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ABSTRACT Speech synthesis has come a longway as current text-to-speech (TTS)models can now generate
natural human-sounding speech. However, most of the TTS research focuses on using adult speech data
and there has been very limited work done on child speech synthesis. This study developed and validated a
training pipeline for fine-tuning state-of-the-art (SOTA) neural TTSmodels using child speech datasets. This
approach adopts a multi-speaker TTS retuning workflow to provide a transfer-learning pipeline. A publicly
available child speech dataset was cleaned to provide a smaller subset of approximately 19 hours, which
formed the basis of our fine-tuning experiments. Both subjective and objective evaluations were performed
using a pretrained MOSNet for objective evaluation and a novel subjective framework for mean opinion
score (MOS) evaluations. Subjective evaluations achieved theMOS of 3.95 for speech intelligibility, 3.89 for
voice naturalness, and 3.96 for voice consistency. Objective evaluation using a pretrained MOSNet showed a
strong correlation between real and synthetic child voices. Speaker similarity was also verified by calculating
the cosine similarity between the embeddings of utterances. An automatic speech recognition (ASR) model
is also used to provide a word error rate (WER) comparison between the real and synthetic child voices. The
final trained TTS model was able to synthesize child-like speech from reference audio samples as short as
5 seconds.

INDEX TERMS Text-to-speech, child speech synthesis, tacotron, multi-speaker TTS, alternativeWaveRNN,
MOSNet, subjective MOS.

I. INTRODUCTION
The bulk of recent research into human speech has focused on
neural network techniques to improve speech understanding
and recognition or to provide simplified, high-quality text-
to-speech (TTS) models that can directly convert written
text into natural speech. The most highly developed domain
for such research has a focus on spoken English and is
based on native-speaker adult voice data samples. Automated
speech recognition (ASR) is a core element of modern con-
sumer technology user interfaces employed in smart-speaker
and voice command interfaces. For interactive chatbot and
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voice services, TTS models are also important, and the most
advanced models can incorporate emotional and prosodic
elements into the generated speech output.

More recent research into low-resource languages and
other low-resource aspects of human speech, such as accented
and prosody-aligned speech has started to see improvements
for both ASR and TTS [1]. Another aspect of human speech
of growing importance is that of child speech. Child speech
differs significantly from those of adult speech, falling into a
narrow range of variation and with higher pitch levels. Fur-
thermore, children’s speech patterns are more inarticulate and
can vary widely in terms of volume, pacing, and emotional
expressivity. These challenges are further amplified by the
relatively small number of public child speech corpora that
are available with useful annotations.
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Current work done on TTS for child’s voices is limited.
This is mainly due to the lack of child voice datasets and dif-
ficulty in creating such datasets. As TTS models require hun-
dreds of hours of annotated data for training [2], performing
TTS for child voices can be quite challenging. The focus of
this work is to explore the potential of state-of-the-art (SOTA)
TTS to build a pipeline for the synthesis of children’s voices
with low data requirements. More specifically, if we can build
such a pipeline and demonstrate that it can reliably synthesize
a useful number of distinct children’s voices, this pipeline
would enable the creation of large synthetic datasets that
could further improve other aspects of child speech research
such as automatic speech recognition (ASR), speaker recog-
nition, etc. To better elaborate on this hypothesis, it is useful
to review current SOTA in TTS technologies, followed by a
similar consideration for review in child speech research.

A. RELATED RESEARCH IN TTS
Early research work on TTS synthesis can be traced
back to four/five decades ago when the task of TTS
was commonly tackled using concatenative and parametric
approaches [3]–[7]. Although these early methods were suc-
cessful in generating speech from text, they generally lacked
naturalness. The audio generated using these approaches was
kind of muffled and sounded very robotic.

Recent state-of-the-art TTS models are largely based on
deep neural networks (DNN) and can achieve more natural-
sounding/human-like synthesized speech. With the introduc-
tion of Tacotron [8], a neural sequence to sequence the TTS
model, the quality of speech synthesis improved significantly.
While there are newer approaches that are more efficient or
use smaller models, etc., it is still representative of SOTA
for the quality of the synthesized speech and is used as a
benchmark for comparison with newer methods. Nonethe-
less, Tacotron TTS is not very robust as it sometimes skips
certain words and it also suffers from low inference speed
[9]. Several methods have since been proposed to improve
upon it such as Tacotron2 [10], FastSpeech [11], FastSpeech2
[12], Transformer TTS [13], FlowTTS [14], GlowTTS [15],
etc. Similarly, there have been several improvements over
the quality of synthesized waveforms by the introduction
of SOTA Vocoders such as WaveNet [16], WaveGlow [17],
MelGAN [18], Hifi-Gan [19], WaveRNN [20], etc. These
TTS models supported single speaker synthesis, but Deep-
voice2 [21], introduced the use of speaker verification mod-
els [22]–[25] to achieve Multi-speaker TTS [26]–[34].

