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ABSTRACT This work presents the design, implementation, and feasibility evaluation of a Motor
Imagery (MI) based Brain-Computer Interface (BCI) developed to control a Functional Electrical Stimu-
lation (FES) device. The aim of this system is to assist the upper limb motor recovery of patients with
spinal cord injury (SCI). With this BCI-controlled FES system, the user performs open and close MI with
either the left or right hand, which if detected is used to provide visual feedback and electroestimulation
to muscles in the forearm to perform the corresponding grasping movement. The system was evaluated
with seven healthy subjects (HS group) and two SCI patients (SC group) in several experimental sessions
across different days. Each experimental session consisted of a training routine devoted to collect calibration
EEG data to train the BCI machine learning model, and of a validation routine devoted to validate system
in online operation. The online system validation showed an accuracy of the recognition of the MI task
that ranged between 78% and 81% for HS participants and between 63% and 93% for SCI participants.
Additionally, the time taken by the BCI system to trigger the FES device ranged between 7.05 and 7.29 s for
HS participants and between 8.43 s and 13.91 s for SCI participants. Finally, significant negative correlations
were observed (r = −0.418, p = 0.024 and r = −0.437, p = 0.018 for left and right hand MI conditions,
respectively) between the online BCI performance with a quantitative EEG parameter based on event-related
desynchronization/synchronization analysis. The results of this work indicate the feasibility of the proposed
BCI coupled to a FES device to be used for SCI patients with a moderate level of disability and provides
evidence of the functionality of the proposed BCI system in a motor rehabilitation context.

INDEX TERMS Brain-computer interface, spinal cord injury, motor rehabilitation, functional electrical
stimulation, motor imagery, electroencephalography.

I. INTRODUCTION
Spinal cord injury (SCI) is a chronic neurological disorder
that is estimated to affect 27 million people worldwide [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Vivek Kumar Sehgal .

Patients with SCI suffer a significant loss of neuronal func-
tions, specially in their sensorimotor functions, which sig-
nificantly diminishes their quality of life [2]–[4]. Indeed,
for some patients with chronic and severe SCI stages, these
motor deficits might increase over time resulting in progres-
sive muscle deterioration and the development of spasticity,
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affecting even more the residual motor capacities [5]–[7].
Different motor rehabilitation therapies have been developed
for the treatment of SCI [8], [9]. These therapies aim to
promote the process of neural plasticity that restores totally or
partially the communication pathways between the nervous
system and the muscles [10], [11].

One of the main application of brain-computer inter-
face (BCI) technology is related to its use in the context
of rehabilitation for patients suffering from communication
and motor disabilities [12], [13] since this technology allows
translating patients’ intentions modulated as changes in elec-
trophysiological brain activity, into control commands for
an external device. To do so, BCI systems can use Motor
Imagery (MI) as a paradigm to produce these changes in
brain activity. In theMI paradigm, the user mentally rehearses
movement without physical activity. This induces power
changes in frequency bands of EEG signals obtained mainly
from the sensorimotor brain cortex [14], [15]. BCI sys-
tems might be an effective tool to provide an alternative
non-muscular communication channel to trigger rehabilita-
tion devices for patients with motor impairments [16]–[19].
Furthermore, electroencephalogram (EEG) based BCI have
become a non-invasive option to control devices, such as a
robotic orthosis and a functional electric stimulation (FES)
device, for use in SCI rehabilitation therapies [20]–[24].

Several previous works such as case-reports, proof-of-
concept and reviews have reported BCI coupled to FES
systems controlled with MI for SCI patients [25]–[33], show-
ing the great potential of these experimental therapies for
increasing the motor function of paralyzed limbs. For exam-
ple, in [25], the case study demonstrated the potential of a
BCI coupled with a combination of orthosis and FES for
the restoration of hand, finger, and elbow function of a sin-
gle limb. This was possible in users with a high level of
SCI even if only a moderate BCI performance (70.00% ±
11.91%) is achieved after extensive training. In [28], the
potential outcomes of neurological and motor functions of
seven SCI patients using a BCI-controlled FES system to
perform hand movements were compared with five SCI
patients using only the FES system (while EEG signals were
collected). Neurological and motor function outcomes were
evaluated before and after 20 sessions of the intervention.
Both groups presented cortical ERD activity, however, only
the BCI group showed restored ERD activity resembling the
ERD activity of non-disabled people. In addition, the BCI
group showed a greater gain in muscle strength in the hand
compared to the FES-only group. According to the authors,
these findings showed that BCI-FES should be considered
as a therapeutic tool for motor rehabilitation. However, BCI
performance results were not reported in this study. In [29],
this proof-of-concept study evaluated a FES system designed
to incorporate voluntary movement attempts through the use
of BCI. The BCI used power changes from a single EEG
signal (compared against a predetermined threshold) as a
feature to control FES activation. The experiments were con-
ducted in a single session by five healthy participants and

a SCI patient and were performed in a non-therapeutic con-
text. The overall participants classification accuracy obtained
was 90.8% while the SCI participant classification accuracy
was 87.5%.

Despite these promissory findings, there are still some
open issues regarding the development of robust brain-
controlled applications. Some of these issues are the capacity
of the system to interpret with high accuracy the movement
intentions made by the user, the processing time of brain
signals, and performance stability in long-term scenarios
[30], [34]. In the case of MI-based BCI systems for SCI
survivors, a major step towards their development and usage
in clinical settings is the evaluation of this technology in
rehabilitation scenarios. Addressing these challenges will
improve the understanding of the feasibility of using BCI in
a therapeutic setting. Therefore, there is still the need to pro-
vide spinal cord injury survivors with novel brain-computer
interfaces to promote the rehabilitation and recovery of the
upper limb functionality.

In this work we present the implementation and validation
of a motor imagery (MI) based brain-computer inter-
face (BCI) coupled with a functional electrical stimula-
tion (FES) device, which aims to assist people with SCI
to perform grasping movement with either hand in clinical
rehabilitation interventions. The system is first calibrated to
be able to recognize between left MI, right MI and rest using
a machine learning model consisting of filter bank common
spatial patterns (FBCSP) for feature extraction and a regular-
ized linear discriminant analysis (RLDA) as classifier. The
system can be then used in an online (real-time) experimental
paradigmwhere the user performs the graspingMIwith either
the left or right hand, and when this is correctly detected, it is
used as a command to provide visual feedback and to activate
the FES system to perform the corresponding hand grasping
movement. Because the purpose of this system is to be used
in therapeutic settings to promote motor rehabilitation, the
feedback and FES activation are executed only if the BCI
correctly identifies the requested MI task to the user. The
system was evaluated in clinical settings with seven healthy
participants (HS group) and two SCI patients (SC group).
Each participant used the system in several experimental ses-
sions across different days. The results showed that all partic-
ipants used the system successfully with average accuracies
of about 80% for both groups and average activation times
of the FES system of about 7.2 s and 10.6 s for the HS and
the SC group, respectively. In addition, the ERD/ERS showed
the existence of significant task-related oscillatory activity
along the experimental sessions and that this activity can be
used to compute a potential quantitative score to measure the
relationship between the power increase or decrease of such
oscillatory activity with the BCI accuracy and FES activation
times.

