
Received February 11, 2022, accepted April 19, 2022, date of publication April 28, 2022, date of current version May 5, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3170897

A Deep Attentive Multimodal Learning
Approach for Disaster Identification
From Social Media Posts
EFTEKHAR HOSSAIN 1, (Graduate Student Member, IEEE),
MOHAMMED MOSHIUL HOQUE 2, (Senior Member, IEEE),
ENAMUL HOQUE 3, (Member, IEEE), AND MD. SAIFUL ISLAM 1, (Member, IEEE)
1Department of Electronics and Telecommunication Engineering, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh
2Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh
3School of Information Technology, York University, Toronto, ON M3J 1P3, Canada

Corresponding author: Mohammed Moshiul Hoque (moshiul_240@cuet.ac.bd)

This work was supported by the Natural Sciences and Engineering Research Council (NSERC), Canada.

ABSTRACT Microblogging platforms such as Twitter have become indispensable for disseminating
valuable information, especially at times of natural and man-made disasters. Often people post multime-
dia contents with images and/or videos to report important information such as casualties, damages of
infrastructure, and urgent needs of affected people. Such information can be very helpful for humanitarian
organizations for planning adequate response in a time-critical manner. However, identifying disaster
information from a vast amount of posts is an arduous task, which calls for an automatic system that can
filter out the actionable and non-actionable disaster-related information from social media. While many
studies have shown the effectiveness of combining text and image contents for disaster identification, most
previous work focused on analyzing only the textual modality and/or applied traditional recurrent neural
network (RNN) or convolutional neural network (CNN) which might lead to performance degradation in
case of long input sequences. This paper presents a multimodal disaster identification system that utilizes
both visual and textual data in a synergistic way by conjoining the influential word features with the
visual features to classify tweets. Specifically, we utilize a pretrained convolutional neural network (e.g.,
ResNet50) to extract visual features and a bidirectional long-termmemory (BiLSTM) network with attention
mechanism to extract textual features. We then aggregate both visual and textual features by leveraging a
feature fusion approach followed by applying the softmax classifier. The evaluations demonstrate that the
proposed multimodal system enhances the performance over the existing baselines including both unimodal
and multimodal models by attaining approximately 1% and 7% of performance improvement, respectively.

INDEX TERMS Natural disasters, multimodal deep learning, social media, twitter, natural language
processing, attention mechanism.

I. INTRODUCTION
In times of disaster events such as earthquake, flood, and
hurricane, social media platforms can play a critical role in
spreading a large volume of important information [1]–[3].
People frequently use these social media platforms to com-
municate at different hierarchies such as from individual to
individual, individual to government, individual to commu-
nity and government to people [3], [4]. Victims often share
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information about disaster events on Twitter, such as report-
ing about injured or deceased people, and infrastructural
damages. Affected people also inquire for urgent aids by
posting images, tweets, and videos. Analyzing such social
media posts and extracting actionable insights in real-time
can be very helpful for humanitarian organizations to assist
the affected people [5], [6]. However, it is very difficult
and time-consuming task to manually analyze and extract
actionable insights from large amount of crisis-related tweets.

The humanitarian computing community has attempted
to address the above challenge by developing automated
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systems that can extract and classify crisis-related social
media posts [7]–[9]. For example, researchers have develop
classifiers to identify event types (e.g., flood, hurricane)
[10], whether a post is informative or not [11], as well as
humanitarian information types (e.g., types of damages) [12].
Despite such recent progress, existing works are primarily
limited in two ways. First, most works on for damage or
disaster response from social media posts have mainly con-
centrated on textual or image content analysis independently.
However, recent studies suggest that information from both
texts and images often provides valuable insights about an
event and thus leads to more precise inferences than the learn-
ing from unimodal content [13]. Second, a very few works
that utilize multimodal features focus on applying CNN or
RNN models for text feature representation [7], [8], which
might not work well for longer sentences.

In this work, our goal is to develop an effective computa-
tional model for identifying disaster-related information by
synergistically integrating features from visual and textual
modalities. More specifically, we extract the image features
using pre-trained visual (i.e., ResNet50) model. We also
extract the textual features by integrating an attention mech-
anism with the BiLSTM network to address the long-range
dependency problem with traditional RNN and CNN archi-
tecture. We then aggregate both types of features using the
Deep level fusion, followed by applying the softmax layer to
classify the given tweet. We perform extensive experiments
on a multimodal damage dataset, where the goal is classify
damage type (e.g., fire, floods, infrastructure damage) from
an image-tweet pair. We compare our models with several
baselines that do not utilize multimodal features or do not
apply attention mechanisms (Section IV). The key findings
from the these experiments are: (i) utilizing multimodal fea-
tures is more effective that uni-modal features, and (ii) the
RNN model with an attention mechanism can be very effec-
tive in improving the performance compared to its counter-
part that does not incorporate such mechanism.

The primary contributions of our work are:
• We propose a multimodal architecture that utilizes
ResNet50 and BiLSTM recurrent neural network with
attention mechanism to classify the damage-related
posts by exploiting both visual and textual information.

• We compare the performance of the proposed model
with a set of existing unimodal (i.e., image, text) and
multimodal classification techniques.

