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ABSTRACT Spectrograms are a common form of time-frequency representation of wireless communi-
cation signals. In many practical scenarios spectrograms need to be processed to identify accurately the
time-frequency region occupied by each individual radio transmission, which in this work is referred to as
Signal Area (SA). Several methods have been proposed in the literature for Signal Area Estimation (SAE),
however their performance degrades significantly in the low SNR regime. In this context, this work proposes
anovel approach for SAE based on the use of two well-known techniques from the field of image processing,
namely edge detection and flood fill. Edge detection is first employed to identify the edges of potential SAs
and flood fill is then used to fill the area inside the estimated edges in order to produce a more accurate
estimation of the SAs present in a spectrogram. The performance of three popular edge detection methods
(gradient magnitude, Laplacian of Gaussian and Canny) is assessed both with simulations and experimental
data. The obtained results show that the proposed strategy can improve significantly the performance of
existing SAE methods in the low SNR regime (with estimation accuracy improvements up to 38—45% within
the SNR interval from —20 dB to —10 dB) when used as a pre/post-processing stage, thus improving their
sensitivity and effectively extending their overall SNR range of operation.

INDEX TERMS Signal area estimation, spectrum awareness, image processing, edge detection, flood fill.

I. INTRODUCTION

Wireless communication signals are often represented in the
time-frequency domain by means of spectrograms, which
show the time evolution of the power spectral density of
a signal or set of signals present in a frequency band.
In many practical applications spectrograms are processed
to extract relevant signal information such as the received
signal strength, carrier frequency, occupied bandwidth, spec-
tral mask and transmission pattern. A relevant aspect in
the processing of radio spectrograms is the time-frequency
region occupied by each individual transmission or sig-
nal component within the spectrogram, which is typically
referred to as Signal Area (SA). By definition, an SA is a
rectangularly-shaped cluster of spectrogram points where a
transmitted signal component is present. The SA precisely
determines the occupied bandwidth and start/end times of
each radio transmission. The ability to accurately extract this
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information from a spectrogram can be useful in many prac-
tical scenarios such as spectrum surveillance for enforcement
of spectrum regulations or gathering of signal intelligence in
military applications, signal interception and identification,
electronic warfare and radio environment spectral awareness
(e.g., databases for spectrum sharing).

In spite of its practical relevance, the problem of Signal
Area Estimation (SAE) has not been explored extensively
in the literature. Several SAE methods have been proposed
providing different trade-offs between accuracy and com-
putational cost. A region growing algorithm controlled by
the first and second order statistics of the spectrogram is
proposed in [1] for spectrogram segmentation; such method
can distinguish between deterministic signal components and
background noise and classify them into separate regions,
however cannot provide information about the actual SA
of each component. The work reported in [2] presents
a computer vision approach based on the application of
a fixed threshold to the spectrogram in order to generate a
binary image, which is also processed using morphological
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operations as an adaptive threshold approach to remove extra-
neous detections, and finally extracts the image blobs by
grouping connected components and calculating their bound-
ing boxes. Such method is modified in [3] by introducing an
auto-thresholding method and a bi-directional self-organising
neural network in order to reduce noise after thresholding.
In [4], the use of a network based on a single shot multibox
detector (which is a classical deep learning based object
detector [5]) is proposed for signal component extraction,
which is further extended in [6] by introducing convolutional
layers in order to provide a more accurate detection at the
expense of an increased complexity and the requirement
of training. A different approach based on the Mean-Shift
Clustering (MSC) algorithm is suggested in [7], where each
SA is determined based on the use of a scanning window
whose dimensions are adjusted according to the expected
bandwidth and transmission duration of the signal compo-
nents to be detected. A Transmission Encapsulation based
on the Connected Component Labeling (TECCL) method
is proposed in [8], which performs clustering based on the
connected component labelling algorithm [9] and estimates
the SA of each cluster as its extreme dimensions (bounding
box). This method can be implemented using contour tracing
techniques [10] (see CT-SA in [11] for instance). A Simple
Signal Area (SSA) estimation method is proposed in [11],
which performs a raster scan to find the first corner of each
SA, followed by horizontal scanning to estimate the SA
width and coarse/fine vertical scanning to estimate the SA
height. Some variants to reduce the impact of false alarms are
proposed in [12]-[14]. An approach based on mathematical
morphology principles is proposed in [15].

In this context, this work explores a new approach for SAE
by treating spectrograms as images, where each spectrogram
point is seen as an image pixel, and applying two well-known
techniques from the field of image processing, namely edge
detection and flood fill. Edge detection is first employed to
identify the edges of potential SAs and flood fill is then used
to fill the area inside the estimated edges in order to produce a
more accurate estimation of the SAs present in a spectrogram.
Three methods commonly used for edge detection are consid-
ered (gradient magnitude, Laplacian of Gaussian and Canny)
and their suitability as SAE methods is explored, both as
standalone SAE techniques and combined with other existing
SAE methods from the literature as a pre/post-processing
stage. The performance of the proposed approach is evaluated
with extensive software simulations and corroborated with
hardware experiments. It is observed that this approach in
general has limited utility when used standalone but can
provide significant accuracy improvements in the low SNR
regime when used as a pre- and/or post-processing stage to
other existing SAE methods. The overall effect is an improve-
ment of their sensitivity and an effective extension of their
SNR range of operation.

While the edge detection and flood fill techniques are
well-known and commonly used in image processing,
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computer vision and other related fields, they are barely
known and exploited in the wireless communications com-
munity. There have been some previous attempts in the lit-
erature to apply edge detection techniques to spectrograms,
however mostly for automatic tonal detection and recognition
of marine mammal sound patterns in the field of bioacous-
tics [16]-[19]. The signal formats and the motivations for
applying edge detection techniques in such problem are very
different from those in SAE scenarios. To the best of the
authors’ knowledge, this is the first study in the literature
that explores the applicability of edge detection and flood
fill techniques to the problem of SAE in spectrograms for
wireless communication signals.

It is worth noting that the main objective of this work is
not to propose novel methods for edge detection and flood
fill, or to provide new theoretical contributions to these two
particular image processing techniques, but to explore the
degree to which such techniques from the field of image pro-
cessing can bring performance improvements when applied
to the problem of SAE. Therefore, the edge detection and
flood fill methods used in this work are based on basic
standard approaches that are widely known, employed and
documented in the literature.

The contribution of this work is manyfold. First, it pro-
vides an exhaustive analysis on the suitability of common
edge detection techniques to the problem of SAE. By means
of simulations, the consequence of applying different edge
detectors to SAE is investigated under a broad range of
configuration parameters for each edge detector. The anal-
ysis is conducted over a representative range of Signal-to-
Noise ratio (SNR) conditions typically found in wireless
communication systems. In such analysis, the accuracy of
edge detection plus flood fill is explored when used both
as a standalone SAE method and as a pre/post-processing
stage combined with other existing SAE methods from the
literature. Based on the outcomes, the optimum configuration
for each detector achieving the highest observed accuracy is
determined and a suitable SAE strategy is formulated for each
edge detection method. The proposed approach is shown to
provide significant accuracy improvements in the detected
SAs at low SNR (with respect to the case where the other SAE
methods are used alone) and without having a significant
impact on the overall computational cost.

