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ABSTRACT The automatic design has become a popular topic in the application field of computer vision
technologies. Previous methods for automatic design are mostly saliency-based, relying on an off-the-
shelf model for saliency map detection and hand-crafted aesthetic rules for ranking on multiple proposals.
We argue that the multi-stage generation and the excessive reliance on saliency map hindered the progress of
pursuing better automatic design solutions. In this work, we explore the possibility of a saliency-free solution
in a representative scenario, automatic poster design. We propose a novel end-to-end framework to solve the
automatic poster design problem, which is divided into the layout prediction and attributes identification
sub-tasks. We design a neural network based on multi-modality feature extraction to learn the two sub-tasks
jointly. We train the deep neural network in our framework with automatically extracted supervision from
semi-structured posters, bypassing a large amount of required manual labor. Both qualitative and quantitative
results show the impressive performance of our end-to-end approach after discarding the explicit saliency
detection module. Our system learned on self-supervision performs well on the automatic design by learning
aesthetic constraints implicitly in the neural networks.

INDEX TERMS Design automation, design aesthetic, artificial intelligence, neural networks, machine
learning.

I. INTRODUCTION
Recent years have witnessed the rising interest in
computer-aided automatic graphic design because of the
explosive development of computer vision technologies.
With the great success on various fundamental tasks in com-
puter vision: image cropping [1], object detection [2], seman-
tic segmentation [3] and others, some researchers turned to
their application on automatic graphic design. The automatic
graphic design aims to obtain graphic design works automat-
ically by processing the basic graphic units and organizing
them together based on reasonable aesthetic principles. Such
applications can help significantly relieve the required human
labor for relatively simple design works.

To our knowledge, most previous works on automatic
design are saliency-based [4]–[6]. As shown in Fig. 1.(a),
the saliency-based approaches for automatic design can be
summarized as a two-step pipeline: They rely on off-the-
shelf saliency detect algorithms to obtain the saliency map of
original background images; They add aesthetic constraints
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to generate proper layout based on the saliency map. The aes-
thetic constraints can be explicitly added as templates [5] or
implicitly modeled in an aesthetic evaluation module [6]. The
pipeline-style framework suffers various drawbacks caused
by the combination of independent components, including
the problems of error propagation in the pipeline, the domain
discrepancy of data used in each sub-stage, the difficulty of
collecting and maintaining aesthetic constraints, etc. Those
problems have hampered the progress of achieving better
automatic design solutions.

In this paper, we focus on a specific and representative sce-
nario for automatic design, automatic poster design based on
photographs. To tackle those challenges in previous saliency-
based solutions, we propose an end-to-end framework for
Automatic Poster Design, named as AuPoD. As shown in
Fig. 1.(b), we decompose the original challenging poster
design task into two sub-tasks, including layout prediction
and attributes identification. Our AuPoD framework is based
on an end-to-end neural network, AuPoD Net, to generate
harmonic posters from input background images and tex-
tual sequences (headlines). The AuPoD Net is centered on
the multi-modality feature extraction net for generating a
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FIGURE 1. The comparison between saliency-based approaches and our AuPoD framework. (a) Saliency-based approaches rely on
off-the-shelf saliency detection algorithm and aesthetic constraints modeled in implicit/explicit way to obtain proper layout; (b) Our
AuPoD framework tackles the two sub-tasks of poster design: layout prediction and attributes identification in an end-to-end manner
based on multi-modality feature extraction.

density map of layout information. The layout prediction
and attributes identification tasks are formulated as searching
and classification problems based on the density map. The
overall framework is trained on the self-supervision signals
from semi-structured posters to capture the interdependen-
cies between background images and headlines. Our AuPoD
framework solves the problem of automatic poster design in
a unified framework, instead of pipelines.

Specifically, our AuPoD framework surpasses the
saliency-based approaches from the following perspectives:

(a) The unified framework of AuPoD prevents the
data distribution discrepancy during training. The conven-
tional saliency-based methods usually apply an off-the-shelf
saliency map detection module that is trained on specific
datasets. Some of them additionally train models for aesthetic
evaluation. The data distribution of each component in the

whole pipeline can be significantly different from each other,
resulting in poor performance during inference. By training
the unified framework on the automatically extracted consis-
tent data, AuPoD refrains from such data discrepancy issue.

(b) AuPoD enjoys the benefits of end-to-end training by
alleviating the error propagation in pipelines. Instead of train-
ing several components independently and using a cascaded
pipeline for inference, our unified model is trained and used
end-to-end, such that errors in previous components may be
corrected later during inference.