• We empirically evaluate the proposed model on a bench-
mark dataset and demonstrated how introducing atten-
tion could enhance the system performance through an
intrinsic evaluation.

• We perform both quantitative and qualitative analysis to
get deeper insights about the error types which provide
future directions for improving the model.

The remainder of the article is organized as follows. First,
we provide an overview of related research on disaster tweet
classification in Section II. Next, we present our proposed
method in Section IV. We then present our experimental

setup, key findings, and errors analysis in Section V. Finally,
we conclude the paper with the possible future directions in
Section VI.

II. RELATED WORK
A significant amount of work has been done to classify,
extract, and summarize disaster-relevant information from
social media, see [14] for a detailed survey. Here, We broadly
categorize computational models that are closely related to
our damage/disaster classification task in two ways: (i) uni-
modal approaches which consider either text or images, (ii)
multimodal approaches which consider both type of informa-
tion. We discuss both types of approaches below.

A. UNIMODAL APPROACHES
1) TEXT-BASED DISASTER IDENTIFICATION
Many previous studies have utilized social media texts, and
leveraged it for damage or disaster identification [15]. Early
works focused on feature-engineering based approaches and
used models such as support vector machine (SVM) [16],
random forest [17], and logistic regression classifiers [18].
Later, researchers have widely used deep learning-based
architectures such as CNN [19], and BiLSTM [20] for
classifying the disaster-related tweets. Caragea et al. [21]
and Nguyen et al. [19] proposed CNN-based models to clas-
sify the tweets into informative and not-informative cate-
gories which provides significant improvements over feature
engineering-based approaches. Aipe et al. [22] also proposed
a CNN-based approach but they focus on multi-label classifi-
cation rather that simple binary classification to label disaster-
related tweets. Similarly, Yu et al. [23] used CNN, logistic
regression, and SVM to classify the tweets related to dif-
ferent Hurricanes into multiple categories. Their CNN-based
model outperformed SVM and LR. In contrast to CNN-based
approaches we consider BiLSTMs with attention mecha-
nisms with an aim to better captures dependencies between
word tokens.

Some researchers have focused on domain adaption
and cross-domain classification [24], [25]. Li et al. [24]
studied the feasibility of domain adaption for analyzing
the disaster tweets by applying the naive Bayes classifier
on the Boston Marathon bombing and Hurricane Sandy
dataset. Graf et al. [25] focused on cross-domain classifi-
cation so that the classifier can be used across different
types disaster events. They employed a cross-domain clas-
sifier and utilized emotional, sentimental, and linguistic fea-
tures extracted from the damage-related tweets. Others have
focused on text mining and summarization approaches [26],
[27]. For example, Rudra et al. [26] assign tweets into
different situational classes and then summarizes those
tweets. Cameron et al. [27] proposed an Emergency Situa-
tion Awareness-Automated Web Text Mining (ESA-AWTM)
system that detects informative damage-related Twitter mes-
sages to inform charitable organizations about the incidents of
a disaster. Unlike these systems that broadly focused on text
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mining and summarization, we only focus specifically on a
multi-class classification problem on disaster-related tweets.

2) IMAGE-BASED DISASTER IDENTIFICATION
Mostworks on identifying disasters from socialmedia images
have applied CNN-based classifier. For example, Chaudhuri
and Bose [28] used CNN-based model to locate the human
body parts from the wreckage images. Nguyen et al. [29]
developed a deep CNN architecture to label the social media
images into multiple disaster categories (i.e., severe, mild,
and no-damage). Similarly, Alam et al. [30] proposed a pre-
trained CNN (VGG16) based framework that can identify
the disaster images uploaded on the online platforms. Daly
and Thom [31] culled flicker images to detect the fire event
using pretrained classifiers. Finally, Lagerstrom et al. [32]
developed a system to classify whether the image indicates
a fire event or not. In contrast to these works that broadly
developed binary classifier for classifying disaster vs. non-
disaster images using CNN approach, we focus on identifying
multiple disaster categories from the disaster-related images.

B. MULTIMODAL APPROACHES
In recent years, researchers have used multimodal data (i.e.,
image and text) to find disaster related information from
social media, as information from both modalities often pro-
vide valuable insights for disaster classification. Most of the
works employed fusion-based [33] approach to aggregate
the multimodal features. Chen et al. [34] studied the relation
between the images and texts and utilize visual features
along with socially relevant contextual features (e.g., time
of posting, the number of comments, re-tweets) to identify
disaster information. Mouzannar et al. [7] explored damage
detection by focusing on human and environmental damage
related posts. They used the Inception pre-trained model for
visual feature extraction and designed a CNN architecture for
textual features. Similarly, Rizk et al. [35] proposed a mul-
timodal architecture to classify the Twitter data into infras-
tructure and natural damage categories. Ofli et al. [8] also
presented a multimodal approach for classifying the tweets
into two categories: informative task (e.g., informative vs.
non-informative) and humanitarian task (e.g., affected indi-
viduals, rescue volunteering or donation effort, infrastructure
and utility damage). They used CNN based approach for
extracting the visual and textual features. Gautam et al. [36]
showed a comparison between unimodal and multimodal
methods on CrisisMMD [37] dataset. They utilized the late
fusion [38] approach for combining the image-tweet pairs.
All the works reported significant performance improvement
usingmultimodal information in contrast to their counterparts
that utilize uni-modal information.

