencing rules systematically
choose the sequencing methodology based on the primitive
tasks sequencing technique. The task priorities are set for
the tasks, which shows the dynamic topological order for the
sequencing of the tasks.

F. TASK SCHEDULING
Cost Efficiency in MCC is a key for Mobile Applica-
tions. We consider task deadlines and application costs. This
research aims to execute the tasks under their deadlines

and minimize the mobile application cost. Figures 13 and 14
illustrate the TSMCO framework that incurs lower mobile
application execution costs than baseline 1 to 3. The base-
lines are the existing technologies that elaborate the proposed
approach’s effectiveness.

Moreover, the results are compared for different
applications designed using a microservices-based imple-
mentation scheme. The mobile applications run under their
deadlines which are shown in figure 13. The proposed system
effectively improves the proposed system through iterative
features. The solution is continuous until the final optimal
solution has been reached.

G. TASK FAILURE RATIO
Our task scheduling mechanism improves the task failure
ratio compared to existing techniques. The existing tech-
niques only consider the basic approach for task scheduling.
Figures 15 and 16 show the task failure ratio in the proposed
technique compared to existing techniques. The TSMCO
technique effectively overcame the task failure ratio. This
shows that the proposed techniques perform better in the
dynamic allocation of Mobile Cloud Servers.

The Proposed TSMCO framework works efficiently in the
dynamic allocation of resources and situations. The cost of
the system significantly improved and provided the deadlines

46648 VOLUME 10, 2022

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

FIGURE 14. The comparison of TSMCO with three other techniques to compare the total cost consumed by applications for healthcare (100 to 825 tasks),
augmented reality (200 to 600 tasks), E-transport (100 to 640 tasks), and 3D-games (200 to 750 tasks) for RPD%.

FIGURE 15. Tasks failure ratio during task scheduling with failed ratio.

FIGURE 16. Task failure due resource-constrained mobile cloud servers.

for the efficient resources constraints. The Proposed TSMCO
framework executes the mobile tasks due to deadline and
expands the execution cost.

V. CONCLUSION AND FUTURE WORK
This research proposes a new task scheduling for a
microservices-based mobile cloud computing framework.
We propose a new microservices-based Mobile Cloud
Computing system MSCMCC to run the microservices
applications for efficient delay-sensitive applications and a
mobility-aware framework to overcome the cost of the appli-
cation. Moreover, we introduce the TSMCO framework that
effectively solves the task scheduling in steps. The steps
are task sequences, resource provision and matching, and
task scheduling. The experimental results elaborate on the
efficient utilization of the resources used in mobile devices
and MCC servers. The boot time of the microservices-
based applications is lower than existing techniques. The
overhead time reduces towards the provided mechanism.
We further find from the study that the overhead time of the
microservices-based tasks in the proposed technique is lower.
The cost of each of the microservices-based applications
used is lower than other techniques in baselines one and
two. Furthermore, the experimental results elaborate on the
server utilization achieved through MSCMCC and TSMCO
schemes. To decrease the latency of mobile cloud servers,
the mobile server bootup time and microservices latency are
effectively utilized, and server cost is effectively minimized.

In the future, Privacy-aware microservices-based task
offloading framework for IoT and mobile applications col-
lectively. Our deployment plan is to deploy such mainstream
towards Azure, Amazon, and Google. Both transient fail-
ure and security are considered during microservices task
offloading frameworks. Furthermore, we plan to implement
task scheduling decision-making using machine learning
or ANN.

REFERENCES
[1] A. Ali, M. M. Iqbal, H. Jamil, H. Akbar, A. Muthanna, M. Ammi, and

M. M. Althobaiti, ‘‘Multilevel central trust management approach for task
scheduling on IoT-based mobile cloud computing,’’ Sensors, vol. 22, no. 1,
p. 108, 2022.

[2] A. Amini Motlagh, A. Movaghar, and A. M. Rahmani, ‘‘Task scheduling
mechanisms in cloud computing: A systematic review,’’ Int. J. Commun.
Syst., vol. 33, no. 6, p. e4302, Apr. 2020.

