
Received April 12, 2022, accepted April 20, 2022, date of publication April 28, 2022, date of current version May 9, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3170844

A Multifactor Multilevel and Interaction Based
(M2I) Authentication Framework for
Internet of Things (IoT) Applications
SALEM ALJANAH , NING ZHANG , AND SIOK WAH TAY
Department of Computer Science, The University of Manchester, Manchester M13 9PL, U.K.

Corresponding author: Salem AlJanah (salem.aljanah@manchester.ac.uk)

This work was supported by the University of Manchester.

ABSTRACT Existing authentication solutions proposed for Internet of Things (IoT) provide a single Level
of Assurance (LoA) regardless of the sensitivity levels of the resources or interactions between IoT devices
being protected. For effective (with adequate level of protection) and efficient (with as low overhead costs as
possible) protections, it may be desirable to tailor the protection level in response to the sensitivity level of
the resources, as a stronger protection level typically imposes a higher level of overhead costs. In this paper,
we investigate how to facilitate multi-LoA authentication for IoT by proposing a multi-factor multi-level and
interaction based (M2I) authentication framework. The framework implements LoA linked and interaction
based authentication. Two interaction modes, P2P (Peer-to-Peer) and O2M (One-to-Many), are investigated
via the design of two corresponding protocols. Evaluation results show that adopting the O2M interaction
mode in authentication in the related use-case scenarios can cut communication cost significantly; compared
with that of the Kerberos protocol, the O2M protocol reduces the communication cost by 42%∼45%. The
protocols are also more efficient. The P2P and O2M protocol, respectively, reduce the computational cost
by 70%∼72% and 81%∼82%, in comparison with that of Kerberos. The evaluation results also show that
the two-factor authentication option costs twice as much as that of the one-factor option.

INDEX TERMS Internet of Things (IoT), level of assurance (LoA), interaction based authentication, multi-
level authentication, re-authentication.

I. INTRODUCTION
The recent increase in the number of smart devices
(i.e., devices that are capable of performing some communi-
cation and computational tasks autonomously [1]) has made
a number of Internet of Things (IoT) applications, e.g., smart
home, smart health, and industrial IoT, popular [2]. The use
of these applications can help automate routine tasks, such as
turning off the lights when it is daytime.

Although task automation may bring some convenience,
several studies [3]–[5] have shown that it may also introduce
a number of security challenges. One of the challenges is
how to achieve effective and efficient authentication in an
IoT environment where devices are heterogeneous [6], and
some could have resource constraints such as limited pro-
cessing power. By effective, we mean that the authentication
service should be secure in authenticating heterogeneous and

The associate editor coordinating the review of this manuscript and

approving it for publication was Diana Gratiela Berbecaru .

resource-constrained devices, and by efficient, we mean that
the service should introduce as less overheads as possible.

To achieve effective and efficient authentication, attributes
(e.g., asset value, location, and mode of interactions) that
may influence the required level of protection (i.e., required
LoA) may need to be considered so that more valuable assets
and/or accessing them from a riskier location or a more
security-sensitive interaction should be protected with an
authentication method providing a stronger level of protec-
tion, and vice versa. A stronger level of protection is typi-
cally accompanied with a higher level of overhead costs, this
multi-level approach to authentication may reduce unneces-
sary overhead costs while providing an adequate level of pro-
tection, optimising the trade-off between protection strengths
and costs incurred in providing the protection. In evaluating
this approach, we seek to answer the following research
questions:
FQ1: How to facilitate multi-level (multiple levels of assur-

ance, or multi-LoA) device-to-device authentication?

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 47965

https://orcid.org/0000-0003-0480-4543
https://orcid.org/0000-0001-9519-9128
https://orcid.org/0000-0002-0005-889X
https://orcid.org/0000-0003-1930-9473

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

FQ2: How to minimise costs while facilitating the multi-
level authentication?

FQ3: How effective is the approach?
FQ4:What are the costs incurred in adopting the approach?
To scope the work without losing generality, we have

carried out the research work using a smart home (SHome)
use-case as the underlying application context. An SHome
typically hosts a variety of IoT devices and applications [7].
Hence, research outcome or any lessons learned should be
applicable to other IoT based applications.

To investigate and evaluate the multi-LoA approach to
device-to-device authentication in an IoT context, this paper
examines how to quantify LoA and use it to govern how
authentication should be carried out at run-time in an
SHome environment, and proposes a multi-factor multi-level
and interaction based (M2I) authentication framework. The
framework consists of a required LoA (RLoA) method,
three LoA derivation and aggregation methods, the LoA
derivation (LoAD) method, the client derived LoA aggre-
gation (CDLoA) method and the multi-client derived LoA
aggregation (MCDLoA) method, and two authentication pro-
tocols, the Peer-to-Peer (P2P) and the One-to-Many (O2M)
protocol. The RLoA method is used to determine the LoA
needed to access a device. The LoAD method derives the
LoA achieved by a user or a user device in an authentication
instance. The CDLoA and MCDLoA method are used to
aggregate the level of assurance values achieved by different
authentication instances in a session of a single client or
multiple clients, respectively. The P2P and O2M authen-
tication protocol, referred to as the M2I protocols respec-
tively support multi-factor and multi-LoA authentication of
devices in device-to-device and device-to-multiDevicemodes
of interactions. The paper also presents both theoretical and
experimental evaluations of the protocols with regard to their
effectiveness and efficiency and compares the performance
with that of the most related protocol.

The rest of the paper is organised as follows. Section II sur-
veys related work. Section III discusses the high-level ideas
used to design and evaluate the M2I framework. Section IV
analyses the level of assurance required and how it may
be derived in an SHome environment. Section V introduces
design preliminaries. Section VI presents the M2I authenti-
cation framework. Section VII analyses the M2I protocols.
Section VIII evaluates the protocols using experiments and
discusses the experimental results. Section IX analyses the
most related solution, the Kerberos version 5 protocol, and
then compares the communication and computational cost of
the M2I protocols with that of Kerberos. Finally, Section X
concludes the paper.

II. RELATED WORK
A number of architectures have been proposed to facilitate
authentication in IoT applications. Some of these architec-
tures are discussed below.

To enhance security, Amraoui et al. [8] proposed a
machine learning based architecture to facilitate implicit and

continuous authentication in the SHome environment.
Tantidham and Aung [9] proposed a blockchain based
architecture to secure communications between the SHome
devices and external untrusted entities. Saadeh et al. [10]
proposed asymmetric key-based multi-layer architecture to
secure authentication in smart cities. Although these solutions
may enhance security, they impose additional authentication
overheads.

To reduce the authentication overhead, a number of
hardware based authentication architectures have been pro-
posed. Chatterjee et al. [11] proposed a Physical Unclonable
Function (PUF) based architecture to secure authentication.
Gope at al. [12] proposed a radio frequency identifica-
tion (RFID) based architecture to facilitate authentication in
distributed IoT environments. Although hardware based solu-
tions may reduce the authentication overhead, they typically
require clients to have additional hardware, such as a PUF
circuit or an RFID tag [13].

A number of authentication protocols [12], [14]–[36] have
also been proposed for IoT applications. In [13], we analysed
these protocols and found that they provide a single LoA.
In other words, they provide the same level of protection for
different entities or interactions. Existing multi-LoA authen-
tication solutions are often designed for user authentication;
they are not suitable for device authentication, especially
when the devices involved may have a number of con-
straints, e.g., limited processing capability, as in the case of
IoT environments.

Even though some of the proposed solutions (i.e., authen-
tication architectures, authentication methods and protocols)
have advanced in securing IoT environments, there is still
work to be done. For instance, how to optimise the trade-off
between security and authentication overhead. One way to do
this is by providing an authentication service that can adapt
the level of protection offered by the service in adaptation
to the level of assurance required to protect the action for
which the authentication is performed.

III. HIGH-LEVEL IDEAS AND THEIR IMPLEMENTATIONS
To reduce cost, we use the following ideas:

1) LoA linked authentication, i.e., to tailor authentication
method in adaptation to the sensitivity level of the
devices accessed.

2) Interaction-based key sharing, i.e., authentication with
all the devices in the group is done by using the same
ticket (containing the same key).

The implementations of the ideas are as follows.

(i) Ideas used for addressing FQ1 (How to facilitate
multi-level device-to-device authentication?):
To facilitate the multi-level authentication, the proposed
framework should
• Support the use of multiple authentication factors.
With the use of different factors or different groups of
factors, a different level of authentication assurance
can be achieved.

47966 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

• Support LoA based authentication decision making.
– Assign each resource-hosting device a required
level of assurance value which represents the LoA
needed to access the device or resources hosted or
managed by the device.

– Assign each authentication factor a LoA value,
and if two or more factors were used in a session,
then the framework derives an aggregated LoA
(Agg-DLoA) upon successful authentication.

– Grant access if theAgg-DLoAvalue of the session
is greater than or equal to the RLoA value of the
target device. Otherwise, access is denied.

(ii) Ideas for addressing FQ2 (How to minimise costs
while facilitating the multi-level authentication?):
The ideas and measures used to minimise costs incurred
in authentication are as follows.
• Use LoA-based decision making to balance the
trade-off between the level of protection and the level
of cost.

• Allow interaction based authentication, where devices
are authenticated according to their mode of interac-
tion using different protocols, to reduce the number
of tokens issued and verified, and the number of
interactions in an authentication instance.

• Maximize the use of computationally efficient algo-
rithms, e.g., symmetric ciphers.

• Use a hash chain-based verification scheme to reduce
the cost of future re-authentication.

IV. LEVEL OF ASSURANCE
In an SHome environment, a resource (data or services)
access is typically accomplished via the access to the device
hosting or managing the resource. Depending on their roles,
SHome devices (i.e., IoT devices that are hosted in an SHome
environment) can be classified into two groups: a resource
group and a user group. Depending on the sensitivity lev-
els of the resources they host, each resource-hosting device
(i.e., a device in the resource group) is assigned with a
Required Levels of Assurance (RLoA). A RLoA value for
a device is assumed to be determined prior to run-time and
via risk assessment. Similarly, depending on the resource it
accesses, each user device is required to have a Derived Level
of Assurance (DLoA), and the DLoA value for a device is
calculated at run-time.Multiple authentication factors may be
involved in the derivation of a DLoA value. For the sake of
clarity, we use DLoA to denote the assurance level derived by
using a single authentication factor, and an aggregate DLoA
(orAgg-DLoA) to denote the assurance level derived by using
multiple authentication factors.

A. REQUIRED LEVEL OF ASSURANCE (RLoA)
A RLoA value for a resource-hosting device represents the
LoA needed to access the device or resources hosted or
managed by the device. A class LoA (CLoA) represents the
LoA value of a device. The CLoA value can be determined by

a number of attributes, e.g., device capability (dc), asset value
(av), and location (loc). Some attributes may be set during the
registration phase, whereas others may be left to the SHome
owner as their valuesmay be a subjectivematter. For instance,
the dc value captures the device capability and hence can be
set during registration. However, the av and loc values can be
subjective and therefore are set by the owner of the SHome via
policy specification. Table 1 and Table 2 describe exemplar
settings of three levels of CLoA_dc and CLoA_av.

TABLE 1. An exemplar setting of CLoA_dc .