The rest of this paper is organized as follows. First,
Section II provides a formal description of the SAE problem
considered in this work along with an overview of SAE
techniques proposed in the existing literature. Section III
then provides an overview of the fundamentals of the edge
detection and flood fill techniques from image processing.
The simulation and experimental methodologies employed
in this work are presented in Section IV. The performance
of the proposed strategy based on various edge detection
techniques is explored in Section V, where the most conve-
nient SAE approach is formulated as well. Finally, Section VI
summarises and concludes this work.

VOLUME 10, 2022



M. M. Alammar, M. Lopez-Benitez: Enhanced Signal Area Estimation Based on Edge Detection and Flood Fill

IEEE Access

IR
A Wireless
- N
_channel )
=

Transmitter 1 3 Transmitter 2 3
[ 1]
1]

Signal

=t

area

Propagation
Interference
Noise

5
=
i

=

=

|

Frequency

Time
Time

Frequency

)

Reconstructed
Signal areas
m N

Spectrum
Aware System

Ideal SAE
algorithm

Time
Time

Frequency

Frequency

FIGURE 1. Illustration of the concept of Signal Area (SA) and system model for Signal Area Estimation (SAE).

Il. SIGNAL AREA ESTIMATION

A. PROBLEM DESCRIPTION AND FORMULATION

The spectrogram of a wireless communications signal is a
discrete two-dimensional time-frequency representation of
the power level observed at various time instants and fre-
quency points. These power levels can be compared to a prop-
erly set decision threshold to produce a binary spectrogram
where the value of each point can be either zero/not occupied
(if the power level at that point is below the threshold) or
one/occupied (if the power observed at that point is greater
than the threshold). Such binary matrix is the input infor-
mation that most SAE methods work with. Each individual
radio transmission or signal component is confined inside a
rectangular area within the spectrogram (the SA) that defines
precisely the occupied bandwidth and start/end transmission
instants. The purpose of SAE methods is to decide the dimen-
sions of each SA in a spectrogram as accurately as possi-
ble. The process, however, is not trivial since the spectrum
data observed by the monitoring spectrum-aware system is
a degraded version of the transmitted signals after having
suffered impairments introduced by radio propagation, the
receiver’s own noise and other external sources of unwanted
noise and interference (e.g., out-of-band transmissions, ambi-
ent noise or man-made noise) [20]-[23]. The aim of this work
is to accurately determine the time-frequency region occupied
by each radio transmission in a spectrogram (i.e., the set of
SAs present in a radio spectrogram). The problem and system
model are illustrated in Fig. 1.

B. EXISTING SAE METHODS

Several methods have been proposed to estimate accu-
rately the SAs present in a radio spectrogram based on
the (degraded) signal power data observed at the receiver
(see Section I). To illustrate the potential benefits that
the proposed SAE approach can provide when com-
bined with other SAE methods, two algorithms from the
literature are selected. The first reference algorithm is
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the Transmission Encapsulation based on the Connected
Component Labelling (TECCL) method proposed in [8],
which performs clustering based on connected component
labelling [9] and estimates the SA of each cluster as its
extreme dimensions (bounding box). This method can be
implemented using standard Contour-Tracing (CT-SA) tech-
niques [10] (see [11] for instance), which is the approach
adopted in this work. The second reference algorithm is
the so-called Simple Signal Area (SSA) estimation method
proposed in [11], which performs a raster scan to find the
first corner of each SA, followed by horizontal scanning to
estimate the SA width and coarse/fine vertical scanning to
estimate the SA height. Some variants to reduce the impact of
false alarms are proposed in [12]-[14] but are not considered
in this work. These two methods have been selected due
to their subjective and unambiguous algorithm formulation,
which does not require manual intervention for their appli-
cation (such as data training or manual parameter configu-
ration). As it will be shown, the consideration of these two
methods is sufficient to illustrate the potential benefits that
the proposed SAE approach can provide when combined with
other SAE methods.

C. PROPOSED SAE APPROACH

The problem of estimating a solid SA in a time-frequency
matrix of degraded power values and their corresponding
binary one/zero observations is equivalent to the problem of
recognition of patterns in an noisy image (in this case, rectan-
gularly shaped solid areas). Image processing techniques can
be employed to this end by treating the spectrogram of power
values as a greyscale image or its binary version as a black-
and-white image, where each spectrogram time-frequency
point represents an image pixel (the latter case is considered
in this work). The problem of SAE then becomes the problem
of detecting a rectangular shape in a binary noisy image. This
point of view opens a new perspective for SAE where a broad
range of powerful tools from the field of image processing
can be exploited. Image processing is a well-developed field
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where many advanced and sophisticated tools have been pro-
posed to detect shapes in noisy images, which are potentially
well-suited to the SAE problem considered in this work. Con-
cretely, the interest of this work is in exploring the feasibility
of using a novel approach based on a combination of edge
detection and flood fill techniques from the field of image
processing to enhance the accuracy of SAE.

lIl. DIGITAL IMAGE PROCESSING: OVERVIEW OF THE
EDGE DETECTION AND FLOOD FILL OPERATIONS

The main idea behind the strategy proposed in this work
for SAE is based on two fundamental steps, namely edge
detection and flood fill. The main objective of the edge
detection step is to determine the most likely boundaries
of potential SAs in the received time/frequency spectrum
data grid. Once these boundaries are determined, a flood
fill algorithm is in charge of filling the space within the
detected edges in order to produce solid SAs. The problems
of edge detection and flood filling have been extensively
investigated for several decades and the available literature is
abundant [24]. Noticing that the readership of this journal will
mainly have a wireless/radio communications engineering
background, this section provides an overview of the main
strategies for edge detection and flood fill with a special focus
on those aspects that are relevant to the problem of SAE
considered in this work. This material not only makes this
paper self-contained but will also make the results presented
in Section V more clear to the reader unfamiliar with image
processing techniques.

A. EDGE DETECTION
Edge detection is an image processing technique used to find
edges of objects or boundaries between two regions within an
image. In image processing, an edge is essentially a curve of
connected pixels that follows a path of rapid change in image
intensity; as such, it can be found by looking for places in the
image where there is a rapid change or abrupt discontinuity
in the intensity levels. A relatively simple technique to detect
discontinuities in the intensity level is by looking for regions
of the image where the magnitude of the first-order derivative
of the intensity is greater than a properly set threshold. Since
digital images are two-dimensional matrices of pixels, the
two-dimensional gradient is employed:

