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ABSTRACT The mode matching method is an efficient solution to conventional microwave waveguide
problems for its dimensionality advantages. It is theoretically extendable to computational lithography prob-
lems in nano scales with periodic boundary condition. The high computational complexity of conventional
mode matching limits its application significance in highly complicated nano scale problems. This paper
introduces an optimized efficient mode matching method for computational lithography problems whose
complexity is O(N1.5). This bottleneck is breached by transforming governing equations with Lanczos
algorithm. A novel hybrid eigenmode restoration algorithm is proposed to solve the eigenmode accuracy
loss by involving the Arnoldi method. Benchmark cases verify the accuracy of the restored eigenmode and
mode matching method with from microwave to nano scale problems. The efficiency is further optimized by
exploring the relevance between iteration step and structure complexity. The non-uniform iteration step is
introduced for efficiency optimization. A real mask component is modelled as a multi-junctional waveguide
structure with periodic boundary condition. Simulation results validate the effectiveness of the proposed
method and efficiency benefits are discussed through comparison with other solvers including HFSS and
RCWA. Results indicate that the proposed method possesses good flexibility and application significance
for computational lithography problems with high complexity.

INDEX TERMS Computational lithography, eigenmode expansion, mode matching, Krylov subspace
method, periodic boundary condition.

I. INTRODUCTION
In recent years, there are growing requirements and achieve-
ments in numerical techniques for inhomogeneous dielectric
waveguide analysis. These techniques are also extendable
from microwave to nanoscale computational lithography
research for further enabling Moore’s law in next a few
years [1]–[5]. The mode matching method is one of the
effective solutions for these problems [6], [7]. It evolves
from Ez-Hz formulation to transverse electromagnetic field
formulations to solve spurious mode problems. Unknowns
are only defined on transverse interfaces at the structure
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discontinuity. This feature overcomes the curse of dimen-
sionality by transforming a large three dimensional problem
into several two dimensional or 2.5 dimensional problems [8],
[9]. Numerical modelling techniques enable mode matching
methods to solve complicated waveguide structures using
finite element or finite difference techniques [10], [11]. Exist-
ing solvers are capable of solving three dimensional on-chip
interconnects with two dimensional time and memory con-
sumption [12]–[14]. The dimensionality advantage makes
mode matching method extendable to nanoscale problems.
Transverse field definitions are also suitable for modelling
multi-layered structures, which are common in computational
lithography analysis. Existing works verify that the periodic
boundary condition (PBC) enable mode matching method
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simulate periodic structures [15]. For nonperiodic structures,
the mode matching method is also applicable with a suffi-
ciently large buffer zone and PBC. These characters provide
flexibility in analyzing various computational lithography
problems.

In mode matching, electromagnetic fields are expanded by
a series of eigenmodes, which are calculated and matched at
each junction discontinuity. The kernel of the mode matching
method is the eigenmode computation and expansion. Exist-
ing mode matching methods usually acquire eigenmodes by
spectral decomposition techniques. Its computational com-
plexity is usually O(N3) [16] in which N is the unknown
number for transverse electromagnetic fields. In many com-
putational lithography problems, the high geometry complex-
ity and nanoscale wavelength results in a large N . In these
cases the O(N3) complexity becomes an efficiency bottleneck
in mode matching implementation. This gets more promi-
nent for multilayered structures. An implicit mode match-
ing (IMM) algorithm based on Lanczos method [17], [18] is
proposed to solve this efficiency limitation. It reformulates
governing transverse wave equations into implicit form to
avoid the explicit eigenmode solving procedure. Accord-
ing to the boundary condition, the matching procedure is
applied on transverse field directly instead of eigenmode
expansion coefficients. The IMM method could reduce the
complexity from O(N3) to O(N1.5). However, the price of
efficiency enhancement is the loss of accuracy. The non-strict
orthogonalization procedure in Lanczos iteration leads to the
eigenmode accuracy deviation, which gets non-negligible for
highly complicated structures. Another limitation is its high
dimensional block matrix in solving multilayered structures.
Moreover, the IMM makes it difficult to interpret eigen-
mode behaviors such as propagation, reflection and decaying
effects. This also constrains its physical essence exploration.
Therefore, even though efficiency benefits are distinctive, the
application significance of IMM in computational lithogra-
phy problems is still unclear.

Works presented in this paper are motivated by developing
an efficient mode matching algorithm aiming at analyzing
complicated lithography problems. Constrains from IMM
accuracy are solved but preserving its efficiency advantage.
The eigenmode accuracy problem is corrected by propos-
ing a new hybrid eigenmode restoration algorithm based on
Arnoldi method [19], [20]. Governing equations are also
transformed into explicit form using restored eigenmodes.
Accuracy of eigenmode restoration and new mode match-
ing procedures are validated using benchmark cases with
both perfect electric conductor (PEC) boundary condition
and PBC. The High-Frequency Structural Simulator (HFSS)
[21], [22] software and RCWA (Rigorous Coupled Wave
Analysis) method [23]–[26] are adopted to verify the pro-
posed method. Relevance between Lanczos iteration steps
and structure complexity are explored by specific simulation
cases. The analysis results in a non-uniform iteration strat-
egy to further elevate efficiency. A mask component with
high geometry complexity is designed according to practical

industrial analysis examples. Simulation results and com-
parisons with HFSS, RCWA and IMM validate the perfor-
mance in both accuracy and efficiency. These consolidate
the proposed method in solving complicated computational
lithography problems.