TABLE 2. An exemplar setting of CLoA_av .

The RLoA Method: If a target device has multiple
LoA-effecting attributes and each has a CLoA value, then
the RLoA for accessing the device should be equal to the
highest CLoA value. In other words, given that a device has
three CLoA effecting attributes and the CLoA values of these
attributes are, respectively, CLoA_dc, CLoA_av, CloA_loc,
then the RLoA for accessing this device should be determined
by the following equation.

RLoA = MAX (CLoA_dc,CLoA_av,CloA_loc) (1)

For example, in the case of opening a safe, if the safe (with
regard to device capability) has a CLoA_dc= 2, but the value
of the asset inside the safe (a lot of money inside) dictates that
CLoA_av = 3, then the RLoA should be the max of the two
values, i.e., 3.

B. DERIVED LEVEL OF ASSURANCE (DLoA)
A DLoA value of an authentication instance represents the
LoA achieved by a user or a user device in that instance.
A DLoA value is typically affected by a number of factors,
such as the levels of assurance of the underlying authentica-
tion methods used, the trust levels of the respective authen-
tication servers (reflected by their respective weightings),
and the relationship between these factors. The DLoA of
an authentication instance is calculated at run-time. If two
or more authentication factors or methods are used, then
an Aggregated DLoA (Agg-DLoA) should be calculated.

VOLUME 10, 2022 47967

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

Depending on the number of authentication instances and
clients involved, the aggregation may be done using LoAD,
CDLoA or MCDLoA method. Once aggregated, if the Agg-
DLoA value is a fraction, the integer that is smaller than the
actual value will be chosen.

1) THE LEVEL OF ASSURANCE DERIVATION (LoAD) METHOD
If multiple authenticationmethods are used to verify the client
identity in an authentication instance, then the weighted sum
approach applies. In other words, given that a client used n
authentication methods to verify its identity and the LoA val-
ues of these methods are LoAAuthMethod1 , . . .LoAAuthMethodn ,
then the Agg-DLoA of this instance should be determined by
the following equation.

Agg− DLoAinstance =
n∑
i=1

WAuthMethodi × LoAAuthMethodi

(2)

An example is if a username and password authentica-
tion method is used with an out-of-band authentication
method (e.g., SMS) to verify the client identity, then the
Agg-DLoA should be the weighted sum of the LoA val-
ues provided by these methods (i.e., WUsernameAndPassword ×

LoAUsernameAndPassword + WSMS × LoASMS).
If a session has more than one instance, then the session

Agg-DLoA (Agg − DLoAsession) should be calculated. The
Agg−DLoAsession value represents the overall assurance level
of different authentication instances in the session. Depend-
ing on the number of clients, the Agg − DLoAsession may be
derived using the maximum or the weakest-link approach.

2) THE CLIENT DERIVED LEVEL OF ASSURANCE
AGGREGATION (CDLoA) METHOD
If the session has one client (i.e., all authentication requests
are made by the client itself and not through other devices),
then the maximum approach applies. In other words, the
Agg − DLoAsession value should be equal to the highest
Agg-DLoA value in the session.

Agg− DLoAsession = MAX (Agg− DLoA1,Agg− DLoA2,

. . . Agg− DLoAn) (3)

For example, if a session has two different authentication
instances initiated by the same client, and their Agg-DLoA
values are 1 and 3, then the Agg− DLoAsession should be the
max of the two values, i.e., 3.

3) THE MULTI-CLIENT DERIVED LEVEL OF ASSURANCE
AGGREGATION (MCDLoA) METHOD
If the session has several clients forming a chain (e.g., when
proxies are used), then the weakest-link approach applies.
In other words, the Agg − DLoAsession is equal to the lowest
link LoA value in that chain.

Agg− DLoAsession = MIN (Agg− DLoA1,Agg− DLoA2,

. . . Agg− DLoAn) (4)

An example is when a client authenticates itself to device A
(i.e., link-1), then issues a proxy to the same device to perform
a task on its behalf on another device (e.g., device B). In order
to do this, A needs to authenticate itself to B (i.e., link-2).
If the Agg-DLoA values for the two authentication instances
are 1, 2, respectively, then the Agg − DLoAsession should be
the minimum of the two values, i.e., 1.

V. DESIGN PRELIMINARIES
A. SYSTEM MODEL
The system model of an SHome consists of:

• Clients: human users or devices, requesting to access a
target device or resources hosted by the device.

• Target devices: SHome devices used to provide a ser-
vice, e.g., access to a resource.

• Services providers: human users or devices, responsible
for maintaining the operation of the SHome through
providing a number of services such as software updates.

• Home gateway: a coordination device that deals with
resource interconnection and interoperability.

B. THREAT MODEL
Based on the threat analysis conducted in paper [13], the
threat model used in our framework is as follows.

• Internal entities are semi-trusted and curious. They often
follow rules, since they may be under surveillance as
they are located inside the SHome, but they may try
to gain access to restricted resources or services in
the SHome.

• External entities are untrustworthy. They may try to
impersonate legitimate entities or intercept communi-
cations to launch a number of attacks (e.g., replay and
Denial of Service (DoS) attacks) to gain access to the
SHome or disrupt its availability.

• Service providers are suspicious and curious. They may
track SHome entities without their consent or inter-
cept and modify communicated data to gain access to
restricted information or launch other types of attacks,
e.g., DoS attacks, against their competitors.

C. ASSUMPTIONS
(A1) Devices are classified into three groups based on their

RLoA, where group 1 (G1) represents a group with
the lowest required assurance level and G3 repre-
sents the group with the highest required assurance
level. This assumption is made based on the fact that
there is a de-facto standard for the definitions and use
of the LoA for Government information systems by
the National Institute of Standards and Technology
(NIST), i.e., NIST 800-63-3 [37], and the European
Union Agency for Cybersecurity (ENISA), i.e., the
European Union regulation on electronic identifica-
tion and trust services (eIDAS) [38]. Although NIST
800-63-3 and eIDAS may have different requirements
for each assurance level or may compute the level

47968 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

of assurance differently (e.g., NIST breaks down the
assurance level into independent levels to address
identity proofing process, authentication process, and
assertions), they both use three levels of assurance.
This assumption is intended to make our solution
compatible with the de-facto standard. However, the
use of the three-level/group assumption does not affect
the generality of our designed solution.

(A2) Each device has two symmetric keys, KDi and KGi. KDi
is used to authenticate a device to the authentication
server, whereas KGi is used to verify group access
credentials issued by the authentication server, and for
further communication within a group of devices.

(A3) It is hard to successfully tamper with devices.

D. NOTATIONS
The notations used in the description of the M2I protocols
and Kerberos are summarised in Table 3.

E. REQUIREMENTS
Based on the threat analysis conducted on an SHome environ-
ment in paper [13], we specify a set of requirements to secure
entity authentication in IoT applications. The requirements
are as follows.

• Entity authentication verifies the identity of a sender to
a receiver and vice versa. To prevent unauthorized access
and impersonation attacks, mutual authentication should
be achieved during the authentication process.

• Message freshness assures that the message received
is fresh (i.e., it has been created recently). To counter
replay and DoS attacks, a receiver should be able to
verify message freshness before computing a response.

• Confidentiality protects the secrecy of private informa-
tion, such as access credentials.

• Authorization verifies the access rights of a sender to
a receiver. To counter unauthorized access attacks, the
receiver should be able to verify the sender authorization
status before processing his request.

• Availability ensures that the operation of the proposed
authentication solution is not disrupted. In other words,
the solution is resilient against known attacks, such as
DoS attacks.

In addition to the security requirements, the following
functional and performance requirements are specified.

(i) Functional Requirements

(F1) The solution should support multi-level authentication.
(F2) The solution should support LoA based authentication

decision making.
(F3) The solution should facilitate interaction based authen-

tication, where devices are authenticated according to
their mode of interaction.

(ii) Performance Requirements

(P1) The communication and computational costs of the
protocols should be as low as possible.

TABLE 3. Notations.

(P2) The authentication delays incurred should be as low as
possible.

F. PERFORMANCE METRICS
The metrics used to evaluate protocol performance are com-
munication and computational costs.

• Communication Costs are evaluated in terms of the
number and length of protocol messages exchanged
between entities during an authentication instance.

• Computation Costs are evaluated in terms of the num-
ber of cryptographic operations performed and the types
of cryptographic algorithms used to perform them dur-
ing an authentication instance.

G. PROTOCOL ANALYSIS AND EVALUATION METHODS
The M2I protocols are evaluated in terms of security and
performance using a number ofmethods as shown in Figure 1.

(i) Protocol correctness
• Formal verification using the Automated Valida-
tion of Internet Security Protocols and Applications

VOLUME 10, 2022 47969

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

(AVISPA) verification tool [39] has been used to anal-
yse the correctness of the protocols.

(ii) Methods for addressing FQ3 (How effective is the
approach?)
• Informal analysis against the specified security
requirements and identified threats has been carried
out to evaluate the effectiveness of the protocols.

• Complexity (work factor) analysis has been used to
assess the computational costs required to compro-
mise each authentication method/factor used in the
protocols using brute force attacks.

(iii) Methods for addressing FQ4 (What are the costs
incurred in adopting the approach?)
Two methods have been used to measure the costs of the
multi-level authentication approach. These methods are
as follows.
• Theoretical evaluation to analyse the communication
and computational costs of the protocols.

• Experimental evaluation to assess the protocol cryp-
tographic computational cost, protocol total computa-
tional cost, and authentication delays incurred during
authentication.

H. ADDITIONAL ASSUMPTIONS
The following assumptions are used in the performance
evaluation.
• An identifier and timestamp are each 32-bit long [40].
• A random nonce is 128-bit long [41].
• The symmetric-key cipher used is the AES-128, so the
key length is 128 bits. The length of the output is in
multiples of 128 bits [42].

• The hash functions used are SHA-256 and HMAC-
SHA256 algorithms. Therefore, the length of any hashed
value is 256 bits [43].

It is worth noting that, as the total length of the
header fields is identical in all messages, as discussed in
Section VI-C, the header fields of the messages are not pre-
sented during the evaluation and performance comparison of
the protocols.

VI. THE MULTI-FACTOR MULTI-LEVEL AND INTERACTION
BASED (M2I) AUTHENTICATION FRAMEWORK
A. ARCHITECTURE
The M2I authentication architecture has two func-
tional blocks: (i) Authentication Coordination Block,
and (ii) Authorization Block as shown in Figure 2. In block
(i), four functional components have been proposed to coor-
dinate the authentication process. These components are as
follows.
• Coordinator: to facilitate internal (i.e., within the block)
and external (i.e., cross-block) communications.

• Negotiation: to enable flexible authentication based
on a number of attributes such the RLoA value and
the type of interaction (e.g., user-to-system/device or
device-to-device interactions), where a client chooses

how to be authenticated from a pool of authentication
methods.

• Level of Assurance Derivation Module (LoADM): to
derive the LoA of an authentication instance.

• Level of Assurance Aggregation Module (LoAAM): to
aggregate the LoA of an authentication session.

Although the main purpose of the M2I framework is to
authenticate clients, it is important to address authorization
to strengthen the system against attacks, such as unauthorized
access attacks, and reduce unnecessary cost [13]. This is done
in block (ii) where two functional components have been
proposed to verify the authorization level of the client and
issue access credentials. The components are as follows.

