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ABSTRACT New government regulations and incentives promote the deployment of commercial electric
vehicles to reduce carbon emissions from gasoline-fueled vehicles. For commercial electric vehicles (CEVs)
operating in a fleet, charging processes are often performed at the depot where they begin and end their daily
driving cycles, as well as at public stations on their routes. With the large penetration of CEVs in depots,
simultaneous charging increases peak demand, which in turn impacts the electric network and increases
the demand cost of a facility. These depot charging conditions influence the charging schedules of CEVs
along their routes and the total service cost of logistic companies. This paper investigates optimal charging
problems for CEVs that are supported by charging stations at depot and on-route public charging stations.
The optimal charging and routing problems of CEVs are modelled as an optimization problem and relevant
solutions are provided. The charging variants considered in the optimization model are peak demand of depot
charging, time of use tariffs during the day, partial recharging, waiting times and characteristics of public
stations. The results indicate the effectiveness of the developed algorithm in achieving optimal routes that
maximize the benefits of logistics companies provided all constraints are satisfied.

INDEX TERMS Electric vehicles, electrification, transportation, vehicle routing, vehicle to grid,
optimization, greenhouse gas emissions.

NOMENCLATURE
Abbreviation:

ALP Aggregate load profile.
BLP Base load profile.
CEV Commercial electric vehicle.
CS Charging station.
DOA Developed optimization algorithm.
ET Electric truck.
SoC State of charge.
TOU Time of use.

Parameters and Variables:

TChari Charging time at station i.
ECap Energy capacity of CEV.
0 Set of possible combinations of stations.
γ Assignment factor of public stations.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jason Gu .

AIn,t Availability index of nth CEV at time slot t.
A Set of generated feasible solutions.
9a Set of routes contained in solution a.
ρdemand Demand cost of depot charging.
ρdist Cost per unit of distance.
ρm,t Energy pricing rates of station m at time t.
ρDt Energy pricing rates of depot station at time t.
ρveh Cost of running one vehicle.
CDepot Total charging cost at depot stations.
CDistance Total distance cost of routes.
CPublic Total charging cost at public stations.
CVehicle Total cost of used vehicles.
Dij Travel distance between customers i and j.
EDep CEVs’ energy at departure from the depot.
Ei Remaining energy at arrival to node i.
E Initn Initial energy at arrival to depot for vehicle n.
Enearn Required energy of vehicle n to reach nearest

station.
Ev0,n Remaining energy at departure from depot for

vehicle n.
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Li Earliest arrival time of customer i.
Pdepot Power rates of depot station.
Pm Charging power of station m.
qi Load Capacity of CEV at node i.
R Energy consumption of CEV.
S Set of public charging stations.
T Servicei Service time at customer i.
Twaiti Waiting time at station i.
T Travelij Travel time between nodes i and j.
T Arrivali Arrival time at node i.
T Leavei Leaving time from node i.
T Plugi Plug time at station i.
Ui Latest arrival time of customer i.
V Set of customers that need to be serviced.
V ′′ Set of all vertices including stations.
v0, vN+1 Depot nodes.
vi Customer i node.
xij Decision variable of route selection.

I. INTRODUCTION
The electrification of different transportation modes has
become a critical step towards the reduction of global
greenhouse gas emissions [1], [2]. Commercial vehicles
are one of the main contributors to global greenhouse
gas emissions [3]. Commercial vehicles are known for
contributing almost 40% of global CO2 emissions from
the road transport sector in 2015, where their life-cycle
emissions are estimated to double by 2050 according to
the business-as-usual scenario [4]. This makes electrifying
commercial vehicles an important area that can contribute
heavily in the reduction of greenhouse gas emissions [5],
[6]. Accordingly, several governments have set policies and
plans to electrify their transportation sectors by 2050 [7].
Recent improvements in lithium battery technology, the
potential benefits of electric trucks (ETs) over their life
cycle, and government incentives supporting zero-emission
vehicles have made commercial electric vehicles (CEVs)
technically and economically viable [8]. This has motivated
several truck manufacturers to announce promising plans to
electrify their production of medium-duty and heavy-duty
vehicles [9]. Moreover, many logistics companies, such as
DHL, Walmart Inc, Amazon, Anheuser-Busch, and FedEx
have started integrating ETs into their fleets [10], [11].

Generally, CEVs are classified according to their gross
vehicle weights into light-duty CEVs (< 3.5 tonnes), medium-
duty (3.5 to 15 tonnes), and heavy-duty CEVs (> 15 tonnes).
These CEVs can be used in a wide variety of applications
ranging from long-haul applications, such as regional freight
CEVs, to vocational work applications, such as urban freight
CEVs [9]. In this paper, we target the types of CEVs
utilized in urban vocational work applications, such as urban
cargo, freight, and delivery applications. Depending on the
applications, the weights and ranges of these CEVs can
vary. Many logistic commercial companies such as FedEx,
UPS, DHL, JD, and TNT [12] utilize urban CEVs. In these

companies, the CEVs operate on daily operational schedules
that start from the depot to provide logistic services to a
specific number of customers before returning back to the
same depot at the end of the operational schedules. For these
types of CEVs, there are conditions and constraints that
should be considered carefully. These conditions are the time
windows at which each customer should be serviced [13], the
time required to serve each customer [14], and limited load
capacity of CEVs [15]. In addition, the CEVs should not run
out of electricity during the journey in order to not disturb
their operational schedules.