(c) AuPoD does not require the hand-crafted aesthetic
rules, but learns them implicitly from data. Many prior
efforts on automatic design usually rely on hand-crafted aes-
thetic rules, which heavily depend on the expertise of aes-
thetic evaluation. The costly expertise and vagueness of
aesthetic evaluation make it difficult to obtain and maintain
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the explicit rules. Our model instead learns them implicitly
from the data, thus enjoying better generalization and lower
cost.

(d) AuPoD model the complex information for layout
better by discarding the explicit saliency map detection. The
layout prediction problem is closely related to the position of
the salient object in the background image. However, it also
depends on other information that cannot be described by
the saliency map, e.g. color and position associations among
multiple objects. Our AuPoD Net directly predicts the layout
density map, considering that information jointly.

Our main contributions are listed below:
• We firstly propose the end-to-end framework for auto-
matic poster design, avoiding the weakness of multi-step
pipeline generation and the difficulty of maintaining
aesthetic constraints.

• We design AuPoD Net that jointly learns the layout pre-
diction and attributes identification by multi-modality
feature extraction. We utilize the supervision signals
extracted from semi-structured posters to train the net-
work.

• The experimental results empirically show the effective-
ness of our AuPoD framework. The extensive analysis
of the results demonstrates the superiority of AuPoD by
end-to-end data-driven learning on automatic design.

II. RELATED WORK
This work is related to the following research topics: auto-
matic design (Sec. II-A) targeting at the automatic generation
of various design works, aesthetic evaluation (Sec. II-B)
focusing on the assessment of overall aesthetic quality, image
segmentation (Sec. II-C) that divide images to multiple parts
and self-supervised learning (Sec. II-D) aiming to utilize the
self-supervision in data for training of neural networks.

A. AUTOMATIC DESIGN
Automatic graphic design has attracted lots of researchers.
Jahanian et al. [4] started the automatic design problem and
solve it by explicit aesthetic constraints by human priors.
Yang et al. [5] focused on generating visual-textual layout
targeting magazine cover design. They combined hand-
crafted topic-dependent templates and pre-defined aesthetic
principles to generate harmonious typography. The required
expertise for template design, however, limited its practi-
cality and diversity. Zhang et al. [6] and Li et al. [7] used a
saliency-based framework and extra aesthetic evaluation for
automatic design, considering only the layout prediction.

Automatic layout, identifying the geometric relations
among multiple elements, is a classic problem for automatic
design [8]. Previous work attempted to solve the problem by
templates based on domain knowledge [4], saliency maps [9],
attention mechanisms [10], etc. LayoutGAN [11] further
applied generative models for layout generation of relational
elements, but considering only objects with simple seman-
tics. Lee et al. [12] explored the layout generation with given
constraints from users, but not the natural constraints in data.

In our framework, we tackle the challenge of automatic
design in the specific field of poster design. We consider both
layout generation and the identification of corresponding
attributes jointly.

B. AESTHETICS EVALUATION
An important component in prior methods for automatic
design is aesthetic evaluation, which essentially defines the
criteria for automatic poster design. The computational aes-
thetic evaluation plays a critical role in various visual gener-
ation tasks. Existing approaches for aesthetic evaluation can
be divided into two categories: feature based and deep learn-
ing based. Feature based approaches rely on hand-crafted
aesthetic features, including general global statistics [13],
[14] (color distribution, brightness, etc.), generic graphical
descriptors on local regions [15], [16], semantic-related fea-
tures [17], [18] (scene topic, portrait attribute, etc.), and
others. These features can be fed into regression models
for quantitative aesthetic evaluation. More researchers have
been dedicated to deep learning models for aesthetic scoring
in recent years. The RAPID [19] model firstly attempted
to use convolutional neural networks for aesthetic quality
evaluation. The DMA Net [20] further improved the repre-
sentation by using a multi-patch aggregation network instead
of extracting features from a single patch. Zhang et al. [21]
simulated the mechanism of human aesthetic evaluation by
extracting fine-grained features on attended regions. Many
other [22]–[24] approaches also contribute to the progress
in this field. In our framework, instead of explicitly train-
ing an aesthetic evaluation model, the poster design results
are expected to meet the implicit aesthetic constraints. The
aesthetic constraints are learned in the model parameters by
end-to-end training.