V=Lt L Gerpit Geni ()

ax ay

where df /0x and 9df /dy are the first-order partial deriva-
tives of a digital image f(x,y) at every location (x,y) in
the horizontal and vertical directions !, respectively, while
G, and G, are first-order discrete differentiation operators
used to estimate the intensity gradients in each direction
(the symbol * denotes two-dimensional convolution). Since

n image processing the horizontal axis coordinate increases positively
left-to-right while the vertical axis coordinate increases positively top-to-
bottom (instead of bottom-to-top as it is the case in the commonly used
Cartesian coordinate system).
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the gradient Vf points in the direction of maximum rate of
change of image f at location (x, y), its magnitude | Vf || gives
the maximum rate of increase of f(x, y) per unit distance in
that direction. The result therefore represents how abruptly
the image intensity changes at every point, thus giving an
indication of how likely that part of the image belongs to an
edge and how that edge is likely to be oriented. This implies
that the magnitude of the gradient vector will be zero in areas
of constant intensity and will find local maxima where edges
are present. By comparing the magnitude of the gradient
vector to an adequate threshold, the set of pixels belonging to
edges can be extracted from an image. Concretely, a pixel will
belong to an edge (#) if the gradient magnitude is greater
than the selected threshold A, and will be assumed not to

belong (Ho) otherwise *:
H
19F 1l = G £ + (Gy %) £ @
0

The two-dimensional gradient is obtained by computing
the first-order partial derivatives df /dx and df /dy at every
pixel location (x, y). This is accomplished by convolving the
input image f with a predefined small squared sub-image
usually called filter, mask or convolution kernel. This is a
linear spatial filtering process whereby the filter mask is
moved through every pixel of the input image and at each
point the filter response is calculated as the sum of the prod-
ucts between each of the filter coefficients and the intensity
levels of the corresponding image pixels within the region
encompassed by the mask. Mathematically, the result of this
convolution/filtering process is a discrete approximation to
the gradient of the image intensity. As it can be seen from (1),
two filter masks G, and G, are used, one to estimate the inten-
sity gradient in each orthogonal direction. The magnitude of
the intensity gradient at every image point is then obtained as
shown in (2).

The filter coefficients are calculated so as to approximate
the response of the first-order derivative (gradient) in the
desired direction (hence, the filter masks G, and G, are
also referred to as gradient operators). Several methods have
been proposed in the literature to calculate these coeffi-
cients. Table 1 shows the gradient operators proposed by
Prewitt [26], Sobel [27], [28], Jdhne [29] and Kroon [30].
Notice that in all masks the coefficients sum to zero, thus
indicating a zero response in areas of constant intensity
(i.e., where edges are not present) as expected of a gradi-
ent/derivative operator. Prewitt masks are the simplest differ-
entiation filters, while Sobel masks have a slightly superior
noise suppression performance [25, p.579]. Both Prewitt and
Sobel masks provide in general a low level of isotropicity or
rotational invariance (i.e., ability not to bias any directions
in images, providing an equally sensitive response in all

2 As discussed in [25], the computational burden required by the calcula-
tion of squares and square roots can be removed by approximating ||Vf| ~
|Gx *f| + |G_V *f!. The resulting filters will not be isotropic (invariant to
rotation) in general but this is not an issue with filters specifically designed
to detect horizontal and vertical edges as the ones considered in this work.
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TABLE 1. Common gradient operators for edge detection.

Gz G,
(1 0 —1] (1 1 1]
Prewitt 1 0 -1 0 0 0
1 0 -1 -1 -1 -1
1 0 —1] (1 2 1]
Sobel 2 0 -2 0 0 0
1 0 -1 -1 -2 -1
(3 0 -3] 3 10 3
Scharr 10 0 -10 0 0 0
3 0 -3 -3 —-10 -3
[17 0 —17] 17 61 17
Kroon 61 0 -—61 0 0 0
17 0 -17 —-17 —-61 -17

directions), which has motivated the proposal of other gradi-
ent operators by Scharr and Kroon as well as alternative filter
designs [31]-[33]. All filter masks shown in Table 1 have in
common that they are specifically designed to be sensitive
to horizontal and vertical edges (which can be intuitively
inferred from the symmetric design around central rows and
columns of zeros). This property is of particular interest in
this work since SAs are precisely delimited by horizontal and
vertical edges. Other filter masks such as those proposed by
Roberts [34], Kayyali [35] or Kirsch [36] are designed to
be sensitive to diagonal edges and are not considered in this
work. Filter masks are strictly defined as 3 x3 templates even
though some ad hoc methods have been proposed to generate
larger kernels for higher dimensions by expansion [37] or
dilation [38], [39].

An alternative strategy to the gradient-magnitude edge
detection methods discussed above is to calculate the
second-order derivative of the intensity and look for its
zero-crossings to detect edges. Since digital images are
two-dimensional matrices of pixels, the two-dimensional
Laplacian is employed:

2 OO

V= gm o Lt 3)
where 3°f/dx? and 9%f/dy* are the second-order partial
derivatives of a digital image f(x, y) at every location (x, y)
in the horizontal and vertical directions, respectively, and L
is a discretely sampled version of the Laplacian operator (the
symbol * denotes two-dimensional convolution). Since the
Laplacian is usually unacceptably sensitive to noise, the input
image is first processed with a smoothing Gaussian filter
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whose response is typically of the form [25]:

2
h(r) = - 4
(r) = exp < 202> @)
where 12 = x2 + y2 and o is the filter’s standard deviation,

which determines the level of smoothing or blurring in the
filtered image. The Laplacian operator is then applied to the
noise-filtered result, which is equivalent to filter the original
input image with a Laplacian of Gaussian (LoG) filter:

5 r?2 — 202 r2
\Y h(r) = T eXp —F (5)

Thus, the input image is convolved with a discretely sam-
pled version of the filter in (5), whose size n x n is usu-
ally selected based on the filter’s standard deviation as
n = 2[30] + 1 (this ensures that the filter dimensions
are large enough to include three standard deviations around
the mean, which accounts for 99.73% of the Gaussian filter
response). The zero-crossings of the resulting output can be
exploited to extract edges from the input image. As opposed
to the gradient-magnitude methods discussed above, the LoG
method is not specifically sensitive to edges with a particular
orientation.

A third popular strategy for edge detection is the method
proposed by Canny [40]. The formulation of this method
starts with the aim of finding an optimum filter that addresses
the three main issues of edge detection (error rate, localisa-
tion and uniqueness of the filter response). Such optimum
filter is approximated by the first derivative of a Gaussian
filter. Based on this finding, the Canny method undertakes
the following steps [24, sect. 2.4]: i) a Gaussian filter is
applied to smooth the input image and remove noise; ii) the
intensity gradient of the filtered image is found in order
to perform a minimum cut-off (non-maximum) suppression
of gradient magnitudes, or lower bound thresholding, as an
edge thinning technique so that spurious responses of the
filter are eliminated and multi-pixel wide ridges are thinned
down to single pixel width; iii) final edges are determined
according to a process of edge tracking by hysteresis based
on double thresholding. This last step is the most significant
difference between the Canny and other edge detection meth-
ods. A high threshold Apg, for low edge sensitivity (typi-
cally set at around 0.7 times the maximum intensity level) is
used to detect pixels belonging to strong edges, while a low
threshold A, for high edge sensitivity (typically selected as
Aow A 0.3 Apign) is used to decide on weak edges. Pixels
whose intensity gradient magnitude is greater (lower) than
Anigh (Mjow) are selected (discarded). Pixels whose intensity
gradient magnitude lies within the interval [Ajoy, Anign] are
included in the output only if they are connected/adjacent to
strong edges (whose intensity gradient is above Aj;gp), other-
wise they are assumed to be noise or spurious responses and
therefore discarded. Similar to the LoG method, the Canny
method is not particularly sensitive to edges with a certain
orientation. The Canny method requires three parameters,
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FIGURE 2. Signal processing flow of the input spectrogram according to the proposed edge detection plus

flood fill framework.

namely the standard deviation of the Gaussian filter (o) and
the pair of thresholds (Ajow, Anigh)-

B. FLOOD FILL

While edge detection is the key technique employed in this
work to detect SAs, it is unable by itself to produce solid SAs
as it will only identify their most likely edges/boundaries.
To solve this problem, a flood fill algorithm is applied imme-
diately after the edge detection step in order to fill the empty
space within the detected edges and thus produce solid SAs.