This paper is organized as follows. Section II presents
governing equations and the hybrid eigenmode restoration
strategy. The mask structure modelling using the proposed
mode matching method is introduced in section III. Results
and discussions in section IV verify the effectiveness of the
proposed method from various aspects.

II. GOVERNING EQUATIONS AND HYBRID
EIGENMODE RESTORATION
A. PROBLEM FORUMULATION
Governing wave equations for transverse electromagnetic
fields under the finite difference discretization are [27]:
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+∇̃s

[(
ε̃zm
)−1
∇̂s · ε̃

s
m · Ẽ
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Symbols ∼ and ∧ are forward and backward differential
operators. The superscript and subscript symbol s indicate
the transverse component in XOY plane, and the Z direction
denotes longitudinal dimension of eigenmode propagation.
Dielectric constant symbols µ̂sm+1/2 and ε̃sm are tensors
in transverse dimension to interpret anisotropic medium.
Equations (1) and (2) are defined around the mth finite dif-
ference grid. The compact form is:

Le · Ẽsm = k2z Ẽ
s
m

Lh · Ĥs
m+1/2 = k2z Ĥ

s
m+1/2 (3)

In inhomogeneous medium, Le and Lh are sparse and
asymmetric operators. Two operators are approximated in
matrix form with finite difference modelling. As the Z com-
ponent of electric and magnetic fields could be derived from
transverse components according toMaxwell equation, trans-
verse electric and magnetic fields are taken as unknowns.
In following contents vectors E and H are taken to represent
transverse electromagnetic fields, mediums are assumed to
be isotropic and non-dispersive so that tensors µ̂s and ε̃s are
simplified to scalars µ and ε.

In conventional mode matching, eigenvalue problems
in (3) are solved using numerical techniques like spectral
decomposition with O(N3) complexity. This is the origin
of its efficiency limitation. In contrast, equations (3) are
solved in an alternative way in IMM by introducing the
Lanczos method. It is based on Krylov subspace method [28],
[29] to find basis vectors to approximate the original high
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dimensional matrix. For the original matrix Le, the Lanczos
method generates basis vectors by making an initial guess on
the first basis vector and following the iteration procedure:

rj = Le · vj − vi
(
v∗j · Le · vj

)
− vj−1

(
v∗j−1 · Le · vj

)
= Le · vj − αjvi − βj−1vj−1 (4)

The procedure in (4) starts from an initial guess of v0, the new
basis vector is generated by:

vj+1 =
rj∥∥rj∥∥ (5)

In Lanczos method it is assumed that basis vectors possess
the orthogonality property. Therefore, it is deduced that:∥∥rj∥∥ = v∗j+1 · Le · vj (6)

Procedures in (4) are transformed into another form:

Le · vj = βj−1vj−1 + αjvj + βjvj+1 (7)

Above iteration procedures are presented in a matrix form:

Le · Vk = Vk ·



α1 β1
β1 α2 β2

β2 α3
. . .

. . .
. . . βk−1
βk−1 αk


+βk [0, . . . 0, vk+1] (8)

The term βk [0, . . . 0, vk+1] indicates a numerical error.
Each column of matrix Vk represents a basis vector v.
Equation (8) is equivalent to a numerical approximation of
Le matrix by a lower dimensional basis spaceVk expanded by
coefficients in the tridiagonal matrix. Above procedures are
major steps for Lanczos algorithm. The Bi-Lanczos method
is the extension of Lanczos to solve asymmetric matrix prob-
lem by introducing an extra iteration, its implementation is
similar to equations (4) to (7). The tridiagonal matrix could
be denoted as matrix T with dimension M , which is usually
scaled as c · N 0.5 according to Lanczos method’s principle,
in which c is a constant [30]. The dimension relationship
among different matrices could be intuitively interpreted in
Figure 1. The matrix D represents the numerical error, which
is controllable with increasing iteration steps. The originalLe
operator could be approximated in an alternative form:

Le · V = V · T

LTe ·W = W · T (9)

Columns vectors inmatricesV andW are Bi-Lanczos basis
vectors. The dimension of matricesV andW is N -by-M . The
numerical term D is neglected. Based on the assumption that
most matrix functions adopted in engineering problems could
be approximated by a high order Taylor series, equation (9)
evolves into a generalized form like:

f (Le) · V = V · f (T) (10)

In which f (·) indicates a function of matrix.

FIGURE 1. Matrix dimension illustration in Lanczos method.