C. IMAGE SEGMENTATION
Image segmentation is a fundamental task in computer
vision [25]–[27], targeting at segmenting the original image
into two or more parts for visual understanding. As we
mentioned, previous approaches for poster design are mostly
based on salient object detection [28]–[30], a kind of segmen-
tation for themost visually attractive object. Researchers have
developed numerious image segmentation algorithms based
on region growing [31], probabilistic graphical model [32],
especially recent deep learning models [33], [34], boosting
the performance significantly. We argue that a complicated
pipeline system with a saliency detection component is not
the best solution for the poster design problem. However,
it is obvious that layout prediction is closely related to the
segmentation problem. A straightforward aesthetic constraint
is that usually, the headlines do not cover the salient object.
The feature extraction network in our framework borrows
the widely-used convolutional encoder-decoder architec-
ture [35]–[37] in image segmentation, but learning from both
visual and textual information jointly. We expect the archi-
tecture to draw benefits from segmentation-style models but
consider richer information and constraints in poster design.
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D. SELF-SUPERVISED LEARNING
Self-supervised learning has recently become a popular
learning paradigm in various fields, such as natural lan-
guage processing [38]–[41], computer vision [42]–[44],
graph learning [45]–[48], and beyond. By utilizing the intrin-
sic associations in the data, self-supervised learning provides
a solution for semi-automatically constructing supervision
signals. The data-hungry training process of deep neural
networks benefits from the cheap supervision built in this
way. Generally, they obtain supervision from the data itself
by predicting part of the input from transformed input [49],
[50], corrupted input [51], [52], or other modalities of the
original input [53]. Our AuPoD framework leverages the
implicit supervision signals from two modalities in the semi-
structured posters: the visual modality and the textual modal-
ity. We formulate the automatic poster design problem by
predicting the missing layout and attribute information from
the given two modalities, following the paradigm of self-
supervised learning.

III. APPROACH
In this paper, we focus on tackling the problem of automatic
poster design in an end-to-end manner. We formulate the
problem as below.

Automatic Poster Design aims to generate a poster auto-
matically from given background images and headlines.
It provides a background image I ∈ RC×H×W , where
C,H ,W are the number of channels, the height, and thewidth
of the image, respectively. Text T is also provided as the
headline in the poster, which can be further formulated as
a sequence of length n. The automatic poster design system
solves two sub-problems jointly. They determine a specific
region on which to put the text, and attributes of the headline,
e.g. the color and the font family.

Unlike previous works based on pre-trained saliency map
detection models, we adopt an end-to-end joint learning
framework (Sec. III-A) to solve this problem. Themain obsta-
cle of end-to-end training is that the labeling of textual layout
and attributes is expensive and time-consuming. In this paper,
we construct labeled data by self-supervision (Sec. III-B) to
bypass the required large amount of manual labor. The end-
to-end AuPoDNet (Sec. III-C) is trained with the constructed
supervision signals for producing harmonic posters automat-
ically. The textual layout and attributes of the headline are
learned jointly (Sec. III-D) to benefit each other. We propose
to use a searching-based approximation for layout prediction
during inference (Sec. III-E).

A. FRAMEWORK OVERVIEW
In this part, we describe the overview of our AuPoD system.
The input of AuPoD is a background image I = {Ic,i,j} ∈
RC×H×W and a textual sequence T = {T1,T2, . . . ,Tn}.
We collect semi-structured posters to construct supervision
signals for training. The end-to-end deep neural network
AuPoD Net is trained on the collected data to learn the

FIGURE 2. The potential annotations in a semi-structured poster. Modern
graphics editing systems for design store the relative position and
corresponding attributes of each object in a semi-structured manner. The
stored information may serve as intrinsic annotations for the finally
rendered posters.

correlations between visual and textual objects, as well
as corresponding attributes. The AuPoD Net extracts the
image features with convolutional networks and text fea-
tures with pre-trained context-aware token embeddings. The
multi-modality features are then aggregated for predicting
the position and size of the textual bounding box, and other
corresponding attributes (font, color). The overall objective
is decomposed into two sub-goals as layout prediction and
attributes identification, learned jointly. Our AuPoD frame-
work can automatically learn to generate harmonic posters by
utilizing the multi-modality input features and capturing the
association between features and underlying aesthetic con-
straints for poster design implicitly. We dive into the details
of each part in the following sections.

B. SELF-SUPERVISION
We adopt the widely-applied self-supervised learning
paradigm for learning the poster design patterns from cheap
supervision signals. The training of deep neural networks is
usually label-intensive. Collecting a large number of annota-
tions for design, however, requires the expensive expertise
of professional designers. The costly labeling process for
harmonic posters based on basic components has impeded the
development of end-to-end approaches. Inspired by the recent
success on self-supervised learning [41], [43], we utilize
the self-supervision signals in semi-structured posters for
training, thus bypassing the difficulty of fetching annotations.

The semi-structured posters, storing the intermediate prod-
ucts by human designers, naturally implies the required anno-
tations representing the layout and attributes information
(Fig. 2). Instead of collecting proper basic design elements
(background images, headlines, etc.) and annotating them
by human designers, we directly collect the semi-structured
posters. We extract and reorganize the layout and attribute
information in it as self-supervision signals. For example,
as shown in Fig. 2, we can extract the textual sequence of the
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headline, the relative coordinates and the size of the textual
box, and other corresponding attributes. With the textual
sequence and the background image regarded as input and the
rendered poster as the target, we provide the required training
signals for the neural network in our AuPoD framework.