The traditional flood-fill algorithm spreads throughout the
image based on the connectivity of the pixels. Two connec-
tivity types are usually defined: the first connectivity type
considers that two pixels are connected if their edges touch (in
this case each pixel will be connected to a maximum of four
neighbouring pixels that are adjacent in the horizontal and/or
vertical directions) while the second connectivity type deems
two pixels as connected if their edges or corners touch (in
this other case each pixel will be connected to a maximum of
eight neighbouring pixels that are adjacent in the horizontal,
vertical and/or diagonal directions).

The algorithm starts at a random zero-valued (idle state)
pixel within the boundaries of the detected edges and recur-
sively reverts the state of other connected zero pixels (from
zero to one, i.e., busy or occupied state) until all branches
of the recursive process reach a location where all the con-
nected pixels are one. At that point, the connected region of
idle-state pixels within the boundaries of the detected edges
will be filled and a solid SA will be produced. This recursive
process can be used to fill holes, i.e., areas of connected
idle/zero pixels surrounded by busy/one pixels (belonging
to edges). The flood fill method used in this work is based
on the morphological reconstruction algorithm described
in [41, pp. 173-174].

A common issue that can degrade the performance of the
flood fill step is the presence of SAs (or parts thereof) in con-
tact with the border of the image (time/frequency data grid).
This typically occurs when a transmission starts before or
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ends after the time-frequency data are captured, thus leading
to SAs that are clipped in one of their sides by the bottom
or top borders of the image, respectively. Clipping by the
left or right borders of the image can also occur when the
measurement bandwidth of the receiver is not large enough to
fully embrace the bandwidth of the signals being monitored.
Edge detection methods do not identify image borders as
edges and the lack of edge pixels in one of the sides of a
clipped SA affects the ability of the flood fill step to correctly
fill the space within the SA. This problem is resolved by
adding two rows of padding edge pixels to the top and bottom
borders of the image (and possibly two columns to the left and
right borders as well) to help the flood fill step complete its
task. Once the flood fill step is completed, these padding edge
pixels are removed and the image is restored to its original
dimensions.

C. PROPOSED SAE METHOD BASED ON THE
APPLICATION OF EDGE DETECTION

AND FLOOD FILL

A flowchart summarising the signal processing flow of the
input spectrogram according to the proposed edge detection
plus flood fill framework is illustrated in Fig. 2. The main
motivation for the application of edge detection and flood
fill as a SAE method lies on the ability of edge detection
techniques to detect edges of objects (SAs in this case) even
when they are partly degraded and the ability of flood fill
techniques to fill holes within objects. Edge detection tech-
niques have some tolerance to edge irregularities caused by
noise (i.e., missed detections and false alarms in the context
of SAE). Some methods, such as the Canny method, can even
reconnect fragments of edges that have been disconnected
due to noise degradation. Moreover, flood fill techniques
can fill gaps within SAs resulting from missing SA points
due to signal missed detections under low SNR conditions.
Therefore, edge detection seems a reasonable way to identify
the boundaries of SAs and potentially close them when they
are not perfectly closed, while flood fill can be used to fill
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the area within the detected edges in order to produce a solid
SA that otherwise might not be detected so accurately. These
observations motivate this work to explore the performance
of edge detection and flood fill as a SAE method.

To gain an adequate understanding on whether and how
these two image processing techniques can help improve the
performance of SAE, two application scenarios are investi-
gated in this work: (i) a first scenario where the proposed
approach is applied as a standalone SAE method that takes as
an input the binary matrix produced by the application of ED
and produces its own final output, similar to how other SAE
techniques such as CT-SA or SSA would be applied; (ii) a
second scenario where the proposed approach is applied in
combination with other existing SAE methods such as CT-SA
and SSA as a pre/post-processing technique, where it can be
applied only before, only after, or both before and after the
other SAE method. The study of both scenarios will provide
insights into how to best formulate a suitable SAE method
based on edge detection and flood fill.

IV. EVALUATION METHODOLOGY

The performance of the SAE strategy explored in this work
was evaluated with software simulations and corroborated
with hardware experiments based on an tailored experimental
prototype specifically built to this end. Monte Carlo simu-
lations were performed following the same procedure used
in [15], [42], which is summarised in the following steps:

A. STEP 1. GENERATE NOISE-FREE DATA AT

THE TRANSMITTER

For each simulated SNR, 100 random time-frequency data
grids were generated with dimensions 50x100 points.
The frequency span was divided into three equally sized
channels where only the central channel carried traffic,
which was modelled as a sequence of ON/OFF transmis-
sions randomly drawn from exponential distributions with
rate parameter 0.5 points~! and minimum duration of 10/5
points, respectively.

B. STEP 2. GENERATE NOISY DATA AT THE RECEIVER

For each data grid generated in Step 1, random errors were
introduced to generate the data observed at the receiver. This
process emulated the degrading effects of channel propaga-
tion and noise. Errors were generated assuming that the signal
detection threshold was set to achieve a constant false alarm
rate Py, = 0.01, which resulted in an SNR-dependent missed
detection probability 1 — P4, calculated assuming that signal
detection was performed in blocks of 100 signal samples.

C. STEP 3. APPLY SAE METHOD AND ASSESS ACCURACY
SAE was applied to each data grid obtained in Step 2 and the
output was compared to the original data from Step 1 to assess
the resulting final estimation accuracy.
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FIGURE 3. Hardware prototype used in this work: vector signal generator
(left), coaxial cable and attenuator, and spectrum analyser (right).

Final simulation results were corroborated with experi-
mental results obtained with the hardware prototype shown in
Fig. 3, which was composed of a Signal Hound VSG25A vec-
tor signal generator as the signal transmitter, a short coaxial
cable along with a 20 dB attenuator to emulate the transmis-
sion channel, and a Tektronix RSA306B real-time spectrum
analyser as the signal receiver or spectrum monitoring device.
A wired connection was employed to avoid unwanted inter-
ference to/from other wireless devices operating in the neigh-
bourhood of the prototype. The transmitter and receiver were
connected via USB to the same computer, where a Matlab
control program was run to coordinate the operation of the
transmitter and receiver and ensure that the data were cor-
rectly synchronised so they could be compared to assess the
estimation accuracy. Such program was implemented using
Matlab’s Instrument Control Toolbox along with the libraries
and Application Programming Interfaces (APIs) provided by
the manufacturers.

The experimental platform was configured to replicate
the simulation configuration. The transmitted signal was a
multi-tone signal with a spectral shape similar to an OFDM
signal composed of 1001 unmodulated tones with random
phase spaced at 10 kHz around a central frequency of 1 GHz,
with a total signal bandwidth of 10 MHz. The centre fre-
quency of the receiver was also configured to 1 GHz with
a frequency span of 30 MHz (i.e., signal bandwidth was 1/3
of the frequency span). The relation between the transmis-
sion power configured at the signal generator and the SNR
observed at the spectrum analyser was carefully calibrated to
enable a fair comparison between simulation and experimen-
tal results.