The multiplication of a matrix function and a vector is
the kernel computation component in the mode matching
method. It is also the most time-consuming part in the overall
procedure. Conventionally the computation of a matrix func-
tion costs massive resources. The introduction of the Lanczos
algorithm simplifies this part with an alternative approach.
For a matrix-vector multiplication in the form of f (Le) ·v, its
computation starts from selecting vector v as an initial basis
vector. By following Lanczos iterative procedures, matrix V
and T are generated and the multiplication is transformed
into:

f (Le) · v = f (Le) · V · e1 = V · f (T) · e1 (11)

The vector e1 extracts the first column of a matrix. The matrix
T is decomposed by spectral decomposition method:

T = Q ·3 ·Q−1 (12)

The matrix 3 represents a diagonal matrix containing eigen-
values {λ1 · · · λM} extracted by spectral decomposition. The
basis vector qi from the ith column of matrix Q represents
an eigenvector corresponding to λi. Equation (11) could be
transformed into following form by introducing (12):

f (Le) · v = f (Le) · V · e1 = V ·Q · f (3) ·Q−1 · e1 (13)

In (13) the original complicated multiplication f (Le) · v is
transformed into the matrix function computation of f (3).
As 3 is a diagonal matrix, the function f (3) is equivalent to
calculating f (λi) |i = 1 · · ·M . This significantly reduces the
complexity of matrix function computation.

Procedures from (9) to (13) consumes most resources, they
determine the complexity of the mode matching method.
The spectral decomposition of tridiagonal matrixT consumes
most computational resources with complexity of O(M3).
According to the relationship ofM ∼ c ·N 0.5, the complexity
is equivalent to O(N1.5). This is the computational complexity
of IMM. Therefore, the Lanczos algorithm reduces the com-
putational complexity from O(N3) to O(N1.5). This elevates
the simulation efficiency for problems with large unknowns.
Procedures from equation (4) to (8) are also applicable to Lh
andH. As Lanczos and Bi-Lanczos methods are based on the
same principle with slight difference, to avoid confusion, only
the term Lanczos method is adopted in following contents.

B. HYBRID EIGENMODE RESTORATION
According to the relationship between Le and T, diagonal
elements of matrix 3 well approximate eigenvalues of Le.

VOLUME 10, 2022 45801



J. Liu et al.: Hybrid Eigenmode Restoration Algorithm for Computational Lithography Problems

Therefore, eigenpairs (λi,V · qi) could be considered as
propagating modes if k2z > 0. However, the accuracy of
this approximation is limited to the first a few dominant
modes due to the orthogonality loss in Lanczos iteration. This
accuracy loss is not obvious for simple structures as first a few
dominant eigenmodes could well interpret mode physics and
modematching accuracy is not prominently influenced. How-
ever, in the case of high geometry complexity, higher order
modes are required to capture complicated mode physics
and the eigenmode accuracy loss usually results in diverged
numerical errors. Therefore, physically V · qi is a reasonable
eigenmode approximation but numerically it could not meet
accuracy requirement for complicated geometries. This limits
its capability in complicated lithography problem analysis.

Above analysis indicates that the source of eigenmode
approximation error is the non-strict orthogonality iteration
strategy in Lanczos. However, this iteration strategy also
ensures that the problem of f (Le) · v could be solved with
O(N1.5) complexity. This seems a contradictory in Lanczos
algorithm between accuracy and efficiency. Works presented
in this paper are motivated by seeking an approach which
provides more accurate eigenmode approximation while
maintaining Lanczos efficiency benefit. The solution is intro-
ducing the Arnoldi method into eigenmode construction.
Arnoldi and Lanczos methods are all derived from the Krylov
subspace theory [31], [32] to project the original high dimen-
sional matrix into a lower dimensional space. However, their
basis vector generation procedures are different. In Arnoldi,
the iterative procedure for basis generation is:

rj = Le · uj −
j∑

i=1

ui ·
(
u∗i · Le · uj

)
(14)

Compared with (4), the distinctive difference of two meth-
ods is about the second term of the right-hand side. In Arnoldi
a modified Gram-Schmidt orthogonalization procedure is
adopted. The Le · uj term is orthogonalized against all pre-
viously generated basis vectors from u0 to uj. In contrast,
Lanczos method only considers neighboring basis vectors in
orthogonalization. This is the reason that Lanczos iteration
is a non-strict orthogonalization procedure, which results in
basis orthogonality loss. The Arnoldi method does not have
this orthogonality loss, but it consumes more resources as
all previously generated basis vectors are considered in new
basis vector generation. The new basis generation in (5) and
the property in (6) are also applicable in Arnoldi method. The
difference is about the approximation matrix. Based on (14),
a new coefficient is defined as:

hij = u∗i · Le · uj (15)

According to basis orthogonality property of u:

Le · uj =
j+1∑
i=1

uihij (16)

The matrixLe could be approximated by basis vector u in a
similar form as (8). According to (15), the coefficient matrix

is not tridiagonal but in upper Hessenberg matrix form:

Le · Uk = Uk ·


h11 h12 · · · h1k

h21 h22
. . . h2k

2 h32
. . .

...

2 2
. . . hkk


+
[
0, · · · , 0,uk+1hk+1,k

]
(17)

Each column of Uk is an Arnoldi basis vector, and all basis
vectors possess strict orthogonality. The symbol2 indicates
a submatrix with all zero elements.