Motivated by the success of these multimodal approaches
we focused on effectively utilizing features from text and
images using BiLSTM and CNN models and then fusing
them to form a joint representation for the classification.
However, unlike the above multimodal-based approaches
which used simple CNN/RNN models or n-gram features,

TABLE 1. Number of samples in train, and test set for each class.

we extract the textual features using the BiLSTM network
with attention mechanism to address the long-range depen-
dency problem.

III. PROBLEM FORMULATION AND THE DATASET
In this work, our goal is to automatically classify disaster
types such as floods, fires, earthquake etc. from social media
posts. Formally, we are given a dataset withM examples, thus
the ith sample can be represented as {X i = (Pi,Y i)} where
i ε [1, . . .M ] and Y i ε (1, ..K ). Here, Pi, and Y i denotes the
post, and the associated class label for the ith data point. Each
post Pi consists of two modalities: visual (vi) and textual (t i).
Our model utilizes both v and t simultaneously to classify the
Pi into one of the K classes. We discuss the disaster types and
analyze the dataset below.

A. DISASTER TYPES
We experiment with a benchmark multimodal damage
dataset1 from Mouzannar et al. [7], which consists of
damage-related images along with their associated tweets.
The dataset contains following five different categories of
disaster image-tweet pairs as well as one category of non-
damage (ND) image-tweet pairs.

• Damage to infrastructure (DI): Posts that contain infor-
mation about wrecked buildings, damaged cars, and
destroyed bridges.

• Damage to nature (DN): Posts that contain icehouse,
landslides, and falling trees related information.

• Fires (F): Posts that conveys forest and building fires
related information.

• Floods (Fl): Posts that contain flood related images and
tweets occurred in rural, urban, and cities.

• Human damage (HD): Posts that provide information
about injuries and deceased people.

B. DATASET ANALYSIS
The dataset from Mouzannar et al. [7] consists of a total of
5, 831 image-tweet pairs, were the training and test sets
contain 5, 247 and 584 samples, respectively. The class-wise
breakdown of the train and test sets is reported in Table 1.
We observe that the Non damage class has the highest number
of samples (2, 957) and the human damage consists of the

1https://github.com/eftekhar-hossain/Disaster_IEEE-Access
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TABLE 2. Training set statistics for the textual data.

FIGURE 1. Tweet length frequency distribution of different classes.

lowest number of samples (240). The overall data distribution
indicates that the dataset is somewhat imbalanced.

We have also analyzed the basic linguistic statistics includ-
ing token statistics and tweet lengths. Table 2 shows that the
average number of words per tweet are over 28 in all classes.
We also notice that theND class contained the highest number
of total and unique words as this class has the maximum num-
ber of instances (2, 666) in the dataset. On the other hand,HD
has lowest number of total words and unique words. Figure 1
further shows how the tweet length varies across the different
classes. We observe that generally there are more shorter
tweets than the longer ones and the most tweets contained
less than 100 word. Overall, this distribution provides an idea
of choosing the input text length during the training phase.

IV. METHODOLOGY
Figure 2 depicts our proposed multimodal architecture for
disaster identification. The model consists of two parallel
networks: one for visual feature extraction and another for
textual feature extraction. We apply a pre-trained convolu-
tional neural network (i.e., ResNet50) to extract the visual
features and a BiLSTM model with the attention mechanism
to obtain the textual features from the tweets. The features
from both modalities are then aggregated to form a combined
representation and passed into a softmax layer for classifi-
cation. A brief description of each constituent part of the
architecture is described in the following subsections.

A. DATA PREPROCESSING
We pre-process the image by resized it into 150× 150× 3 so
that all images have the same size and also in this way we can

then process these resized images more efficiently. Further-
more, the image pixels are scaled between 0 and 1 to reduce
the computational complexity during the classifier model
training. Concerning the textual modality, we discard all the
hyperlinks in a tweet as well as all some special characters
(e.g. !,@,$,%,&), punctuation symbols, and emoticons.

B. VISUAL FEATURE EXTRACTION
We apply the transfer learning [39] technique to obtain the
visual features from the image. To this end, we use the pre-
trained ResNet50 [40] model mainly because it can address
the vanishing gradient problem by utilizing skip connections
across different layers [41]. In order to adjust the ResNet50
for our task, we exclude the top two layers of the default
model. We freeze initial 40 layers to use only the weights of
the higher level visual features that were previously learned
from the ImageNet [42] task. For the last 10 layers of the
ResNet50 model, a global average max-pooling layer, and
a dense layer, we retrain the model with new weights. The
dense layer compute the visual features according to the
following equation.

V (v)
f = Relu

 d∑
j

Wkj ∗ Gj + bk

 (1)

Here, V (i)
f ∈ R1×d represents the visual semantic expres-

sion extracted by the ResNet50 for vth image and d denotes
the number of hidden neurons in the dense layer. Also, Gj
indicates jth feature map generated by the global average
max-pooling layer, Wkj denotes the weight matrix, bk rep-
resents the bias vector for k th dense node, and Relu is the
activation function, respectively.