B. CHILD SPEECH – LITERATURE AND CHALLENGES
While all SOTA TTS systems rely on large datasets to train,
the datasets mostly comprise speech taken from adult native
English speakers; hence, for low-resource languages and
other target groups such as non-native adult speakers and
child speakers, there remain challenges developing effective
and suitable TTS models. Specifically, in comparison with
adult TTS, child TTS has gained very little to no atten-
tion from the TTS research community. With the current

trend of data-hungry DNN-based TTS, TTS for children has
practically been neglected due to the lack of large publicly
available children’s speech datasets suitable for training such
networks. Prior to this DNN era, researchers worked on TTS
for children using HMM-based models [3], [6].

Collecting data for child speech research can be a chal-
lenging task. Most TTS datasets are created in studios with
expensive equipment: an adult will be using a microphone to
create a clean, noiseless, easy to understand, and meaningful
audio. This task is not easy to produce and even more difficult
to implement with a child.

One of themain differences between adult speech and child
speech is the fundamental frequency. The pitch for children is
significantly higher than that of an adult [35]–[38]. The pitch
for an adult voice lies between 70 to 250 Hz whereas the pitch
for the children’s speech is between 200 to 500Hz [39]. There
is also a difference in the speaking rate of children. It was
noticed that average phoneme duration is longer in children,
therefore, leading to longer speaking rates as compared to
adult speech [38], [40]–[42]. The vocal tract of an adult is
larger as compared to children’s vocal tract and therefore
produces different prosody features as compared to an adult
voice [43], [44]. Hence, a substantial difference in children’s
voice characteristics and features can be seen as compared to
an adult voice.

Our work aims to solve the problem of TTS for children
using DNNs. To solve this problem, the huge challenge of
limited publicly available children’s speech datasets must
first be overcome. To this end, this study considered the use
of an existing multi-speaker children’s speech dataset [45],
which comes with an incomplete set of utterance transcrip-
tions. In addition, this dataset has a lot of unusable data,
such as empty/blank entries, extremely long entries as well as
inaccurate transcriptions. Firstly, the dataset is cleaned up to
create a subset that is suitable for training a neural TTSmodel.
Secondly, with the cleaned-up dataset, a multi-speaker TTS
model is trained to generate synthetic speech for multiple
child speakers as a proof of concept for children’s TTS. The
training involved fine-tuning an existing adult multi-speaker
TTS model [33] by way of transfer learning, with a few
modifications as explained in later sections. This approach
involves the training of a separate speaker verification model,
and it was preferred because it reduces the problem at hand
in two ways:

1) To train the speaker verification network, transcrip-
tions for the speech dataset are not required. Only the
speaker identities for the utterances are needed and it
can also be trained on noisy speech without any nega-
tive effects. This means that even the noisy children’s
speech dataset, which has incomplete transcriptions,
can be useful in training the verification model.

2) Being a transfer learning process, the pretrained TTS
model can be finetuned sufficiently using the resulting
cleaned set of children’s speech data.

Subjective and Objective Evaluation performed on the syn-
thesized child voices confirms that the child voices generated
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TABLE 1. Dataset used in this work.

synthetically are very close to the real child voice in terms of
different acoustic features and MOS.

The rest of this paper is organized as follows. Section II
describes the methodology and datasets used in this study.
The experiments are presented in Section III, the result and
evaluation in Section IV, and finally, the conclusion and
future work in Section V.

II. PROPOSED METHODOLOGY
A. DATASETS USED IN THIS STUDY
The nature of this study, considering the challenge of limited
children’s speech datasets and the multi-step training process
involved, calls for the use of multiple large datasets, including
adult speech datasets. All these datasets are described in
Table 1.