Our contribution in hybrid eigenmode restoration is
derived from the further exploration of physical essences for
matrices V and U. As matrix T from Lanczos method con-
tains dominant eigenspace information, its eigenvalues and
eigenvectors are preserved. However, the projection matrix
V is replaced by U. The reason of this replacement is based
on their similar physical essence, which is projecting the
original matrix into a specific Krylov subspace. Therefore,
this replacement is for approximating the original problem
space using an alternative subspace projection strategy, and
U · qi is the restored eigenmodes adopted in following mode
matching procedures. As matricesU are generated and stored
in an off-line manner, the strict orthogonalization procedure
has limited adverse impact on its efficiency. The adoption
of U makes basis U · qi preserve consistent orthogonality
in subspace spanning, and higher order eigenmodes could be
interpreted more accurately.

As larger eigenvalues are related to more dominant eigen-
modes, matrix 3 is sorted in descending order in numerical
implementation. The numerical error of the restored eigen-
mode is quantified as:

η (i) = |Le · U · qi − λi · U · qi|2 (18)

The operator |•|2 indicates a L-2 norm computation of the
vector. If the error η (i) is larger than a specific threshold, the
corresponding eigenmode is not selected in mode matching.
This usually occurs for higher order eigenmodes with rela-
tively smaller eigenvalues. In this paper the error threshold
value is set to 10−4. The number of selected eigenmodes
M ′ is related to the energy of the system, which is defined
as the squared sum of eigenvalues in matrix 3. In practical
implementation, an energy threshold is specified to define
the parameter M ′. For example, an energy threshold of 90%
indicates that first M ′ eigenmodes whose eigenvalues in 3
takes up 90% energy of the system. Eigenmodes with η (i)
larger than the error threshold are removed.

For simple structures, first a few dominant eigenmodes
could interpret the physical essence of the system, the energy
threshold could be relatively small like 70% or 80%. For
highly complicated structures, higher order eigenmode con-
tributions are non-negligible and more eigenmodes should
be selected in mode matching. In this case, energy threshold
value should be large and sometimes the value is set to 100%.
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FIGURE 2. Graphical illustration of a two-dimensional periodic boundary
condition.

More discussions about this topic are given in section IV with
specific problems.

C. BOUNDARY CONDITION
An eigenvalue problem could not have unique solutions
until boundary conditions are applied. Most conventional
mode matching methods adopt the PEC boundary condi-
tion to confine problems for waveguide structures. PEC
is also applicable to the proposed method to solve classic
waveguide problems. However, for regular computational
lithography problems the PEC boundary condition is not
adopted due to improper physical meaning interpretation. The
PBC [33]–[36] is taken for lithography problems. A two-
dimensional PBC is presented in Figure 2 with mathematical
presentation:

E(x + a, y+ b) = E(x, y) · e−j·kxa−j·kyb

H(x + a, y+ b) = H(x, y) · e−j·kxa−j·kyb (19)

Parameters a and b indicate periods in X and Y directions.
Symbols kx and ky are wave numbers. The non-italic symbol
j is used to denote the imaginary number whose square is
−1. For many lithography problems like mask component
analysis, their corresponding geometry configuration might
not be periodic. However, the PBC is still applicable by
defining a sufficiently large period as the buffer zone. Another
prominent benefit of PBC is that the corresponding Floquet
modes naturally approximate the plane wave excitation. This
provides a more reasonable description for most computa-
tional lithography problems.

III. MASK STRUCTURE MODELLING USING MODE
MATCHING METHOD
In this paper the mask component is selected to verify the
proposed method. A mask without substrate is modelled as a
two-junctional waveguide structure with PBC, as illustrated
in Figure 3. Junctions I and III are free space. The blue
area in section II represents a dielectric region of component.
The height of the dielectric region in Z direction is usually
much smaller than its size in XOY plane. For structures with
a substrate, or more complicated multi-layer structures, the
proposed method is still applicable by modelling the problem
as a multi-junctional waveguide structure.

Unknown definitions are presented in Figure 4 for a gen-
eralized waveguide structure. According to the Maxwell’s

FIGURE 3. Mask modelling using a two junctional waveguide.

FIGURE 4. Unknown definitions in generalized waveguide structure.

equations, transverse components of magnetic field could be
derived from transverse electric field from (1) and (2):

∂

∂z
(z×Hs) = −jωεEs +

j
ω
∇s × µ

−1
∇s × Es (20)

By utilizing the duality principle, the transverse electric field
are presented in a similar manner:

∂

∂z
(z× Es) = jωµHs −

j
ω
∇s × ε

−1
∇s ×Hs (21)

Equations (20) and (21) could be presented in a compact form
by introducing operators A and B:

z×Hs = jA ·
(
∂

∂z

)−1
Es

∂

∂z
(z× Es) = jB ·Hs (22)

Le and Lh operators could be depicted with more compact
form using A and B by utilizing some mathematical tricks:

Le = B · A

Lh = A · B (23)