The contributions of this work are a novel MI-based
BCI controlled FES device for rehabilitation of the hand
of patients with motor disabilities, the systematic eval-
uation of its performance in clinical settings through
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several experimental sessions with healthy participants
and SCI patients, and the proposal and evaluation of a
quantitative parameter based on the event-related desyn-
chronization/synchronization that might be used to correlate
underlying motor-rhythms with the BCI system perfor-
mance. The rest of this paper is organized as follows.
Section 2 describes the hardware and software components
of the BCI-controlled FES system, the experimental setup
and the data analysis methodology; section 3 presents the
experimental results and section 4 discusses the implications
of the results and the conclusions derived from this work.

II. METHODS AND MATERIALS
A. SYSTEM OPERATING PRINCIPLE
The context of use of the proposed BCI-controlled FES
system (see figures 1 and 2) is in clinical rehabilitation inter-
ventions to promote motor rehabilitation of the hands partic-
ularly of people with SCI. The system operation consists of
detecting from the ongoing EEG signals whether the user is
imagining the graspingmovement of left or the right hand and
activating the FES to move the corresponding hand. The BCI
must be first calibrated (see upper plot of figure 3) to be able
to recognize the MI task the user will be performing in reha-
bilitation interventions. In specific, the system uses amachine
model aiming to recognize between three conditions, rest,
left MI and right MI from the ongoing EEG signals. Once
the machine learning model has been learned, the system can
be used in online in a controlled paradigm (see lower plot
of figure 3) where the user performs the grasping MI with
either the left or right hand as instructed by the system. When
the MI task is correctly detected, the system provides visual
feedback and activates the FES to perform the correspond-
ing hand grasping movement. However, if the MI task the
user is performing is not detected within a predefined time
interval, no visual feedback is provided and the FES is not
activated. This operation paradigm was decided because the
purpose is to use the system in therapeutic settings where the
mental rehearsal of movement and the subsequent visual and
sensorimotor feedback is key to promotemotor rehabilitation.

B. BCI-CONTROLLED FES SYSTEM
Figure 1 shows the experimental setup for the proposed
BCI-controlled FES system, and the users interaction with
it. The main components of the BCI-driven FES system are
(i) An EEG recording system, (ii) A FES system, (iii) A visual
user interface and a real-time processing software.

1) EEG RECORDING SYSTEM
The EEG recording system (g.LADYbird active wet electrode
arrangement and a g.USBamp amplifier from g.tec medical
engineering GmbH, Austria) consists of twelve monopolar
electrodes, placed according to the 10-10 international system
at positions FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4,
P3, Pz, and P4. These EEG electrodes were chosen because
they are located over the left and the right motor cortex.

The ground electrode was located at AFz, and the reference
electrode on the right earlobe. The sampling rate for all EEG
signals was 256 Hz.

2) FUNCTIONAL ELECTRICAL STIMULATION (FES) SYSTEM
The FES system consits of a the stimulator MOTION-
STIM8 (Medel GmbH1, Hamburg, Germany). This device is
a current-controlled stimulator designed for motor rehabilita-
tion applications [35], [36]. There is a detailed description of
the MOTIONSTIM8 and its functionality in [37]. To com-
municate the FES device with the BCI, a serial communi-
cation protocol was used with a baud rate at 38400. This
communication allowed the transmission of BCI-generated
commands to the FES device for the selection and activation
of muscular electrostimulation routines that reproduce the
grasping movement, independently, for each of the user’s
hands. The FES routine was executed with 2 bipolar chan-
nels applied per forearm in order to inject current (having
a pulsed, square waveform) into each forearm extensor and
flexor muscles. FES parameters such as current amplitude
(ranging between 10 and 25mA), stimulation frequency of
30Hz, and the pulse width of 300 µs, as well as electrode
placements were configured at each experimental session in
order to elicit the desired hand-grasping movement in a com-
fortable way for the subject. The stimulation train attempted
to recreate the grasping movement of the hand. Therefore,
the stimulation train consisted of a trapezoidal curve, with
4s-long ascent ramp, 1s-long on the plateau and 1s-long
descent ramp applied in the flexor digitorum superficialis
followed by another 6-long trapezoidal curve applied in the
extensor digitorum communis.

3) VISUAL USER INTERFACE AND PROCESSING SOFTWARE
The visual user interface aims to guide the users through the
experiment and to provide them a visual feedback based on
their BCI performance. The visual interface was displayed
on a computer screen located in front of the user and fully
instructed on how to interact with the system. The real-time
processing software provided the processing pipeline which
was composed of several stages such as the processing of
the EEG signals, the feature extraction and the classification
model, the synchronization and control of the visual user
interface, and the communication with the FES device. This
real-time processing software is embedded in a personal com-
puter, and this computer is connected to the EEG acquisition
system and to the FES device. The software elements of
this system, including the visual user interface and all signal
processing steps, were implemented using C++ language.
The processing pipeline provided by the software is presented
in detail in the next subsection.

C. PROCESSING PIPELINE
To recognize an user’s MI task with the BCI it was necessary
to execute a processing sequence in order to extract relevant
information from the acquired EEG signals. This process-
ing pipeline is displayed in Figure 2. Firstly, in operation
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FIGURE 1. Illustration of the experimental setup of the MI-based BCI-controlled FES system. The system consisted of (i ) an EEG recording system
(12 active EEG wet channels placed on the central and parietal EEG electrodes according to the 10-20 system), (ii ) an FES system (2 bipolar channels
placed on each of the user’s forearms, 4 FES channels in total), (iii ) a visual user interface and a real-time processing software (no seen in the picture).

the system uses a 1.5s-long EEG data segment (i.e., EEG
epoch). On this epoch, the pre-processing stages and feature
extraction techniques were applied. After that, a classification
model evaluated the extracted features to generate the label
that represented the class of the processed epoch (left hand
movement imagination, right hand movement imagination
or non-movement). An additional class (artifact) was also
considered to indicate if an EEG epoch was contaminated
by noise or muscle artifacts. Finally, the BCI processed this
label to determine whichmovement task was generated by the
user. If a MI task was determined, the BCI sent the respective
control signal to the FES device. A time step of 0.2 s was used
for the generation of a newEEG epoch and its processing. The
processing pipeline was based on the classification approach
described in [38].