The accuracy of the estimated SAs at the receiver was
assessed based on the F1 score metric, defined as [43]:

2 x TP
2 x TP+ FP + FN

where TP, FP and FN represent the number of true positives,
false positives and false negatives, respectively. The F1 score
ranges from zero (completely erroneous estimation) to one

F1 score = € [0, 1] (6)
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(perfect estimation) and constitutes a fair metric when there
exists an imbalance in the amount of idle/busy points in the
spectrum data. All the data points in each time-frequency grid
were taken into account in the calculation of (6).

V. PERFORMANCE ANALYSIS AND PROPOSED METHODS
This section presents simulation results for the performance
of edge detection methods (with flood fill) as SAE methods.
First, the performance of each edge detection strategy is
explored for various parameter configurations; based on the
obtained results, the optimum configuration is selected and
a suitable SAE strategy is proposed for each edge detec-
tion method. This is carried out for the three edge detection
methods considered in this work (gradient-magnitude, LoG
and Canny). Subsequently, the performances of the best con-
figuration for each strategy are compared and analysed to
determine the extent to which the SAE approaches explored
in this work can improve the accuracy of the detected SAs.

A. ANALYSIS OF GRADIENT-MAGNITUDE METHODS

The main configuration parameter of gradient-magnitude
edge detection methods is the edge detection threshold A
used in (2) to extract the edge pixels. To help select suitable
thresholds, Fig. 4 shows some sample histograms of the
gradient magnitude values ||Vf || obtained after filtering the
same image of received time/frequency data with the gradient
operators shown in Table 1. The results are shown for high
SNR (45 dB) and low SNR (-5 dB) at the receiver and
the gradient magnitudes are normalised to the interval [0, 1].
As it can be appreciated, the Prewitt/Sobel masks have similar
performance and so does the Scharr/Kroon pair (this can be
explained by the fact that the masks in each pair follow similar
design principles and this work deals with binary black-and-
white images where only horizontal and vertical edges are
present). Most pixels have an intensity gradient magnitude
of zero (corresponding to the image background) that can be
easily separated with a threshold 2 = 0.1 at both low and
high SNR. As inferred from the histograms for the high SNR
scenario, strong edge pixels are found at levels above A =
0.8, which is the second most frequent level. Other gradient
magnitude levels between 0.1 and 0.8 are due to either weak
edge pixels (mostly found in the corners of SAs), spurious
responses of the edge detection filter or false alarms. For the
low SNR scenario, gradient magnitude values are slightly
more uniformly distributed as a result of a more frequent
presence of weak edges and spurious filter responses. Based
on these histograms, a set of thresholds A € {0.1,0.8} is
selected for a more detailed study.

Fig. 5 shows the performance of gradient-magnitude edge
detection methods (for the four gradient operators of Table 1)
as a function of the SNR for the two thresholds selected
above. These results correspond to the case where these
gradient-magnitude edge detectors are used as standalone
SAE methods (i.e., only applied to the output of ED without
any combination with CT-SA or SSA). The performance
of ED alone is included for comparison and the reference
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SAE methods (CT-SA and SSA) are included as well for
completeness. First, it is worth noting that all four gradient
operators lead to a largely similar performance in terms of
F1 score. This can be explained by the fact that the different
design criteria on which these masks rely do not result in
any practical difference in the case of the SAE problem
considered in this work. Recall that all masks are aimed
at approximating the gradient operator, with Prewitt being
the simplest one. The Sobel mask is designed to improve
the noise suppression characteristics of the Prewitt mask,
however noisy pixels in the case of binary (black-and-white)
images are more localised and likely less frequent than in
continuous (grayscale) images, so in practice there is no
apparent difference. Moreover, the Scharr and Kroon filters
are designed to improve the isotropicity (rotational invari-
ance) of the Sobel mask, which is irrelevant when the edges of
interest are either horizontal or vertical, for which all masks
seem to be equally sensitive. Based on these observations,
the Prewitt mask (the simplest one) suffices for gradient-
magnitude SAE.

Fig. 5 also shows the impact of the threshold for the two
extreme cases A = 0.1 and A = 0.8. The curves for these
two thresholds give an indication of the worst/best perfor-
mance that can be attained with gradient-magnitude methods
at every SNR. As one may expect, better accuracy is obtained
with a more restrictive threshold (A = 0.8) at high SNR (to
filter weak edges and rely on strong edges) and with a more
permissive threshold (A = 0.1) at low SNR (to increase sensi-
tivity). However, some counter-intuitive trends are observed
in Fig. 5 when the performance of gradient-magnitude edge
detectors is compared to the reference SAE methods (ED,
CT-SA and SSA). On the one hand, one would expect that
edge detection should be a relatively easy task at high SNR
and therefore the gradient-magnitude methods should work
relatively well, however they exhibit a significant loss of
accuracy in this SNR regime with respect to the reference
methods. On the other hand, one may also expect edge
detection to fail at low SNR due to degraded signal quality,
however edge detection based SAE outperforms the reference
methods in the low SNR regime. To gain insights into the
operation of SAE based on edge detection and explain this
trend, Fig. 6 shows some examples of the time/frequency
grid (image) observed at different stages of the SAE process
based on edge detection.

At high SNR, the image observed after ED (Fig. 6a) is an
accurate reproduction of the true SAs, except for the presence
of some false alarms. After the edge detection step (Fig. 6¢),
the boundaries of the SAs are correctly identified, however
the detected edges lie on the outer sides of the SAs and the
subsequent flood fill operation (Fig. 6e) produces a set of final
SAs that are slightly larger than the original SAs (this can be
noticed in the narrower gaps between SAs in Fig. 6e than in
Fig. 6a). This magnifying effect is observed not only in the
true SAs but in the false alarms as well, whose dimensions
are also larger in Fig. 6e than in Fig. 6a. This explains
the lower accuracy attained by the gradient-magnitude edge
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FIGURE 4. Sample histograms of the gradient magnitudes | Vf| (normalised to [0, 1]) obtained after filtering the same image of time/frequency data
with the gradient operators shown in Table 1. Results are shown for high SNR (+5 dB, top) and low SNR (-5 dB, bottom).
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step (by morphological erosion or Gaussian filtering) could
be introduced to reduce the number of false alarms before the
actual edge detection. Moreover, the above mentioned mag- FIGURE 6. Sample images (time/frequency grids) observed at different
nifvine effect on the true SAs could be reduced bv using edee stages of the SAE process based on gradient-magnitude edge detectors:

‘y .g . . . . Y . gedg after ED thresholding (top), after edge detection (middle), and final result
thinning techniques or increasing the image resolution so that after edge detection plus flood fill (bottom). Examples are shown for high
the number of edge pixe]s represents a lower proporﬁon of SNR (5 dB, left) and low SNR (-10 dB, right). Results correspond to a

- . . Prewitt mask and a threshold A = 0.1.

the total number of image pixels (and hence the pixel-by-
pixel calculated F1 score improves). However, this is unlikely
to provide better performance than ED and therefore the of any potential SAs are unrecognisable. The edge detec-
increased computational cost would not be justified. This tion step (Fig. 6d) followed by the subsequent flood fill

analysis suggests that gradient-magnitude edge detectors may step (Fig. 6f) also have a magnifying effect, both for false

(e) Edge det. & flood fill (5 dB)  (f) Edge det. & flood fill (10 dB)

not be useful for SAE at high SNR. alarms (which depend on the noise power only and are there-
Atlow SNR, the image observed after ED (Fig. 6b) shows a fore independent of the SNR) and true signal components.
high level of degradation where the presence and dimensions However, in this case, this is beneficial for SA detection
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since the small signal components or portions of true SAs
observed in Fig. 6b are interpreted as separate SAs, and each
of these signal components is thus magnified. This somehow
helps to fill empty spaces between the vestiges of true SAs,
which makes the presence of SAs more visible as it can be
clearly appreciated by comparing Figs. 6b and 6f. The final
output obtained at low SNR in Fig. 6f may not be useful
in applications where the number, location and dimensions
of the present SAs need to be known accurately, however it
clearly shows the presence of a signal and its approximated
bandwidth and as such this information can be useful in the
context of signals intelligence (e.g., for signal interception)
and other similar application scenarios.