The self-supervision signals obtained from semi-structured
posters may slightly differ from those of professional anno-
tations. More difficult control on quality and consistency
of annotations brings challenges for training. However,
we prove empirically that this is a tractable approach for
constructing supervision for data-driven end-to-end poster
design learning (Sec. IV).

C. AuPoD NET
In this part, we describe the details about our AuPoD Net,
a deep neural network for end-to-end learning of the associ-
ations between background images and headlines. The main
body of our AuPoDNet is based on an encoder-decoder archi-
tecture, namely the Multi-modality Feature Extraction Net,
for feature extraction and density map decoding. It aggre-
gates the multi-modality information from visual and tex-
tual objects, then decodes for the density map indicating
layout information. We formulate the layout prediction and
attributes identification sub-tasks as a constrained optimiza-
tion problem and a classification problem, respectively. For
layout prediction, we search for a proper region with a max-
imum score based on the density map. For attributes identi-
fication, we combine the generated density map and original
visual features to predict the distribution on the predefined
attributes set.

1) MULTI-MODALITY FEATURE EXTRACTION NET
The Multi-modality Feature Extraction Net (MFEN) aims to
extract features from the input textual and visual objects, then
model the score for each pixel to indicate the proper area for
the textual object.

The overall structure follows the principled encoder-
decoder architecture. Most previous segmentation neural net-
works can be decomposed in a similar way, with the encoder
extracting high-level features from the input background
image and the decoder performing up-sampling. As shown in
Fig. 3, compared to segmentation networks, we do not only
consider the feature from the image, but also the semantics of
input text.

The encoder for the image features is a convolution-based
deep neural network (details on the architecture described in
Sec. IV-A). Briefly speaking, it encodes the graphic features
in more channels with the feature map on broader receptive
fields as the network gets deeper:

HV = Encoder(I ), (1)

where HV ∈ RCV×H×W denotes for the hidden image feature
map extracted by the encoder. CV ,H ,W are the number of
channels, height, and width of the feature map.

U = MLP(AVG({E1,E2, . . . ,En})). (2)

The textual features, in the meantime, are encoded with the
pre-trained contextual token embeddings as in (2). The token
embedding for each token Ti is denoted as Ei ∈ Rd . Those
distributed vector representations are expected to carry the
semantic information of the input text. We then use average
pooling (denoted by AVG) to obtain the fixed-dimension dis-
tributed representation of the whole input sequence. A multi-
layer perceptron (denoted by MLP) is followed to convert the
textual representation to a similar vector space of the graphic
representation. The final textual representation is a vector
U ∈ Rd ′ .

F = Concat(HV ,REP(U ),REP(L)). (3)

We aggregate the two main parts of critical information
for poster design: the visual representation and the textual
representation together as shown in (3). The textual repre-
sentation is replicated across the height and width dimension
to align with the visual representation (the repeat operation
denoted by REP). We additionally add a scalar feature as the
length of the input sequence L ∈ R. The design is quite
intuitive in that the number of tokens L is usually helpful
for determining the size and height-width ratio of the textual
bounding box. The same repetition operation is applied to the
length feature. The concatenated representation is denoted by
F ∈ R(CV+d ′+1)×H×W .

M = Decoder(F). (4)

Finally, we use the aggregated multi-modality feature F
as the input for the decoder as in (4). The decoder outputs
a density map M ∈ RH×W of the same size as the original
image. Each elementMi,j is a score corresponding to the pixel
Ii,j, representing the weight of the pixel selected to be present
in the textual area.

2) LAYOUT PREDICTION
The layout prediction module predicts the position and the
size of the textual box by solving an optimization problem on
the density map.

Based on the output of the decoder M , we assume that
σ (Mi,j) represents the probability of Ii,j located in the bound-
ing box of given textual sequence. σ denotes the sigmoid
function as shown below:

σ (x) =
1

1+ e−x
. (5)

Given the density mapM and the corresponding probabil-
ity matrix σ (M ), we need to determine the corner coordinates
(x1, y1) (left bottom) and (x2, y2) (right top) of the textual box.
The corresponding prediction task can be formulated as the
following constrained optimization problem as (6), shown at
the bottom of the next page.