C. TEXTUAL FEATURE EXTRACTION
For textual feature extraction, we first transform the tweet into
a vector representation and then use an embedding layer to
obtain semantic representations (embedding features) of the
words. We then feed the embedding features to the BiLSTM
network, which produces the context-level feature vector for
individual words. Finally, the attention layer finds the most
significant textual features from this feature vector. We now
describe each of these steps in details.

1) TEXT TO VECTOR REPRESENTATION
In order to generate an initial vector representation of the
tweet, we first generate a numeric mapping of the words of
τ [] = {t1, t2, . . . , tM }, where ti represents a tweet/text. To get
this mapping, we first create a vocabulary (V ) consisting
of ν unique words as V = {uw1, uw2, . . . , uwν}. The ith

words in a tweet tj = [w1,w2, . . . ,wl′ ] is substituted by the
corresponding index number ((i)) of the words in V . By doing
so, a tweet (tj) is transformed into a sequence vector, s′ =
[i1, i2, . . . , il′ ]. However, at this point, the obtained sequence
vectors, S ′ = {s′1, s

′

2, . . . , s
′
M} have variable lengths (l ′),

which is not appropriate for feature extraction and training.
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FIGURE 2. Our proposed multimodal architecture for disaster identification: the upper block represents the visual feature extractor module and the
bottom block is the textual feature extractor module. Here, v and t indicates the preprocessed image and text respectively. The features extracted from
the two modules are passed through the deep level fusion and classification layer to classify the sample.

Therefore, we transform S ′ into fixed-length sequences,
S = {s1, s2, . . . , sM }, where a sequence (sk ) of S is a vector
of size l. We choose l = 150 empirically based on the
observation that most tweets in the dataset contain less than
100 words; therefore choosing such large number of dimen-
sions for the vector would allow us to sufficiently capture the
important information from different tweets.

2) EMBEDDING LAYER
After creating the initial vector representation S, it is neces-
sary to encode the semantic information of the words (wi) of
a tweet to a global vector sek . For this purpose, we first pass
each sequence vector sk in S into the Keras embedding layer
to obtain word embedding vectors (wei). We then simply
concatenate these word embedding vectors according to the
equation 2 to preserve the sequence of words.

sek = | Ewe1|| Ewe2|| Ewe3|| . . . .|| Ewel || (2)

Here, wei ∈ R1×ed represents the embedding vector of
the ith word. We keep the size of the embedding dimen-
sion large enough to capture the relationship between words
(ed = 100).

3) BiLSTM LAYERS
We apply the Bidirectional LSTM to generate a contextual
representation of the input text from both backward and

froward directions. Bidirectional LSTM [43] is an extension
of long-established LSTM RNN architecture which is suited
for abating the vanishing gradient problem that occurs due
to the long context size. The model process the tweet from
we1 to wel by the forward LSTM and from wel to we1 by the
backward LSTM. For each word wi, a forward LSTM gen-
erates the word feature Ehi, and a backward LSTM generates
the word feature Ehi using its memory blocks. The combined
features hi is calculated by Eq. (3).

h[p]i = Ehi ⊕ Ehi (3)

Here, h[p]i ∈ R1×2N denotes the BiLSTM feature generated
for ith word in the pth layer, where N represents the number
of hidden units in the LSTM cell. The⊕ is the concatenation
symbol.

4) ATTENTION LAYER
Generally, all words in a tweet do not contribute equally
in deciding whether the tweet should belong a particular
class. Therefore, we utilize the attention mechanism [44] to
emphasize on the most important words during the classifi-
cation. The attention mechanism assigns a weight attj to each
individual word feature hj of the BiLSTM layer with a focus
on the output labels. Finally, we perform a weighted sum
operation to generate an attentive feature vector avt of the
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t th tweet. More formally,

ei = tanh
(
W ∗ h[2]i + b

)
(4)

atti =
exp

(
eTi cw

)∑l
i exp

(
eTi cw

) (5)

avt =
∑
i

attih
[2]
i (6)

Here, l is the length of a tweet and h[2]i is the word fea-
ture vector obtained in the second BiLSTM layer, which is
passed to a two-layer neural network to get the ei as a hidden
representation of h[2]i .

The weight matrixW and bias vector b is initialized during
the neural network training. The influence of the words can
be measured by calculating the similarity between ei and a
randomly initialized word-level context vector cw. Afterward,
by using the softmax function a normalized weight atti is
obtained for eachword (i) in a tweet (t). The attention weights
for a tweet,

∑l
i atti = 1. The larger the weight of atti is, the

more significant the word for classification. Finally, the atten-
tive feature avt for a tweet is fed to a dense layer consisting
of d number of neurons. The output can be represented as in
Eq. (7).

T (t)
f = Relu

 d∑
j

Wkj ∗ avtj + bk

 (7)

Here, T (t)
f ∈ R1×d represents a d-dimensional feature vec-

tor that resembles the t th tweet feature, where d is the number
of hidden neurons in the dense layer. Correspondingly, Wkj,
bk , and Relu are represented as the weight matrix, bias vector,
and the activation function.