• Access Control Function (ACF): to facilitate external
communications and issue access credentials.

• Access Decision Function (ADF): to verify the autho-
rization level of a client.

B. THE AUTHENTICATION PROCESS
The authentication process is shown in Figure 2 and explained
below.

Step 1: At the start of the authentication process, a client
sends a request to the coordinator to obtain a creden-
tial to access a target device.

Step 2: Upon the receipt of the request, the coordinator
forwards it to the negotiation component. Depending
on the type of interaction, the component replies with
a list of authentication methods to obtain the RLoA
to access the target device.

Step 3: Upon the receipt of the list, the client chooses
suitable methods to verify its identity to an authenti-
cation server (AS) or an identity provider (IdP).

Step 4: If verified, the coordinator sends the authentication
results to the LoADM component. The component
derives the Agg − DLoAinstance and sends it to the
coordinator.

Step 5: If the Agg-DLoA value of the instance is at least
equal to the RLoA value of the target device (i.e.,
Agg-DLoAinstance >= RLoA), the coordinator for-
wards the client request to the authorization block.
Otherwise, step 2 and step 3 are repeated. Then, the
authentication results are sent to the LoAAM com-
ponent. The component derives the Agg-DLoAsession
and sends it to the coordinator. If the Agg-DLoA
value of the session is at least equal to the RLoA
value of the target device (i.e., Agg-DLoAsession >=

RLoA), the coordinator forwards the request to the
authorization block. Otherwise, the coordinator may
choose to repeat this step (i.e., step 5) or terminate
the authentication process.

Step 6: Upon the receipt of the request, the ACF component
forwards it to the ADF component to verify the client
authorization level. If authorized, the ACF issues an
access credential and sends it to the client.

47970 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

FIGURE 1. Protocol analysis and evaluation methods.

FIGURE 2. The M2I authentication architecture.

VOLUME 10, 2022 47971

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

FIGURE 3. Message format.

Step 7: The client uses its access credential to verify its
identity and gain access to the target device.

C. MESSAGE FORMAT
The message format for the M2I protocols is shown
in Figure 3. Each message consists of a header field and
a payload field. The header field has a fixed length and
consists of five headers: Protocol Type (ProT), Message Type
(MsgT), Sender Identity (IDS), Receiver Identity (IDR), and
Payload Length (PayL). As each device may support the use
of more than one protocol, the use of ProT allows a sending
device to indicate to the receiving device for which protocol
the incoming message is for. Each protocol consists of two
messages, a request (Req) and a response (Rep), which are
identified by the MsgT header. The PayL header field is
used to inform the message recipient about the length of the
payload (measured in bytes) in the message.

The length of the message header is 12 bytes in total. It is
in multiples of 32-bits to ensure memory alignment as many
computers use a memory word of 4 bytes. The variable length
of the message payload is discussed below.

D. TICKET BASED PROTOCOLS
This section presents two ticket based protocols: (i) the Peer-
to-Peer (P2P) protocol for device-to-device authentication,
and (ii) the One-to-Many (O2M) protocol for device-to-
multiDevice authentication. Similar to Kerberos, these pro-
tocols use tickets to authenticate their clients. However, the
number and content of the tickets and protocol messages
are different from those of Kerberos. This is because Ker-
beros uses two tickets (a ticket-granting ticket and a service-
granting ticket) [44], whereas the P2P and O2M protocol use
one ticket to verify the identity of a client. The Kerberos is
designed for SSO (single sign-on), i.e., the scenarios where
one user/client is accessing multiple different servers which
do not belong to the same group, whereas these protocols
are designed for one user/client to access a single device or
multiple devices of the same group. Before discussing the
protocols, the section introduces the tickets used to carry
access credentials in the protocols.

1) TICKETS
A ticket is a temporary encrypted secret issued by the authen-
tication server to enable a client to authenticate itself to a

FIGURE 4. Ticket structure.

single device or multiple devices. This section describes the
ticket structure, types, and potential clients.

a: TICKET STRUCTURE
The ticket structure has several fields that are used to identify
the ticket owner, target, and properties, as shown in Figure 4.
These fields are as follows.

• Ticket-type specifies the type of the ticket. Two types
are defined: (1) Peer-to-Peer (P2P) and (2) One-to-Many
(O2M) ticket. This is the only field visible to the client.
Depending on the type of the ticket, the remaining fields

47972 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

are encrypted using the target device long-term key or
group key.

• IDClient indicates the identity of the ticket owner.
• Flags represent the settings of the ticket. A flag is set if
it has the value 1, and it is absent if it has the value 0.
The flags are as follows.
– Renewable indicates if the ticket can be renewed.
If set, the client can use the ticket to request a new
ticket.

– Forwardable allows ticket forwarding. If set, the
client can use the ticket to request a new ticket to
access a different device.

– Reusable indicates if the ticket can be used more
than once. If set, the client can use the ticket to
re-authenticate itself once the authentication session
has expired.

– Proxiable allows the client to pass a ticket to a device
to perform a task on its behalf. If set, the device can
use the ticket to ask the authentication server for a new
ticket to perform the requested task.

– Proxy indicates if the ticket is a proxy passed by a
different client.

• Session-key holds a temporary symmetric key.
• Authentication-time specifies the time of
authentication.

• Start-time indicates when the ticket can be used. If it has
no value, then the authentication-time is the start-time.

• End-time indicates the time when the ticket can no
longer be used.

• Renewal-deadline indicates the time when the ticket
can no longer be renewed.

• LoA represents the level of assurance encapsulated in
the ticket.

• Restrictions field contains authorization data used to
limit access privileges (e.g., a client issuing a proxy that
is valid for a specific operation).

• EnNonce field contains a random number set by the
client.

Timing values, e.g., authentication-time, are expressed
using GeneralizedTime type. The GeneralizedTime syntax is
YYYYMMDDHHMMSSZ, where four digits are used for the
year, two for the month, two for the day, two for the hour,
two for the minutes, and two for the seconds, followed by the
letter Z to indicate the use of the Coordinated Universal Time
(UTC) [45].

b: TICKET TYPES
Depending on the number of target devices a client intends to
access, we define two types of tickets.

1) Peer-to-Peer (P2P) Ticket
The P2P-Ticket is used for device-to-device
authentication. It is an access credential issued by the
authentication server to enable the client device to
authenticate itself to a single target device. The P2P-
Ticket is encrypted using the target device long-term key

KDi. The content of the ticket is as follows.

P2P− Ticket

:= 〈P2P,EKDi[IDCi,Flags,

Session− key,Authentication− time,

Start − time,End − time,Renewal − deadline,

LoA,Restrictions,EnNonce]〉

2) One-to-Many (O2M) Ticket
The O2M-Ticket is used for device-to-multiDevice
authentication. It is an access credential issued by
the authentication server to enable the client device
to authenticate itself to a group of devices. The
O2M-Ticket is encrypted using the target device group
key KGi. The content of the ticket is as follows.

O2M− Ticket

:= 〈O2M ,EKGi[IDCi,Flags,

Session− key,Authentication− time,

Start − time,End − time,Renewal − deadline,

LoA,Restrictions,EnNonce]〉

c: TICKET REQUESTORS
The device class dictates its ability to request a ticket and the
properties of the ticket. For instance, a lower class device,
e.g., C1 device, should not be able to obtain a ticket that is
valid for a long period of time. This is because the higher
the class, the more security services the device can offer [46].
Table 4 presents an example of who can request which types
of tickets.

d: COMMUNICATION COST
The authentication tokens used in the P2P and O2M protocol
follow the same structure and format of an M2I ticket. The
fields and the bit-length of each field in an M2I ticket are
shown in Figure 5. From the figure, it can be seen that the
ticket consists of two main fields: a Ticket-type field and
a Ticket-info field. The Ticket-type field is 1-bit long to
indicate one of the two types of tickets used in our protocols.
The Ticket-info field consists of a further number of fields
and the total length for this field is 512 bits.

2) PEER-TO-PEER (P2P) PROTOCOL FOR
DEVICE-TO-DEVICE AUTHENTICATION
The P2P protocol is designed for device-to-device authenti-
cation. The protocol uses a token issued by the authentication
server, i.e., P2P-Ticket, and an authenticator generated by a
client device to verify the client identity to a target device
and achieve mutual authentication, as shown in Figure 6.
This section details the P2P protocol messages and operation
description.

a: PROTOCOL MESSAGES
The protocol consists of five messages for authentication and
two for re-authentication, as shown in Figure 6 and Figure 7.

VOLUME 10, 2022 47973

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

FIGURE 5. Communication cost of the M2I ticket.

FIGURE 6. P2P message exchange diagram.

b: OPERATION DESCRIPTION
The P2P protocol operations are explained below.

Step S1-P2P: At the start of the protocol, client C1 gener-
ates a fresh EnNonce and timestamp. Then, it con-
structs and sends Msg1 to the AS. Once Msg1 is
sent, C1 starts a timer and await for a timeout. If no
response is received upon the expiry of this timeout,
it will either resend the message or terminate the
protocol execution.

Step S2-P2P: Upon the receipt of Msg1, the AS decrypts
EKC1[IDC1, IDD1,EnNonce1C1,TsP2PC1] using KC1
to verify the freshness of TsP2PC1 using the TS-Veri
algorithm. If fresh, the AS verifies C1 identity using
the ID-Veri algorithm. Then, it generates a session
key and a P2P-Ticket to construct and send Msg2.

Step S3-P2P: Upon the receipt of Msg2, C1 decrypts
EKC1[SK ,EnNonce1C1,P2P − Ticket] using KC1
to verify EnNonce1C1 using the EN-Veri algorithm.
Then, it generates EnNonce2C1 and uses it to gener-
ate a fresh authenticator (ESK [IDC1|| EnNonce2C1])
if it is a non-reusable ticket. However, if the ticket is
reusable, C1 uses EnNonce2C1 as a seed to compute
a hash chain of length n (Hn

i), as shown in Figure 8,
where n is the number of times the client intends
to use the ticket to authenticate itself. Once Hn

i is
computed, C1 uses the last link in the chain, i.e., hn,
to generate the fresh authenticator (ESK [IDC1||hn]).
Then, it constructs Msg3 and sends it to the target
device D1 to request access.

Step S4-P2P: Upon the receipt of Msg3, D1 decrypts the
P2P-Ticket using KD1 to verify it using the TI-Veri
algorithm. Then, it decrypts the attached authenti-
cator using the SK obtained from the ticket to verify
the ownership of the ticket using the ID-Veri algo-
rithm. If the ticket is reusable, D1 saves the hashed
EnNonce value (i.e., hn) for future authentication
requests. After that, it generates EnNonce3D1 to con-
struct and send Msg4.

Step S5-P2P: Upon the receipt of Msg4, C1 decrypts
ESK [EnNonce1C1||EnNonce3D1] using the SK to
verify EnNonce1C1 using the EN-Veri algorithm.
Then, it constructs Msg5 and sends it to D1 to verify
its own identity and achieve mutual authentication.

Step S6-P2P: Upon the receipt of Msg5, D1 decrypts
ESK [EnNonce3D1] using the SK to verifyEnNonce3D1
using the EN-Veri algorithm. If verified, C1 and D1
achieve mutual authentication and the protocol is
terminated.