1) EEG PRE-PROCESSING
After EEG acquisition, EEG epochs were filtered using FIR
filters with cut-off frequencies between 4 − 40 Hz which
encompasses the motor-related frequency bands of the oscil-
latory EEG activity The result of this filtering step were
signals X4−40

= [x4−40ch (t)] ∈ Rnch×nt , where ch repre-
sents the channel EEG position ch = 1, 2, 3, 4, .., nch, nch
is the number of EEG channels, t is the time index t =
1, 2, 3, 4, .., nt , and nt is the number of samples (384 samples
per EEG epoch). Afterwards, the artifact rejection stage was
applied as suggested and applied in [34], [38]. This stage

allowed to verify if the EEG epoch was not contaminated by
muscle, SQUID jump artifacts and other noise sources. To do
this, the BCI system used two criteria to determine if epochs
were rejected: (i) the peak-to-peak voltage vppch :

vppch = maxt (x
4−40
ch (t))− mint (x

4−40
ch (t)) (1)

and (ii) the standard deviation σch:

σch =

√√√√ 1
nt − 1

nt∑
t=1

(x4−40ch (t)− µch)2, (2)

where,

µch =
1
nt

nt∑
t=1

x4−40ch (t) (3)

The thresholds for the rejection criteria were vppch ≥ 200µV
and σch ≥ 50µV . The BCI system labeled as ‘‘artifact’’ and
discarded for feature extraction any epoch with at least one
channel with higher values in any threshold criteria. Those
EEG epochs that approved rejection criteria were used in the
next processing stages.

2) FEATURE EXTRACTION
The BCI system employed a Filter Bank Common Spatial
Pattern algorithm (FBCSP) to recognize between rest, left
MI and right MI. FBCSP allows to compute optimal spatial
filters to extract features for classification of EEG signals
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FIGURE 2. Schematic of the BCI-FES system architecture and processing pipeline. The operation of this system involves the execution of five
consecutive steps before to sent a control signal to the FES device and display a visual response to the user: (i ) EEG acquisition, (ii ) the EEG
preprocessing stage performs, EEG temporal segmentation, noise reduction and artifact suppression functions, (iii ) the feature extraction stage obtains
discriminative information from the preprocessed signals using a FBCSP algorithm, (iv ) The classification stage used a RLDA classifier to discriminate
the MI state, and (v ) the control interface transforms the obtained labels and indices into control messages that are sent which are sent to the FES
system. This component also updates the graphical user interface providing direct feedback to the user.

and is highly used for the decoding of different motor-related
tasks [39], [40]. FBCSP is an approach for feature extraction
based on the common spatial pattern (CSP) algorithm. The
feature extraction procedure implemented in the proposed
BCI comprises three sequential stages: (i) filter bank for
multiple frequency band selection, (ii) spatial filtering in each
frequency band using CSP, and (iii) feature selection. This
feature extraction procedure was applied independently to the
binary conditions rest versus left MI, rest versus right MI, and
left MI versus right MI.

The filter bank separates each pre-processed 1.5s-long
EEG epoch (i.e., 384 samples) into multiple frequency bands.
In total, 27 band-pass FIR filters of size 128 samples are
applied to each EEG channel, with each filter having a
central frequency between 4 and 30 Hz to encompass the
motor-related frequency bands of the oscillatory EEG activ-
ity. To avoid edge effect contamination due to the filtering
process, the first and last 64 samples of the filtered EEG
signals were removed. Therefore, the signals provided by the
filter bank are of 256 samples or 1s-long.

The CSP algorithm is then applied to the EEG signals of
each frequency band in each pair of conditions in an one ver-
sus one strategy (i.e., CSP is applied separately to rest versus
left MI, rest versus right MI, and left MI versus right MI).
With the CSP algorithm, linear projections were computed
from filtered EEG signals which increased the separability
of binary conditions or classes in the new projected signals
[41], [42]. Therefore, the CSP technique maximized the vari-
ance of the projected signals for one condition meanwhile

minimized the variance for the other condition. Afterwards,
The log-variance of the filtered signals was computed for all
spatial filtered epochs.We used three spatial filters in the CSP
algorithm in accordance to prior studies [43]. This resulted in
6 log-variance values per each of the 27 frequency bands, that
is, the total number of features is 162.

Finally, to reduce the number of features we applied the
filter approach for feature selection. Here, each feature was
ranked based on the Fisher score and then we selected the
50 highest-score features. This filter-based feature selection
procedure is applied separately to the set of features obtained
from conditions rest versus left MI, rest versus right MI, and
left MI versus right MI.

3) CLASSIFICATION MODEL
The classificationmodel aimed to recognize between rest, left
MI and MI (i.e., three classes) based on features computed
from EEG epochs. This classification stage was applied only
to EEG epochs that approved the artifact rejection process,
that is, since contaminated EEG epochs were labeled as
‘artifacts’ in the pre-processing, therefore they were not used
by the processing pipeline to recognize the MI task. The
classification model relied on a Regularized linear discrim-
inant analysis (RLDA) algorithm [44], [45] as this classi-
fier is commonly employed in MI-based BCI applications
[46]–[48]. Since RLDA is a binary-class model and
because our BCI system distinguished between three classes
(i.e., rest, left MI and MI), the RLDA model was employed
in a multiclass model version using a one versus one voting
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scheme. For this scheme, the classification stage was trained
using K (K − 1)/2 binary classifiers to solve a K-way
multiclass problem [49]. In this work we used the RLDA
with automatically regularized covariance and therefore no
hyper-parameter tuning is required [50], [51].

4) INTERFACE CONTROLLER
The resulted label or category by the RLDA model could be
used to trigger the FES routine and/or the visual feedback to
the user. However, there was a chance of a mis-classification
due to the fact that the classification accuracy is unlikely to
reach 100% resulting in a high risk of executing an unin-
tended action for the user. Therefore, to avoid a possible
classification error, the system computed a successive history
of labels to establish if there was enough evidence to assert
that the user was performing a determined MI task.

This process was executed by the interface controller stage
which received the labels generated by the RLDA model and
determined if the FES device had to be activated. In addition,
after determining which user’s motor task were produced, the
interface controller generated the commands to trigger the
respective FES routine. When the trained RLDA model gen-
erated a label, the interface controller computed the number
of times each possible option had been classified. Only if the
last five labels generated by the classificationmodel belonged
to the same class, the interface controller selected the option
associated to that class, triggered the corresponding FES rou-
tine and provided the visual feedback. Finally, after the FES
routine was executed the system was restarted for processing
another selection. If the same five consecutive labels were
not reached, the interface controller expected a new generated
label and dismissed the oldest label.

5) TRAINING SYSTEM ROUTINE
The operation of the BCI required a set of processing steps
(EEG preprocessing, feature extraction, classification model
and interface controller) in order to determine when the
mental task is done. To perform these processing steps, the
system provided a training routine inwhich the user generated
the MI task while the BCI recorded the user’s EEG signals.
This routine replicated the operational conditions of the BCI
without activating the FES stimulator.