Both transverse electric and magnetic fields are matched
in a similar manner at the discontinuity due to the duality
principle. In following contents only electric field matching
equations are presented. According to Figure 4, the electric
field matching at the first junction results in:

Ei + Er = O1,2 ·

[
E+2 + ej·l2·Le,2 · E−2

]
M1,2 · (Ei − Er ) = E+2 − ej·l2·Le,2 · E−2 (24)

The matrixMm,n is defined as:

Mm,n = L1/2
e,n · A

−1
n ·O

T
n,m · Am · L−1/2e,m (25)
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Le,n indicates the Le matrix for the nth junction. The
matrix On,m is an interpolation matrix for unknown number
matching between nth and mth junction. The elimination of
reflection field transforms (24) into:(
M1,2 ·O2,1 + I

)
· E+2 +

(
M1,2 ·O2,1 − I

)
· ej·l2·L

1/2
e,2 · E−2 = 2M1,2 · Ei (26)

Equation (26) is expanded using restored eigenmodes as:(
M1,2 ·Q2,1 + I

)
· (U2 ·Q2) · a+2 +

(
M1,2 ·O2,1 − I

)
· ej·l2·L

1/2
e,2 · (U2 ·Q2) · a−2 = 2M1,2 · (U1 ·Q1) · ai (27)

In (27) unknowns are mode expansion coefficient vectors a+2
and a−2 . The vector ai represents expansion coefficients for
incident electric field. U2· Q2 denotes selected eigenmodes
in the first wave guide. Eigenmode expansion coefficients are
matched by introducing a G1,2 matrix:(
M1,2 ·Q2,1 + I

)
· (U2 ·Q2) · a+2 +

(
M1,2 ·O21 − I

)
· ej·l2·L

1/2
e,2 · (U2 ·Q2) · a−2 = G1,2 ·

(
2M1,2 · (U2 ·Q2) · ai

)
(28)

The matching in middle junctions takes a similar procedure:

ej·lk ·L
1/2
e,k · E+k + E−k = Ok+1,k ·

[
E+k+1 + ej·lk+1·L

1/2
e,k+1 · E−k+1

]
Mk,k+1 ·

[
ej·lk ·L

1/2
e,k · E+k − E−k

]
= E+k+1 − ej·lk+1·L

1/2
e,k+1 · E−k+1 (29)

Equation (29) is transformed to the explicit mode matching
forms by expanding electric fields with restored eigenmodes:

ej·lk ·L
1/2
e,k · (Uk ·Qk) · a+k + (Uk ·Qk) · a−k

= Gk,k+1 ·Ok+1,k ·

[
(Uk+1 ·Qk+1) · a+k+1

+ ej·lk+1·L
1/2
e,k+1 · (Uk+1 ·Qk+1) · a−k+1

]
Mk,k+1 ·

[
ej·lk ·L

1/2
e,k · (Uk ·Qk) · a+k − (Uk ·Qk) · a−k

]
= Gk,k+1 ·

[
(Uk+1 ·Qk+1) · a+k+1

− ej·lk+1·L
1/2
e,k+1 · (Uk+1 ·Qk+1) · a−k+1

]
(30)

The transmitted fields at the last junction are matched as:

exp(j · ln · L1/2
e,n ) · E

+
n + E−n = On+1,n · Et

Mn,n+1 ·

[
exp(j · ln · L1/2

e,n ) · E
+
n − E−n

]
= Et (31)

The elimination of transmitted field results in:(
I−On+1,n ·Mn,n+1

)
· exp(j · ln · L1/2

e,n ) · E
+
n

+
(
I−On+1,n ·Mn,n+1

)
· E−n = 0 (32)

The explicit eigenmode expansion transforms (32) into:(
I−On+1,n ·Mn,n+1

)
· exp(j · ln · L1/2

e,n ) · (Un ·Qn) · a+n
+
(
I−On+1,n ·Mn,n+1

)
· (Un ·Qn) · a−n = 0 (33)

A block matrix is constructed by reorganizing (28), (30)
and (33). Equation (34) illustrates a block matrix from a
waveguide structure with four junctions:
911 912 2 2 2 2

921 922 923 924 2 2

931 932 933 934 2 2

2 2 943 944 945 946
2 2 953 954 955 956
2 2 2 2 965 966

 ·


a+2
a−2
a+3
a−3
a+4
a−4

=

ai
0
0
0
0
0


(34)

The first row indicates the matching at the first junction
interface. The element 911 indicates a matrix corresponding
to the first left hand side term of (28). The symbol2 indicates
a sub-matrix with all zero elements. The symbol 0 on the
right-hand side indicates a vector with all zero elements.
Rows 2 to 5 correspond to the middle junction matching.
The last row denotes the mode matching at the last junction.
Unknown dimensions of the matrix system in equation (34)
are prominently reduced compared with IMM. Moreover, the
block matrix is well conditioned which assists the iterative
solver converge fast to calculate expansion coefficients. The
overall computational complexity is O(N 1.5). Since eigen-
modes need to be stored in the memory for block matrix
construction, the overall storage complexity is higher than but
the consumption is still in reasonable scale.