The optimization above essentially maximizes the joint
probability of all pixels to be consistent with the assigned
textual box, based on the assumption that the probabilities of
pixels are independent. The exact inference algorithm is com-
putationally expensive. We design an approximate algorithm
for tractable computation in Sec. III-E.
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FIGURE 3. The structure of Multi-modality Feature Extraction Net (MFEN) in our AuPoD framework. The features from different modalities (visual &
textual) are encoded with modality-specific encoders and aggregated for joint decoding of the final density map. The overall structure follows a classic
encoder-decoder architecture.

3) ATTRIBUTES IDENTIFICATION
The identification of other attributes is regarded as classi-
fication problems based on extracted features. Continuous
attributes are discretized to several classes for simplicity.
Specifically, we collect features from two sources: On the one
hand, we collect the hidden image features by the MFEN for
the global summary of the overall input; On the other hand,
we collect features from a weighted local view of the original
raw image.

The features F from theMulti-modality Feature Extraction
Net depict the global view of the input. By data-driven joint
learning (Sec. III-D), The aggregated hidden features F will
contain not only the critical information for layout prediction,
but also for attributes identification.

We are also interested in the local view of the images
because the pixels in the region of textual boxes may have
a greater impact on attributes. For example, the color of the
textual input is generally constrained by the color tone of
the local textual area. The weighted raw image σ (M ) ◦ I
applies the probabilistic density map as attention weights
on each pixel of the raw image. We use a similar convo-
lutional encoder to extract the local view image features
Fl ∈ RCV×H×W as below:

Fl = Encoderl(σ (M ) · I ). (7)

We concatenate the global features and the local features,
and use anMLP classifier for logits output. The logits are nor-

malized to probabilistic distributions by the softmax function.
pi denotes for the probability of the attribute belonging to the
ith class as in (8).

logiti = MLP(F,Fl),

pi =
exp(logiti)∑
k exp(logitk )

. (8)

D. JOINT LAYOUT AND ATTRIBUTES LEARNING
Since we use a unified neural network for layout prediction
and attributes identification, we can enjoy the benefits of
joint training on the two sub-tasks. The objective for layout
prediction Llayout and attributes identification Lattributes are
listed below, respectively:

Llayout = −
∑
i,j

(Gi,j log σ (Mi,j)

+ (1− Gi,j) log(1− σ (Mi,j))),

Lattributes = −
∑

a∈Attributes

log paya , (9)

where Gi,j is a binary indicator for whether the pixel (i, j)
is located in the textual area. paya is the probability of the
attribute a belonging to the gold class ya.

The overall objective is to minimize the sum of layout
prediction loss and the attributes identification loss as in (10).
It essentially maximize the log likelihood on our dataset.

L = Llayout + Lattributes. (10)

argmax
x1,y1,x2,y2

{

∑
i ∈ [x1, x2]

j ∈ [y1, y2]

log σ (Mi,j)+
∑

i /∈ [x1, x2]

j /∈ [y1, y2]

log(1− σ (Mi,j))},

s.t. x1 < x2, y1 < y2. (6)
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FIGURE 4. Approximate inference for layout prediction.

The joint learning helps our AuPoD Net to extract better
features from the multi-modal (textual and visual) views
of data. The final objective will benefit from the two sub-
modules, promoting each other.

E. INFERENCE ALGORITHM
The inference of the framework for automatic poster design is
non-trivial, especially the layout prediction part. The optimal
solution for layout prediction is determined by the optimiza-
tion problem defined in (6). Such optimization problem is
intractable in practice. We design the approximate algorithm
based on the locality property of neural network output.
Specifically, we decide the region of the textual object by
greedily enlarging the area of the rectangle from the local
maximum of M (Fig. 4). The detailed algorithm is listed in
Algorithm 1.

The approximate inference algorithm leverages the locality
of the density map, assuming that the proper location of the
textual input is approximately centered at the local maximum
and the score for the candidate area is almost convex in terms
of the distance from edges to the local maximum.

IV. EXPERIMENTS
To verify the effectiveness of the proposed AuPoD
framework, we conduct extensive experiments from various
perspectives to show the overall performance, the aesthetic
interpretation, as well as the plausibility of our framework
designs.

A. SET-UP
We first introduce the set-up including the used benchmark,
metrics, and models as below.

1) BENCHMARK
Despite many visual benchmarks that have been explored
on saliency detection or aesthetic evaluation, there exists no
previous large-scale data for the whole process of automatic
poster design. This also explains why end-to-end framework
has not been explored in this field. As previously mentioned

Algorithm 1 Inference for Layout Prediction
1: function Score(M , (x1, y1), (x2, y2))
2: b←