In the training routine, users were guided (see upper plot
of figure 3) by three visual cues presented on the screen and
a visual feedback (tracking ball). Firstly, the user watched for
5 seconds a fixation cross that indicated a relaxation period.
Participants were asked to avoid movement or effort and to
keep relaxed while looking at the cross. Secondly, a cue was
displayed showing an arrow pointing either to the left or
the right instructing the user to imagine the movement of
the corresponding hand during fifteen seconds (movement
imagination phase). The arrow was presented in a random
fashion but the number of times for left and right MI was
kept balanced. In addition, a beep sound was generated as
a complementary auditory cue. During this time, the visual
feedback (blue tracking ball) moved according to the arrow

direction and indicated which MI task had to be performed
(without a relationship with the classification output of the
system).

Finally, the last cue was an image with the text ‘‘rest’’ and
indicated users to rest, move voluntarily or blink, and this
rest period had a random duration that ranged from 4 to 6 s
to prevent habituation. In total, in an experimental session,
one run with 30 trials was recorded for all participants, with
15 trials for each condition (left or right grasping hand motor
imagery). Note that the data collected during this training
routine is used to train the machine learning model (FBCSP
and RLDA) that will be used in the online operation of the
system, but also to estimate the accuracy of such model using
a cross-validation procedure.

D. SYSTEM VALIDATION
1) EXPERIMENT DESCRIPTION
Experiments in clinical settings with several users were
conducted to evaluate the performance and usability of the
BCI-controlled FES system. The experiments were carried
out in a sound-attenuated room at the National Institute of
Rehabilitation ‘‘LGII’’. Healthy subjects seated in front of
a computer screen, with a table in front for resting their
arms. Patients’ wheelchairs were accommodated in front
of the table, and the computer screen was placed in front
of them. Participants (healthy subjects and patients) softly
grasped a therapeutic ball in each hand. Before starting the
experiments, participants were instructed how they should
perform different tasks and were asked to avoid unnecessary
movements when they had to pay attention to the interface.
Flexibility exercises were provided to patients’ hands by the
same physical therapist before the BCI session started.

The experimental task consisted of imagining the gripping
action of the left or right hand and was guided by visual cues
presented on the screen. To do this, an experimental session
was splitted in two stages: (i) training system routine (see
description above and in the upper panel of figure 3) and
(ii) Online system validation (described below). Note that an
experimental session is an experiment carried out in a single
day where the user employs the BCI system to control the
FES apparatus. In this session, the training of the BCI system
is first carried out which is followed by the online validation.

2) ONLINE BCI VALIDATION
To evaluate the BCI-driven FES system in online, participants
performed a validation routine in which the FES activa-
tion was generated only if the BCI system recognized the
requested MI task. The lower plot in figure 3 shows the time-
line of the online BCI validation. In this case, the participants
performed similar tasks as the ones carried out in the training
routine. Again, the visual interface presented a fixation cross
during five seconds to indicate the starting of a validation
trial, followed by the presentation of the target option (with
the arrow and beep sound). Then, the participant performed
the requested MI task and the BCI system attempted to detect
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FIGURE 3. Description of the training (top) and validation (bottom) routines of the BCI system. Users were asked to follow
a series of indications to carry out the MI task indicated by the BCI system. There is no activation of the FES system during
training, while during validation routine the FES system is activated as long as the MI task performed by the user is
correctly detected as the one indicated by the BCI system.

this task. Meanwhile, the visual feedback (tracking ball)
started moving according to the output of the classification
model. If the requested MI task was detected by the BCI in
less than 30 seconds, the FES routine was activated in the
targeted forearm and the tracking ball was colored in blue
and located to the correct side of the MI task. On the other
hand, if the BCI system did not recognized the correct MI
task, the FES routine was not activated and the tracking ball
returned at the center of the screen. Finally, the third cue that
corresponded to the rest time was presented to participants
during a random interval between 4 to 6 s before starting
another trial. In an experimental session, three runs with
20 trials were recorded for all participants, yielding a total
of 30 trials for each MI condition (see in the lower plot
of Figure 3 the timeline of one of these trials). Hence, the
total maximum time for the online BCI experiments is about
30 minutes, however, this may be considerably lower if the
MI task is detected faster.

3) PARTICIPANTS
Seven healthy subjects (HS group) and 2 spinal cord injury
patients (SC group) were recruited to participate in this study.
The HS group was comprised by 3 females and 4 males
aged between 20 and 25 years old (22, 20, 22, 21, 23,
22 and 25 years for HS1 to HS7, respectively), while the
SC group was comprised by 2 males (patient SC1, 23 years
old, 8 months since SCI event, right-handed, C5 lesion and
ASIA A score, and patient SC2, 41 years old, 7 months

since SCI event, right-handed, C6 lesion and ASIA A score).
All participants were right-handed, with normal or corrected
vision, and did not had any previous experience with EEG
recordings or BCI-related experiments. These two groups of
participants (HS and SC) were used to carry out a system-
atic validation to ascertain how they operate and control the
system and to study how the performance of each individual
patient compares with the group of healthy subjects (note that
we did not aim to carry out comparisons between groups).

Participants, were recruited as part of an ongoing research
protocol at the National Institute of Rehabilitation ‘‘LGII’’
in Mexico City, Mexico. The selected SCI patients approved
the protocol’s inclusion criteria (more than 6 months since
the onset of the SCI and any score of the ASIA Impair-
ment Scale) [52]. Participants signed an informed consent
approved by the Research and Ethical Committees of the
National Institute of Rehabilitation ‘‘LGII’’ in accordance
with the Declaration of Helsinki (protocol number 08/19).
The healthy subject group made two experimental sessions
and the SC group made 11 experimental sessions distributed
in 3 sessions per week for a total of 4 weeks. All healthy
subjects (HS1 to HS7) completed the two sessions required
for the experiment. Patient SC1 completed the first 4 sessions
and dropped out of the study by choice (The participant freely
decided to withdraw from the experimental sessions due to
personal reasons and not due to any situation related to the
BCI-controlled FES system or the experimental protocol).
Patient SC2 completed all eleven scheduled sessions.
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E. DATA ANALYSIS
1) CLASSIFICATION MODEL EVALUATION
In this work, we applied a five-fold cross-validation on the
training data to evaluate the classification accuracy of the
machine learning model trained by the BCI for each par-
ticipant and session [53]. This cross-validation procedure
with the training data allows to estimate the accuracy of
the machine learning model, which is important to ascertain
whether the user will be able to operate the system in online.
In this procedure the set of trials was randomly partitioned
into five subsets and they were used to build mutually exclu-
sive training and test sets. Four subsets were used to train the
FBCSP and the RLDA while the remaining set was used to
compute classification accuracy. This process was repeated
until the five cross-validations of train and test sets were
exhausted. For each cross-validation, the accuracy of Left
MI, Right MI and Rest were computed as the percentage of
correct classifications for each of them. For this study, due to
the multiclass approach, the accuracy was reported for each
classifier trained in the one-versus-one strategy and the mean
of these accuracies was the overall classification accuracy.