Due to these conditions and strict operational schedules,
most operators of commercial enterprises prefer to charge
their CEVs at their facilities applying a ‘‘return-to-base’’
strategy, where charging stations are located at facilities,
such as depots and industrial micro-grids, enabling the
charging of electric trucks between shifts or overnight,
as depicted in Fig. 1 [16]. In a return-to-base strategy, CEVs
should have heavy battery banks that accommodate changes
to operational schedules over time, including multi-shift
operations and seasonal deviations [9], [17]. However, this
large-size battery bank impacts the payload of CEVs and
requires a high-power charging infrastructure to be installed
in the facility. With an increase in the number of CEVs
adopted in a fleet, the power limits of existing electrical
networks can restrict the capacity of charging infrastructure
installed in a facility, and require upgrading of these
networks [17], [18]. Enabling the CEVs charging at public
charging stations during daily driving cycles can help to
reduce the capital cost investment of charging infrastructure
and electrical networks. In addition, commercial enterprises
may leverage the large capacity of CEVs to provide ancillary
services for the grid by controlling the charge of CEVs during
low demand periods of the grid, and supporting the grid
during high demand periods [19]–[22].

To meet growing demand for CEVs, many governments
have provided subsidies and incentives for deployingmultiple
types of charging station networks at public locations and
highways [3], [23], [24]. This has motivated a diversified set
of private sector stakeholders, such as large charging station
operators and vehicle original equipment manufacturers,
to invest and set targets to deploy publicly accessible charging
stations [3], [25], [26]. Most of these charging stations are
expected to incorporate renewable energy sources, which
in turns impacts energy prices at these stations during
daytime, according to time-of-use (TOU) tariffs. As a result,
besides the initial SoC and battery capacity of vehicles,
CEV charging at public charging stations depends on the
location, capacity, and TOU tariffs of stations along driving
routes [27]–[30]. These variants require CEV charging to
be optimally scheduled at different charging stations along
a route.

As CEV charging at public charging stations occurs during
services provided by their logistics companies, the scheduling
problem of CEV charging has been addressed in the Electric
Vehicle Routing Problem (EVRP), as depicted in Fig. 1.
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FIGURE 1. TOU energy tariffs of public and depot stations for a day.

EVRP is an extension of the vehicle routing problem (VRP),
aiming to find the most efficient routes for conventional
commercial vehicles and maximize benefits for logistics
companies. Much research has addressed the VRP with
regard to different variants such as capacitated routing [31],
[32], time window (TW) constraints [33]–[36], pickup and
delivery [37]–[39], multiple depots [40], and the dynamic and
stochastic routing [41]. However, since EVRP is comprised of
two interdependent problems, which are the service schedule
of customers and the charging schedule of CEVs, there are
several variants of EVPR that should be addressed.

In the literature, different variants of EVRP have been
considered. Authors in [42] have proposed a variant of the
EVRP with intermediate nodes for the shuttle fleet. In their
model, they considered the entire intersections of the real
road networks, the changing in demand, the recharging
behavior, vehicle dynamics, and battery. Yang et al. [15]
have proposed a variant of the EVRP with pickup and
delivery that can be conducted simultaneously. In their study,
different constraints were considered such as capacity, time
windows constraints, charging time, and battery capacity.
Yang et al. [30] investigated the EVRP with pickup and
delivery for a single depot with a single CEV. In their model,
CEVs can be charged at fast and regular charging stations
considering time-of-use tariffs. Authors in [13] introduced
EVRP with time windows and charging stations. In their
study, a hybrid heuristic of neighborhood search and Tabu
search was proposed to address this problem. In [14],
a look ahead strategy has been incorporated into ant colony
optimization for addressing EVRP with time windows and
recharging stations. To include the importance of charging
stations locations, Wang et al. [43] have optimized a CEV
route with charging detours. In their model, real-time traffic
data and energy costs of the regenerative braking were
considered in the optimization problem of CEVs moving
between a single source and destination. Authors in [44]
addressed the capacitated EVRP problem for multi depots
with the objective of minimizing the total transportation
distance. In their model, the client demand consists of
two-dimensional weighted items, such as furniture, home
appliances, or breakables.

CEV charging at fast charging stations requires large power
demands as compared to passenger light-duty vehicles [9].
This large demand can significantly impact the stability of
electric networks [45]–[50]. Therefore, authors in [49], [50]
have addressed power imbalance between charging stations
by routing CEVs to less congested stations to prevent
the network stress. This was made possible by combining
pricing mechanisms and allocation of power resources.
In [51], an optimization model for the routing problem of
CEVs considered with dynamic energy costs and energy
consumption model of CEVs over a specific route. In the
above study, starts and stops of vehicles were considered
in energy consumption model, with CEVs being charged
fully or partially at charging stations according to the
characteristics of the available infrastructure of charging
stations. Hulagu and Celikoglu [52] solved the EVRP prob-
lem to find the least energy-consuming routes considering
the actual characteristics of battery, including discharging
behaviour and braking energy recovery. Simultaneously,
they introduced a model to optimally locate the recharging
stations considering the limitations on the power of the
grid system. Abdulaal et al. [53] have modelled G2V, V2G
services, and charging stations demand stochastics in the
EVRP optimizationmodel. In their study, fast public charging
stations and regular slow charging station at depot were
considered in CEV charging, according to routing problem
constraints. To approach the optimal solution, a solver
incorporating a custom GA with embedded Markov decision
and trust region optimizationmethodswas developed. In [12],
a bi-level optimization model was proposed to solve the
EVRP as two sub-problems, namely CVRP and fixed route
vehicle charging problem and the recharging schedules of
vehicles. To generate fixed feasible routes from the upper sub
problem, the max–min ant system algorithm was proposed.
A new heuristic method was designed to schedule charging
of vehicles at charging stations along the fixed routes. The
authors in [24] have investigated EVRP when charging
stations are equipped with two recharging technologies,
battery swapping and fast recharging. In their study, EVs
can be partially recharged according to their requirements.
To address this optimization model, an improved ant colony
algorithm was developed and combined with insertion
heuristics and local search strategies.