VOLUME 10, 2022 46649

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

[3] N. Parajuli, A. Alsadoon, P. W. C. Prasad, R. S. Ali, and O. H. Alsadoon,
‘‘A recent review and a taxonomy for multimedia application in
mobile cloud computing based energy efficient transmission,’’
Multimedia Tools Appl., vol. 79, nos. 41–42, pp. 31567–31594,
Nov. 2020.

[4] I. A. Elgendy and R. Yadav, ‘‘Survey on mobile edge-cloud computing: A
taxonomy on computation offloading approaches,’’ in Security and Privacy
Preserving for IoT and 5GNetworks, vol. 95. Cham, Switzerland: Springer,
2022, pp. 117–158.

[5] V. K. Kaliappan, S. Gnanamurthy, C. S. Kumar, R. Thangaraj, and
K. Mohanasundaram, ‘‘Reduced power consumption by resource schedul-
ing in mobile cloud using optimized neural network,’’Mater. Today: Proc.,
vol. 46, pp. 6453–6458, Jan. 2021.

[6] M. T. J. W. P. C. Quasim, ‘‘Resource management and task scheduling
for IoT using mobile edge computing,’’ Wireless Pers. Commun., vol. 7,
pp. 1–18, 2021.

[7] S. Guo, B. Xiao, Y. Yang, and Y. Yang, ‘‘Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,’’ in Proc.
35th Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2016,
pp. 1–9.

[8] X. Wang, K. Wang, S. Wu, S. Di, K. Yang, and H. Jin, ‘‘Dynamic resource
scheduling in cloud radio access network with mobile cloud computing,’’
in Proc. IEEE/ACM 24th Int. Symp. Quality Service (IWQoS), Jun. 2016,
pp. 1–6.

[9] M. Chen, S. Guo, K. Liu, X. Liao, and B. Xiao, ‘‘Robust computation
offloading and resource scheduling in cloudlet-based mobile cloud com-
puting,’’ IEEE Trans. Mobile Comput., vol. 20, no. 5, pp. 2025–2040,
May 2021.

[10] X. Liu, Y. Li, and H.-H. Chen, ‘‘Wireless resource scheduling
based on backoff for multiuser multiservice mobile cloud comput-
ing,’’ IEEE Trans. Veh. Technol., vol. 65, no. 11, pp. 9247–9259,
Nov. 2016.

[11] Y. Xie, Y. Wang, Y. Jiang, Z. Peng, and Y. Wang, ‘‘Multi-objective
task scheduling algorithm based on harmony search for grid microser-
vice optimization,’’ in Proc. J. Phys., Conf., vol. 2021, vol. 1746, no. 1,
Art. no. 012040.

[12] P. Akki and V. Vijayarajan, ‘‘Energy efficient resource schedul-
ing using optimization based neural network in mobile cloud com-
puting,’’ Wireless Pers. Commun., vol. 114, no. 2, pp. 1785–1804,
Sep. 2020.

[13] A. Ali, M. M. Iqbal, H. Jamil, H. Akbar, A. Muthanna, M. Ammi, and
M. M. Althobaiti, ‘‘Multilevel central trust management approach for task
scheduling on IoT-based mobile cloud computing,’’ Sensors, vol. 22, no. 1,
p. 108, Dec. 2021.

[14] A. Ali, M. M. Iqbal, H. Jamil, F. Qayyum, S. Jabbar, O. Cheikhrouhou,
M. Baz, and F. Jamil, ‘‘An efficient dynamic-decision based task
scheduler for task offloading optimization and energy management
in mobile cloud computing,’’ Sensors, vol. 21, no. 13, p. 4527,
Jul. 2021.

[15] A. Lakhan, M. S. Memon, M. Elhoseny, M. A. Mohammed, M. Qabulio,
and M. J. C. C. Abdel-Basset, ‘‘Cost-efficient mobility offloading and
task scheduling for microservices IoVT applications in container-based fog
cloud network,’’ in Cluster Comput., vol. 6, pp. 1–23, 2021.