∑
i ∈ [x1, x2]

j ∈ [y1, y2]

log σ (Mi,j) F bonus term

3: p←
∑
i /∈ [x1, x2]

j /∈ [y1, y2]

log(1− σ (Mi,j)) F penalty term

4: return b+ p
5: end function
6: Find all local maximum positions in M , as P =

{(x1, y1), (x2, y2), . . . , (xk , yk )}
7: R← φ

8: for all (xi, yi) ∈ P do
9: (xl, yb)← (xi, yi)
10: (xr , yt )← (xi, yi)
11: scorei← Score(M , (xl, yb), (xr , yt ))
12: repeat
13: C ← [Score(M , (xl − 1, yb), (xr , yt )), Score(M ,

(xl, yb − 1), (xr , yt )), Score(M , (xl, yb), (xr + 1, yt )),
Score(M , (xl, yb), (xr , yt + 1))] F scores of one-step
expansions in four directions

14: score′i = maxC
15: Update the corresponding coordinates accord-

ingly
16: until score′i < scorei
17: R← R ∪ {(xl, yb, xr , yt , scorei)}
18: Exclude all positions inP covered by the newly deter-

mined region
19: end for
20: Sort all items in R according to the related scores in

descending order
21: return R

in Sec. III-B, we construct supervision signals from cheap
semi-structured posters to tackle this challenge.

We collect over 6000 semi-structured posters. We discard
the posters of which the annotations are not complete or too
complicated to extract. After the filtering, we obtained around
4600 posters with topics varying from portraits, animals,
food, scenes, to others. We use this dataset for both training
and evaluation of the AuPoD Net in our framework. We split
it according to the ratio of 7:1:2 for training, validation, and
test, respectively.

2) METRICS
We evaluate the performance of automatic poster design sys-
tems according to the following quality measurements:

• Test Loss We use the test loss defined in Sec. III-D
to automatically evaluate the overall performance of
various models on our dataset, the lower, the better.

• Jaccard Similarity We use the principled Jaccard sim-
ilarity to measure the consistency between two areas.
Specifically, we use this measurement to evaluate the
similarity between the generated layout and automati-
cally extracted supervision, the higher, the better.
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TABLE 1. Automatic quantitative evaluation of various models on our benchmark.

• ACC (macro)We use macro-averaged accuracy to auto-
matically evaluate the attributes of headlines in a poster,
the higher, the better.

• Manual Rating Because of the subjectivity and natu-
ral vagueness of aesthetic evaluation, we additionally
use human evaluation for more convincing evaluation
results. Specifically, we set ratings from 1 to 5, and
ask human designers to rate each generated poster.
We demonstrate the distribution of human ratings as
manual quantitative analysis results. The criteria for
each rating is listed below:
1) poor: The design is definitely unacceptable and

hard to understand.
2) inferior: The design is obviously worse than rea-

sonable solutions.
3) acceptable: The design is mostly harmonious and

fits basic aesthetic constraints for location and col-
oring.

4) good: The design is quite harmonious. There are
also other reasonable choices.

5) excellent: The design is excellent. No equal or
better substitutions can be found.

3) MODELS
We implement and discuss the results of the followingmodels
to show the strengths of the proposed framework and the
necessity of the design for each part.
• saliency-based: We introduce three saliency-based
approaches for comparison on layout prediction. The
first one is implemented by ourself, with an off-the-
shelf saliency detection model(BAS-based) for saliency
map and a set of rules for regularizing the position of
the textual object not to conflict with the salient object.
Besides, we choose two representative saliency-based
state-of-the-art approaches in [6], [9] as baselines for
our framework. Specifically, the saliency map is gen-
erated by BASNet and FCN-32, respectively. Then the
diffusion-based method in [6] for proposal generation.
Note that the Test Loss and ACC metrics are not appli-
cable for this method, because they are not trained in a
consistent manner with us and they consider only layout
information.

• AuPoD-varieties: We compare a series of varieties of
our AuPoD framework based on various backbone mod-
els for the visual encoder-decoder architecture. The clas-
sic architectures for saliency detection are used, e.g.

FCN-32, UNet [35], BASNet [54], etc. Specifically,
FCN-32 and BASNet are saliency detection backbones
used in [9] and [6] for reference, respectively.

4) IMPLEMENTATION DETAILS
We use the bert-base-uncased model [38] to obtain the con-
textual token embeddings in our textual encoder. Note that
we use the model only for the embedding inference purpose,
whichmeans we do not update its parameters during the train-
ing of our AuPoD framework. We train the whole framework
with the AdamW optimizer and the learning rate initially set
to 1e-3. The batch size for training is 16 and the dropout ratio
is 0.1. We train the model for a maximum of 20K steps and
early stop training when observing a performance drop on the
validation set.

B. MAIN RESULTS
We compare and analyze the end-to-end evaluation results
of various models accordingly in this part. We analyze them
by comparing the automatic and human evaluation metrics
for quantitative evaluation. We include qualitative analysis
by demonstrating the end-to-end poster design results of our
framework.