The discussion above leads to the conclusion that, in the
context of SAE, the interest of gradient-magnitude edge
detection lies in the low SNR regime. At low SNR, Fig. 5
indicates that the best performance is obtained by using any
gradient operator (e.g., Prewitt for simplicity) and a thresh-
old o = 0.1. Compared to most practical edge detection
application scenarios, this threshold value may seem quite
low and permissive; essentially, any pixel with a gradient
magnitude above zero (i.e., any pixel that is not part of the
image background, see Fig. 4) is considered an edge pixel.
However, recall that the images processed in the context of
this work are binary black-and-white images composed of
zeros (background) and ones (SAs); thus, at low SNR any
pixel whose gradient magnitude is above zero is either a
false alarm (which will typically occur with low probability
depending on the selected ED threshold, e.g. 0.01 in this
work) or an edge pixel. Such low threshold value thus yields
an improved sensitivity to edge pixels that helps deliver a
better SA detection performance at low SNR.

The results discussed so far correspond to the applica-
tion of gradient-magnitude edge detectors as standalone SAE
methods (i.e., applied directly to the output of ED as the
final SAE stage). These methods can also be applied in
combination with other SAE methods (such as CT-SA and
SSA) as a pre/post-processing technique. The F1 score per-
formance in this case is illustrated in Figs. 7 and 8 when
combined with the CT-SA and SSA methods, respectively.
As it can be noticed, the performance observed in both fig-
ures is quite similar. Moreover, the optimum SAE procedure
depends on the particular SNR experienced at the monitoring
receiver. Based on these results, a suitable SAE method based
on gradient-magnitude edge detection can be formulated as
follows:

o If SNR < yj, perform edge detection before and after

the other SAE method.

o If yy < SNR < y,,,, perform edge detection only before

the other SAE method.

e If ¥, < SNR < yy, perform edge detection only after

the other SAE method.

o If SNR > y, apply the other SAE method alone (with-

out edge detection).

In this formulation, the other SAE method refers to CT-SA,
SSA or any other suitable SAE algorithm and (y;, v, ) 1S
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FIGURE 7. Performance of SAE based on CT-SA combined with
gradient-magnitude edge detection (Prewitt mask, » = 0.1) as a
pre/post-processing technique.

0.8r
.06}
0.4r
/ / ———-SSA
0.2r I Prewitt before SSA
P Prewitt after SSA
= Prewitt before & after SSA
0 1 ! ! 1
-20 -15 -10 -5 0 5
SNR [dB]

FIGURE 8. Performance of SAE based on SSA combined with
gradient-magnitude edge detection (Prewitt mask, » = 0.1) as a
pre/post-processing technique.

a set of low, medium and high SNR switching thresholds,
respectively, that determine the best operation to perform
within each SNR range. The optimum values for these thresh-
olds can be obtained from Figs. 7 and 8 as the crossing
points between curves such that the resulting F1 score is the
envelope of all the individual curves. This SAE approach
provides the best accuracy that can be attained with the help
of gradient-magnitude edge detectors for every SNR value,
which, as shown in Figs. 7 and 8, can provide significant
accuracy improvements in the low SNR regime (with respect
to the use of the other SAE method alone, e.g. up to 40%
for CT-SA at —10 dB SNR). This is illustrated with some
sample images in Fig. 9 for the CT-SA method (with flood
fill) operating at an SNR of —10 dB (similar trends and
conclusions are observed for SSA). The outcome of ED at
such low SNR (Fig. 6b) does not seem to provide any clear
indication that a signal is present. The application of CT-SA
alone (Fig. 9a) seems to provide some hint that a signal
may be present, however in an unclear manner and without
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FIGURE 9. Sample images (time/frequency grids) observed for SAE based
on CT-SA combined with gradient-magnitude edge detection (Prewitt
mask, » = 0.1) as pre/post-processing stage (-10 dB SNR).

enough detail to estimate basic signal properties such as
its bandwidth. However, the introduction of edge detection
as a pre/post-processing step (Figs. 9b-9d) provides a clear
indication that a signal is present as well as sufficient detail
for a rough estimation of its bandwidth. As stated earlier,
the output in this case does not provide sufficient detail to
obtain accurate information about the number, location and
dimensions of the present SAs (such as in Fig. 6a under high
SNR conditions) but can be very useful in the context of
signals intelligence (e.g., for signal interception) and other
similar application scenarios.

Comparing Fig. 5 with Figs. 7 and 8 it can be observed
that gradient-magnitude edge detectors perform better when
combined with other SAE methods (based on the dynamic
SNR-switching approach described above) than when used
standalone. This is true for the whole range of SNR values
where the use of gradient-magnitude detectors is beneficial
(i.e., at low SNR). Therefore, the optimum configuration for
gradient-magnitude edge detection methods is achieved when
combined with other SAE methods according to the three
SNR switching thresholds (y;, ¥, ¥n) as discussed above.

B. ANALYSIS OF THE LAPLACIAN OF GAUSSIAN METHOD
Fig. 10 shows the performance of the LoG edge detector as
a function of the SNR for selected values of the Gaussian
filter’s standard deviation (parameter o) when used as a
standalone SAE method. The performance of ED alone is
included for comparison and the reference SAE methods
(CT-SA and SSA) are included as well for completeness.
Similar to the case of gradient-magnitude methods, the accu-
racy is degraded in the high SNR regime and improved at
low SNR, for the same reasons explained in Section V-A.
The extent to which the accuracy is improved or degraded in
each SNR range depends on the filter’s standard deviation.
Interestingly, the optimum value of o that yields the best
attainable accuracy decreases with the experienced SNR.
This can be explained based on the filter’s averaging/blurring
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FIGURE 10. Performance of the LoG edge detector as a standalone SAE
method for different values of the filter's standard deviation.

effect for different o values. Athigh SNR, the present SAs are
clearly visible and therefore easily detectable; any averaging/
blurring process can only degrade the current image quality
and therefore reduce the accuracy of the edge detection pro-
cess. For this reason, at high SNR the optimum choice is a low
standard deviation as this will have a low averaging/blurring
effect. In the example of Fig. 10 this corresponds to ¢ = 0.5
(the lowest considered value), which has no effect on the
filtered signal and is equivalent to skip the edge detection
plus flood fill step altogether. As the SNR decreases, parts
of the true SA will start to disappear as a result of a lower
detection probability, thus making them look more similar to
background areas of the image (with no signal components)
and therefore affecting the filter’s ability to respond to the
presence of edges. This can be overcome by increasing the
filter’s standard deviation (i.e., the filter’s width) so that more
neighbouring pixels are included in the averaging process,
which will increase the probability of a detectable response
at the output of the LoG filter when an edge is present.
This explains why the optimum value of o that yields the
best attainable accuracy increases when the experienced SNR
decreases (in the example of Fig. 10, the optimum choice is

= 0.5 down to —6.5 dB, at which point o = 1 yields a
similar accuracy, then o = 2 from —6.5 dB down to —14 dB,
and finally o = 3 for lower SNR values).