Although the aforementioned research studies have con-
sidered many variants of EVRP, none of these reviewed
works have addressed EVRP with considering the impacts of
CEVs charging conditions at depots on charging schedules
at public charging stations, as depicted in Fig. 1. With an
increased number of CEVs charging at depots, the peak
demand of charging load impacts electrical infrastructure
and charging cost at depots. The impact on the charging
cost is a result of the demand charge that is applied,
in addition to the energy charge, to commercial and industrial
locations [54]. In the literature, the charging of CEVs has
been considered individually in EVRP according to energy
cost, without considering the impacts of total charging load
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on demand cost at depots. Additionally, most studies in the
literature have relied on insertionmethods to include charging
stations in CEV routes prior to optimizing the charging
process. However, due to government subsidies for building
recharging infrastructure, there could be many charging
stations with varied characteristics (e.g. power capacity,
detour distance, and energy prices) between customers along
CEVs routes. Therefore, the optimal scheduling of CEV
charging requires optimizing charging processes amongst
possible combinations of charging stations according to their
characteristics, so that the logistic company benefits are
maximized.

This paper incorporates the optimal charging prob-
lem (OCP) at both depot and public stations in the EVRP
considering time window (TW) constraints. To address the
EVRP-TW and OCP, an optimization algorithm is developed
to divide the problem into sub-problems and find their
optimal solutions. The main contributions of this paper are:

1) This paper jointly investigates the charging problem
of CEVs at depot and public charging stations,
considering the peak demand cost of charging load and
TOU tariffs of stations.

2) The developed optimization algorithm provides a
simultaneous solution to routing and optimal charging
problems for a set of CEVs operating in the same depot.

3) The proposed solution considers multiple variants of
the charging problem in an integrated way. These
variants include delays and characteristics of public
stations, partial recharging, and multiple visits to
stations.

The remainder of this paper is organized as follows.
In Section II, the formulation of mathematical model is intro-
duced. In Section III, delays at public charging stations are
presented. Section IV introduces the developed optimization
algorithm. Section V introduces the simulation results with
analysis. Section VII presents the summary of this paper.

II. MATHEMATICAL MODEL FORMULATION
A. PROBLEM DEFINITION
In this paper, the problem of routing and charging a set of
CEVs operating in the same depot is solved simultaneously.
Let V = {v1, v2, v3 . . . ., vN } be the set of customers that need
to be serviced. Each vehicle departs the depot (v0) and serves
a number of customers before returning to the depot (vN+1)
by the end of the driving cycle. Each customer needs to be
serviced within specific time windows (Li, Ui), where Li is
the earliest arrival time and Ui is the latest arrival time of
customer i ∈ V . Once a customer is visited, a CEV spends
time (T Servicei ) servicing the customer. During a daily driving
cycle, CEVs can be charged at a set of public charging stations
S = {s1, s2, s3 . . . ., sM } that are available and publicly
accessible. Then the set of all nodes is denoted by V ′ = V ∪S
and the system set including depot is V ′′ = V ′ ∪ v0 ∪ vN+1
These charging stations have different characteristics in

terms of charging power rates, location and energy cost rates.
The energy pricing rates for a 24-h period ahead of time are

assumed to be available at each charging station. In addition,
as charging stations are available for all CEVs, there may be
a waiting time of Twaiti at each charging station i ∈ S before
the charging service is available. Thewaiting time can depend
also on queue length during the congestion time at charging
stations.

Before departing the depot, CEVs are required to be
charged with required energy during the dwell time. The
simultaneous charging of CEVs increases significantly peak
demand of a depot as compared to base-load. This has impacts
in increasing peak demand cost, which is much higher than
energy cost in commercial enterprises. This problem of CEV
charging at depots should be included in the optimization
model of the routing problem. Therefore, in addition to
optimizing CEV routing through the costumers, the charging
schedules of CEVs at public and depot charging stations
should be simultaneously optimized. The solution scheme
of charging should allow CEVs to provide ancillary services
to the grid by charging during low demand periods, whilst
maximizing the benefits to the logistic companies.

B. OBJECTIVE FUNCTION
The main objective of the vehicle routing problem is to
maximize the benefits of logistic companies by minimizing
the travel costs of these vehicles. In the traditional VRP,
minimizing total travel cost is related to minimizing the
traveled distance. However, travel costs in EVRP are
determined by the costs of distance traveled and the charging
process of CEVs. Therefore, the objective function of EVRP
is formulated as a multi-objective form, where travel distance
cost, used vehicles cost, public charging cost, and depot
charging cost must be minimized. The objective function of
the optimization problem is formulated as follows

Min CT = CDistance + CVehicle + CPublic + CDepot (1)

The different costs of objective function (1) are explained in
detail in the following sections

1) TRAVELED DISTANCE COST (CDistance)
The traveled distance cost of CEVs depends mainly on the
distance of feasible paths between customers served by the
vehicle, and detour distances required to reach charging
stations along a traveling path. The total traveled distance cost
can be calculated as

CDistance = ρdist
∑
i,j∈V ′′

(Dij · xij) (2)

Di,j denotes the travel distance between customers i, j ∈ V ′′,
xij is a binary variable that indicates the decision of traveling
along the path i, j, and ρdist is the cost per unit of distance.

2) VEHICLES COST (CVehicle)
The total vehicles cost depends on the number of vehicles
used to service all the customer and the cost of running one
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vehicle (ρveh), as shown in (3).