D. DEEP LEVEL FUSION AND CLASSIFICATION
In order to create a shared representation of both modalities,
we concatenate the output’s of the dense layer obtained from
the visual (Vf ) and textual (Tf ) modalities. To attain the deep
level representation, we utilize an early fusion approach [45]
which concatenate the visual and textual features. We use the
same number of hidden nodes (d) in the last dense layer of
both modalities. We select the same size to have an equal
contribution from both the visual and textual sides. We set
d = 200 empirically based on the highest accuracy on the
validation set.

Suppose, the dataset contains M number of posts, where
each post (Pi) consists of two types of information: visual
(vi), and textual (t i). The visual, and textual feature extractor
finds the visual, and textual feature as vectors V (i)

f and T (i)
f ,

respectively. Then, the fusion of these vectors is computed as
in Eq. (8).

FF (i)
= V (i)

f ⊕ T
(i)
f (8)

where FF (i)
∈ R1×2d is the concatenation (⊕) output of ith

visual and textual features. We then pass the fusion feature

TABLE 3. Hyperparameters value utilized for training of the proposed
model. Here, L-1, and L-2 represents the layer-1 and layer-2 respectively.

vector through the final hidden layer of n hidden neurons fol-
lowed by a softmax layer for the classification. Tomitigate the
effect of overfitting a dropout [46] layer is added before the
hidden layer. The process is illustrated in Eqs. (9) and (10).

F (i)
h = Relu

 n∑
j

Wqj ∗ FFj + bq

 (9)

Softmax( EFh)r =
e(Fh)r∑K
j=1 e

(Fh)j
(10)

Here, F (i)
h ∈ R1×n represents the final hidden layer output,

where n = 50. The parameters Wqj and bq are the weights
and biases of the hidden layer and K represents the number
of classes for the classification task.

E. MODEL HYPERPARAMETERS
We use the Keras tuner [47] to optimize hyperparameters
including learning rate and batch size. We first configure the
search space with different values for each hyperparameter
(e.g. optimizer, learning rate, etc.) and then leverage the
Hyperband [48] search algorithm to find the best hyper-
parameter values for the proposed model. The values are
adjusted based on their impact on the validation set perfor-
mance (i.e., accuracy). However, to reduce the computational
cost, other hyperparameters such as number of hidden units,
number of LSTM cells, dropout rate, and embedding dimen-
sion are not considered as those are empirically selected.
Table 3 shows the optimized hyperparameter values of the
proposed model.

The proposed model is compiled using the categorical
cross-entropy loss function and adam optimizer with a learn-
ing rate of 3e−3. Furthermore, the model’s training is per-
formed for 100 epochs with 64 instances at each iteration.
Additionally, the Keras checkpoint method has been utilized
to stop the over training of the model by observing the vali-
dation accuracy up to five consecutive epochs.

V. EXPERIMENTS AND ANALYSIS
In this section, we first describe the baseline models that
we compared with. We then present the comparative per-
formance analysis of the proposed approach with these
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baselines. Finally, we provide an in-depth error analysis along
with intrinsic performance analysis.

A. BASELINES
We consider three types of baselines based on the features
they use: (i) visual only, (ii) textual only, and (iii) visual +
textual.

1) VISUAL ONLY
For the visual (i.e., image) modality, we consider two state-
of-the-art pertained CNN architectures: VGG19 and Incep-
tionV3 along with the ResNet50 (Described in Section IV-B).
These architectures are used for a wide range of image clas-
sification tasks. A variant of the VGG [49] model, VGG19
consists of 19 convolutional layers using a fixed kernel of
size 3 × 3 at each layer. In contrast, InceptionV3 [50] is an
advanced version of GoogLeNet [51], having several incep-
tion modules. Each module is associated with a series of
stacked convolutional filters (1×1, 3×3, 5×5), making the
architecture more robust in learning with fewer parameters.
We excluded the top layers from both architectures and froze
the initial layers except the last 10 layers of the networks
to accomplish the task. We used the pre-trained weights of
the initial layers while we retrained the last 10 layers and a
global average max-pooling layer with new weights. Finally,
a softmax layer is added for the classification.

2) TEXTUAL ONLY
We apply the following deep learning models for classi-
fying the damage types using only the textual features:
BiLSTM [52], CNN [53], BiLSTM + CNN [54], and
BiLSTM + attention (A) [55]. We utilize the word embed-
ding features with each model. The Keras embedding layer is
initialized with the embedding dimension of 100 and settled
the input text length at 150. The calculated features are then
passed to every model.

TheBiLSTM network consists of one layer with 128 hidden
units. The final hidden state output of the BiLSTM layer is
transferred to a softmax layer for the classification. Similarly,
CNN architecture is constructed, having one convolutional
layer with 128 filters of kernel size 2 and a max-pooling
layer of window size 2. A flattening layer is added before
perform the softmax classification. Subsequently, BiLSTM+
CNN network is configured by stacking the BiLSTM and
CNN architecture with the same parameters. Eventually, the
output of the stacked network is passed to the softmax layer.
In another architecture, an attention layer is added after
the BiLSTM layer and creates BiLSTM + Attention model
(Described in Section IV-C4). The obtained attention vector
is then passed into a dense layer of 20 neurons, followed by
a softmax layer for the classification.