[16] G. Fan, L. Chen, H. Yu, and W. Qi, ‘‘Multi-objective optimization of
container-based microservice scheduling in edge computing,’’ Comput.
Sci. Inf. Syst., vol. 18, no. 1, pp. 23–42, 2020.

[17] L. Abualigah, A. Diabat, S. Mirjalili, M. A. Elaziz, and A. H. Gandomi,
‘‘The arithmetic optimization algorithm,’’ Comput. Methods Appl. Mech.
Eng., vol. 376, Apr. 2021, Art. no. 113609.

[18] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, ‘‘ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,’’ in Proc. IEEE INFOCOM, Mar. 2012,
pp. 945–953.

[19] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen,
‘‘Harris hawks optimization: Algorithm and applications,’’ Future Gener.
Comput. Syst., vol. 97, pp. 849–872, Aug. 2019.

[20] I. Attiya, M. Abd Elaziz, and S. Xiong, ‘‘Job scheduling in cloud
computing using a modified Harris hawks optimization and simulated
annealing algorithm,’’ Comput. Intell. Neurosci., vol. 2020, pp. 1–17,
Mar. 2020.

[21] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘‘The case for
VM-based cloudlets in mobile computing,’’ IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct./Dec. 2009.

[22] S. Goundar, A. Bhardwaj, and S. Chand, ‘‘Task offloading concept using
cloud simulations in mobile computing,’’ Int. J. Syst., Control Commun.,
vol. 12, no. 3, pp. 243–263, 2021.

[23] M. A. Sahito and A. Kehar, ‘‘Dynamic content enabled microservice for
business applications in distributed cloudlet cloud network,’’ Int. J., vol. 9,
no. 7, pp. 1035–1039, 2021.

[24] A. Lakhan, Q.-U.-A.Mastoi, M. Elhoseny, M. S. Memon, andM. A. J. E. I.
S. Mohammed, ‘‘Deep neural network-based application partitioning and
scheduling for hospitals and medical enterprises using IoT assisted mobile
fog cloud,’’ Enterprise Inf. Syst., vol. 5, pp. 1–23, 2021.

[25] X. Ma, A. Zhou, S. Zhang, Q. Li, A. X. Liu, and S. Wang, ‘‘Dynamic task
scheduling in cloud-assisted mobile edge computing,’’ IEEE Trans. Mobile
Comput., Sep. 24, 2021, doi: 10.1109/TMC.2021.3115262.

[26] A. M. Rahmani, M. Mohammadi, A. H. Mohammed, S. H. T. Karim,
M. K. Majeed, M. Masdari, and M. Hosseinzadeh, ‘‘Towards data and
computation offloading in mobile cloud computing: Taxonomy, overview,
and future directions,’’ Wireless Pers. Commun., vol. 119, pp. 147–185,
Feb. 2021.

[27] R. B. Mulinti and M. Nagendra, ‘‘An efficient latency aware resource
provisioning in cloud assisted mobile edge framework,’’ Peer–Peer Netw.
Appl., vol. 14, no. 3, pp. 1044–1057, May 2021.

[28] A. Lakhan, M. A. Dootio, A. H. Sodhro, S. Sandeep, T. M. Groenli,
M. S. Khokhar, and L. Wang, ‘‘Cost-efficient service selection and
execution and blockchain-enabled serverless network for internet of
medical things,’’ Math. Biosci. Eng., vol. 18, no. 6, pp. 7344–7362,
2021.

[29] X. Ma, H. Xu, H. Gao, and M. Bian, ‘‘Real-time multiple-workflow
scheduling in cloud environments,’’ IEEE Trans. Netw. Service Manage.,
vol. 18, no. 4, pp. 4002–4018, Dec. 2021.

[30] A. Lakhan, M. A. Dootio, T. M. Groenli, A. H. Sodhro, andM. S. Khokhar,
‘‘Multi-layer latency aware workload assignment of E-Transport IoT appli-
cations in mobile sensors cloudlet cloud networks,’’ Electronics, vol. 10,
no. 14, p. 1719, Jul. 2021.