IV. RESULTS AND DISCUSSION
In this section, numerical results of many simulation cases
are discussed to verify the proposed method from various
aspects. The first subsection validates the accuracy of the
hybrid eigenmodes using representative waveguide struc-
tures. Both microwave and nano-scale structures are adopted
in the second subsection to validate the mode matching
method accuracy and its capability of processing arbitrar-
ily shaped structures. The relevance between Lanczos iter-
ation steps and structure complexity is explored and dis-
cussed in the third subsection to support the non-uniform
iteration strategy. A mask structure with high complexity
is presented in the fourth subsection. Results from various
solvers are presented to evaluate accuracy and efficiency of
the proposed method. Numerical complexities of the pro-
posed method and RCWA are discussed in the last subsection
to prove the benefits of the proposed method for specific
problems.

A. EIGENMODE ACCURACY VERIFICATION
A dielectric rectangular waveguide is selected to verify
restored eigenmodes. The waveguide possesses an aspect
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FIGURE 5. Electric field intensity distribution of dominant eigenmodes for
rectangular waveguide (a) Ex11 (b) Ex21 (c) Ex12 (d) Ex22.

ratio of 2 and relative permittivity of 2.25 in the center area.
The PEC boundary condition is applied. Electric field inten-
sity distribution of eigenmodes Ex11, Ex21, Ex12 and Ex22
are presented in Figure 5. Dotted lines mark the boundary
between dielectric core and the cladding. Good matches are
presented compared with eigenmodes calculated from the
analytical solver in [7]. Normalized propagation constant Ps
and the normalized frequency B are defined according to [7]
to further verify the eigenmode accuracy:

Ps =
(
k2z − k

2
0

)/(
k21 − k

2
0

)
(35)

B =
b
π

[
k21 − k

2
0

] 1
2

(36)

The normalized frequencyB for eigenmodes in Figure 5 are
all 2.5, and the corresponding normalized propagation con-
stant Ps are 0.83,0.74,0.46 and 0.37 respectively. Figure 6
present dispersion curves for aspect ratios of 2 and 1.5 with
a medium contrast of 2.25. Good matches could be
observed. The root mean square error (RMSE) are 0.007 and
0.01 respectively compared with results in [7].

FIGURE 6. Dispersion curves of for rectangular dielectric waveguide
(a) Aspect ratio: 2 (b) Aspect ratio: 1.5.

FIGURE 7. Geometry configuration illustration of an arbitrarily shaped
microwave waveguide structure.

B. MODE MATCHING METHOD VERIFICATION
As PEC and PBC boundary conditions are both appli-
cable on the proposed method, the mode matching ver-
ification in this section is divided into two parts. The
first part takes the PEC boundary condition to model
a microwave waveguide structure with a complicated
geometry pattern. The second part uses PBC to analyze a
periodic structure.

The geometry configuration of an arbitrarily shaped
waveguide is presented in Figure 7. All length units are
inches. This model is designed according to [37]. A cross
iris is embedded between two circular waveguide cavities.
Each cavity is also connected with a rectangular waveguide
as input and output ports. This structure is modelled as a
four junctional waveguide component. Results from HFSS
software are taken as verification. Figure 8 present magnitude
and phase of S11 and S21 parameters with eigenmode energy
threshold of 100%. Good matches verify the capability of
the proposed method in solving highly arbitrarily shaped
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FIGURE 8. S parameter comparison for arbitrarily shaped microwave
waveguide structure. (a) Magnitude (b) Phase.

TABLE 1. Numerical error evaluation for different energy threshold
compared with HFSS.

FIGURE 9. Dispersion curves of for rectangular dielectric waveguide.

waveguide structures. Numerical deviations compared with
HFSS are evaluated by using normalized RMSE for mag-
nitude and phase of S11 and S21. Contents in Table 1 are
normalized RMSE with eigenmode energy threshold of 40%,
60%, 80% and 100%. As higher order eigenmodes are excited
by complicated structures, larger energy threshold is selected
to guarantee the accuracy.

The profile of the periodic structure in transverse dimen-
sion is presented in Figure 9, all length units are um. The
structure is periodically deployed in horizontal and verti-
cal dimensions. Periods are 1um and 0.5um as marked in
Figure 9. The thickness of the structure is 0.1um. Relative
permittivity and permeability are 10 and 1 respectively. The
planewave is incident from normal direction. Wavelengths

FIGURE 10. Reflection and transmission coefficients of a rectangular
periodic structure (a) TE polarization-reflection coefficient (b) TE
polarization-transmission coefficient (c) TM polarization-reflection
coefficient (d) TM polarization-transmission coefficient.

range from 1um to 2um. Considering the simplicity of the
structure geometry pattern, the energy threshold value in
eigenmode filtering is set to 70% to meet the 10−4 error
tolerance. This is beneficial for efficiency enhancement while
maintaining the accuracy. Reflection and transmission coef-
ficients are presented in Figure 10 with TE and TM polar-
izations. The TE polarization is defined for the case in
which incident electric field is along the horizontal axis (The
direction whose length is 1um). The TM polarization is cor-
respondingly defined for the electric field along vertical axis.
Results are compared with RCWA solver and HFSS. Good
results consistency is presented. The RMSE of coefficients
compared with HFSS is defined to quantify the numerical
accuracy of IMM and the proposed method. Table 2 presents
RMSE with the same iteration steps. Both methods present
higher accuracy with larger iteration steps. Under the same
iteration step, the proposed method could reflect smaller
RMSE due to the basis orthogonality correction by introduc-
ing Arnoldi projection matrix.