1) AUTOMATIC QUANTITATIVE ANALYSIS
We use the three automatic metrics described in Sec. IV-A
for comparison. Test Loss, Jaccard Similarity, and ACC
evaluate the overall quality, the layout generation quality and
the attributes identification quality, respectively.

Our AuPoD network performs better than the saliency-
based method on layout prediction sub-task. As shown in
Table. 1, saliency-based approaches generally perform worse
than our AuPod-varieties with identical backbone models.
The results show superiority of end-to-end self-supervised
learning, compared to the combination of saliency map and
manually designed layout generation rules or modules. The
statistics indicate that our end-to-end learning framework has
a stronger capability for capturing layout associations than
the saliency-based pipeline.

As the backbone structure gets more powerful capability,
our AuPoD framework can obtain better design works in
terms of the overall quality. Since the saliency-based method
can not be fully evaluated with all the quantitative metrics,
e.g. ACC for attributes identification, we further investigate
the performance of our AuPoD framework on various back-
bone models. As shown in Table. 1, the overall performance,
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as well as the effectiveness of each component, becomes
better as the backbone model becomes stronger. The results
demonstrate that our AuPoD framework can benefit from
the better inductive bias for saliency detection. It is evidence
showing the associations between poster design and saliency
detection.

We conclude that automatic poster design is closely related
to saliency detection but relies not only on the saliency infor-
mation by the automatic quantitative analysis above.

2) MANUAL QUANTITATIVE ANALYSIS
We conduct a human evaluation for a more comprehensive
and more precise evaluation on the quality of our system.
We simulate a simple Turing Test by randomly mixing the
generated posters by our AuPod framework, the posters
generated by the best saliency-based approach in previous
automatic quantitative analysis, and original posters in the
data. We prepare 50 groups and ask human designers to give
a proper rating from 1 to 5 for each poster. We analyze
the rating distributions of each part for manual quantitative
analysis.

As shown in Fig. 5, the rating distribution of our AuPoD
system outputs has higher variance, whereas the rating dis-
tribution of original posters is more centralized. The results
show that compared to automatically generated posters, man-
ually designed posters generally have more stable quality.
This is expected behavior because the outputs of deep learn-
ing models are easier to be affected by the uncertainty of
neural networks. According to the rating criteria in Sec. IV-A,
posters that are rated with 3 or greater scores are acceptable.
The ratio of acceptable posters in Original and AuPoD groups
are the same as 94%, while it is 78% for the Saliency-based
group. These observations indicate the great potential of our
AuPoD framework to become an important aid to human
designers on poster design. However, the results also show
that automatic design systems obviously fall behind human
designers on near-optimal solutions (with the ratings >= 4).
Thus We will not claim that our AuPoD system can com-
pletely substitute human designers, but provide high-quality
candidates for boosting their efficiency.

3) QUALITATIVE ANALYSIS
For qualitative analysis, we show a few poster generation
examples of our AuPoD framework by inference on the test
data. For the saliency-based approach, we directly use the
textual sequence with the same attributes as the original
posters. For our AuPoD system, we use predicted attributes
to generate the textual object. The identification of these
attributes is quite subjective so we leave the justification to
each reader.Wemainly focus on layout generation in this part.

We compare the results of the saliency-based method, our
framework, and the annotations in the semi-structured posters
(Fig. 6). As shown in (b) and (c) columns, the saliency-based
method first detects the salient object and identifies the layout
by avoiding the region of the salient object. As shown in
(d) and (e) columns, the high-density region in the density

FIGURE 5. Human evaluation ratings.

TABLE 2. Inference speed of different poster design methods.

maps of AuPoD outputs directly indicates the textual regions
in the posters.

For the background images with clear salient objects
(ii and iv), the saliency-based methods can also generate
harmonious posters. However, on background images with-
out obvious and separated salient objects (i, iii, and v), our
AuPoD framework shows superiority by generating posters
based on implicit aesthetic constraints.

4) INFERENCE EFFICIENCY
The inference efficiency is an important factor for the deploy-
ment of poster design systems in production. We list the
average inference speed of the saliency-basedmethod and our
AuPoD system for comparison in Table. 2.

The speed of automatic design systems, both the
saliency-based and our AuPoD system, are tested and com-
puted in a single-GPU (Tesla V100 16GB) machine with
32 2.3GHz CPU Cores and 128 GB memory. The human
inference speed is tested as the average time used for thinking
and dragging the textual elements on the background image
with the help of professional design software.