CVehicle = ρveh
∑
j∈V ′′

x0j (3)

3) PUBLIC CHARGING COST (CPublic)
The cost of CEV charging at a public station i ∈ S depends on
charging power rate (Pi) and energy pricing rates (ρPi,t ). Since
pricing rate follows TOU tariff, the time at which a CEV starts
charging at a station is crucial in calculating public charging
cost. Assume that CEV moves from the customer to station i
along the route. Thus, the total public charging cost of CEV
along a path is calculated as

CPublic =
∑
i∈S

∫ TPlugi +TChari

TPlugi

(Pi · ρPi,t ) dt (4)

T Plugi , denoting the starting time of CEV charging at station
i ∈ S and TChari as the charging time of CEV at the station.
T Plugi depends on the arrival time at station i and the waiting
time in the queue, where T Plugi = T Arrivali + Twaiti

4) DEPOT CHARGING COST (CDepot )
The energy cost of CEV charging at a depot is usually cheaper
because of the lower power rates (Pdepot ) of charging stations
and lower energy price rates (ρDt ). However, CEVs returning
to a depot are charged simultaneously in between services,
which in turn increases peak demand of the total charging
load of CEVs. This increase in peak demand may introduce
a new cost for charging CEVs related to the demand charge
rate (ρdemand ). Let W = {1, . . . ,Z } be the set of CEVs used
to serve the customers, where Z can be calculated as follows

Z =
∑
j∈V ′′

x0j (5)

Therefore, the CEVs charging between arrival time
(tarrn ) to a depot and departure time (tdepn ) from a depot
(∀n ∈ W ) should be optimized simultaneously to ensure
minimum charging costs in terms of energy costs and
demand costs. As the dwell period of CEVs at the depots
is considerably long, the charging requirement of each CEV
can be coordinated by optimizing Pdepot over the dwell time.
Thus, depot charging costs of CEVs can be formulated as

CDepot = CEnergy
Depot + C

Demand
Depot (6)

CEnergy
Depot =

∑
n∈W

∫ tdepn

tarrn

(Pdepot · ρDt ) dt (7)

CDemand
Depot = (Pmaxtotal − P

max
base) · ρdemand (8)

In (8), (Pmaxtotal−P
max
base) indicates increase in the peak demand as

a result of optimized total charging load of CEVs, wherePmaxtotal
represents the maximum power demand of the aggregate load
profile in the depot, consisting of the base-load profile of the
depot and total charging load profile of CEVs, whilst Pmaxbase is
the maximum power demand of the base-load profile of the
depot.

C. OPTIMIZATION VARIABLES
1) DECISION VARIABLES
The main objectives of EVRP are to select the best routes
and charging schedules for CEVs in order to maximize
benefits for logistic companies. Therefore, different decision
variables need to be optimized, which increases substantially
the complexity of the problem. For route optimization, the
binary variable xij has been selected to determine whether
a CEV is moving between the two vertices. This decision
variable is defined as follows

xi,j =

{
1, If route i to j is selected
0, Otherwise

(9)

To optimize the public charging of CEVs, TChari has been
optimized at all stations along its route. Whilst in depot
charging, the Pdepot of CEV is optimized over the charging
interval at the depot. These variables are defined as follows:

Tmini ≤ TChari ≤ Tmaxi ∀i ∈ S (10)

0 ≤ Pdepot ≤ Pmax (11)

where Tmini and Tmaxi are the minimum and maximum limits
of charging time at the station respectively. Pmax is the power
capacity of depot station.

2) OPTIMIZATION CONSTRAINTS
The objective function in (1) is subject to the following
constraints.∑

j∈V ′′,i6=j

xi,j = 1 ∀i ∈ V (12)

∑
i∈V ′′

xi,j −
∑
i∈V ′′

xj,i

= 0 ∀j ∈ V ′′ (13)

qj ≤ qi − cixi,j + C(1− xi,j)

∀i ∈ V ′′|vN+1, ∀j∈V ′′|v0, i 6= j (14)

0 ≤ qi ≤ C ∀i ∈ V ′′ (15)

Li ≤ T Arrivali ≤ Ui ∀i ∈ V ′′ (16)

T Arrivalj ≥ T Leavei + T Travelij

∀i ∈ V ′′|vN+1, ∀j ∈ V ′′|v0, i 6= j (17)

T Leavei =


T Arrivali + T Servicei , ∀i ∈ V ′′|S

T Arrivali

+Twaiti + TChari , ∀i ∈ S

(18)

Ei ≥ 0 ∀i ∈ V ′′ (19)

Ej =


Ei − (Di,j · R),
∀i ∈ V ′′|S, ∀j ∈ V ′′|v0, xij = 1

Ei + (Pi · TChari )− (Di,j · R),
∀i ∈ S, ∀j ∈ V ′′|v0, xij = 1

(20)

Ei+Pi ·TChari ≤ ECap ∀i ∈ S, n ∈ W (21)

Ev0,n =
∫ tdepn

tarrn

Pdepot dt + E Initn , ∀n ∈ W (22)
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FIGURE 2. Transition states diagram of M/M/k/R system.

Enearn ≤ Ev0,n ≤ E
Cap, ∀n ∈ W (23)

Enearn = min{(D0,j · R) ∀j ∈ S} (24)

Constraints (12) and (13) ensure that each customer is
assigned exactly once, and that outgoing arcs are similar to
incoming arcs at each vertex. Constraints (14) and (15) define
the load capacity of all customers. The time allowance of
each customer is ensured by Constraints (16), (17), and (18).
Constraints (19) and (20) define the remaining energy at
arrival at each node. Constraint (21) ensures the battery
capacity of CEV in each station. Constraints (22)-(24) apply
for the charging process in the depot. The required energy
that should be charged before departure from the depot is
met by Constraints (22) and (23). Constraint (24) defines the
minimum energy required to be charged for each CEV.