For subsequent device access requests using the same cre-
dential, i.e., the same ticket, only two messages are needed to
achieve mutual authentication, as shown in Figure 9.

Step S1-P2P2: C1 generates a fresh authenticator using the
link that precedes the last used link in Hn

i , i.e., hn−1.
Then, it constructs and sends Msg6.

Step S2-P2P2: Upon the receipt of Msg6, D1 decrypts the
P2P-Ticket using KD1 to verify it using the TI-Veri
algorithm. Then, it decrypts the attached authen-
ticator using the SK to verify it using the ID-Veri
and HC-Veri algorithms. After that, it generates
EnNonce4D1 to construct and send Msg7 to verify
its own identity and achieve mutual authentication.

Step S3-P2P2: Upon the receipt of Msg7, C1 decrypts
ESK[hn−1||EnNonce4D1] using the SK to verify
hn−1 using the EN-Veri algorithm. If verified, C1 and

47974 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

TABLE 4. Ticket requestors.

FIGURE 7. P2P protocol messages.

D1 achieve mutual authentication and the protocol is
terminated.

If any of the verifications is negative, the protocol is immedi-
ately terminated.

c: PERFORMANCE EVALUATION
i) COMMUNICATION COST: The total communication cost

of one execution of the P2P protocol is (2433× the number of
target devices (NT)) bits, as shown in Table 5. For example,
if a client device authenticates itself to three target devices
using the P2P protocol, the communication cost incurred
would be (2433× 3) bits = 913 bytes.
The total communication cost for re-authentication using

the P2P protocol is (1281×NT) bits, as presented in Table 6.
For example, if a client device re-authenticates itself to three

FIGURE 8. Hash chain.

target devices using the protocol after its initial authentica-
tion has expired, the communication cost incurred would be
(1281× 3) bits = 481 bytes.

ii) COMPUTATION COST: The total computation cost of one
execution of the P2P protocol isNT (12TSE+TH), as shown in
Table 7. For example, if a client device authenticates itself to
three target devices using the protocol, the computation cost
incurred would be 3(12TSE + TH) = 36TSE + 3TH .

VOLUME 10, 2022 47975

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

TABLE 5. Communication cost of the P2P protocol.

TABLE 6. Communication cost for re-authentication using the P2P protocol.

TABLE 7. Computation cost of the P2P protocol.

FIGURE 9. P2P re-authentication message exchange diagram.

The total computation cost to re-authenticate a client
device is NT (5TSE + TH). For example, if a client device
re-authenticates itself to 3 target devices after its initial
authentication has expired, the computation cost would be
3(5TSE + TH) = 15TSE + 3TH .

3) ONE-TO-MANY (O2M) PROTOCOL FOR
DEVICE-TO-MULTIDEVICE AUTHENTICATION
To recognise the fact that (i) in an IoT environment, most
devices can be grouped due to reasons such as they are
physically in a close proximity and/or perform the same
function, e.g., devices in the same room, or the light switches
in the whole house, (ii) the devices in the same group may
have similar security requirement, (iii) there are cases where
an interaction is to a group of devices, and (iv) most IoT
devices are resource-constrained, it is desirable to have an
authentication solution that takes into account all of these

characteristics and introduce as low cost as possible. Our
proposed solution, the O2M protocol, is designed to allow
a client device to authenticate itself to a group of devices
which perform a similar function or with a similar security
requirement using the same access credentials. The protocol
uses a token, i.e., O2M-ticket, issued by the authentication
server, and an authenticator generated by the client to verify
the client identity to a group of target devices and achieve
mutual authentication.

a: PROTOCOL MESSAGES
The protocol consists of 2 + (3 × NT) messages, where
NT is the number of target devices in the group, as depicted
in Figure 10.

b: OPERATION DESCRIPTION
The O2M protocol performs the same operations as the
P2P protocol with a few differences. The differences are as
follows.

1) The O2M protocol uses an O2M-Ticket that could be
verified by a group of devices as it is encrypted using
their group key KGi. On the other hand, the P2P pro-
tocol uses a P2P-Ticket that could only be verified by
one device as it is encrypted using the target device
long-term key KDi.

47976 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

FIGURE 10. O2M message exchange diagram (when NT = 3).

2) The O2M protocol repeats the last four steps (i.e., S3 to
S6) in the P2P protocol operation description NT times.
This is to achieve mutual authentication between the
client and all target devices involved.

Similar to the P2P protocol, the protocol is immediately
terminated if any of the verifications is negative.

c: PERFORMANCE EVALUATION
i) COMMUNICATION COST: The total communication cost

of one execution of the O2M protocol is ((1281 × NT) +
128[(32 × NT) + 192] + 896) bits as presented in Table 8.
The three messages, Msg3, Msg4 and Msg5, are repeated
for each of the target devices involved. For example, if a
client device authenticates itself to three target devices using
the protocol, the communication cost incurred would be
((1281 × 3) + 128[(32 × 3) + 192] + 896) bits =
641 bytes.

The total communication cost for re-authentication using
the protocol is identical to the P2P protocol. This is because
the number and length of re-authentication messages are the
same in both protocols.

ii) COMPUTATION COST: The total computation cost of
one execution of the O2M protocol is (5TSE + NT (7TSE +
TH)), as described in Table 9. For example, if a client device
authenticates itself to three target devices using the protocol,
the computation cost incurred would be 5TSE + 3(7TSE +
TH) = 26TSE + 3TH .

The total computation cost for re-authentication using the
protocol is identical to the P2P protocol. This is because both
protocols use the same number of cryptographic operations
and type of cryptographic algorithms to re-authenticate their
client devices.

VII. SECURITY ANALYSIS
This section presents informal analysis, work factor analysis,
and formal verification of the protocols.

A. INFORMAL ANALYSIS
The M2I protocols are informally analysed with respect to
the security requirements and identified threats which may
be countered by an entity authentication service.

1) REQUIREMENTS ANALYSIS
A summary of the security requirements analysis of the P2P
and O2M protocol against the state-of-the-art IoT authentica-
tion solutions, discussed in detail in paper [13], is presented in
Table 10. Although the P2P and O2M protocol, respectively,
achieve mutual entity authentication for device-to-device and
device-to-multiDevice modes of interactions, the table shows
that entity authentication is partially supported in the proto-
cols. This is because the protocols do not address all modes of
interactions (i.e., user-to-device, device-to-device, device-to-
multiDevice, and multiDevice-to-device interactions [13]).
The work on the M2I framework is still in progress to address
the remaining modes of interactions.

a: ENTITY AUTHENTICATION
The M2I protocols use the challenge-response mechanism
where fresh random numbers, e.g., EnNonce, are generated
by the requestor and responder to achieve mutual authen-
tication. Receiving the wrong response will lead to instant
protocol termination.

b: MESSAGE FRESHNESS
Timestamps and freshly generated random numbers are com-
mon freshness identifiers. Both methods have been used in
the M2I protocols to verify the freshness of the exchanged
messages.

c: CONFIDENTIALITY
In the M2I protocols, all secret authentication parameters,
e.g., tickets and authenticators, are never transmitted in plain-
text. They are encrypted using a symmetric cryptosystem.
Provided that the key length is sufficiently large, e.g., 128 bits
for the AES algorithm, it would be computationally difficult
for an adversary to decrypt any of the intercepted messages.

d: AUTHORIZATION
In the P2P and O2M protocol, the authentication server
checks the client’s authorization status before issuing a ticket.
Once issued, authorization information can be found in the
ticket itself under the restrictions field.

VOLUME 10, 2022 47977

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

FIGURE 11. O2M protocol messages.

TABLE 8. Communication cost of the O2M protocol.

TABLE 9. Computation cost of the O2M protocol.

e: AVAILABILITY
The M2I protocols are designed to avoid bottlenecks and be
resilient to DoS attacks. As mentioned earlier, the protocols
use the challenge-response mechanism. Receiving the wrong
response (i.e., wrong message) at any stage of the protocol
should lead to its termination, making the IoT application
available to its legitimate users.

2) THREAT ANALYSIS
The threat analysis has been carried out under the assumption
that an adversary is able to eavesdrop all messages.

a: IMPERSONATION ATTACKS
An adversary may try to impersonate a legitimate entity to
gain access, a higher privilege level, or launch attacks against
an IoT environment. Potential impersonation attacks are as
follows.

i) CLIENT IMPERSONATION: In the P2P and O2M pro-
tocol, the adversary would not be able to impersonate a
client to deceive the authentication server into issuing a
ticket without knowing the client’s long-term key or forge
a valid ticket without knowing the target device long-term
key. Furthermore, even if the adversary was able to somehow

47978 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

capture a valid ticket, s/he would not be able to use it
to deceive the target device. This is because the adversary
would not be able to alter the IDClient field without knowing
the target device long-term key or forge a valid authenti-
cator without knowing the session key. To obtain access,
the adversary would need to have a valid ticket and a fresh
authenticator.

ii) AUTHENTICATION SERVER IMPERSONATION: Since the
secret authentication parameters exchanged between clients
and the authentication server are never transmitted in plain-
text, the adversarywould not be able to impersonate the server
without knowing the clients’ long-term keys. As a result, the
proposed protocols resist authentication server impersonation
attacks.

iii) TARGET IMPERSONATION: An adversary would not be
able to impersonate a target device in the P2P protocol with-
out knowing the device’s long-term key or its group key in the
O2M protocol. Therefore, the proposed protocols can resist
target impersonation attacks.

b: EAVESDROPPING
The M2I protocols are designed under the assumption
that any message could be intercepted and hence none
of the authentication parameters are transmitted in plain-
text. In other words, intercepted messages are useless to
the interceptor as it is computationally difficult to decipher
them. Therefore, the protocols can withstand eavesdrop-
ping attacks, such as passive or active man-in-the-middle
attacks.

c: REPLAY
The protocols use timestamps and random numbers to
counter replay attacks. The first message in each of the
M2I protocols has a timestamp attached to it as its fresh-
ness identifier. In addition, subsequent protocol messages
use fresh random numbers, instead of timestamps, to avoid
clock desynchronisation issues. As a result, the protocols can
withstand replay attacks.

d: DENIAL OF SERVICE (DoS)
DoS attacks often rely on the transmission of oversized mes-
sages and/or a large number of requests to disrupt availability,
making the IoT application unavailable to its legitimate users.
Owing to the characteristics of the M2I protocols, an adver-
sary would not be able to forge a legitimate message to slow
down or occupy a client, target device, or the authentication
server without knowing their long-term keys. Furthermore,
replayed messages are easily detected using timestamps and
random numbers as discussed earlier. Therefore, the M2I
protocols can resist DoS attacks.

B. WORK FACTOR ANALYSIS
The work factor, also known as work function, is the com-
putational cost required to compromise each authentication

method/factor used in the protocols using brute force attacks.
It is typically proportional to the security level of the authenti-
cationmethod [47]. To launch a successful attack on amethod
that provides n-bit security level, a computational complexity
of 2n is needed [48]. For example, the work factor needed to
launch a successful attack on AES-128 is 2128. Depending
on the key-length and the cryptographic algorithms used,
authentication methods may provide different security levels
as shown in Table 11 [49].