3) MULTIMODAL (TEXTUAL + VISUAL) BASED MODELS
We experimented with 11 different models for combining
text and image modalities, namely VGG19 + BiLSTM,
VGG19 + CNNText, VGG19 + BiLSTM + CNN,

VGG19 + BiLSTM + Attention, Inception + BiLSTM,
Inception + CNNText, Inception+ BiLSTM + CNN, Incep-
tion + BiLSTM + Attention, ResNet50 + BiLSTM,
ResNet50 + CNNText, and ResNet50 + BiLSTM + CNN-
Text. Instead of using a softmax layer at the end of each
model, a hidden layer of 200 neurons is placed. Subsequently,
the hidden layers from both visual and textual sides are
concatenated using the early fusion approach (Described in
Section IV-D) to produce a shared representation of both
modalities. We then pass the joint representation into a dense
layer of 64 neurons, followed by a softmax layer. After the
concatenation operation, we add a dropout layer (dropout
rate = 10%) to abate the chance of layer overfitting.

B. IMPLEMENTATION SETTINGS
All the visual and textual models are compiled using the
‘Adam’ optimizer with a learning rate of 1e−5 and 1e−4,
respectively. In cotrast, for multimodal case, the models hav-
ing VGG19 and Inception are utilized ‘RMSProp’ optimizer,
where the learning rate is settled at 1e−3. In contrast, multi-
modal models having ResNet50 are complied using ‘Adam’
(learning rate= 3e−3) optimizer. Other hyperparameters (i.e.,
loss function, batch size, epochs) and training configura-
tion (i.e., Keras checkpoint) kept the same as described in
Section IV-E.
Training and testing of the models are conducted on

the Google Colab platform using Python = 3.6.9. Mod-
els are implemented using Keras = 2.4.0 with Tensor-
Flow= 2.3.0 framework. For data preparation and evaluation,
pandas =3.6.9 and Scikit-learn=0.22.2 packages have been
used. We use 10% of the training dataset for validation and
the remaining data for training. Finally, the trained models
are evaluated using the test set instances.

C. RESULTS
For performance comparison, we use precision (P), recall
(R), and weighted F1-score. For efficient comparison of the
model’s performance across different classes, the misclassi-
fication rate has been used as one of the measures. We use
the weighted F1-score metric to determine the superiority of
the models. However, we also report P, R, and MR for deeper
analysis of themodel’s performance on the individual classes.
Table 4 shows the results of both unimodal (textual only

and visual only) and multimodal (textual+visual) models.
We observe that among the models that utilize the visual
modality only, VGG19 and ResNet50 perform slightly better
than the Inception model in terms of weighted F1. Textual
models perform better than their visual only counterparts.
Among them, the CNNText and BiLSTM+CNNText per-
form similarly. Interestingly, the performance is dramatically
increased by 3.18% when the Attention is incorporated with
BiLSTM (BiLSTM+Attention) compared to the BiLSTM
only model. Overall, this suggests the usefulness of incorpo-
rating attentionmechanism for our disaster type classification
task.
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TABLE 4. Performance comparison of different unimodal and multimodal models on the test set. Here, P, R, and WF denotes the precision, recall, and
weighted F1-score respectively.

TABLE 5. 5-fold cross validation results on the training set. Here, WF and
Std denotes the weighted F1-score and standard deviation respectively.

Among the models that aggregate both visual and textual
features, only two models performed better than the best
unimodal counterpart (BiLSTM+Attention). In particular,
the multimodal model (VGG19 + BiLSTM + Attention)
showed a noticeable rise in WF-score (89.19%). Our pro-
posed method (ResNet50 + BiLSTM + Attention) achieves
state-of-the-art result by achieving the highest WF-score of
93.21% with a margin of 4.02% over VGG19 + BiLSTM +
Attention.

To verify the efficacy of the of the models’ performance,
we performed 5-fold cross validation [56]. The cross val-
idation has been performed with seven models including
the proposed (ResNet50+BiLSTM+Attention), best visual
(ResNet50), best textual (BiLSTM+Attention), and best four
multimodalmodels (such as ResNet50+BiLSTM+CNNText,
Inception+BiLSTM+Attention, ResNet50+BiLSTM, and
VGG19+BiLSTM+Attention). The results of cross-
validation for these models are shown in Table 5. The results
exhibits that the proposed model achieved the highest mean
weighted f1-score of 93.10%with a deviation of 0.36031. The
standard deviation and mean values of the models revealed
that the different split of the dataset has not significant impact
on the model’s performance.