45806 VOLUME 10, 2022



J. Liu et al.: Hybrid Eigenmode Restoration Algorithm for Computational Lithography Problems

TABLE 2. Root mean square error of two mode matching methods.

C. LANCZOS ITERATION STEP DISCUSSION
The Lanczos iteration step number M determines the overall
efficiency and accuracy. Theoretically M is scaled as c ·
√
N . However, it is difficult to evaluate the specific constant

c for a particular problem. Even though c does not influ-
ence the scale relationship between M and N , its impact is
non-negligible. Existing analysis indicate potential relevance
between c and structure complexity in geometry and medium
contrast. This section further explores this relevance.

Theoretically a larger Lanczos iteration number provides
better approximation in (13) with more accurate eigenmodes.
However, a quantitative descriptor is required to interpret how
large the iteration steps should be. The self-convergence itera-
tion step is introduced as a complement for numerical perfor-
mance evaluation. It is defined as an iteration step that could
make the residual error between left and right hand sides
of (9) smaller than a specific tolerance. Connections between
geometry complexity and iteration step are studied by design-
ing three structures with increasing geometry complexity as
in Figure 11. The black region is filled with homogeneous
medium. Unknown numbers are all 5,000 and the residual
error tolerance is 10−4. Table 3 presents the self-convergence
iteration step of three structures with different medium con-
trasts. Contents in the table are the statistical average val-
ues. Both geometry complexity and medium contrast present
positive correlation relevance with iteration steps. Therefore,
when the structure possesses high complexity in geometry or
medium configuration, more Lanczos iterations are required
for higher order eigenmode generation to capture the physical
essence.

This iteration step character could be explained in an alter-
native and more intuitive manner. By generating the sys-
tem matrix Le matrix for three structures, matrix condition
numbers could be analyzed. For the medium contrast of 10,
condition numbers for three geometry patterns are 1.74×104,
8.57× 104 and 3.65× 105 respectively. It is well known that
the larger condition number usually indicates the dominance
of larger eigenvalues. As Lanczos method is based on Krylov
subspace method, it usually requires more iteration steps for
new subspace spanning to overcome the dominance of the
large eigenvalue. Therefore, the relevance between Lanczos
iteration number and geometry complexity is similar to the
mechanism that iterative solvers usually need more iteration
steps to solvematrix problemswith larger condition numbers.

According to above analysis, the uniform Lanczos itera-
tion step adopted by conventional mode matching method
is not reasonable, especially for multi-layer structures with
different geometry complexity patterns. For junctions with

FIGURE 11. Geometry profiles of three structures for iteration step study.
(a) low complexity (b) medium complexity (c) high complexity.

TABLE 3. Self-convergence iteration steps for three structures under
different medium contrasts.

simple geometry configurations, the excessive iteration step
is a waste of computational resources, while insufficient iter-
ations could hardly satisfy accuracy requirement for junctions
with high complexity. A more intelligent iteration strategy
is favorable for efficiency optimization. As self-convergence
iteration step could be evaluated with a specified residual
error tolerance, an alternative iteration strategy is precon-
figured before simulation. For a problem like Figure 3, the
first junction is composed of free space and its iteration step
is much smaller than that of the second one. The structure
in Figure 11(c) is taken to verify this strategy. Iteration
step configuration and computation time for two strategies
are presented in Table 4. The non-uniform iteration strategy
saves over 50% of time with minor impact on accuracy. For
multi-layered structures benefits of the non-uniform iteration
strategy get more prominent.

D. SIMULATION AND DISCUSSION FOR A COMPLICATED
MASK COMPONENT
Previous discussions and results indicate the potential of
the proposed method in solving computational lithography
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TABLE 4. Computation time comparison between different iteration
strategies.

FIGURE 12. Mask component illustration from an industrial example.

problems. In this subsection a mask with high geometry
complexity is introduced for verification. Figure 12 presents a
mask component from a practical industrial designing exam-
ple. The right zone of the figure amplifies the part confined by
red dotted lines in the left one. Some geometrical parameters
are marked. It could be noticed that layout in Figure 12 is
periodic, which makes the adoption of PBC reasonable with-
out the necessity of introducing the buffer zone. According to
Figure 12, a mask structure is extracted with slight geometry
deviation as presented in Figure 13. The black region is
composed of Molybdenum Silicide medium whose relative
dielectric constant is (2.43 + j · 0.6)2. Length, width and
thickness parameters are 2245nm, 708nm and 68nm. The
unknown number is 215,000 with 193nm wavelength. The
structure is excited by normally incident plane waves with TE
polarization, where the electric field is along the direction of
horizontal axis in Figure 13.