To have a cryptosystem that is secure beyond 2030, the
National Institute of Standards and Technology (NIST) sug-
gests that the security level provided should not be less than
128-bit [49]. Thus, the M2I protocols use AES-128 as their
symmetric cryptosystem, SHA-256 and HMAC-SHA256 as
their hash and HMAC algorithms, respectively, to comply
with NIST’s recommendation. Table 12 shows the computa-
tional complexity needed to forge a successful device access
request in each of the M2I protocols. To forge a successful
device access request in the P2P protocol, the target device
long-term key (KDi) have to be compromised. Similarly, the
group key of the target device (KGi) needs to be compromised
to forge a successful device access request in the O2M proto-
col. As a result, their work factor is 2128.

C. FORMAL SECURITY VERIFICATION
A number of formal verification methods, e.g., AVISPA [39],
ProVerif [50], and Scyther [51], can be used to evaluate
the security of a protocol. The AVISPA (Automated Vali-
dation of Internet Security Protocols and Applications) tool
has been chosen to validate our protocols for the following
reasons. First, the tool models protocols and their security
properties in High-Level Protocol Specification Language
(HLPSL). HLPSL is a powerful and expressive language that
provides abstraction [39]. Secondly, it integrates different
verification tools, e.g., On-the-Fly Model-Checker (OFMC)
and Constraint-Logic-based Attack Searcher (CL-AtSe), that
use a variety of analysis techniques to verify protocol cor-
rectness [52]. Lastly, the tool has been widely used to verify
authentication protocols proposed for IoT applications [12],
[18], [23], [28]–[30].

As shown in Figure 12, the AVISPA tool starts by translat-
ing the HLPSL specification into a lower level specification,
known as intermediate format (IF). The IF specification is
then used as input to the back-end verification tools, e.g.,
OFMC and CL-AtSe. The tools apply a number of automatic
analysis techniques to verify protocol correctness against
specified security requirements. The results of the verifica-
tion process are then displayed in a format known as the
output format (OF) [39].

The M2I protocols have been formally verified in terms of
entity authentication, confidentiality, and resilience against
known attacks. The results of the verification are presented
in Figure 13 and Figure 14. A summary of this verification
is given in Table 13. The HLPSL code of the protocols is
presented in Appendix B.

VOLUME 10, 2022 47979

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

TABLE 10. Security requirements analysis of the P2P and O2M protocol vs IoT authentication solutions.

VIII. THE EXPERIMENTS
The experiments are carried out to experimentally evaluate
the computational costs and authentication delays incurred in
each of the M2I protocols. This section gives the experiment
design and set-ups, and discusses the results.

A. EXPERIMENT DESIGN
The experiment design covers the selections of the program-
ming language and cryptographic algorithms used to imple-
ment the protocols, machine set-up and specifications, and
definitions of performance metrics.

47980 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

TABLE 11. Security level of cryptographic algorithms.

TABLE 12. Work factor.

FIGURE 12. AVISPA architecture.

1) PROGRAMMING LANGUAGE
The programming language used to implement the M2I
protocols is Python 3.7. Python was chosen because it
supports a cryptography package, known as PyCryptodome.
PyCryptodome provides the implementation of several cryp-
tographic primitives and key management services used in
our protocols, including a secure random number generator,
a collection of message digest functions, and several encryp-
tion algorithms [53].

TABLE 13. A summary of the formal verification results.

2) CRYPTOGRAPHIC ALGORITHMS
The cryptographic algorithms used in the implementation of
our protocols are as follows.

• AES algorithm (using the Cipher Block Chaining (CBC)
mode)with a key length of 128 bits is used for symmetric
encryption/decryption.

• The SHA-256 and HMAC-SHA256 algorithms are used
to generate hash and HMAC values, respectively.

The cryptographic algorithm used in the implementation of
Kerberos version 5 is as follows.

• AES algorithm (using the Cipher Block Chaining with
Ciphertext Stealing (CBC-CTS)mode) with a key length
of 128 bits is used for symmetric encryption/decryption.

3) MACHINE SET-UP AND SPECIFICATIONS
The implementation of the M2I protocols has been car-
ried out under two experiment set-ups: (i) 1-machine set-
up, and (ii) 2-machine set-up. In case (i), a single machine
is used to run all the entities, i.e., the client devices, the
server, and target devices. This set-up is used to measure
the computational costs of the cryptographic operations, and
the total computational cost introduced by all the operations
(i.e., cryptographic and non-cryptographic operations) in
each of the protocols. In case (ii), two machines are used. The
first machine is used to run the client device while the second
machine is used to run the server, and target devices. This
set-up is used to evaluate authentication delays introduced by
the protocols. As authentication requests and responses are
typically sent by different machines, using the 2-machine set-
up to measure authentication delays is more adequate than
using the 1-machine set-up. The specifications of the two
machines used are as follows:

• Machine-1 (M1) is a laptop computer runningWindows
10 (64-bit operating system) with a 1.60 GHz Intel Core
i5-8265U CPU and 12 GB of RAM memory.

• Machine-2 (M2) is a laptop computer runningWindows
10 (64-bit operating system) with a 1.80 GHz Intel Core
i7-10510U CPU and 16 GB of RAM memory.

4) PERFORMANCE METRICS
The metrics used to evaluate our protocol performance are
protocol crypto computational cost, protocol total computa-
tional cost, and authentication delay.

VOLUME 10, 2022 47981

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

FIGURE 13. AVISPA results of the P2P protocol.

FIGURE 14. AVISPA results of the O2M protocol.

• Protocol Crypto Computational (PCC) cost of a
protocol is defined as the time taken to perform all
the cryptographic operations during the execution of a
protocol.

• Protocol Total Computational (PTC) cost of a pro-
tocol is defined as the time taken to perform all the
operations during the execution of a protocol. This
cost includes both cryptographic and non-cryptographic
operations. The reason for introducing this metric is to
evaluate the effect of non-cryptographic operations on
the protocol execution.

• Authentication delay is defined as the time needed for
a client device to authenticate itself during an authenti-
cation instance.

The following sections describe how each experiment is
conducted, how the results are collected and experimental
results.We use the 1-machine set-up for Experiment-1/-2, and
the 2-machine set-up for Experiment-3.

B. EXPERIMENT-1
This experiment is to evaluate the PCC costs of our
protocols.

1) EXPERIMENT SETTING AND THE NUMBER OF ITERATIONS
The settings of the experiment are as follows:
• Set-up: 1-machine set-up.
• Machine:M1.
• Performance metric: PCC cost.
To ensure statistical significance of the experimental

results, the number of iterations (n) over which the execution
time is measured should be determined. This is done by
experimenting and measuring the average execution times of
three cryptographic algorithms (AES encryption, SHA256,
and RSA encryption). The results are shown in Figure 15.
As shown in the figure, when n is sufficiently large, e.g.,
n > 5.5K , the results show very little fluctuations, meaning
they are hardly affected by system dynamics. The confidence
level of the results is measured using the standard error of the
mean (SEM). SEM represents the error of a sample mean.
It is the standard deviation (σ) of the sample divided by the
square root of n (i.e., SEM = σ/

√
(n)) [54]. The smaller

the SEM value, the more representative the sample. The
Experiment-1 results presented in this section are collected
by using the n value of 7K and the corresponding SEM value
is 0.007.

47982 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

FIGURE 15. Experiment-1: Number of iterations.

FIGURE 16. Computation costs of the cryptographic algorithms.

2) EXPERIMENT RESULTS
Figure 16 shows the average execution times of the cryp-
tographic algorithms. The average times are, respectively,
0.009 ms for a hash operation (TH), 0.030 ms for an HMAC
operation (THMAC), and 0.018 ms for a symmetric encryption
or decryption operation (TSE).
In the theoretical evaluation (discussed in the performance

evaluation of each protocol), the computation costs of the
M2I protocols are evaluated in terms of the number of crypto-
graphic operations performed and the type of cryptographic
algorithms used to perform them. Here, we measure these
costs in terms of the time taken to execute all cryptographic
operations during the execution of a protocol. The compu-
tational costs of the protocols are presented in Table 14. The

TABLE 14. Computation costs of the M2I protocols.

FIGURE 17. PCC costs of the P2P and O2M protocol.

costs are dependent on the number of devices involved in each
protocol execution.

Figure 17 shows the PCC costs for authentication (also
referred to as initial authentication) and re-authentication
using the P2P and O2M protocol. From the figure, it can
be seen that the costs for authentication in both protocols
increase as the number of target devices increases. However,
the rate of increase in the O2M protocol is lower than that
of the P2P protocol. For example, as the number of target
devices increases from 5 to 400, the PCC cost of the P2P
protocol increases from 1 ms to 90 ms whereas the corre-
sponding cost for the O2M protocol increases from 0.8 ms to
54ms, which is 0.6 times lower. The O2M protocol is cheaper
than the P2P protocol; it reduces the cost by 32%∼40%,
in comparison with the P2P protocol. This is because, with
the O2M protocol, each client device uses the same token
(i.e., O2M-Ticket) to access all the target devices, whereas,
with the P2P protocol, each client device uses a separate
token (i.e., P2P-Ticket) to connect to a different target device,
so when accessing multiple target devices, multiple tokens
are required. The figure also shows that the P2P and O2M
protocol introduce the same level of PCC cost during re-
authentication. This is because, as discussed earlier, the cryp-
tographic operations used for re-authentication in the case of
two protocols are identical.

VOLUME 10, 2022 47983

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

FIGURE 18. Experiment-2: Number of iterations.

The average execution times of the cryptographic algo-
rithms used in Kerberos, on a 392-bit long message (i.e., the
maximum message component that uses these algorithms),
are as follows. 0.055 ms for a symmetric encryption oper-
ation (TKSE), and 0.080 ms for a symmetric decryption
operation (TKSD).

C. EXPERIMENT-2
This experiment is to evaluate the PTC costs of our protocols.

1) EXPERIMENT SETTING AND THE NUMBER OF ITERATIONS
The setting of this experiment is identical to Experiment-1,
with the exception of the performance metric used to evaluate
the experiment.
• Performance metric: PTC costs
To identify the number of iterations (n) over which the

overall execution time is measured, we ran the P2P protocol
using the samemethod discussed in Experiment-1. Any of the
M2I protocols could be used to identify n. This is because the
n value is chosen based on the level of fluctuations caused by
system dynamics and hence it is not dependent on a specific
protocol. Figure 18 shows that when n is larger than 6.5K ,
very little fluctuations occur. The Experiment-2 results are
collected by using the n value of 7K and the corresponding
SEM value is 0.02.

2) EXPERIMENT RESULTS
Figure 19 shows the PCC cost (discussed in Experiment-1)
and the PTC cost (obtained from this experiment) for
authentication using the P2P protocol. From the figure, it can
be seen that both costs increase as the number of target
devices increases. However, the rate of increase in the PCC
cost is lower than that of the PTC cost. For example, as the
number of target devices increases from 5 to 100, the PCC

FIGURE 19. Experiment-2: P2P protocol.

cost of the P2P protocol increases from 1 ms to 23 ms
whereas the corresponding PTC cost increases from 2 ms to
52 ms, which is two times higher. To measure the difference,
we calculated the percentages of the PCC cost to the PTC
cost. The percentages are: 42% when NT = 250, or 300,
43% when NT = 10, 100, 150, 200, 350, or 400, and 50%
when NT = 5. Therefore, The PCC cost of the P2P protocol
is 42%∼50% of the PTC cost.