1) INVESTIGATING CLASSIFICATION REPORTS
To obtain deeper insights about the performance of different
models on the individual classes, we examine their classifi-
cation reports (Figure 3). In the case of the best visual model

(ResNet50), DI, HD, and ND classes obtained the high preci-
sion values (0.804, 0.736, 0.891) and low recall scores (0.770,
0.666, 0.872) (shown in Figure 3(a)). These results indicate
that some instances of each class are incorrectly identified as
other classes. In contrast, the DN, Fires, and Flood classes
attain high recall and low precision scores. We also notice
that the classes such as DN, Flood, and HD have relatively
low f1-scores of 0.632, 0.72, and 0.70 respectively, compared
to the DI (0.787), Fires (0.846), and ND (0.881). In the case
of the best textual model (BiLSTM + Attention), the overall
performance is increased across various classes as depicted
in Figure 3(b). However, he f1-score of the Fires class is
surprisingly reduced from 0.846 to 0.75, which suggests that
visual information is more critical than the textual one for this
particular class. Finally, in the case of the proposed model,
the precision and recall score of all the classes are improved
by considerable margins compared to the best textual model
(BiLSTM+Attention).
Overall, The results showed that the proposed approach

(ResNet50 + BiLSTM + Attention) outperformed all the
visual, textual, and multimodal models in classifying the dis-
aster information. ResNet50 obtained the highest WF score
among the visual models, while BiLSTM+Attention attained
the maximum WF score among the textual only models.
We also notice that models that utilize both textual and visual
features do not necessarily improve the performance over the
textual only models. This indicates that the superior perfor-
mance of our model was primarily due to the incorporation
of attention in the textual modality side which effectively
captures the input text.
To analyze further the cases where our model makes a

difference, Figure 4 shows the confusion matrices of different
models. We notice that the visual only model (ResNet50)
wrongly classified 18 instances as ‘Non Damage class’
(ND) out of 144 instances of ‘Damage Infrastructure’ (DI)
in Figure 4(a). In contrast, the textual and proposed mod-
els incorrectly predicted 6 and 3 instances, respectively
(Figures 4(b) and 4(c)). These results indicate out that the
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FIGURE 3. Classification report of the best visual (ResNet50), textual
(BiLSTM+A) and proposed multimodal (ResNet50+ B + A) models. M. avg
and W. avg denotes the macro and weighted average values, respectively.

fusion of both modalities’ information aids the proposed
model to comprehend the ‘‘Damage Infrastructure (DI)’’ cat-
egory better, thus significantly curtail the prediction errors.
A different phenomenon is noticed where the predicted label
is ‘‘Fires’’ but the actual label is ‘‘Non Damage’’. In partic-
ular, the textual model did not misclassify a single instance
in Figure 4(b) whereas the visual and multimodal models
wrongly classified 5 and 3 instances in Figure 4(a) and 4(c),
respectively. This suggests that for certain categories, uni-
modal models can be more effective and further investigation

FIGURE 4. Confusion matrices of the best visual (ResNet50), textual
(BiLSTM + Attention) and proposed multimodal (ResNet50 + BiLSTM +

Attention) models.

is required to address the noise that maybe introduce when
two modalities are combined.

Figure 5 compares among the proportion of instances that
are misclassified in different classes. We notice that most
of the mistakes made by the best visual model (ReNet50)
with ‘‘HD’’ (33%), ‘‘DN’’ (32.72%), ‘‘Flood’’ (25%), and
‘‘DI’’ (23%) categories. In contrast, the misclassification
rate for ‘‘ND’’ (12.71%) and ‘‘Fires’’ (10.8%) classes are
comparatively lower than others, which is also evident from
Figure 4(a) where the number of misclassified instances are
shown. Concerning the textual model (BiLSTM+Attention),
we observed that the MR is reduced for almost every class
except the ‘‘Fires’’ class (rise from 10.8% to 35%). Never-
theless, MR for the textual model is decreased by a more
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FIGURE 5. Error rate analysis of the individual classes with different approaches.

significant margin of approximately 10%, 12%, and 29%
respectively for ‘‘ND’’, ‘‘Flood’’, and ‘‘HD’’ classes. Finally,
the proposed model produced fewer mistakes across different
classes (also shown in 4(c)). While with the ‘‘ND’’ category,
MR increased by approximately 1% (from 1.74% to 2.74%)
compared to the textual model, other classes experienced a
considerable drop of approximately 5% (DI), 15% (DN), 30%
(Fires), and 5% (Flood), respectively.

2) QUALITATIVE ANALYSIS
Table 6 shows example samples along with outputs from
different models. Overall, these outputs illustrate the need for
combining two modalities. For example, in Table 6 sample
(1), the visual model wrongly classifies the image into the
‘‘Damage Nature (DN)’’ class since the image contains some
trees and leaves. The text only model also classify the image
as DN because of the presence of words like ‘#fallentree’
and ‘#treebranch’. However, when features from these two
modalities are combined together, they do not provide any
insightful evidence for the model to infer this image-text data
pair as ‘‘DN’’ anymore. Likewise, in Table 6 sample(4), the
visual model classifies the image as ‘‘Damage Infrastructural
(DI)’’, and the textual model also makes incorrect prediction
due to the presence of theword ‘#buildingcollapse’. However,
fusing information from both modalities leads the predict the
‘‘Fires’’ category correctly. Finally, in Table 6 sample (5), the
visual model consider the image as ‘‘DI’’ because it shows
broken roads like patterns, whereas the textual model reckons
the text is from the ‘‘Flood’’ class as it mentions words
related to flood such as ‘#flood’ and ‘#tsunami’. However,
the proposed multimodal model conjoined the information
coming from both modalities and yielded the correct predic-
tion (i.e., ‘‘DamageNature’’). Overall, these analyses confirm

the suitability of the proposed multimodal approach over the
other models in classifying the damage information.