[31] N. Chaurasia, M. Kumar, R. Chaudhry, and O. P. Verma, ‘‘Com-
prehensive survey on energy-aware server consolidation techniques
in cloud computing,’’ J. Supercomput., vol. 77, pp. 11682–11737,
Mar. 2021.

[32] L. Abualigah, A. Diabat, P. Sumari, and A. H. Gandomi, ‘‘Appli-
cations, deployments, and integration of internet of drones (IoD):
A review,’’ IEEE Sensors J., vol. 21, no. 22, pp. 25532–25546,
Nov. 2021.

[33] A. Samanta and Z. Chang, ‘‘Adaptive service offloading for revenue maxi-
mization in mobile edge computing with delay-constraint,’’ IEEE Internet
Things J., vol. 6, no. 2, pp. 3864–3872, Apr. 2019.

[34] A. Samanta and J. Tang, ‘‘Dyme: Dynamic microservice scheduling in
edge computing enabled IoT,’’ IEEE Internet Things J., vol. 7, no. 7,
pp. 6164–6174, Jul. 2020.

[35] A. Samanta, F. Esposito, and T. G. Nguyen, ‘‘Fault-tolerant mechanism for
edge-based IoT networks with demand uncertainty,’’ IEEE Internet Things
J., vol. 8, no. 23, pp. 16963–16971, Dec. 2021.

[36] J. Lee and J. Gil, ‘‘Adaptive fault-tolerant scheduling strategies for
mobile cloud computing,’’ J. Supercomput., vol. 75, no. 8, pp. 4472–4488,
Aug. 2019.

[37] D. N. Raju and V. Saritha, ‘‘Architecture for fault tolerance in mobile cloud
computing using disease resistance approach,’’ Int. J. Commun. Netw. Inf.
Secur., vol. 8, no. 2, p. 112, 2016.

[38] S. K. Abd, S. A. R. Al-Haddad, F. Hashim, A. B. H. J. Abdullah,
and S. Yussof, ‘‘Energy-aware fault tolerant task offloading
of mobile cloud computing,’’ in Proc. 5th IEEE Int. Conf.
Mobile Cloud Comput., Services, Eng. (MobileCloud), Apr. 2017,
pp. 161–164.

[39] J. Park, H. Yu, H. Kim, and E. Lee, ‘‘Dynamic group-based fault tolerance
technique for reliable resource management in mobile cloud computing,’’
Concurrency Comput., Pract. Exper., vol. 28, no. 10, pp. 2756–2769,
2016.

[40] M. M. Al-Sayed, S. Khattab, and F. A. Omara, ‘‘Prediction
mechanisms for monitoring state of cloud resources using Markov
chain model,’’ J. Parallel Distrib. Comput., vol. 96, pp. 163–171,
Oct. 2016.

[41] B. Keshanchi, A. Souri, and N. Navimipour, ‘‘An improved genetic algo-
rithm for task scheduling in the Cloud environments using the priority
queues: Formal verification, simulation, and statistical testing,’’ J. Syst.
Softw., vol. 124, pp. 1–21, Feb. 2017.

46650 VOLUME 10, 2022

http://dx.doi.org/10.1109/TMC.2021.3115262

A. Ali, M. M. Iqbal: Cost and Energy Efficient Task Scheduling Technique to Offload Microservices Based Applications

[42] H. Peng, W.-S. Wen, M.-L. Tseng, and L.-L. Li, ‘‘Joint optimization
method for task scheduling time and energy consumption in mobile
cloud computing environment,’’ Appl. Soft Comput., vol. 80, pp. 534–545,
Jul. 2019.

[43] C. Tang, M. Hao, X. Wei, and W. Chen, ‘‘Energy-aware task scheduling
in mobile cloud computing,’’ Distrib. Parallel Databases, vol. 36, no. 3,
pp. 529–553, Sep. 2018.