Figure 20 shows the PCC cost and the PTC cost for authen-
tication using the O2M protocol. Similar to the P2P proto-
col, the rate of increase in the PTC cost is double the PCC
cost. For example, as the number of target devices increases
from 5 to 100, the PCC cost of the O2M protocol increases
from 0.8 ms to 14 ms whereas the corresponding PTC cost
increases from 2 ms to 26 ms, which is two times higher. The
percentages of the PCC cost to the PTC cost are as follows.
47% when NT = 10, 49% when NT = 5, 51% when NT =
200, 250, 300, or 350, and 52% when NT= 100, 150, or 400.
Hence, the PCC cost of the O2M protocol is 47%∼52% of
the PTC cost.

The difference between the PCC cost and the PTC cost
of the P2P and O2M protocol can be attributed to two
reasons. The first is that the PTC cost measures the time
required to perform all the operations, not just crypto-
graphic but also non-cryptographic operations. An exam-
ple of a non-cryptographic operation used in our protocols
is the timestamp verification using the TS-Veri algorithm.
On the other hand, the PCC cost only measures the time
required to perform the cryptographic operations in a proto-
col. The second reason is that there are some additional costs
introduced by the hidden operations of the P2P and O2M
protocol prototypes. One such hidden operation is a byte
serialisation operation. To encrypt a message component that
has items of different data types, the component needs to be
serialised (i.e., converted to a stream of bytes) before it can

47984 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

FIGURE 20. Experiment-2: O2M protocol.

FIGURE 21. Experiment-3: Number of iterations.

be encrypted. To read an encrypted message component that
has items of different data types, the component needs to be
decrypted, then, de-serialised (i.e., converted to its original
data types). Also, to send a message over the network, the
message needs to be serialised (if it is not in bytes format)
before it can be sent, and de-serialised once it has been
received.

D. EXPERIMENT-3
This experiment is to evaluate the authentication delays of the
protocols.

1) EXPERIMENT SETTING AND THE NUMBER OF ITERATIONS
The settings of Experiment-3 are as follows.

FIGURE 22. Overview of Kerberos.

TABLE 15. Authentication delays of the P2P and O2M protocol.

• Set-up: 2-machine set-up.
• Machines:M1, M2.
M1 is used to run the client device, whereas M2
is used to run the authentication server, and target
devices.

• Performance metric: authentication delay.

To find a suitable number of iterations for this experiment,
we have measured the average authentication delays of the
P2P protocol with varying iteration values. The results are
shown in Figure 21. From the figure, it can be seen that the
results are hardly affected by system dynamics when n is
sufficiently large, e.g., n > 6K . The Experiment-3 results are
collected by using the n value of 7K and the corresponding
SEM value is 0.3.

VOLUME 10, 2022 47985

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

FIGURE 23. Kerberos messages.

FIGURE 24. Communication costs of one-factor authentication.

2) EXPERIMENT RESULTS
Table 15 shows the authentication delays with the P2P and
O2M protocol, respectively. From the table, we can make
the following observations. First, with both protocols, the
authentication delays increase with an increasing number of
target devices. This is expected as the number of tokens
issued and verified, and the number of interactions (i.e.,
messages exchanged) increase as the number of target devices
increases. Secondly, the authentication delays of the O2M
protocol are lower than those of the P2P protocol in all the
cases due to the same reasons mentioned in Experiment-1,

FIGURE 25. Communication costs of two-factor authentication.

but the rate of the reduction diminishes as the number of
target devices increases. For example, when the target device
number is 1, the O2M protocol reduces the delay by 14%
in comparison with the P2P protocol. However, when this
number increases to 100, the difference between the two
delays is 0.8%. This is because initialisation factors have less
effect on the authentication delay as the number of target
devices increases. Finally, the O2M protocol improves the
performance by 0.2%∼14% in comparison with the P2P pro-
tocol. For instance, when the number of target devices (NT)

47986 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

TABLE 16. Communication costs of Kerberos tickets and authenticators.

TABLE 17. Communication cost of Kerberos.

TABLE 18. Computation cost of Kerberos.

TABLE 19. Communication costs of the P2P and O2M protocol vs Kerberos.

VOLUME 10, 2022 47987

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

TABLE 20. Communication costs for re-authentication using the P2P and
O2M protocol vs Kerberos.

is less than 11 devices, the authentication delay decreases by
6%∼14%, and when NT is more than 99 devices, the delay
decreases by 0.2%∼0.8%.

IX. M2I PROTOCOLS VS KERBEROS
To evaluate the efficiency of the M2I protocols, this section
compares the protocols to Kerberos version 5 in terms of
communication and computational costs.

A. KERBEROS
Kerberos is a symmetric-key based authentication proto-
col that uses tickets to provide client/server authentication.
Kerberos is a well-known and widely used authentication
solution [55] that could be used to implement device
multi-factor authentication. Hence, it is a suitable benchmark
solution. In this section, we discuss Kerberos messages, com-
munication and computation costs.

1) KERBEROS MESSAGES
Kerberos protocol consists of six messages as shown
in Figure 22. The first twomessages (i.e.,Msg1 andMsg2) are
used to authenticate a client device (C) to the authentication
server (AS) to obtain a ticket-granting ticket (K − TGTAS).
The K − TGTAS is then used in Msg3 to authenticate C
to the ticket granting server (TGS) to get a service-granting
ticket (K − SGTTGS). Once obtained, the K − SGTTGS
is used in Msg5 to authenticate C to a target device (D).
To implement two-factor authentication using Kerberos,
the client device may need to obtain two service-granting
tickets before sending its access request to the target
device. The components of Kerberos messages are presented
in Figure 23 [44].

2) PERFORMANCE EVALUATION
a: ADDITIONAL ASSUMPTIONS
In addition to the assumptions presented in Section V-H, the
following assumptions are also used in the evaluation.
• Times attribute is 96-bit long. This is because it consists
of three time objects (start, end, and renewal time) [44].

• Flags and options are each 32-bit long [45].
• A realm is 8-bit long [45].
• The network address is 8-bit long. This is because Class
A IPv4 Internet Protocol is used in this evaluation [56].

• The symmetric-key cipher used is the AES-128-CTS
algorithm (i.e., AES-128 in Cipher Block Chain-
ing (CBC) mode with Ciphertext Stealing, also known
as CBC-CS3 mode) [57].

FIGURE 26. Communication costs for re-authentication.

FIGURE 27. PCC costs of one-factor authentication.

b: COMMUNICATION COST
Table 16 shows the communication costs of Kerberos tickets
and authenticators. From the table, it can be seen that the
costs incurred to construct a Kerberos ticket (i.e., K −TGTAS
or K − SGTTGS) and authenticator (i.e., Authenticator1Ci or
Authenticator2Ci) are 384 bits and 128 bits, respectively.
The total communication cost of one execution of Kerberos

is (2408 × the number of target devices (NT) + 1264) bits
for each of the client devices as presented in Table 17. For
instance, if a client device authenticates itself to three target
devices using Kerberos, the communication cost incurred
would be ((2408 × 3) + 1264) bits = 1061 bytes. It is worth
noting that optional message items (e.g., Subkey, and Seq) are
not considered in the evaluation.

47988 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

TABLE 21. Computation costs of the P2P and O2M protocol vs Kerberos using one-factor authentication.

TABLE 22. Computation costs of the P2P and O2M protocol vs Kerberos using two-factor authentication.

TABLE 23. Computation costs for re-authentication using the P2P and O2M protocol vs Kerberos.

FIGURE 28. PCC costs of the two-factor authentication.

c: COMPUTATION COST
The total computation cost of one execution of Kerberos is
(2TKSE + TKSD+NT (5TKSE + 6TKSD)) as shown in Table 18.
The time needed to perform these operations (as discussed
in Experiment-1) is 0.055 ms and 0.080 ms for TKSE and
TKSD, respectively. Therefore, the PCC cost of the protocol
is (0.755 × NT + 0.19) ms. For example, if a client device
authenticates itself to three target devices using Kerberos, the
PCC cost incurred would be (0.755 × 3 + 0.19) = 2.5 ms.

B. PERFORMANCE EVALUATION OF THE M2I PROTOCOLS
VS KERBEROS
This section compares the communication and computational
costs of the M2I protocols with those of Kerberos.

FIGURE 29. PCC costs for re-authentication.

1) COMMUNICATION COSTS
The total communication costs of the P2P, O2M, and
Kerberos protocol, as discussed in Section VI-D2.c,
Section VI-D3.c, and Section IX-A2, are shown in Table 19.
The costs of two-factor authentication are (4866× NT) bits,
(2× ((1281×NT)+ 128[(32×NT)+ 192]+ 896)) bits, and
((4816 × NT) + 1264) bits in the P2P, O2M, and Kerberos
protocol, respectively.

Figure 24 shows the communication costs of one-factor
authentication using the P2P, O2M, and Kerberos protocol,
respectively. From the figure, we can make the following
observations. First, the costs of the protocols are similar when
the number of target devices is less than 10. However, when

VOLUME 10, 2022 47989

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

the number of target devices goes beyond 10, the commu-
nication costs of the P2P and Kerberos protocol increase
steadily as the number of target devices increases, and the
rate of the increase is similar for both protocols. This is
because once a client device obtained a K −TGTAS in its first
authentication instance using Kerberos, both protocols use
one ticket to authenticate the client device to a target device.
Secondly, the communication cost of the O2M protocol is
significantly lower than that of the P2P and Kerberos pro-
tocol. The O2M protocol reduces the communication cost by
42%∼45% in comparisonwith that of Kerberos. As explained
in Experiment-1, the reason for this is that the O2M protocol
allows the client device to use the same token to access all
target devices.

Figure 25 shows the communication costs of two-factor
authentication using the P2P, O2M, and Kerberos protocol.
The results shown in this figure exhibit the same patterns as
those in Figure 24 – the one-factor authentication case, with
the exception that the communication cost in this case doubles
that of the one-factor authentication case. For example, when
NT is 400, the communication costs respectively introduced
by the P2P and Kerberos protocol are 238 Kbytes as against
119 Kbytes in the one-factor authentication case. Similarly,
when NT is 400, the communication cost introduced by the
O2M protocol is 128 Kbytes as against 64 Kbytes in the one-
factor authentication case.

The communication costs for re-authentication using the
protocols are presented in Table 20. The costs incurred to
acquire access credentials are not considered in the evalua-
tion. This is because it is assumed that a client device has a
valid access token from its initial authentication.

Figure 26 shows the communication costs for re-
authentication using the protocols. From the figure, it can
be seen that the cost of our protocols increases steadily,
whereas the cost of Kerberos increases at a lower rate,
with the increase of the number of devices. The P2P and
O2M protocol, respectively, increase the communication
cost by 91% in comparison with that of Kerberos. This is
because the P2P and O2M protocol use hashed nonces for
re-authentication, as the clocks of IoT devices may not be
synchronised, whereas the Kerberos uses timestamps, and the
former imposes more communication cost.