III. DELAY AT PUBLIC CHARGING STATIONS
The increased number of CEVs and longer charging time
of these vehicles may result in station congestion and; thus,
a CEV needs to wait in a queue before the charging service
starts. The waiting time in the queue depends on the number
of vehicles in the queue, the charging rate of the station,
and the number of servers in the stations. Waiting times at
charging stations can cause significant delays in the charging
process of CEVs; thus, they should be considered in the
charging optimization model of these vehicles.

To estimate the waiting time at each charging station, the
M/M/k/R model [55], [56] of the queuing system is used,
where the first and secondM denotes the Markovian property
of arrival and service time distributions respectively, k is the
number of servers, and R is the number of vehicles that can be
parked at a station. Based on Markovian property, the service
rates of servers can be represented exponentially with mean
service rates (µ) and constrained by charging rates. Further,
arrival rates follow a Poisson distribution with mean arrival
rates (λ) and can be extracted from historical data.

The transition of states of M/M/k/R is a stochastic process
that can be derived by Markov chains [57], as depicted in
Fig. 2, where each state represents the number of vehicles in
the queue. The transition between stages occurs when a CEV
arrives at station or a CEV finishes the charging service. This
stochastic process of the state transition is represented by the
state transition probability matrix P [56]. Based on matrix
P, the row vector can be determined as PT . πT=0T , where
π = [πr , r = 0, 1, 2, . . . ,R] represents the probability that
r vehicles are in the station. Since the number of CEVs at
any moment can be the greater or smaller than the number of

FIGURE 3. Flowchart of the developed optimization algorithm (DOA).

servers, the rth π can be obtained as

πr =


ρr · π0

r !
, if r ≤ k

ρr · π0

k!kr−k
, if r > k

(25)

where ρr = λr

µr
. As 6R

r=0πr = 1, π0 can be obtained as
follows

π0 =
1

6k−1
r=0 (

ρr

r ! )+6
R
r=k (

ρr

k!kr−k )
(26)

Knowing the formula of π , the mean length and waiting of
queue at each charging station can be obtained, as in (22) and
(23) respectively

E(Lq) = 6R
r=k (r − k) · πr (27)

E(Wq) =
E(Lq)

λ(1− πR)
(28)

IV. DEVELOPED OPTIMIZATION ALGORITHM
To solve the vehicle routing problem with time windows and
optimal charging problem of CEVs, both the customer order
and charging schedule need to be addressed simultaneously.
In addition, the optimal charging problem of CEVs requires
the simultaneous consideration of different aspects of CEV
charging, such as charging stations alternatives along a
route, TOU tariffs of charging stations, and charging costs
at depot including demand cost. Evidently, this increases
significantly the non-linearity of the problem; whereby
individual-basedmeta-heuristic algorithms, such asGA, Tabu
search, and ACO, may require substantial computational
time and not provide efficient solutions because of local
optima solutions [12], [30]. Therefore, this paper develops
an optimization algorithm that breaks the EVRP-TW and
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FIGURE 4. Process of assigning and combining the candidate stations.

OCP problem into sub-problems, where the optimal solution
is obtained by optimally solving all the sub-problems
in a hierarchical approach. The developed optimization
algorithm (DOA) uses ACO and GWO algorithms in addition
to the Cplex solver for addressing the problem. The flowchart
of DOA is presented in Fig. 3 and is described in the following
sections.

A. FEASIBLE ROUTES GENERATION
The feasible routes are generated by using the ACO
algorithm which has been used to solve EVRPTW in
many works, including [12], [24]. In each iteration of the
developed algorithm, the ACO generates a population of ants
A = {1, 2, 3, .,A} that represents feasible solutions to
serve all customers according to their loading and time
window constraints. Each ant in the population may contain
a single route or multiple routes to serve all customers. Let
9a = {ψ1, ψ2, ., ψZa} denotes the set of routes contained in
ant a ∈ A, where Za is the number of routes. Each route
in 9a is assigned with one CEV, so the set of vehicles for
ant a is Wa = {1, 2, .,Za}. Since the main objective routing
problem is to reduce the travel cost, the ant a with the lowest
distance is selected and the charging costs of its Za vehicles
are determined, as shown in the following stages of Fig. 3.

B. CHARGING STATION ASSIGNMENT
The optimal charging scheduling of CEV requires con-
sidering the different charging stations along its feasible
route. Thus, more than one station may be assigned as a
candidate station along the path between any two vertices.
This assignment of stations to the feasible route is essentially
based on proximity to both vertices of the route. In the
developed algorithm, factor γ is used to identify the candidate
stations along each path of the feasible route. This factor
defines the increase in the distance of the path as a result of
visiting a specific station, as shown in Fig. 4. The assignment
factor γ is selected depending on the detour distance cost, and
constrained by the time windows of each customer. Another
criterion of selection for this factor is computational time

Algorithm 1 Improved Grey Wolf Algorithm

Input: The population Size, Iteration Number, EDepn , Wa, 0
Output: The fitness of α (charging cost), the position of α

(charging Time) for each vehicle
1: Set System Parameters α, β, δ, and fitness values
2: for n ∈ Wa do
3: Expand population size to include the points of EDepn
4: for I ∈ 0 do
5: Reduce the search space of each wolf based on

vehicle characteristics
6: Initialize solutions for population size in the reduced

research space
7: Calculate the fitness values for all wolfs and assign

α, β,δ solutions
8: if fitness of wolfs are assigned high values then
9: Return high values for charging cost and zeros for

charging times
10: end if
11: while Iteration number not met do
12: Update the current position of each wolf
13: Update search space of each wolf and ensure the

limits of updated positions
14: Calculate the fitness values for all wolfs
15: Update the α, β,δ solutions
16: end while
17: end for
18: end for
19: return The I ∈ 0 that achieves the best charging cost

and charging times for each point of EDepn , n ∈ Wa

cost, where large γ may increase the search space of public
charging optimization problem.