2) ONLINE BCI PERFORMANCE
The performance of the BCI system in the online validation
routine was measured in terms of percentage of successful
detections of the requested MI task. Therefore, the accuracy
in online (acconline) was computed as follows:

acconline =
nsel
natt
× 100% (4)

where natt is the total MI attempts (i.e., the total number of
times the user is requested to carry out a MI task or the total
number of test trials) and nsel is the total number of successful
detections. This metric was computed separately for left MI,
rightMI trials. In addition, we also measured the time elapsed
from the presentation of the visual cue indicating the start of
the MI task execution to the instant when the FES system
is activated (FESonset). Also, FESonset was computed also
separately for left MI, right MI trials.

3) EVENT-RELATED
DESYNCHRONIZATION/SYNCHRONIZATION (ERD/ERS)
To examine the task-related oscillatory EEG signals the event
related desynchronization/synchronization (ERD/ERS) was
computed following [54], [55]. This analysis shows for each
frequency the temporal evolution of signal power. This anal-
ysis is relevant for the case of MI tasks because oscillations
in the alpha and beta bands can provide insights of motor
execution and planning processes [56]. The ERD/ERS anal-
ysis was carried out as follows. First, in each electrode and
in each trial time-frequency representation TFR(t, f ) were
computed within the frequency band of [4 − 30] Hz with
a 1 Hz resolution using Morlet wavelets [55], [57]. Subse-
quently, for each electrode individually, the ERDS/ERS rela-
tive to the reference interval [2, 4) s (which corresponds to the

non-movement interval) was calculated as follows:

ERDS(t, f ) = 100×
TFR(t, f )− TFRref (f )

TFRref (f )
(5)

where TFR(t, f ) is the time-frequency representation aver-
aged across-all-trials and TFRref (f ) is the average of
TFR(t, f ) in the reference interval for frequency f . Finally,
significant ERD/ERSwas computedwith a bootstrap analysis
at the significance level of α = 0.05 using as baseline
the reference interval. As a result, significant event-related
desynchronization (ERD) is represented as negative percent-
age values (i.e., power decrease relative to the reference inter-
val) while significant event-related synchronization (ERS) is
represented as positive percentage values.

4) A QUANTITATIVE EEG PARAMETER FOR MOTOR
REHABILITATION
SCI patients may often exhibit changes in brain oscilla-
tory activity associated with the clinical progression of the
patients [58]–[61], causing alterations of the ERD/ERS pat-
terns during the execution of the MI task coupled to the
BCI system and, consequently, affecting the performance
of the BCI system compared to healthy subjects [62], [63].
Additionally, one of the potential advantages regarding the
use of BCI systems in physiotherapy involves the promotion
of changes in the oscillatory activity of the brain associated
with an increase in motor function. This is usually associated
with a reorganization of oscillatory activity that compensates
for the alteration caused by the spinal cord injury [63]. How-
ever, determining the correlation between alterations in brain
oscillatory activity patterns observed in ERD/ERS analysis
results, SCI patient’s clinical state and the performance of
BCI systems reliably might be challenging [64]–[66]. There-
fore, a quantitativemeasurement based on the results obtained
from ERD-ERD analysis could help to understand the impact
of BCI systems in rehabilitation therapy.

As an exploratory approach, we hypothesized that a
quantitative measurement of changes in ERD/ERS patterns
generated during BCI system use may serve as a biomarker
correlated with BCI system performance. Therefore, quan-
titative EEG parameters based on the analysis of ERD/ERS
were explored along with its relationship with BCI accura-
cies and detection times. These parameters were explored
as a quantitative tool for assisting the visual interpretation
of temporal and frequency domain EEG analysis. Based on
the analysis of ERD/ERS values that was performed during
execution of the differentMI tasks, the rate of change between
the absolute sum of significant ERD/ERS at a particular
brain rhythm and the absolute sum of the overall significant
ERD/ERS values ([4− 30] Hz) was calculated as:

rERDSrate =
ERDS(ch, t, r)

ERDS(ch, t, overall)
(6)

where ch is the EEG channel, t is related with the time interval
where ERD/ERS values was extracted and r is the selected
brain rhythm. rERDSrate was calculated for the different brain
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rhythms associated with movement neurological processes,
in the following frequencies: theta ∈ [4 − 7] Hz, alpha ∈
[8 − 13] Hz, beta-1 ∈ [13 − 21] Hz, beta-2 ∈
[21−30] Hz and beta ∈ [13−30] Hz. ERD/ERS values were
extracted at the time interval [5− 20]s for training trials. For
the online validation trials time intervals were [5,FTimeavg)
where FTimeavg was the grand-average FES activation time
of each participant. The rERDSrate rate scores are in the range
of 0 to 1, where values near zero indicate that ERD/ERS
from the selected brain rhythm had a smaller contribution to
the total ERD/ERD activity and values near 1 indicate that
ERD/ERD rate values from the brain rhythm had a larger
contribution. Finally, the ERD/ERS frequency band indexes
were extracted for each participant, session, channel and MI
condition.

III. RESULTS
A. CLASSIFICATION MODEL EVALUATION
Table 1 shows the training accuracies estimated with a
5-fold cross-validation for each participant and session. For
healthy subjects, the mean accuracy for the Left MI was
64%, for the Right MI was 61%, for Rest was 59% and the
overall classification accuracy was 61%. Only two partici-
pants showed accuracies below of 50% in all the sessions
they conducted (HS1 and HS2). Whereas, the remaining
participants exhibited accuracies above 60% in at least one
of the sessions. In addition, for all of these participants the
second session accuracies were higher than the first one. The
maximum classifier performance was 90% (HS5 session 2),
and the minimum was 38% (HS1 session 2).

For SC1, the mean accuracies were 48%, 48%, 42% and
46% for Left MI, Right MI, Rest and overall classification
accuracy, respectively. And the accuracy was above 50% only
for session 4. For SC2, the mean accuracy for the Left MI was
60%, for the Right MI was 59%, for the Rest was 55% and
themean accuracy for all tasks was 58%. The accuracies were
above 50% for all the sessions except for session 3. The max-
imum classifier performance for SC2 was 68% (session 9),
and the minimum accuracy was 47% (session 3).