3) INTRINSIC PERFORMANCE ANALYSIS
To further understand the possible reason for this superior
performance of our proposed approach over other models,
we performed an intrinsic performance analysis. In this anal-
ysis, we focus on how the attention layer impacts the per-
formance of the proposed method by comparing with its
counterpart (ResNet50+BiLSTM), where the only difference
is the absence of the attention mechanism.

Figure 6 shows the feature visualization of the two mul-
timodal models (with and without attention). The projected
data points are obtained after applying the principal compo-
nent analysis (PCA) [57] on the extracted hidden features.
We observe that the multimodal model without attention
(Figure 6 (a)) did not separate all the classes accurately as
plenty of overlaps are visible among the classes such as
‘‘Non-Damage (ND)’’, ‘‘Damage Infrastructural (DI)’’, and
‘‘Damage Nature (DN)’’. On the other hand, when the model
adds the attention layer in the text modality side of the
same multimodal model, a noticeable difference is observed
(Figure 6 (b)). Incorporation of the attention layer made the
classes like ‘‘ND’’, ‘‘Fires’’, ‘‘DI’’, and ‘‘DN’’ are more
separable and thus enhances the performance across different
classes.

4) PROPOSED VS EXISTING METHODS
As per this work exploration, no significant work has been
conducted over the multimodal dataset used in this research
except the work done by [7]. However, the past study is
not exactly comparable with the proposed method due to
the differences in evaluation measures and dataset distribu-
tion. Therefore, for the comparison, we adopt several recent
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TABLE 6. Example image and tweet text pairs where model aggregation of the input modalities produce better results. The symbol (X) and (7) indicates
the correct and incorrect prediction respectively.

techniques that have been explored on similar tasks. For
uniformity, existing methods [7], [8], [11], [18], [21]–[23],
[29] have been implemented on the same dataset including
the proposed method.

Table 7 shows the result of the comparison.
Mouzannar et al. [7] developed a multimodal model, where
they used a pre-trained Inception model for image modality,

and a convolutional neural network [58] for textual modality.
By replicating their architecture, we obtained a WF-score of
92.21%. Ofli et al. [8] utilized VGG16 + CNNText which
has achieved a WF-score of 75.11%. Kumar et al. [11]
appliedVGG16 (for image)+LSTM (for text) and obtained a
WF of 77.84%. Three other works [21]–[23] are implemented
considering only the textual modality, where custom and
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FIGURE 6. Scatter plots of test input features extracted by the multimodal
models (a) without attention layer and (b) with attention layer.

TABLE 7. Results of comparison concerning WF-score.

pre-trained CNN’s are applied. These three methods also
achieved the WF-scores of below 80%. Another work [18]
employed logistic regression classifier for the text-based
classification and achieved an 86.05% WF-score. The com-
parative analysis illustrates that the proposed technique
outperformed the existing works by achieving the highest
WF-score of 93.21%. In particular, it is almost 1% higher
WF-score than the multimodal (92.14%) [7] method and 7%
higher than the unimodal (86.05%) [18] technique.

VI. CONCLUSION
We have presented a multimodal approach that can effec-
tively learn from the image and text data to classify
the damage-related contents from Twitter. We utilize the
pre-trained ResNet model for visual feature extraction and

the attention mechanism with a BiLSTM model to extract
the tweet features. The early fusion approach is used to
aggregate both modalities’ features. Besides, this work inves-
tigated various visual (i.e., VGG19, Inception) and textual
(i.e., BiLSTM, CNN, BiSTM+CNN, BiLSTM+Attention)
approaches for the baseline evaluation and constructed sev-
eral multimodal models by exploiting them. The evaluation
results revealed that the proposed model outperforms the
baseline unimodal (i.e., image, text) and multimodal models
by acquiring the highest weighted F1-score of 93.21%.More-
over, the comparative analysis illustrated that the proposed
method outcome is approximately 1% and 7% ahead of the
existing start-of-the-art models. Thus, the results confirmed
the effectiveness of the proposed method in identifying the
disaster content based on multimodal information. The error
analysis further showed that it is difficult to identify the
damage and non-damage contents by analyzing only one
modality. At the same time, intrinsic performance analysis
elucidated that incorporating an attention mechanism boosts
the overall performance.

Despite achieving better performance than unimodal
approaches, there are still rooms for improving the proposed
method. In the future, we would like to explore different
multimodal fusion approaches along with multitask learning
technique for the disaster identification task. Besides, we aim
to capture the combination of visual and textual features more
effectively by employing the state of the art visual (i.e., Vision
transformer [59]), textual (i.e., BERT [60], XLM-R [61]),
and multimodal (i.e., VL- BERT [62], Visual BERT [63])
transformer models.
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