• MyST [45]: My Science Tutor (MyST) children’s cor-
pus consists of child speech collected using the inter-
action of the student with a virtual science tutor. The
data consists of 393 hours of child speech collected from
1371 students producing a total of 228,874 utterances.
45% of the data is transcribed at word-level leading to
about 103,082 utterances, around 208 hours presented
in a .trn file format. The MyST corpus is used for this
paper because it is the biggest corpus of child speech
freely available for research use.

• VoxCeleb1 [46] :VoxCeleb 1 contains audio recordings
of celebrity voices extracted from YouTube. It contains
153,516 utterances from 1,251 speakers.

• LibriSpeech [47] : LibriSpeech is a read English speech
dataset derived from audiobooks. The data contains
approximately 1000 hours of adult speech data from
2400 speakers. The data is divided into two sets, ‘‘clean’’
and ‘‘other’’ where the clean set contains less noisy data
as compared to the other set. The ‘‘clean’’ set contains
460 hours of data, and the ‘‘other’’ set contains 540 hours
of data.

• VCTK [48] : This dataset contains speech recordings
from 110 English speakers each reading about 400 sen-
tences from a newspaper. The data contains recordings
from various English accents and is highly used in
multi-speaker TTS research.

1) PROBLEMS IDENTIFIED IN MYST DATASET
A study on the MyST dataset was performed to measure the
amount of data in MyST with and without a transcript. This
was done to extract data available with annotation and to see
if it can be used for training TTS. A comparison between
the complete MyST dataset and filtered MyST dataset where

TABLE 2. MyST dataset comparison [complete vs with transcript].

transcripts are available is presented in Table 2. This table
provides information on the utterance count and duration of
utterance concerning the duration range.

From Table 2, it was observed that 197.5 hours of child
speech data is available with annotation. Although a lot of
this data can’t be used having different memory requirements
on different GPUs. In our experiments, that data between the
range of 10-15 seconds to be most useful.

Some initial experiments were performed on the MyST
dataset without using the Multi-speaker TTS approach (see
section III.A). The results obtained from these experiments
were unintelligible. The output waveforms did not have any
phonetic meaning and were missing quite some pronuncia-
tions. On a more detailed manual inspection of the MyST
dataset, a few common problems were identified. The tran-
scripts of some example audio files are listed below to illus-
trate the problems in the MyST dataset:

• Audio files containing noise in their utterances without
any phonetic meaning.

• ‘‘<noise>’’
• ‘‘it’s glowing <breath>’’

• Audio files that are not coherent or indiscernible.
• ‘‘in oxygen right <indiscernible>’’
• ‘‘can hear sound because of that <indiscernible>’’

• Audio files are too small in length
• ‘‘energy <noise>’’

• Audio files are too long
• ‘‘it’s trying to show us that all the things that it needs

all the things that the plants needs to grow it needs
soil on the bottom it needs at least a ground a top
the a a top to lay on for the plant to grow so you
can see it that’s only with flowers and plants it’s not
with vegetables and it needs and it needs the energy
from the sunlight to grow and it needswater because
somebody’s watering the plant.’’
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TABLE 3. MyST vs TinyMyST.

• Transcription containing text with no phonetic
information.

• ‘‘(()) (()) (())’’
• Repetition of words/stammering noticed in children’s
voices.

• ‘‘um we measured how big a millimeter meter is a
meter and a kolome- a ∗ kilometer ∗’’

Our examination ofMyST led us to further clean theMyST
dataset for TTS training. In this process a subset of MyST,
hereafter referred to as TinyMyST was created.

2) TINYMYST
It is a small subset of the MyST dataset created using var-
ious pre-processing scripts to make the data suitable for
TTS acoustic model training. MyST was cleaned to select
only audio files with existing transcriptions. All audio files
lesser than 10 seconds and greater than 15 seconds were
removed. The utterances shorter than 10 seconds contained
mostly noise or unintelligible speech and those longer than
15 seconds were removed to avoid GPU memory overflow
during training. All the transcript files were converted from
.trn format to .txt file format.
The TinyMyST dataset still contains a lot of noisy data.