2) COMPUTATION COSTS
The PCC costs of the P2P, O2M, and Kerberos protocol are
shown in Table 21 and Table 22.
Figure 27 shows the PCC costs of one-factor authentication

using the P2P, O2M, and Kerberos protocol. From the figure,
it can be seen that the costs of our protocols increase slightly,
whereas the cost of Kerberos increases steadily, at a much
higher rate, with the increase of the number of devices. The
P2P and O2M protocol, respectively, reduce the PCC cost
by 70%∼72% and 81%∼82% in comparison with that of
Kerberos. This is due to the higher number of tokens and
the symmetric-key cipher used in Kerberos as discussed in
Section IX-A.

Figure 28 shows the PCC costs of two-factor authen-
tication using the P2P, O2M, and Kerberos protocol. The
results shown in this figure exhibit the same patterns as those
in Figure 27 – the one-factor authentication case, with the
exception that the PCC cost in this case doubles that of the
one-factor authentication case. For example, when NT is 400,
the PCC cost introduced by Kerberos is 0.6 second as against
0.3 second in the one-factor authentication case.

The PCC costs for re-authentication using the protocols are
presented in Table 23. The costs incurred to obtain access
credentials are not considered in the evaluation due to the
same reason mentioned in Section IX-B1.
Figure 29 shows the PCC cost for re-authentication using

the P2P, O2M, and Kerberos protocol. From the figure, it can
be seen that the cost of our protocols increases slightly,
whereas the cost of Kerberos increases steadily, at a much
higher rate, with the increase of the number of devices. The
P2P and O2M protocol, respectively, reduce the PCC cost
by 72% in comparison with that of Kerberos. This is due
to the different symmetric-key ciphers used in the protocols.
In the P2P and O2M protocol, the cipher used is the AES-
128-CBC algorithm, whereas the cipher used in Kerberos is
the AES-128-CTS algorithm, and the latter is much more
computationally expensive, as discussed in Experiment-1.

X. CONCLUSION
Authentication solutions producing a higher assurance level
provide a higher level of protection, but they often impose a
higher communication and computational overhead, in com-
parison with authentication solutions producing a lower
assurance level. Hence, there is a need to optimise the
trade-off between the level of protection and overhead costs.
In this paper, we have critically analysed the level of assur-
ance required and the level of assurance derived during
authentication, and proposed a number ofmethods to quantify
them. The M2I framework has then been proposed to facili-
tate multi-LoA and interaction based authentication for IoT
to reduce the costs incurred and enhance the security level
of IoT applications. The M2I protocols have been evaluated
in terms of security and performance. The security evaluation
shows that the protocols satisfy the security requirements and
are resilient to known attacks. The performance evaluation
shows that using the O2M interaction mode in authentication
can reduce the communication cost considerably. The O2M
protocol cuts the communication cost by 42%∼45% com-
pared with that of the Kerberos protocol. The evaluation
also shows that the P2P and O2M protocol cut the com-
putational cost by 70%∼72% and 81%∼82% in compari-
son with that of Kerberos, respectively. Hence, adopting the
LoA linked and interaction-based key sharing for authenti-
cation can provide more effective and efficient protection
for IoT applications. As part of our future work, we plan
to extend the M2I framework to address the remaining
modes of entity interactions, such as multiDevice-to-device
interactions.

47990 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

APPENDIX A
ALGORITHMS
The algorithms used in our protocols are as follows.

Algorithm 1 The TS-Veri Algorithm
1: algorithm TS-Veri(Ts)
2: read Tnow
3: if (|Ts− Tnow| <= 4T) then
4: return True
5: else
6: return False
7: end if
8: end function

Algorithm 2 The ID-Veri Algorithm
1: algorithm ID-Veri(IDS , IDC)
2: if (IDS = IDC) then
3: return True
4: else
5: return False
6: end if
7: end function

Algorithm 3 The EN-Veri Algorithm
1: algorithm EN-Veri(EnNonce1, EnNonce2)
2: if (EnNonce1 = EnNonce2) then
3: return True
4: else
5: return False
6: end if
7: end function

Algorithm 4 The HC-Gen Algorithm
1: algorithm HC-Gen(EnNonce, n)
2: array HC[n]← ∅
3: HC[0]← Hash(EnNonce)
4: for i←1 to n-1 do
5: HC[i]← Hash(HC[i-1])
6: end for
7: return HC
8: end function

Algorithm 5 The HC-Veri Algorithm
1: algorithm HC-Veri(h0, h1)
2: if (Hash(h0) = h1) then
3: return True
4: else
5: return False
6: end if
7: end function

Algorithm 6 The TI-Veri Algorithm
1: algorithm TI-Veri(IDS , Ticket)
2: if (ID-Veri(IDS , Ticket.IDC)) then
3: read Tnow
4: if (Ticket.Start-time <= Tnow) and (Ticket.End-time

> Tnow) and (Ticket.LoA >= RLoA) then
5: return True
6: else
7: return False
8: end if
9: else
10: return False
11: end if
12: end function

Algorithm 7 The TAuthenticator-Gen Algorithm
1: algorithm TAuthenticator-Gen (IDC , Ticket, EnNonce,

SK)
2: if (Ticket.Flag[3] = Reusable) then
3: input the number of times (n) the client intends to use

the ticket
4: hn← Hash(EnNonce)
5: for i←1 to n-1 do
6: hn← Hash(hn)
7: end for
8: Authenticator← IDC ||hn
9: else
10: Authenticator← IDC ||EnNonce
11: end if
12: return encryptSK (Authenticator)
13: end function

Algorithm 8 The TAuthenticator-Veri Algorithm
1: algorithm TAuthenticator-Veri(Ticket, Authenticator,

Authentication-Type)
2: if (ID-Veri(Ticket.IDC , Authenticator .IDC)) then
3: if (Authentication-Type= initial authentication) then
4: return True
5: else
6: read hn−1 from previous authentication instance
7: hnew← Hash(hn−1)
8: if (Authenticator.hn = hnew) then
9: return True
10: else
11: return False
12: end if
13: end if
14: else
15: return False
16: end if
17: end function

VOLUME 10, 2022 47991

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

APPENDIX B
FORMAL VERIFICATION CODE OF THE M2I PROTOCOLS
A. THE P2P PROTOCOL
See Protocol 1.

47992 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

B. THE O2M PROTOCOL

See Protocol 2.

VOLUME 10, 2022 47993

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

47994 VOLUME 10, 2022

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

REFERENCES
[1] F. Balali, J. Nouri, A. Nasiri, and T. Zhao, ‘‘IoT platform: Smart devices,

gateways, and communication networks,’’ in Data Intensive Indus-
trial Asset Management. Cham, Switzerland: Springer, 2020, pp. 67–77.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-
35930-0_5

[2] H. Yang, W. Lee, and H. Lee, ‘‘IoT smart home adoption: The importance
of proper level automation,’’ J. Sensors, vol. 2018, pp. 1–11, May 2018.

[3] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and Y. Zhang,
‘‘Discovering and understanding the security hazards in the interactions
between IoT devices, mobile apps, and clouds on smart home platforms,’’
in Proc. 28th USENIX Secur. Symp., 2019, pp. 1133–1150.

[4] K.Karimi and S. Krit, ‘‘Smart home-smartphone systems: Threats, security
requirements and open research challenges,’’ in Proc. Int. Conf. Comput.
Sci. Renew. Energies (ICCSRE), Jul. 2019, pp. 1–5.

[5] K. Zhao, J. Zhong, and J. Ye, ‘‘Smart home security based on the
Internet of Things,’’ in Proc. Int. Conf. Mach. Learn. Big Data Anal.
IoT Secur. Privacy, Cham, Switzerland: Springer, 2020, pp. 388–393.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-
62746-1_57#citeas

[6] S. AlJanah and N. Zhang, ‘‘An authentication framework for the Internet
of Things,’’ presented at the Univ. Manchester Comput. Sci. Res. Symp.
(CSRS@UoM19), Manchester, U.K., 2019.

[7] P. Wang, F. Ye, and X. Chen, ‘‘A smart home gateway platform for data
collection and awareness,’’ IEEE Commun. Mag., vol. 56, no. 9, pp. 87–93,
Sep. 2018.

[8] N. Amraoui, A. Besrour, R. Ksantini, and B. Zouari, ‘‘Implicit and con-
tinuous authentication of smart home users,’’ in Proc. Int. Conf. Adv.
Inf. Netw. Appl., Cham, Switzerland: Springer, 2019, pp. 1228–1239.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-
15032-7_103

[9] T. Tantidham and Y. N. Aung, ‘‘Emergency service for smart home system
using Ethereum blockchain: System and architecture,’’ in Proc. IEEE
Int. Conf. Pervasive Comput. Commun. Workshops (PerCom Workshops),
Mar. 2019, pp. 888–893.

[10] M. Saadeh, A. Sleit, K. E. Sabri, and W. Almobaideen, ‘‘Hierarchical
architecture and protocol for mobile object authentication in the context of
IoT smart cities,’’ J. Netw. Comput. Appl., vol. 121, pp. 1–19, Nov. 2018.

[11] U. Chatterjee, V. Govindan, R. Sadhukhan, D. Mukhopadhyay,
R. S. Chakraborty, D. Mahata, and M. M. Prabhu, ‘‘Building PUF
based authentication and key exchange protocol for IoT without explicit
CRPs in verifier database,’’ IEEE Trans. Depend. Sec. Comput., vol. 16,
no. 3, pp. 424–437, May/Jun. 2019.

[12] P. Gope, R. Amin, S. K. H. Islam, N. Kumar, and V. K. Bhalla,
‘‘Lightweight and privacy-preserving RFID authentication scheme for
distributed IoT infrastructure with secure localization services for smart
city environment,’’ Future Gener. Comput. Syst., vol. 83, pp. 629–637,
Jun. 2018.

[13] S. AlJanah, N. Zhang, and S. W. Tay, ‘‘A survey on smart home authen-
tication: Toward secure, multi-level and interaction-based identification,’’
IEEE Access, vol. 9, pp. 130914–130927, 2021.

[14] A. Tewari and B. B. Gupta, ‘‘Cryptanalysis of a novel ultra-lightweight
mutual authentication protocol for IoT devices using RFID tags,’’ J. Super-
comput., vol. 73, no. 3, pp. 1085–1102, Mar. 2017.

[15] K. Fan, P. Song, and Y. Yang, ‘‘ULMAP: Ultralightweight NFC mutual
authentication protocol with pseudonyms in the tag for IoT in 5G,’’Mobile
Inf. Syst., vol. 2017, pp. 1–7, Apr. 2017.

[16] B. Ovilla-Martinez and L. Bossuet, ‘‘Restoration protocol: Lightweight
and secure devices authentication based on PUF,’’ in Proc. IFIP/IEEE Int.
Conf. Very Large Scale Integr. (VLSI-SoC), Oct. 2017, pp. 1–6.

[17] C. Gu, C.-H. Chang, W. Liu, S. Yu, Y.Wang, andM. O’Neill, ‘‘A modeling
attack resistant deception technique for securing lightweight-PUF-based
authentication,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 40, no. 6, pp. 1183–1196, Jun. 2021.

[18] R. Amin, S. K. H. Islam, G. P. Biswas, M. K. Khan, and N. Kumar,
‘‘A robust and anonymous patient monitoring system using wireless med-
ical sensor networks,’’ Future Gener. Comput. Syst., vol. 80, pp. 483–495,
Mar. 2018.