The performance of the LoG edge detector when used as
a pre/post-processing technique for other SAE methods is
illustrated in Fig. 11 for the CT-SA method (the counterpart
figure for the SSA method is omitted as it is highly sim-
ilar). Most of the observations for the LoG edge detector
as a standalone SAE method that were discussed above are
also valid when used as a pre/post-processing stage. It is
worth noting from Fig 11 that, in the SNR range where
the use of the LoG method is beneficial (i.e., in the region
of lower SNR), the best accuracy is obtained when used
as a pre-processing technique (i.e., only before the other
SAE method is applied). Applying the LoG method as a
post-processing stage leads to a lower accuracy and indeed
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FIGURE 11. Performance of SAE based on CT-SA combined with LoG edge

detection as a pre/post-processing technique for several values of the
filter's standard deviation (parameter o).

1

T T
Lo b A A A DAL NN

0.8r

.06

Fls(‘{?r(’

— — —CT-SA
A LoG before CT-SA
LoG before CT-SA
—<+— LoG before CT-SA
LoG before CT-SA
LoG before CT-SA
—#— LoG before CT-SA

srrzeos

(o
(o
(o
(o
(o
(o

-20 -15 -10 -5 0 5
SNR [dB]

FIGURE 12. Performance of SAE based on CT-SA combined with LoG edge
detection as a pre-processing technique only for several values of the
filter's standard deviation (parameter o).

degrades the accuracy obtained when also applied as a pre-
processing stage. This indicates that the magnifying effect of
the LoG edge detection plus flood fill step makes it easier
for other SAE methods to detect the presence of SAs more
accurately. Similar to the standalone scenario, in this case
the optimum o increases as the experienced SNR decreases,
which is illustrated in Fig. 12 when CT-SA is employed as
the main SAE method (similar results are obtained for SSA).
Comparing Figs. 10 and 12, and assuming that the optimum
o for each experienced SNR is selected, one can see that a
better accuracy can be obtained when the LoG edge detector
is combined with another SAE method as a pre-processing
stage (similar to what was observed for gradient-methods in
Section V-A) and therefore this is the preferred configuration.

An important aspect in the configuration of the LoG
method is how the value of o should be selected for each
experienced SNR so that the resulting SAE accuracy is
maximised. To answer this question, extensive simulations
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FIGURE 13. Performance of SAE based on CT-SA combined with LoG edge
detection as a pre-processing technique as a function of the experienced
SNR and the filter's standard deviation (parameter o).

were run for SNR values in the range from —20 dB to -5 dB
(notice in Fig. 12 that for SNR values above —5 dB the best
choice is to skip the LoG edge detection step, as discussed
earlier). For each simulated SNR, values of o in the range
from 0.5 to 5.0 in increments of 0.1 were tested and the
resulting SAE accuracy was calculated in terms of the F1
score. The results of this simulation are shown in Fig. 13.
These results can be further processed to find out the optimum
o that maximises the F1 score for each SNR (oopt), which is
shown in Fig. 14. The stair shape of the simulation results
(labelled as optimum) in Fig. 14 suggests that only a small
finite set of o values is enough to optimise the accuracy over
the whole SNR range of interest, except for SNR values below
—15 dB where a more diverse range of oo is observed. How-
ever, it can be noted in Fig. 13 that for SNR below —15 dB
the optimum F1 score is observed in a rather flat region and
therefore its value is not very sensitive to small variations of
o. In particular, values of ¢ in the interval [3, 3.5] give very
similar F1 score for SNR below —15 dB, therefore replacing
the true oopy With o =3 for SNR below —15 dB will not have
a noticeable impact on the resulting accuracy. This is labelled
as near-optimum in Fig. 14. The advantage of this approach
is that a small set of values o € {0.75,1.1,1.4,2.1, 3.0}
represents the entire domain of oop over the whole SNR
range of interest as shown in Fig. 14. The corresponding SNR
switching thresholds can be readily obtained from the same
figure.

The simulation results in Fig. 14 can be fitted to a Gaussian
model of the form:

N x—b,1?
n
Oopt ~ E anpeXp | — |: B i| @)
n=1 n

with the fitting coefficients shown in Tables 2 and 3 for
the optimum and near-optimum results, respectively. This
mathematical approximation may be useful both in practical
implementations and analytical studies.
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FIGURE 14. Optimum value of the LoG filter's standard deviation as a
function of the experienced SNR (based on Fig. 13).

TABLE 2. Fitting coefficients of the model in (7) for the optimum
simulation results of Fig. 14.

Parameter Value 95% confidence interval

T SNR [dB] N/A

N 2 N/A

a1 8.428 (-11.99, 28.85)

by —41 (-88.32, 6.311)

1 22.64 (2.588, 42.69)

as 0.5554 (0.1586, 0.9522)

b -17.39 (-18.32, -16.46)

Ca 1.636 (-0.0176, 3.29)
RMSE of fit 0.1597 N/A

TABLE 3. Fitting coefficients of the model in (7) for the near-optimum
simulation results of Fig. 14.

Parameter Value 95% conf. interv.
T (SNR [dB] + 12.5) /4.761 N/A
N 3 N/A
a1 0.1703 (-0.7789, 1.12)
b1 -0.7968 (-1.818, 0.2247)
c1 0.1616 (-2.096, 2.419)
a2 0.6097 (-0.5327, 1.752)
b -0.8657 (=2.02, 0.2885)
C2 0.6896 (~1.463, 2.843)
as 3.589 (-3.644, 10.82)
b3 -3.593 (~12.56, 5.369)
cs3 4.019 (~1.455,9.493)

RMSE of fit 0.1772 N/A

In summary, the optimum configuration for the LoG edge
detector as a SAE method is as follows. At low SNR, the
best accuracy is obtained when combined with another SAE
method as a pre-processing step, adjusting the filter standard
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deviation according to the experienced SNR as shown in
Fig. 14 or alternatively according to the model in (7) with
the fitting coefficients shown in Table 3. At high SNR (above
-5 dB according to Figs. 12 and 14) the best accuracy is
obtained by using only the other SAE method (i.e., without
edge detection).

C. ANALYSIS OF THE CANNY METHOD

The Canny method has three configuration parameters: the
standard deviation of the Gaussian filter (o) and the pair
of thresholds for weak and strong edge pixels (Ajow, Anigh)-
To find a suitable parameter configuration for SAE, his-
tograms of the gradient magnitude similar to those shown in
Fig. 4 were calculated for standard deviation values within the
interval o € [0.5, 10] and for SNR values within the interval
[-20 dB, 5 dB]. Details of the figures are not shown due to the
amount of space this would require, however the main find-
ings are summarised here. Compared to Fig. 4, the histograms
obtained in this case showed a larger proportion of gradient
magnitude values in the lower bottom of the range. Recall
that the Canny method applies in its first step a Gaussian
filter before calculating the gradient magnitude and applying
the thresholds (see Section III-A). This Gaussian filtering
step has a blurring effect that de-emphasises sharp gradient
changes in the image, thus resulting in an overall reduction
of gradient values. Based on the obtained histograms, the
two threshold values identified in Section V-A were slightly
reduced for the Canny method to Aj,, = 0.05 (to isolate
pixels with zero-gradient belonging to the image background)
and Apgn = 0.7 (corresponding to the gradient magni-
tude of strong edge pixels after the initial Gaussian blurring
step).