As shown in the table, both automatic design systems,
including the saliency-based and our AuPoD system, are
significantly faster than humans. Our AuPoD system presents
a slightly slower but similar speed when compared to the
saliency-based approach. It’s because of the more complex
model architecture and the searching process during infer-
ence. Given the observation in Sec. IV-B2, we can see that
our AuPoD system may help human designers to boost their
efficiency a lot, with high-quality candidates generated.

C. ANALYSIS AND DISCUSSION
Apart from the overall generation quality of AuPoD frame-
work, we care about the effectiveness and necessity of the
system design on each part. We analyze the intermediate
density map generation results for interpretability of potential
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FIGURE 6. Qualitative analysis on the generated layout.

aesthetic patterns learned in the framework. We also dis-
cuss the benefits of joint learning and multi-modality feature
extraction, respectively. These cases more directly exhibit the
effectiveness of our AuPoD framework.

1) AESTHETICS INTERPRETABILITY
A thorough case study on the automatically generated posters
of our AuPoD framework further reveals the intrinsic behav-
ior of the framework. We manually traverse the intermediate
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FIGURE 7. General symmetry demonstrated by density maps.

FIGURE 8. Multi-modes diversity demonstrated by density maps.

density map results of our system and find the following
patterns that are encoded in our framework implicitly.

a: GENERAL SYMMETRY
Symmetry is one of the aesthetic properties for design works.
As shown in Fig. 7, the predicted layout density map gener-
ally follow the symmetry property between the salient object
in the image and the textual object. The symmetry property is
ensured in various directions, showing the implicit aesthetic
patterns learned in our AuPoD framework.

b: GENERATION DIVERSITY
The proper layout for a specific poster may not be exclu-
sive but in different modes. Although the self-supervision
in semi-structured posters always gives an exclusive lay-
out, our AuPoD framework automatically learns to generate
multi-modes density map based on implicit aesthetic con-
straints, as shown in Fig. 8.
The results and analysis above verify our claim that the

AuPoD framework can learn implicit salient object con-
cepts and construct aesthetic constraints on relative posi-
tions between the salient object and expected textual object.

The data-driven end-to-end training helps discard the explicit
saliency detection module and aesthetic rules, but learn them
jointly in the model parameters.

2) BENEFITS OF JOINT LEARNING
We investigate the potential benefits of joint learning by
conducting an ablation study on the learning objectives of our
AuPoD framework. Specifically, we compare the results of
joint learning and the results by learning each objective inde-
pendently. In the independent learning setting, we duplicate
the Multi-modality Feature Extraction Net and learn the two
sub-tasks independently. We merge the results of two neural
networks for comparison to the results of joint learning.
As demonstrated in Fig. 9, results in the independent learn-
ing setting are generally worse than those of joint learning.
It indicates that the two sub-tasks, layout prediction and
attributes identification can benefit from each other. It is
obvious that the layout prediction and attributes identification
both require better density map output for deciding the textual
region and extracting the attentive feature. The associations
between the two sub-tasks result in the benefits of joint
learning.
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FIGURE 9. Benefits of joint learning.

TABLE 3. Multi-modality ablation study.

3) MULTI-MODALITY ISSUE
A further question regarding the effectiveness of the proposed
framework is that:Whether themulti-modality feature extrac-
tion and fusion boost the overall performance.

Visual representations are undoubtedly critical for both
layout prediction and attributes identification. Besides, tex-
tual information is closely related to the attributes attached to
the headlines. We mainly focus on the investigation of textual
representations for layout prediction. We remove the textual
encoder part in the MFEN for ablation study on the effect
of textual representations. As shown in Table. 3, the Jaccard
Similarity decreases after we remove the textual feature. The
textual representation affects the layout prediction by input
length and emotion of the input text.

V. CONCLUSION
In this paper, we propose an end-to-end poster design system,
AuPoD. AuPoD is learned from the self-supervision mined
from cheap semi-structured data. TheMulti-modality Feature
Extraction Net in our AuPoD framework effectively learns
the patterns of organizing visual and textual objects together,
alongwith assigning attributes to the textual object. Empirical
results show that AuPoD provides a tractable solution for
automatically learning aesthetic constraints from data and
utilizing those constraints during poster generation. The supe-
riority of our AuPoD framework on closing the gap for data
discrepancy and fixing up the deficiencies of error propaga-
tion make it a better solution than the conventional saliency-
based approaches.

In the current state, we focus on the combination of a single
background graphical object and a single textual box. In real-
world applications, more complicated posters may be com-
posed of multiple graphical objects for decoration and more
textual objects for multi-granularity description. Generating
such complex posters requires more fine-grained modeling
of the interdependencies among those objects. In the future,
we will explore proper joint inference algorithms to extend

our AuPoD system to scenarios of generating those compli-
cated posters.
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