When stations are assigned to the feasible route, the
possible combinations of stations for charging along the route
are defined as depicted in Fig. 4 provided that one station
is visited between any two vertices. Let 0 = {I1, I2, .} be
the set of possible combinations of stations available for
CEV n ∈ Wa

C. DEPARTURE ENERGY DEFINITION
Most works in EVRP assume that CEVs depart the depot
fully charged, taking advantage of the minimum energy cost.
However, when charging CEVs increases the peak power
demand of a depot more than the base-load, the demand cost
in industrial enterprises can increase the total charging cost
significantly. Therefore, optimal charging may require the
departure of CEVs not fully charged, provided the ability to
charge CEVs with required energy along their routes.

CEVs’ energy EDep at departure from the depot is
constrained by battery capacity ECap and the minimum
energy required Enear for a CEV to reach the nearest charging
station along the route. Therefore, EDep should be optimized
between these limits to ensure optimal charging schedules.
In order to reduce the search space of the developed
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algorithm, we define EDepn = {Enearn ,EDepn,1 ,E
Dep
n,2 , . . . ,E

Cap}
as the set of points used for optimizing the EDep of each CEV
n ∈ Wa. These points are distributed normally in [Enearn ,
ECap] and included in optimizing the charging process of
CEVs. The optimal solution of CEVs charging includes the
point that can achieve the minimum demand cost for CEVs
charging at the depot.

D. PUBLIC CHARGING OPTIMIZATION
The charging schedule of each CEV n ∈ Wa at the assigned
stations is optimized by the public optimizer. The public
optimizer depends mainly on the GWO algorithm, which has
been successfully applied to schedule charging of EVs with a
strong global search ability [58]. In the public optimizer, the
populations of the GWO algorithm are expanded to include
EDepn of each CEV. The process of public charging optimizer
is explained in Algorithm 1. The public optimizer is initiated
by defining the set of possible combinations of stations 0,
and used vehicles Wa. Then, the optimizer applies the GWO
to each I ∈ 0 of each n ∈ Wa. The process public optimizer
is finalized by returning the minimum fitness between all
combinations.

To reduce computational load and the population size of
GWO, the search space of charging time at each charging
station is reduced and updated continuously during each
iteration of GWO. To reduce the search space, the available
time for charging a CEV at each station is defined in the
interval [Tminn,s ,T

max
n,s ]. The limits of this interval depend on

the logistic constraints of the route without considering the
visiting of stations. Let ψ1 and I1 be the route and possible
combination of stations under consideration, respectively.
Tmaxn,s of station s ∈ I1 is the minimum difference between the
arrival time and upper limit of time windows (Li − T Arrivali )
of all nodes i ∈ ψ1 provided that i is located after the station
s along ψ1. Tminn,s depends on the energy required for CEV
n ∈ Wa to reach the nearest station from station s. At each
iteration of GWO, when CEV charging is scheduling across
the station s ∈ I1, search space limits are updated at each
station. Tmaxn,s is updated by including the time required to
charge the CEV fully and the elapsed time at previous stations
for charging CEV. Tminn,s is updated by the CEV ’s energywhen
it arrives at the station. To guarantee fast convergence, the
initial and updated values for all the variables of GWO are
ensured to be within the updated search space.

E. DEPOT CHARGING OPTIMIZATION
Once the scheduled stations are defined, the depot charging
problem of CEVs, denoted by (6)-(8), is solved by using a
Cplex optimizer. The Cplex is a commercial solver that uses
the simplex algorithm to find the global optimal solution
to linear optimization problems [59]. To solve the depot
charging problem by Cplex solver, the dwell time of CEVs
at depots is divided into small time slots of length 1t . Let
T = {1, 2, 3, . . . .} denotes the set of time slots during dwell

TABLE 1. Parameter details for case Study 1 [13], [24], [51].

time. Then, the depot charging problem can be rewritten as

CDepot = CEnergy
Depot + C

Demand
Depot (29)

CEnergy
Depot =

∑
n∈Wa

∑
t∈T

(Pdepot · AIn,t ·1t) · ρDt (30)

CDemand
Depot = [max{

∑
n∈Wa

∑
t∈T

PBaset + (Pdepot · AIn,t )}

− max{
∑
t∈T

PBaset }] · ρdemand (31)

where AIn,t is the availability index of vehicle n at time slot t,
which is defined by the arrival and departure time of the
vehicle. PBaset is the base-load power of the depot at time
slot t. The solving of depot charging problem is repeated for
all points in EDep of each CEV in the depot.

F. OPTIMAL ROUTE OPTIMIZATION
The fitness values obtained from public and depot charging
optimizations are added for each point in EDep and the lowest
value is selected as the total charging cost. When CEVs
charging on public or depot stations can not be scheduled
due to constraints breaches, the total charging cost is assigned
with very high value, and the route is found to be infeasible.
In this case, the above steps are repeated for the second
smaller ant in the initial population of ACO, where this
process continues until a valid value of total charging cost
is found. The valid value of total charging cost is added to
the distance cost of the feasible route and the cost of used
vehicles as in (1). New populations of ants are then generated
after updating the local and global pheromone of ACO by the
best-fit ant in the initial population. After several iterations
of ACO, the optimal solution is the route that has the lowest
fitness value.

V. RESULTS AND PERFORMANCE ANALYSES
In this section, simulations of different case studies are
performed to evaluate the performance of the developed
optimization algorithm for solving the EVRP-TW and OCP
problem. The simulation was carried out using Python
3.7 on a desktop computer with Intel Core i7-8700 CPU
@3.19 GHz. The total simulation time for scheduling was set
to 24 hours.