The non-uniform iteration strategy is adopted. Junction II
takes 3,000 iteration steps. Junctions I and III with free
space only needs 200 iteration steps. The transmitted electric
field distribution in the lithography region is presented in
Figure 14. The field intensity distribution presents the consis-
tency with mask geometry pattern. Transmission coefficients
and the phase of total transmitted electric field are presented
in Figure 15 with different wavelengths. Results are also
compared with IMM and RCWA methods. Good matches
could be visually observed to verify the simulation accu-
racy. The procedure is also extendable to mask component
with multi-layer substrate structures by modelling as multiple
junctional waveguide problems.

Compared with accuracy, difference in efficiency among
methods are more prominent. The RCWA method is based
on Bloch-Floquet theorem and naturally suitable for prob-
lems with periodic property. It is mathematically elegant by
transforming the problem into the Fourier domain. How-
ever, RCWA is intrinsically still a mode matching method
by matching transverse fields at the junction discontinuity.
Fields are represented in eigenmode expansion form and the

FIGURE 13. Geometry configuration of a high complexity mask
component extracted from Figure 12.

FIGURE 14. Transmitted electric field intensity for mask component.

FIGURE 15. Simulation results comparison for three methods
(a) transmission coefficients (b) phases of transverse transmitted electric
fields.

only difference is that eigenmodes are expanded in Fourier
domain, which are still solved in RCWA with O(N3) com-
plexity. In contrast, IMM and the proposed method possess a
computational complexity of O(N1.5).
Table 5 and 6 are time and memory consumptions for

three methods under wavelength of 193nm and 217nm.
The self-convergence iteration step for Lanczos is 3000 and
RCWA method needs 3721 modes. Large time con-
sumption of RCWA is caused by its high complexity
in eigenmode solving. The proposed method reduces
computational time contributed by block matrix dimension
reduction and non-uniform iteration strategy. As eigenmodes
are explicitly stored in the memory for the proposed
method, the corresponding memory consumption is higher
than IMM.
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TABLE 5. Computational time comparison for three methods.

TABLE 6. Memory consumption evaluation for three methods.

E. NUMERICAL COMPLEXITY
There is the necessity to give extra discussions between
RCWA and the proposed method in numerical complexity.
Even thoughRCWA iswidely used inmany periodic structure
analysis, its capability in generalization to more complicated
structures is still not clear. Numerical studies indicate that
RCWA method is not a suitable option for two kinds of
problems. The first one is related to geometry complexity. For
simple structure like a rectangle, the RCWA could use small
amount of plane waves (eigenmodes) to approximate trans-
verse fields with good accuracy. However, much more plane
waves are needed to capture physics of detailed structure
characters with high complexity. Due to its O(N3) complexity
in solving eigenmodes and the quadratic mode number incre-
ment character, its resource consumption in time andmemory
does not reveal any advantages compared with other methods.
The second adverse case is structures composed of multiple
junctions. For a structure with M1 junctions, the complexity
of RCWA is M1O

(
N 3
1

)
, in which N1 is the number of plane

waves in RCWA. In contrast, the numerical complexity for
the proposed method is M2O

(
N 1.5
2

)
, in which M2 is the

required iteration number for solving the block matrix prob-
lem in equation (34) and N2 is the unknown number with
finite differencemodelling. This means RCWAmethod needs
to conduct O

(
N 3
1

)
computation for M1 times. Even though

M2 is apparently larger than M1, the overall complexity
is maintained at O(N1.5) level. Therefore, for problems with
high complexity in XOY and Z dimensions, the proposed
method still presents higher degree of flexibility to balance
efficiency and accuracy performance.

V. CONCLUSION
This paper introduces a novel hybrid eigenmode restoration
and explicit mode matching method to solve computational
lithography problems. The method is based on IMM but for-
mulations are transformed to explicit mode matching forms.
The eigenmode accuracy problem caused by basis vector
orthogonality loss is solved by a hybrid restoration algo-
rithm through combination of Lanczos and Arnoldi meth-
ods. The overall computational complexity is still maintained
at O(N1.5) level. Restored eigenmodes and mode match-
ing method are verified through many simulation cases.
The relevance between Lanczos iteration step and structure

complexity is explored and a non-uniform Lanczos iteration
strategy is proposed for efficiency optimization. Results for
a highly complicated mask structure are presented with good
accuracy and efficiency performance. Further discussions on
computational complexity verify the application potential
of the proposed method for highly complicated lithography
problems. However, it is necessary to address that the current
method still has limitations. For smaller scale lithography
problems like 3nm craft which is available right now, govern-
ing equations adopted in the proposedmethod could not inter-
pret the lithography problem comprehensively. At 3nm scale
or smaller, more physical phenomena like quantum effects
are reflected and the computational lithography problem has
evolved into a multi-physics problem. Future studies on mod-
elling smaller scale problems with multi-physics principles
might elevate the significance of eigenmode technologies to
serve lithography industry.
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