[44] X. Lin, Y. Wang, Q. Xie, and M. Pedram, ‘‘Energy and performance-aware
task scheduling in a mobile cloud computing environment,’’ in Proc. IEEE
7th Int. Conf. Cloud Comput., Jun. 2014, pp. 192–199.

[45] X. Wei, J. Fan, Z. Lu, and K. Ding, ‘‘Application scheduling in mobile
cloud computing with load balancing,’’ J. Appl. Math., vol. 2013,
Nov. 2013, Art. no. 409539.

[46] A. Lakhan, D. K. Sajnani, M. Tahir, M. Aamir, and R. Lodhi, ‘‘Delay
sensitive application partitioning and task scheduling in mobile edge
cloud prototyping,’’ in Proc. Int. Conf. 5G Ubiquit. Connectivity, Cham,
Switzerland: Springer, 2018, pp. 59–80.

[47] L. Abualigah, D. Yousri, M. Abd Elaziz, A. A. Ewees, M. A. A. Al-Qaness,
and A. H. Gandomi, ‘‘Aquila optimizer: A novel meta-heuristic optimiza-
tion algorithm,’’ Comput. Ind. Eng., vol. 157, Jul. 2021, Art. no. 107250.

[48] X. Ma, S. Zhang, W. Li, P. Zhang, C. Lin, and X. Shen, ‘‘Cost-efficient
workload scheduling in cloud assisted mobile edge computing,’’ in Proc.
IEEE/ACM 25th Int. Symp. Quality Service (IWQoS), Jun. 2017, pp. 1–10.

[49] S. Wu, C. Niu, J. Rao, H. Jin, and X. Dai, ‘‘Container-based cloud platform
for mobile computation offloading,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May 2017, pp. 123–132.

[50] A. Lakhan and X. Li, ‘‘Transient fault aware application partitioning com-
putational offloading algorithm in microservices based mobile cloudlet
networks,’’ Computing, vol. 102, no. 1, pp. 105–139, 2020.

[51] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, ‘‘An application
placement technique for concurrent IoT applications in edge and fog
computing environments,’’ IEEE Trans. Mobile Comput., vol. 20, no. 4,
pp. 1298–1311, Apr. 2021.

[52] L. Abualigah and A. Diabat, ‘‘A novel hybrid antlion optimization
algorithm for multi-objective task scheduling problems in cloud com-
puting environments,’’ Cluster Comput., vol. 24, no. 1, pp. 205–223,
Mar. 2021.

ABID ALI received theM.S. degree in CS from the
University of Engineering and Technology, Taxila,
Pakistan, in 2018, where he is currently pursuing
the Ph.D. degree in computer science with the
Department of Computer Science. He is currently
serving as a Lecturer in computer science with
the Higher Education Department, KPK, Pakistan.
He has eight years of teaching and four years of
research experience. He has been a member of
multiple committees related to academic fields as

well as a participant in research projects. Moreover, he has taught several
courses and supervised several capstone projects. His current research inter-
ests include the IoT, distributed computing, VANET, security, big data, task
scheduling, data mining, cloud and mobile cloud computing, and ICN/SDN.
He acted as a reviewer for several journals such as Fuzzy Sets and Systems
(Elsevier), Journal of Medical Imaging and Health Informatics, CMC jour-
nal, and the IEEE INTERNET OF THINGS JOURNAL.

MUHAMMAD MUNWAR IQBAL received the
M.S. degree in computer science from the
COMSATS Institute of Information Technology,
Lahore, Pakistan, in 2011, the M.Sc. degree in
computer science from the University of the
Punjab, Lahore, and the Ph.D. degree from
the Department of Computer Science Engineer-
ing, University of Engineering and Technology,
Lahore, under the supervision of Dr. Yasir Saleem.
He is currently an Assistant Professor with the

Department of Computer Science, University of Engineering and Technol-
ogy, Taxila, Pakistan. He has authored or coauthored journal and conference
papers at the national and international level in the field of computer science.
His research interests include machine leaning, databases, semantics web,
e-learning, and AI.

VOLUME 10, 2022 46651