In this paper, four case studies has been chosen for
evaluating the performance of the proposed algorithm.
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TABLE 2. Parameter details for case Study 2 [13], [24], [51].

TABLE 3. Parameter details for case Study 3 [13], [24], [51].

In each case study, the depot serves a different number of
customers. In Case 1, five customers are serviced and two
charging stations are available publicly. Case 2 considers ten
customers and three public charging stations. Case 3 consid-
ers 15 customers and four public charging stations. In Case 4,
a large system of 21 customers and five public charging
stations are considered.

The parameters (i.e. customers and stations locations, time
windows, service time, loading capacity, . . . etc.) of case
studies are extracted from the benchmark instances applied in
works [13], [24], [51] as can be shown in Tables 1 - 4. In these
tables, the Node distribution and delivery loads for customers
are similar to benchmark instances. The time windows and
service time of customers have been modified so that a long
scheduling horizon is provided for each case study, and thus a
lower number of CEVs are required to serve all customers in
the case study. This modification helps to study the impacts
of the increased number of customers and CEVs on the
charging cost and; thus, the routing problem of these vehicles.

TABLE 4. Parameter details for case Study 4 [13], [24], [51].

TABLE 5. Parameters of public charging stations [53], [60].

The CEVs used in the depot all had a similar battery capacity
of 150 kW, a vehicle load capacity of 200 kg, a fuel
consumption rate of 0.9 kW/km, and an average velocity of
60 km/h.

In this paper, five types of public charging stations have
been considered with different characteristics, as shown in
Table 5. The variety of public charging stations has been
anticipated in accordance with the government subsidies
that provide a chance for different stockholders to deploy
public charging infrastructure with different characteristics.
The TOU energy pricing tariffs at each charging station have
been designed as shown in Fig. 5, depending on the charging
rate and integrated renewable energy sources [53], [60].

The charging rate of depot station is 19.2 kW, which
enables the full charging of CEVs during the average dwell
time at the depot, ranging between 6–8 hours during different
periods of the day, according to [61]. The TOU energy tariffs
of charging at the depot are designed, as shown in Fig. 5,
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FIGURE 5. TOU energy tariffs of public and depot stations for a day.

to follow industrial electricity tariffs [60], [62]. In addition,
industrial electricity tariffs consist of a demand cost of
$8/KW. We choose the average load profile of the LGS
sector in the service area of South California Edison as the
base-load profile of a commercial facility [63]. The arrival
times of CEVs at their depot from the previous shift have
been approximately uniformly distributed between 17:00 and
18:00 [64]. Similarly, the initial SoC at arrival at depots has
been generated uniformly between 0.2 and 0.3.

A. SIMULATION RESULTS
The simulation results of the case studies are shown in
Table 6. From these results, we can note the following
observations:
• In Cases 1 and 2, the total charging cost is dominated
by public charging cost; thus, the optimization algorithm
enables full charging at the depot and coordinates the
charging schedules of CEVs at charging stations so that
the minimum travel cost is achieved. In these cases, the
number of used vehicles depends on logistic constraints
and the charging schedules at public charging stations.

• In Cases 3 and 4, the total charging cost is dominated by
depot charging costs due to demand cost. In these cases,
the amount of CEVs charging at the depot is optimized in
addition to charging schedules at public stations so that
minimum charging cost is achieved. Further, the number
of vehicles used is optimized to ensure that the minimum
charging cost at the depot is obtained with consideration
to logistic constraints and public charging of CEVs.

The optimality of the simulation results depends on the
optimal solutions of the sub-problems of EVRP-TW and
OPC. The optimal solution of the CEVs charging problem
requires the charging of all vehicles with the required energy
to achieve their tasks, while ensuring minimum charging
costs. To investigate the charging profile of CEVs, we have
considered the simulation results of Case 1 in detail, as shown
in Table 7. In Case 1, two candidate stations s1 and s2 with
a capacity of 40 kW and 25 kW respectively, are available
for public charging during (9:00-17:00). As can be observed
from Table 7, station s1 is assigned to two paths between
(v0, v1) and (v1, v2),whilst s2 is assigned between (v3, v4) and

TABLE 6. Optimization results for cases studies.

TABLE 7. Detailed results of case Study 1.

(v4, v5) along the optimal route. Once the charging stations
are assigned, the charging schedule of CEV is decided
depending on the required energy to serve all customers and
return back to the depot v6. The optimal solution for the CEV
charging in Case 1 involves visiting station s2 once along the
path between (v4, v5) due to its low TOU tariffs and the small
detour distance. It should also be noted that the SoC at each
node along the optimal route of CEV ensures the continuity
of CEV until reaching the depot. In this simulation, the SOC
at depot arrival is set to be more than 0.15.

Fig. 6 shows the charging time at public and depot stations.
As can be observed, the CEV charging at the depot overnight
between (18:00- 8:00) is optimized to minimize demand
and energy costs. Therefore, the optimal solution for CEVs
charging involves the charging of CEV at low price periods
whilst maintaining the increase in peak demand due to
charging as low as possible. This is evident in Fig. 7, which
shows the aggregate load profile of the depot for Case 1.
Since one CEV is used in Case 1, the charging load can
be distributed according to TOU tariffs without increasing
the peak demand of the aggregate load profile, and thus no
demand cost due to charging. With increasing charging load
requirements of CEVs, as in Case 3, the optimal solution
involves peak demand reduction more than load shifting as
illustrated in the aggregate load profile of the depot within
Case 3 in Fig. 8. In this figure, the charging load is distributed
over the dwell time of CEVs to minimize the increase in
peak demand of aggregate load profile; thus, reducing peak
demand cost, which is much higher than TOU tariffs.