[19] F. Wu, X. Li, A. K. Sangaiah, L. Xu, S. Kumari, L. Wu, and J. Shen,
‘‘A lightweight and robust two-factor authentication scheme for personal-
ized healthcare systems using wireless medical sensor networks,’’ Future
Gener. Comput. Syst., vol. 82, pp. 727–737, May 2018.

[20] M.Wazid, A.K.Das, andA.V.Vasilakos, ‘‘Authenticated keymanagement
protocol for cloud-assisted body area sensor networks,’’ J. Netw. Comput.
Appl., vol. 123, pp. 112–126, Dec. 2018.

[21] M. Fotouhi, M. Bayat, A. K. Das, H. A. N. Far, S. M. Pournaghi,
and M. A. Doostari, ‘‘A lightweight and secure two-factor authentication
scheme for wireless body area networks in health-care IoT,’’ Comput.
Netw., vol. 177, Aug. 2020, Art. no. 107333.

[22] Z. Liu, C. Guo, and B. Wang, ‘‘A physically secure, lightweight three-
factor and anonymous user authentication protocol for IoT,’’ IEEE Access,
vol. 8, pp. 195914–195928, 2020.

[23] E. Lara, L. Aguilar, M. A. Sanchez, and J. A. García, ‘‘Lightweight
authentication protocol for M2M communications of resource-constrained
devices in industrial Internet of Things,’’ Sensors, vol. 20, no. 2, p. 501,
Jan. 2020.

[24] M. H.Mahalat, S. Saha, A.Mondal, and B. Sen, ‘‘A PUF based light weight
protocol for secure WiFi authentication of IoT devices,’’ in Proc. 8th Int.
Symp. Embedded Comput. Syst. Design (ISED), Dec. 2018, pp. 183–187.

[25] W. Liang, S. Xie, J. Long, K.-C. Li, D. Zhang, and K. Li, ‘‘A double PUF-
based RFID identity authentication protocol in service-centric Internet of
Things environments,’’ Inf. Sci., vol. 503, pp. 129–147, Dec. 2019.

[26] K. Fan, Q. Luo, K. Zhang, and Y. Yang, ‘‘Cloud-based lightweight
secure RFID mutual authentication protocol in IoT,’’ Inf. Sci., vol. 527,
pp. 329–340, Jul. 2020.

[27] C. Lai, R. Lu, D. Zheng, H. Li, and X. Shen, ‘‘GLARM: Group-based
lightweight authentication scheme for resource-constrained machine to
machine communications,’’ Comput. Netw., vol. 99, pp. 66–81, Apr. 2016.

[28] M. M. Modiri, J. Mohajeri, and M. Salmasizadeh, ‘‘A novel group-based
secure lightweight authentication and key agreement protocol for machine-
type communication,’’ Scientia Iranica, pp. 1–14, Feb. 2021. [Online].
Available: http://scientiairanica.sharif.edu/article_22225.html

[29] Y. Chen, L. López, J.-F. Martínez, and P. Castillejo, ‘‘A lightweight privacy
protection user authentication and key agreement scheme tailored for the
Internet of Things environment: LightPriAuth,’’ J. Sensors, vol. 2018,
pp. 1–16, Sep. 2018.

VOLUME 10, 2022 47995

S. AlJanah et al.: M2I Authentication Framework for IoT Applications

[30] M. Nikravan and A. Reza, ‘‘A multi-factor user authentication and key
agreement protocol based on bilinear pairing for the Internet of Things,’’
Wireless Pers. Commun., vol. 111, no. 1, pp. 463–494, Mar. 2020.

[31] U. Chatterjee, R. S. Chakraborty, and D. Mukhopadhyay, ‘‘A PUF-based
secure communication protocol for IoT,’’ ACM Trans. Embedded Comput.
Syst., vol. 16, no. 3, pp. 1–25, Apr. 2017.

[32] A. Braeken, ‘‘PUF based authentication protocol for IoT,’’ Symmetry,
vol. 10, no. 8, p. 352, 2018.

[33] M. Naeem, S. A. Chaudhry, K. Mahmood, M. Karuppiah, and S. Kumari,
‘‘A scalable and secure RFID mutual authentication protocol using ECC
for Internet of Things,’’ Int. J. Commun. Syst., vol. 33, no. 13, p. e3906,
Sep. 2020.

[34] S. Izza, M. Benssalah, and K. Drouiche, ‘‘An enhanced scalable and secure
RFID authentication protocol for WBAN within an IoT environment,’’
J. Inf. Secur. Appl., vol. 58, May 2021, Art. no. 102705.

[35] J. Shen, S. Chang, J. Shen, Q. Liu, and X. Sun, ‘‘A lightweight multi-layer
authentication protocol for wireless body area networks,’’ Future Gener.
Comput. Syst., vol. 78, pp. 956–963, Jan. 2018.

[36] X. Liu, C. Jin, and F. Li, ‘‘An improved two-layer authentication scheme
for wireless body area networks,’’ J. Med. Syst., vol. 42, no. 8, pp. 1–14,
Aug. 2018.

[37] P. A. Grassi, M. E. Garcia, and J. L. Fenton, ‘‘Digital identity guide-
lines,’’ Standard NIST SP 800-63-3, The National Institute of Stan-
dards and Technology (NIST), 2017. [Online]. Available: https://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf

[38] The European Union Agency for Cybersecurity (ENISA). (2020). eIDAS
Compliant eID Solutions. Accessed: Mar. 15, 2022. [Online]. Available:
https://www.enisa.europa.eu/publications/eidas-compliant-eid-solutions

[39] AVISPA. Automated Validation of Internet Security Protocols and Appli-
cations. Accessed: Jan. 10, 2020. [Online]. Available: http://www.avispa-
project.org/

[40] M. Dammak, O. R. M. Boudia, M. A. Messous, S. M. Senouci, and
C. Gransart, ‘‘Token-based lightweight authentication to secure IoT net-
works,’’ inProc. 16th IEEEAnnu. Consum. Commun. Netw. Conf. (CCNC),
Jan. 2019, pp. 1–4.

[41] M. Wazid, A. K. Das, V. Odelu, N. Kumar, M. Conti, and M. Jo, ‘‘Design
of secure user authenticated key management protocol for generic IoT
networks,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 269–282, Feb. 2017.

[42] Q. Zhang and Q. Ding, ‘‘Digital image encryption based on advanced
encryption standard (AES),’’ in Proc. 5th Int. Conf. Instrum. Meas., Com-
put., Commun. Control (IMCCC), Sep. 2015, pp. 1218–1221.

[43] K. S. Mohamed, New Frontiers in Cryptography: Quantum, Blockchain,
Lightweight, Chaotic and DNA. Cham, Switzerland: Springer, 2020.
[Online]. Available: https://link.springer.com/content/pdf/10.1007/978-3-
030-58996-7.pdf

[44] W. Stallings, Cryptography and Network Security: Principles and Prac-
tice. London, U.K.: Pearson, 2017.

[45] C. Neuman, S. Hartman, and K. Raeburn, The Kerberos Network Authenti-
cation Service (V5), document RFC 4120, Internet Engineering Task Force
(IETF), 2005.

[46] S. Yoon, J. Kim, and Y. Jeon, ‘‘Security considerations based on classi-
fication of IoT device capabilities,’’ in Proc. 9th Int. Conf. Adv. Service
Comput., 2017, pp. 13–15.

[47] M. Chapple, J. M. Stewart, and D. Gibson, (ISC)2 CISSP Certified Infor-
mation Systems Security Professional Official Study Guide. Hoboken, NJ,
USA: Wiley, 2018.

[48] C. Sweeney. (2019). Equivalencies in Security, REDCOM Labo-
ratories 20190716. [Online]. Available: https://www.redcom.com/wp-
content/uploads/2019/08/08-2019-Equivalencies-in-Security.pdf

[49] E. Barker, Recommendation for Key Management, Standard NIST SP
800-57, National Institute of Standards and Technology (NIST), 2020.
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-57pt1r5.pdf

[50] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre. (2021). ProVerif
2.03: Automatic Cryptographic Protocol Verifier, User Manual and
Tutorial. Accessed: Feb. 7, 2022. [Online]. Available: https://bblanche.
gitlabpages.inria.fr/proverif/manual.pdf

[51] The Scyther Tool. Accessed: Feb. 7, 2022. [Online]. Available:
https://people.cispa.io/cas.cremers/scyther/

[52] M. Singh and M. Ranganathan, Formal Verification of Bootstrapping
Remote Secure Key Infrastructures (BRSKI) Protocol Using AVISPA,
Standard NIST TN 2123, National Institute of Standards and Technology
(NIST), 2020.

[53] (2022). PyCryptodome Documentation. [Online]. Available: https://
readthedocs.org/projects/pycryptodome/downloads/pdf/stable/

[54] H. Bakhsh, ‘‘ATL-QoS: An adaptive trust-aware location-based framework
for achieving QoS in MANETs,’’ M.S. thesis, Dept. Comput. Sci., Univ.
Manchester, Manchester, U.K., 2016. [Online]. Available: https://www.
research.manchester.ac.uk/portal/en/theses/atlqos-an-adaptive-trustaware-
locationbased-framework-for-achieving-qos-in-manets(d0c5f89e-5576-
4a91-a601-aa4aca60e15a).html

[55] H. Li, Y. Niu, J. Yi, and H. Li, ‘‘Securing offline delivery services by using
Kerberos authentication,’’ IEEE Access, vol. 6, pp. 40735–40746, 2018.

[56] A. Rayes and S. Salam, Internet of Things From Hype to Reality: The Road
to Digitization. Cham, Switzerland: Springer, 2019. [Online]. Available:
https://link.springer.com/book/10.1007/978-3-319-99516-8

[57] M. Jenkins, M. Peck, and K. Burgin, AES Encryption With HMAC-SHA2
for Kerberos 5, document RFC 8009, Internet Engineering Task Force
(IETF), 2016.

SALEM ALJANAH received the B.Sc. degree (Hons.) in information systems
from Al-Imam Muhammad Ibn Saud Islamic University, Saudi Arabia, and
the M.Sc. degree (Dist.) in information systems and technology from the
University of Michigan, USA. He is currently pursuing the Ph.D. degree in
Internet of Things (IoT) Security with The University of Manchester, U.K.

He is also a CISSP and Security+ certified security professional and a
fellow of the Higher Education Academy, U.K. His research interests include
the IoT, applied cryptography, and network and web security.

NING ZHANG received the B.Sc. degree (Hons.) in electronics engineering
from Dalian Maritime University, China, and the Ph.D. degree in electronics
engineering from the University of Kent, U.K.

Since 2000, she has been with the Department of Computer Science, The
University of Manchester, U.K., where she is currently a Senior Lecturer.
Her research interests include security in networked and distributed systems,
applied cryptography, data privacy, trust, and digital right managements.

SIOK WAH TAY received the B.Sc. degree in security technology from
Multimedia University, Malaysia, and the M.Sc. degree in human–computer
interaction from the University of Bath, U.K. She is currently pursuing the
Ph.D. degree in computer science with The University of Manchester, U.K.

Her research interests include security, the IoT, and human–computer
interaction.

47996 VOLUME 10, 2022