AWilcoxon signed-rank test was performed to test for sig-
nificant differences between overall classification accuracies
with the theoretical chance level (33%). These analyses were
carried out separately for each participant from the HS group
and from the SC group. Significant differences were observed
in all healthy subjects and in patient SC2 (p < 0.001).
In addition, a Wilcoxon rank-sum test was performed to test
differences in the overall classification accuracies between
the HS group and each patient in the SC group. The results
showed no significant differences between the HS group with
the SC1 and SC2 participants (p = 0.1065 and p = 0.3957,
respectively).

B. ONLINE BCI PERFORMANCE
Table 2 summarizes the results obtained in the online tests
of the proposed BCI. For the healthy subjects, in the Left

MI trials, 6 of 7 subjects reached online accuracies above
85% (HS2-7) in at least one session, only the participant
HS1 showed rates below 20%. The mean accuracy was 78%
with a standard deviation of 30%. For Right MI trials, the
same 6 healthy subjects achieved a online accuracy of 100%
in at least one session (with tendency to reach this online
accuracy in the second session). The mean online accuracy
was 81% with a standard deviation of 24%. SC1 reached
online accuracies between 27% to 87% for Left MI trials with
a mean rate of 63% and a standard deviation of 23%. For
Right MI trials, SC1 achieved values above 70% for all the
sessions with a mean of 77% and standard deviation of 17%.
In the SC2 case, online accuracy values were above 80% for
all MI conditions, with mean values of 91% and 93% and
standard deviation of 8% and 11% for Left and Right MI
conditions, respectively.

Regarding the averaged FES activation time per session,
healthy subjects showed a mean for Left MI of 7.29 seconds
after the presentation of the second visual cue that indicated
the beginning of the MI task execution (minimum time of
5.24s for HS4 and maximum time of 14.30s for HS2). For
Right MI trials, the mean FES activation time was 7.05s (the
lowest time of 4.05s was obtained by HS4 and the highest
value of 14.48s by HS1). For SC1, the mean FES activation
time was 11.26s for Left MI and 13.91s for Right MI trials.
The minimum FES onset time was found in the session 2 with
values of 9.25s and 10.93s for Left and Right MI trials,
respectively. The maximum values were 12.12s (session 3)
for Left MI and 17.59s (session 1) for Right MI. For SC2, the
mean of FES activation times were 9.05s and 8.43s, for Left
and Right MI trials, respectively. The minimum times were
6.83s (session 3) and 4.29s (session 5), and the maximum
values were 14.14s (session 5) and 13.13s for Left and Right
MI trials, respectively.
Finally, a Wilcoxon rank-sum test was performed to com-

pare the healthy subjects with SC1 and with SC2 in order
to establish significant differences of classification accuracy
and detection times (this analysis was not carried out for
the case of classification accuracy between the HS group
and the participant SC1 due the low number of samples in
SC1). There were not significant differences in any of these
metrics for SC1 and SC2with the healthy group. For themean
online accuracies, Wilcoxon rank-sum test results were p =
0.1346 and p = 0.9804 for Left MI trials and p = 0.5545 and
p = 0.2519 for Right MI trials for SC1 and SC2, respectively.
The FES activation time results were p = 0.0176 and p =
0.0231 in Left MI trials and p = 0.0118 and p = 0.1187 in
Right MI trials, for SC1 and SC2, respectively.

C. ERD/ERS ANALYSIS
1) HEALTHY GROUP
The event-related desynchronization/synchronization (ERD/
ERS) analysis was performed independently for each par-
ticipant, session, and MI task (i.e., left and right). Figure 4
displays these ERD/ERS results for one of the participants in

46842 VOLUME 10, 2022



L. G. Hernandez-Rojas et al.: Brain-Computer Interface Controlled Functional Electrical Stimulation

TABLE 1. Classification accuracies estimated with cross-validation for the three tasks (Left MI, Right MI and Rest). The fourth column indicates the model
accuracy (mean value). The last six rows show the mean and standard deviation (STD) of the accuracies for healthy group, SC1 and SC2 participant
sessions.

the healthy subjects group (HS5) in session 2, in the training
and online stages and in the left and rightMI tasks. For the left
MI condition during the training stage (Figure 4a), significant
ERD (p < 0.05) was mainly observed in electrodes located
in the contralateral right hemisphere of the brain. The ERD
activity was observed after the presentation of the second
visual cue indicating the participant to execute the motor
imagery task, and in the frequency range of [7 − 16]Hz
which encompasses the alpha and part of the beta motor-
related frequency bands. For the right MI condition during
the training session (Figure 4b), significant ERD activity was
observed in electrodes located in the contralateral left brain
hemisphere. Persistent ERD activity localized in the [5 − 7]
Hz frequency range was elicited in all electrodes. The time
interval and the frequency range where these significant ERD
occurred were similar to those found in the Left MI trials.

For the case of the online validation stage, for the left
MI condition (figure 4c), significant ERD was observed in
the frequency range of [7 − 14] Hz in electrodes located in
the right hemisphere. Significant ERD values were elicited
around the trial’s 5swhich coincidedwith the beginning of the

motor task instruction and ended before the FES routine acti-
vation, at around 10s (FES activation is shown as a synchro-
nization in the whole frequency range [1 − 30]Hz.) For the
right MI during the online validation stage (Figure 4d), sig-
nificant ERD values were again found in electrodes located
in the right hemisphere and sagittal regions of the brain.
This ERD activity was observed in the frequency range of
[7 − 14]Hz and in the time interval of the execution of the
MI task, after that, ERS activity was elicited during the FES
routine activation.

2) SPINAL CORD INJURY PARTICIPANTS
Figure 5 shows the ERD/ERS activity for SC2 in ses-
sion 11 for the training and online stages and the related
MI tasks trials. For the Left MI during the training stage
(Figure 5a), significant ERD activity (p < 0.05) was mainly
observed in electrodes located in the right hemisphere and
the sagittal regions of the brain. In addition, there was a mild
ERD activity elicited in the left hemisphere (see electrode
C3). This ERD activity was found during the time interval
corresponding to the execution of the MI task and in the
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TABLE 2. Online classification performance and the average activation time of the FES routine in each session (FES ONSET) obtained in the evaluation of
the BCI-controlled FES system. Results are reported separately for each MI condition trial of FES activation (Left and Right). For the online classification
performance we reported the number of trials in which the participant reached the activation of the FES (Succ. trials) and the rate (acc_online) between
the successful trials and the total trials conducted per session (30 trials). The last six rows show the mean and standard deviation (STD) of the accuracies
for the healthy group, SC1 and SC2.

frequency range of [10− 20]Hz. Therefore, significant ERD
activity was observed in the motor-related alpha and beta
frequency bands. For right MI, during the training session
(Figure 5b), significant ERD were observed in all of the
recorded electrodes located in the left hemisphere and the
sagittal regions of the brain. The time interval where ERD
activity and frequency range were located showed similar val-
ues with the ERD activity in the LeftMI trials. However, ERD
activity was mildly higher in the left hemisphere electrodes
compared to the right hemisphere ones.