Once the thresholds (Ajow, Anign) are configured, the per-
formance of the Canny method as a SAE method depends on
o in alargely similar manner as the LoG edge detector and the
same main conclusions are reached (all figures are not shown
to avoid repetitive results, however the main conclusions are
summarised here). In particular, the optimum value of ¢ that
yields the best attainable accuracy increases when the SNR
decreases, both when used as a standalone SAE method and
in combination with other SAE methods such as CT-SA and
SSA; moreover, the latter achieves better accuracy than the
former, also when the Canny edge detection plus flood fill
are used as a pre-processing stage to other SAE method. The
main difference between the Canny and LoG edge detectors
when used for SAE, as it can seen by comparing Fig. 15 with
Fig. 12, is that larger standard deviations need to be used for
the filter with the Canny method (oopt € [3, 6.5]), which can
also be explained based on the blurring effect of its initial
Gaussian filtering step. This is corroborated in Fig. 16, which
shows the optimum standard deviation (oopt) that maximises
the F1 score for each SNR with the Canny edge detector (this
figure is the counterpart to Fig. 14 and has been obtained
following the same procedure; the corresponding fitting coef-
ficients for the model in (7) are provided in Table 4). Another
relevant difference is that with the Canny method it is not
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TABLE 4. Fitting coefficients of the model in (7) for the Canny edge
detection method.

Parameter Value 95% confidence interval
T SNR [dB] N/A
N 2 N/A
a -838.9 (-6.66-107, 6.66-107)
b1 -11.15 (-=1129, 1106)
c1 11.69 (1985, 2009)
as 843 (-6.66-107, 6.66-107)
b -11.18 (-1146, 1124)
co 11.74 (-1987, 2010)
RMSE of fit 0.0609 N/A

possible to cover the whole SNR range with a small set of
Oopt values (the optimum value is different for each SNR).
Based on the results above, the optimum configuration for
the Canny edge detector as a SAE method is similar to that
of the LoG edge detector. At low SNR, the best accuracy
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is obtained when combined with another SAE method as a
pre-processing step, adjusting the filter standard deviation
according to the experienced SNR based on the model in (7)
with the fitting coefficients shown in Table 4. At high SNR
(above —5 dB according to Figs. 15 and 16) the best accuracy
is obtained by using only the other SAE method alone.

D. COMPARISON OF DIFFERENT EDGE

DETECTION METHODS

The previous subsections have explored the performance of
the three main edge detection algorithms when used along
with flood fill as SAE methods. In all cases it has been
observed that they lead to an overall accuracy degradation
at high SNR but can provide significant improvements at
low SNR. Moreover, the best accuracy improvement at low
SNR is obtained when combined with other SAE methods
(such as CT-SA and SSA) as a pre/post-processing stage. The
optimum configurations at low SNR have been determined
for each edge detection method. In particular, the use of
gradient-magnitude methods is controlled by a set of three
SNR switching thresholds (y;, ¥, vi), while for the LoG and
Canny methods the standard deviation of the corresponding
filters is adjusted according to the experienced SNR. Based
on these optimum configurations, the three methods are com-
pared in Fig. 17. This figure shows the best accuracy that
can be attained by each method when the optimum config-
uration is employed in each case (the results correspond to
the combination with CT-SA but similar results are obtained
when combined with SSA). The obtained results show that
the considered SAE approach can provide significant accu-
racy improvements in the lower SNR regime compared to
the application of the CT-SA method alone, thus effectively
extending the SNR sensitivity of existing SAE methods. Con-
cretely, it can be observed that the performance is very similar
for SNR values above a certain threshold (above —6 dB in
this case). However, for SNR values below this threshold,
the performance of the CT-SA method degrades abruptly,
providing accuracy levels of ~30% at —10 dB SNR, ~8% at
—15dB SNR and ~5% at —20 dB SNR. On the other hand, the
proposed approach is more robust under degraded SNR con-
ditions, providing a significantly better performance. In the
best case, which corresponds to the use of the Canny edge
detector, the SAE detection accuracy can reach up to ~75%
at—10 dB SNR, ~50% at —15 dB SNR and ~43% at —20 dB
SNR, which represent absolute performance improvements
of 45%, 42% and 38%, respectively. This improvement is
obtained at the expense of an increased computational cost,
which can be quantified in terms of the computation time as
illustrated in Fig. 18. The largest increase in the computation
time is observed at low SNR, which increases from a mini-
mum of 22 ms for the CT-SA method alone to a worst-case
maximum below 5 ms for the Prewitt and LoG edge detectors
and below 6 ms for the Canny edge detector. The higher com-
putation time observed at low SNR for the proposed approach
can be partly attributed to the additional calculations required
by the edge detection and flood fill operations but also to
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the detection of a higher number of SA components, which
also increases the computational workload for the CT-SA
method applied afterwards. It is also worth noting that these
computation times were obtained with a general purpose
processor in an off-the-shelf desktop computer and using
code that was not specifically optimised for performance.
A commercial system implementation would be expected to
provide significantly reduced computation times. As it can
be appreciated in Figs. Fig. 17 and 18, the Canny method
provides a slightly higher accuracy than the other two edge
detection methods, which could be explained by its ability to
reconnect edge fragments that have been disconnected due to
noise degradation, and this is also associated with a slightly
higher computation time. Fig. 17 also validates the obtained
simulation results by comparing with their counterparts based
on hardware experiments, which demonstrates the ability of
the proposed SAE strategy to achieve significant accuracy
improvements in practical system implementations.

VI. CONCLUSION
Several methods have been proposed in the literature for SAE

in radio spectrograms, however their performance degrades
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significantly in the low SNR regime. In this context, this work
has proposed a novel approach for SAE based on the use of
two well-known techniques from the field of image process-
ing, namely edge detection (to identify the edges of potential
SAs) and flood fill (to fill the area inside the estimated edges).
The performance of three popular edge detection methods
(gradient magnitude, Laplacian of Gaussian and Canny) has
been assessed under a broad range of configuration param-
eters and a suitable SAE strategy has been formulated for
each edge detection method. The obtained simulation results
have shown that the proposed SAE approach based on edge
detection plus flood fill can improve significantly the perfor-
mance of existing SAE methods in the lower SNR range when
used as a pre/post-processing step, thus effectively extending
their operational SNR range. The accuracy improvements
observed in simulations have been corroborated with experi-
mental results.

The findings of this work indicate that the two considered
techniques from the field of image processing (edge detection
and flood fill) have a great potential to improve the accuracy
of SAE in radio spectrograms and suggest that other image
processing techniques may equally provide substantial per-
formance improvements as well. The investigation of other
image processing techniques and their suitability to the prob-
lem of SAE will be explored in future work.
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