B. PERFORMANCE OF DEVELOPED OPTIMIZATION
ALGORITHM
1) OPTIMAL SOLUTIONS COMPARISON
To the best of the authors knowledge, no other EVRP model
in the literature has considered simultaneously these many
variants of charging scheduling problems for CEVs operating
in the same depot. These variants are alternatives of public
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FIGURE 6. Charging profile of CEV at charging stations under Case 1.

FIGURE 7. Aggregate load profile of the depot under Case 1.

FIGURE 8. Aggregate load profile of the depot under Case 3.

charging stations, TOU tariffs of depots and public charging
stations, and demand costs at depot stations. Therefore, direct
comparison with proposed models in the literature is not
possible. In order to compare the optimal solution of the
developed algorithm, all the cases have been solved by ACO,
considering different variants verified by works including
[12], [24], [53]. These variants are full charging of CEVs in
a depot, according to TOU tariffs, and assigning one station
to each path of the route. The simulation results are listed in
Table 8.

In Case 1, the performance of the developed algorithm is
very similar to general ACO. In other cases, general ACO
has better results in terms of computational time and number
of vehicles used, but the developed algorithm can reduce

TABLE 8. Comparison of existing works with proposed algorithm under
case studies.

the total cost substantially. This reduction reaches 36% in
Case 4. Therefore, the overall results in Table 8 show that
the developed algorithm performs better than the global ACO
for large customers. Additionally, these results indicate the
importance of including the demand cost in the EVRP model
of CEVs operating at the same depot.

2) COMPUTATIONAL TIME
In EVRP-TW and OCP problem, the optimal charging
problem is involved, impacting the computational time
exponentially. In addition, breaking the main problem
into sub-problems requires a combination of meta-heuristic
algorithms to address each component, which can lead to time
complexity. Therefore, many steps have been considered to
reduce the computational time of the proposed solution as
follows:
• In the depot, the charging problem is formulated as a
linear optimization problem so that commercial solvers,
which use exact algorithms, can be applied to solve the
problem.

• To reduce the computational time of the public charging
solver, which includes GWO, the search space has
been reduced substantially which helps in increasing the
speed of convergence of the public charging solver.

• The ACO generates feasible routes depending on logis-
tic constraints which are fixed. Therefore, eliminating
repeated routes would reduce the computational time of
the whole solver.

A comparison of the computational time of the devel-
oped algorithm and the existing algorithm simulated in
section V-B1 under different sizes of the problem is shown
in Fig. 9. It can be observed here that the developed
algorithm demonstrates a close performance to the existing
algorithm under Cases 1 and 2, whilst the existing algorithm
has better performance in terms of computational time
under a large number of CEVs and charging stations as in
Cases 3 and 4. The increase in computational time of the
developed algorithm is due to the increase in search space,
as compared to the existing algorithm, of the solution to
include more combinations of charging stations as illustrated
in section IV-B. The developed algorithm also optimizes the
CEVs charging at the depot to achieve the least increase
in demand charge, which is not covered in the existing
algorithm. However, the developed algorithm demonstrates
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FIGURE 9. Comparison of computational time for existing works with
proposed algorithm under cases studies.

TABLE 9. Optimization results for case 3 under different values of time
windows and assignment factor.

good performance in terms of computational time with a
large reduction in the total cost of operating CEVs by 36%
compared to the existing algorithm as evident in Case 4 in
Table 8.

C. IMPACT OF TIME WINDOWS AND ASSIGNMENT
FACTOR
In the above noted results, the time windows of customers
were relaxed to focus on the importance of depot charging
optimization in EVRP. However, the performance of the
developed algorithm under tight time windows also requires
analysis. Moreover, as the assignment factor defines the
stations that can be assigned to each path, its impacts under
tight time windows should be investigated. Case 3 has been
chosen to investigate the impact of reducing the time window
by 1 h and 2 h under three values of the assignment factor.
The results are summarized in Table 9. It can be seen that as
the time windows decrease for a given γ , the time available
for charging CEVs along some paths decreases which in
turn results in increasing trip costs due to the consideration
of longer routes, increasing depot charging, and increasing
the number of used vehicles. Contrastingly, increasing the
assignment factor decreases trip costs significantly, with tight
time windows of customers. Increasing the γ assigns more
stations to different paths and; thus, provides more routes
to be optimized. When large time windows are allowed, the
impact of increasing the assignment factor is small due to the
high cost of detour distance.

VI. CONCLUSION
In this paper, the optimal charging problem of CEVs at
their depot and public charging stations is investigated. The
proposed optimal charging problem of CEVs includes various
variants such as peak demandminimization of depot charging
loads, time of use tariffs, partial recharging, multiple visits
to stations, and different waiting times and characteristics

of public stations. An optimization solution was developed
to break the problem into a number of sub-problems, which
were solved optimally using a hierarchical approach. The
developed solution used ACO to generate feasible routes
to serve all customers depending on the constraints of the
logistic company. The charging of commercial EVs along
these feasible routes was scheduled by the GWO algorithm,
while the optimal charging problem of the depot was solved
by a Cplex solver with the objective of maximizing the
benefits of the logistic company.

The effectiveness of the developed algorithm was con-
firmed through simulation case studies. The simulation
results showed the impacts of CEVs charging at the depot
on the charging schedules at public charging stations.
In addition, the results indicated that the proposed solution
outperforms existing solutions in terms of reducing the total
travel cost of CEVs, by up to 36 %. In future work, more
analyses are required in order to maintain fast optimizing
speed within large-scale systems. Moreover, more variants
of charging problems should be investigated, such as V2G
services at depots and public stations.
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