For the left MI during the online validation stage
(Figure 5c), significant ERD activity was observed in all
the electrodes with the highest activity in the C4 electrode.
This ERD was mainly observed in the frequency range of
[10 − 20]Hz with some ERD values above 20Hz (i.,e. C4
electrode). Significant ERD values onset were around 5s of
the trial, which coincided with the beginning of the motor
task instruction and ended before the FES routine activation

around 12s. For right MI trials of the online validation stage
(figure 5d), significant ERD values were mostly found elec-
trodes in left hemisphere. This ERD activity was observed
in the frequency range of [10 − 30]Hz, in the time interval
of [5 − 12]s, after that, ERS activity was observed due to
the FES routine activation. In summary, ERD activity of SC2
was found in a wide range of frequencies [10 − 30]Hz with
the activity distributed on all the electrodes. However, there
was a mild tendency towards more pronounced activations in
the contralateral side to the MI condition.

D. ERD/ERS FREQUENCY BAND INDEXES
Table 3 summarizes the results of the Pearson’s correlations
of rERDSrate scores in the C3, Cz and C4 EEG electrodes.
Those electrodes were the only ones that showed signifi-
cant correlation. For the channel C3 there was a significant
negative correlation for αERDSrate and βERDSrate indexes
in the online validation stage for Right MI (p = 0.002,

46844 VOLUME 10, 2022



L. G. Hernandez-Rojas et al.: Brain-Computer Interface Controlled Functional Electrical Stimulation

FIGURE 4. Significant event-related desynchronization/synchronization (ERD/ERS) activity computed for HS5 participant in
session 2: (a) Left MI in training stage, (b) Right MI in training stage, (c) Left MI during online validation and, (d) Right MI
during online validation. Abscissa represents time (from 1 to 24 s) for trials during training stage and (from 1 to 10 s) for
trial during online validation stage while ordinate represents frequency (from 1 to 30 Hz) for all the cases. Significant
desynchronization is presented in blue (i.e., negative percentage values), significant synchronization is presented in red
(i.e., positive percentage values), and no significant desynchronization/synchronization is presented in green (i.e., zero
percentage values).

r = −0.543 and p = 0.019, r = 0.434, respectively). For
the Cz channel there was only a significant correlation for
θERDSrate (p = 0.035, r = −0.486) in the calibration stage
for Left MI. For C4 there were significant negative correla-
tions for αERDSrate and βERDSrate in the online validation
stage during LeftMI (p = 0.024, r = −0.418 and p = 0.023,
r = 0.422, respectively). For the channel C4 in the training
stage, there were not significant correlations for all computed
indexes. Note that significant correlations in channels C3 and
C4 are related to the respective contralateral MI condition.

Figure 6 displays the Pearson’s correlations computed
between C3 and C4 rERDSrate scores, calculated across all

participants data, with FES activation time, separately for
Right and Left MI, in the online validation trials. Figure 6a
corresponds to αERDSrate correlations between channel C3
with FES activation time in the Left MI trials. For this
case, a negative significant correlation (p = 0.002, r =
−0.543) was observed. Figure 6b corresponds to αERDSrate
correlations between channel C4 and FES activation time in
Right MI trials. Also, a negative significant correlation was
obtained (p = 0.024, r = −0.418) in this case. In general
terms, these results show that higher scores of αERDSrate
(near to 1) were related to shorter activation times of the FES
routines.
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FIGURE 5. Significant event-related desynchronization/synchronization (ERD/ERS) activity computed from the SC2
participant in session 11 and discriminated by the training or online validation stage and each of the different MI task
trials: (a) Left MI trials in the training stage, (b) Right MI in training, (c) Left MI trials during online validation stage and,
(d) Right MI trials during online validation. Abscissa represents time (from 1 to 24 s) for trials during training stage and
(from 1 to 12 s) for trial during online validation stage while ordinate represents frequency (from 1 to 30 Hz) for all the
cases. Significant ERD is presented in blue (i.e., negative percentage values), significant ERS is presented in red
(i.e., positive percentage values), and no significant ERD/ERS is presented in green (i.e., zero percentage values).

IV. DISCUSSION
In this study, we presented the development and performance
evaluation of a motor imagery-based BCI controlled FES
device for the upper limb. This BCI system is designed to
be used in the context of neurorehabilitation therapy for
patients with motor disabilities. With this system, healthy
and spinal cord injured patients could perform hand grasping
movements of their upper limbs. Because the BCI allows to
trigger the FES routines with the user’s intention employing
a MI paradigm, this system could provide an interesting
sensorimotor neurofeedback to support the neurorehabili-
tation proccess of SCI patients. To activate the system,

we considered the hand grasping movement imagination for
each of the upper limbs (Left and Right MI). Therefore,
its operation in online situations considers an experimental
paradigm where the visual feedback and FES activation are
triggered solely when the MI task assigned to the user is
correctly detected by the BCI.

In the experiments conducted with healthy and SCI par-
ticipants, all of them showed an acceptable degree of
control of the BCI. Several BCI studies have established
that for a two-class classification paradigm comprising a
BCI rehabilitation system, an acceptable performance is
within the range of 60%-70%. [67]–[70]. Although the
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TABLE 3. Pearson’s correlations (r) between rERDSrate scores and the averaged BCI performance for training and online validation stages (classification
acuraccy and FES activation time, respectively) for C3, Cz and C4 EEG channels. The correlation results are discriminated by Left MI and Right MI trials.
Grey-highlighted results indicate significant correlations (p < 0.05).

FIGURE 6. Correlation plots between αERDSrate and FES activation time for online validation trials. (a) shows the correlations found for C4
channel in Left MI trials. (b) shows the correlation results obtained for C3 channel in Right MI trials. The red lines corresponds to the
regression line for each correlation analysis.

trained classification models achieved accuracies below
the range estimated for a two-class classification model,
it should be noted that the classifiers employed in the pro-
posed BCI system use a three-class classification paradigm,
which provides a task with more complexity compared to
a two-class classification. Also, the classification accura-
cies calculated with cross-validation were above chance
level for all subjects, for both overall accuracies and
independent class accuracy results. This suggests that
the three-class classification paradigm used for training,
was able to discriminate between different proposed MI
conditions.

We consider that implementing a multi-class classifica-
tion paradigm that includes a class related to non-movement
state is important since two-class models employed in BCI
systems are generally trained to discriminate between two
highly related and mutually exclusive conditions (stop - no

stop or antagonistic tasks) [68], [70], [71]. In the case of
BCI systems which discriminate intentions of different limb
movements, these motor imagery conditions are not mutually
exclusive. In addition, the two-class classification paradigm
for BCI systems requires that users are highly engaged in
completing the required BCI task, since if the user performs
another cognitive task (non movement-related state) it could
be associated with one of the MI conditions. These situations
can negatively affect the performance of two-class classifi-
cation models by increasing false positives rate [68], since
the classifier is forced to discriminate between one of the
two classes without considering the chance that the BCI user
is not performing either of the two requested MI tasks. For
these reasons the classifiers were trained with information
from the resting state, a neutral condition, in order to facilitate
the classifier’s recognition of distinctive characteristics of the
related MI task.

VOLUME 10, 2022 46847



L. G. Hernandez-Rojas et al.: Brain-Computer Interface Controlled Functional Electrical Stimulation

In the online tests, both HS and SCI participants were
able to trigger the FES activation routine for both MI tasks.
Overall, 88.9% of participants achieved a 100% accuracy
rate in at least one of the online sessions, while only two
subjects showed accuracy rates below 50% in any of their
online sessions. These finding is remarkable in two ways.
Firstly,for BCIs developed for motor rehabilitation in stroke
and SCI patients, it has been asserted that any performance
rates above chance level can be potentially beneficial to
patients’ rehabilitation process [68]. Secondly, it is important
that the system is able to minimize the false negative rate
in order to avoid the frustration of patients when they are
not able to control the MI tasks [68], [70], [72], [73]. The
BCI addressed this issue by including the decision rule that
triggers the FES routines during the control interface stage.

Additionally, the averaged FES activation times reported
during the online test showed that SCI participants required
between 1.24 to 1.97 times longer than healthy patients to
trigger the FES routine. This could be related to the com-
promised corticospinal tract of the patients, and it could be
an interesting output measurement that the system can pro-
vide when used in clinical rehabilitation protocols. Despite
the fact that the trials of the Right MI condition presented
slightly shorter times with respect to the Left MI condition (at
least for SC2 and HS participants) the results do not showed
a significant difference. This suggests that the proposed
BCI system can be used for users suffering from mobility
impairment in one or both upper extremities. On the other
hand, BCI studies have reported the Information Transfer
Rate (ITR) as the standard method for measuring the perfor-
mance of communication and control BCI systems. ITR is
related to the amount of information transferred per unit time
[74], [75]. However, in addition to this metric frequently used
in BCI systems, we consider that it is also meaningful that
during motor rehabilitation interventions the BCI executes
the movement only if it is correctly detected. Within this
context, the analysis of performance during online experi-
ments considered both the success and the speed of FES
activation. In summary, the proposed BCI system’s classifiers
outcomes indicate that the BCI can discriminate successfully
between the different MI conditions and a resting period.
This is consistent with results of studies published within the
field [25], [29], [30], [32], [70], [72], [76]. Therefore, we can
expect that most healthy people and SCI patients with mild
to moderate disability levels could be potential users of this
technology.

The ERD/ERS analysis revealed significant power changes
(p < 0.05) during MI tasks in all selected EEG chan-
nels located on or surrounding the motor cortex of all the
participants. These power changes were mostly located in
the sensorimotor related frequency band α[8 − 13]Hz and
they were observed in all the participants. Power changes
in beta rhythm [13 − 30]Hz occurred in a reduced number
of EEG channels compared to the other analyzed frequency
bands. Finally, significant changes in power were found in
the contralateral EEG channels to theMI condition. Although

these results were found in all participants, SCI patients
showed lower ERD/ERS activity than healthy participants.
This reduced EEG activity was expected since it has been
described before [77], and could be explained by the neu-
roplasticity and cortical reorganization motor processes pro-
duced by motor and cortical deafferentation in chronic SCI.
These significant power changes could indicate the existence
of neural correlates associated with the MI task during BCI
operation, which can be used as features to recognize MI and
to measure neural changes produced by the BCI-based motor
therapy.

The rERDSrate rate was proposed as a measure to deter-
mine changes in user EEG activity during BCI operation. This
provides a quantitative score associated with the ability of
BCI users to modulate brain rhythms during motor-related
mental tasks and, to explore whether differences between the
EEG activity of healthy and SCI patients during the BCI
experiment allow explaining the difference in BCI perfor-
mance. The αERDS rate results showed significant corre-
lation for EEG channels contralateral to MI condition and
BCI performance during online validation. Specifically, there
were negative correlations for the αERDS and FES activation
time showing that during the operation of the BCI system the
user generated greater changes in alpha power compared to
other motor brain rhythms, and facilitated the BCI system to
discriminate the MI condition and trigger the corresponding
FES routine in a shorter time. These results suggest that
αERDS outcomes contribute to the understanding of the rela-
tionship between the evolution of the brain activity in SCI
patients, and changes in BCI performances in the context of
a motor rehabilitation therapy. This would be interesting, for
example, as a new metric to complement clinical evaluations
of the neurological status of SCI patients or to monitor the
degree of recovery that these patients achieve by performing
motor rehabilitation therapy.

This work faced typical limitations encountered in BCI
research involving a SCI population. Firstly, the study is
constrained by the limited number of SCI participants. There-
fore, this study must be considered as a proof of concept
for the proposed BCI-FES system and aimed to evaluate the
feasibility to operate the BCI system by healthy users and
SCI patients. Therefore, a larger SCI population and longer
interventions are needed to confirm the clinical effects of
an experimental intervention with the BCI. Here it will be
then possible to carry out performance comparisons between
the two groups with balanced data. Secondly, regarding the
BCI-driven FES system, a concern is that FES routines recre-
ate just a single movement for each hand. Usually, in con-
ventional motor rehabilitation therapies, several movements
are attempted in order to maximize patient’s motor skills.
Increasing the number of movements to discriminate with
a BCI, increases the complexity of its operation and can
negatively affect the classifier stage’s performance [68]–[70].
However, it is necessary to find a balance between therapy
needs and the BCI operation. For future work, an option
to be explored is to discriminate two movements per hand.
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For example, the ability to discriminate between antagonistic
movements as extension and flexion of the wrist. Thirdly,
the BCI system was designed to be operated under a clinical
environment. For this reason it is necessary that a BCI oper-
ator sets the system and helps the user during BCI operation.
As more evidence of BCI therapy effects for SCI treatment is
collected, these type of systems can be gradually introduced
to physical rehabilitation locations, and be less operator-
dependent. Lastly, despite that ERD/ERS and rERDSrate out-
comes and correlations with BCI performance suggest that
BCI users can modulate their EEG activity in order to operate
the BCI system and increase control performance across
sessions, it remains unclear if the BCI experiment contributes
to restore the SCI patients’ motor skills.

In summary, the results presented in this work show the
feasibility of the proposed BCI-controlled FES system to be
used for SCI patients with a moderate level of disability.
In addition to providing evidence of the feasibility of the
proposed BCI system in a motor therapy, this work serves as
a case study for the exploration of BCI-derived physiological
biomarkers, such as the time required to trigger MI-related
stimulation.
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