Some of the excessively noisy data were removed man-
ually by inspecting the transcripts and listening to the
audio samples. The data obtained after cleaning contained
7152 utterances and accounted for 19.22 hours. A detailed
comparison of MyST and TinyMyST datasets was performed
to see differences in the two datasets in terms of speaker iden-
tities and utterances (see Table 3). TinyMyST dataset on aver-
age contained 1.72 minutes per speaker having 670 speakers.
Speaker identity ‘013023’ had the most data with 8.77 min-
utes and speaker identity ‘018216’ has the least data with
10.01 seconds. The speaker ‘013023’ had the most data in
MyST as well to be around 110 minutes.

To extract more TTS usable data, an audio sample from
more than 15 seconds long can be used to split them into
smaller chunks. A forced aligner1 is used to align the audio
files with transcripts. Time alignment information from the
alignments to split the longer audio files into smaller sam-
ples, however, it was observed that the audio alignment was

1 https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner

FIGURE 1. Model Overview: Speaker Encoder, Acoustic Model, and
Vocoder Models trained independently (from [33]).

not very accurate for the child speech and there were a
lot of mismatches between the transcripts and audio files.
This was probably due to fact that the pretrained forced
aligner was trained on adult speech and doesn’t work very
well for aligning child speech. Therefore, TinyMyST was
used (as described earlier) for performing all the child TTS
experiments.

3) DATA PREPROCESSING FOR TTS USAGE
LibriSpeech and TinyMyST datasets were preprocessed as
per the guidelines mentioned in LibriTTS [49]. The LibriTTS
dataset was specifically created for TTS research, therefore
similar guidelines were followed in our experiments. The
following changes were made:

• Audio files were converted to 16-bit depth audio files
with 24Khz sampling rate (WAV format), This was done
using the pydub2 audio library.

• Text data was normalized by replacing abbreviations and
punctuations.

• Whitespaces were normalized
• All characters were made uppercase.

B. MULTI-SPEAKER TTS MODEL
The neural network used to achieve TTS for children in this
study is based on [33], It works by combining a speaker verifi-
cation network with the SOTA Tacotron TTS model. Though
Tacotron is SOTA for TTS, it was designed to be trained using
a single-speaker speech dataset such as the LJSpeech [50]
dataset, hence, it can only synthesize speech with acoustic
characteristics of the single speaker whose data was used
in training. To function effectively for multiple speakers,
Tacotron needs to be adapted for that purpose. This adaptation
has been achieved in this multi-speaker TTS model [33] by
introducing different speaker identities in the form of speaker
embeddings as additional input to the Tacotron network. As a
result, the multi-speaker TTS [33] comprises three different
neural network models, each of which focuses on a specific
subtask namely, Speaker Encoder used for speaker verifica-
tion task, Acoustic model used for spectrogram synthesis,
and a Vocoder for audio waveform generation (as shown in
Figure 1).

For our work, generalized end-to-end (GE2E) loss was
used for speaker verification [22], Tacotron1 as an acoustic
model [8], and WaveRNN as Vocoder [20]. The original
approach [33] is adapted for child speech synthesis by first

2https://github.com/jiaaro/pydub
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pretraining the model on an adult speech dataset after which,
it is fine-tuned with the child speech dataset.

The speaker encoder generates speaker embeddings,
encoding speaker identity information extracted from the
utterances. Similar voices are mapped closer to each other
in a latent space representation. The acoustic model gen-
erates spectrograms from text conditioned on the speaker
embeddings. The vocoder then converts these spectrograms
into audio waveforms. At inference time, a short refer-
ence utterance (ground truth) of a child’s voice is passed
through the speaker encoder to generate the corresponding
speaker embeddings, on which the acoustic model will be
conditioned. The three different neural network models are
described as follows.

1) SPEAKER ENCODER
The first stage of the multi-speaker TTS training involves the
training of a speaker verification (speaker encoder) model.
Speaker Verification is the process of determining if an utter-
ance belongs to a specific speaker. The speaker encoder is
used to train the model for the speaker verification task using
a mix of noisy and clean speech data without transcripts.
The data used consists of both adult and child speech data
from thousands of speakers (see Table 4). This was done to
introduce both child and adult speakers in the model for better
generalization. The output of this model conditions the acous-
tic model to generate the required mel-spectrograms from
a reference speech signal of the target speaker. The model
is trained to capture the characteristic features of different
speakers.

The model takes input as log mel-spectrograms computed
from utterances of each speaker, trains using the GE2E loss
and converts them into a fixed dimensional vector called
d-vectors. These d-vectors are optimized over GE2E loss
to differentiate the speakers, such that the same speakers
have embeddings with high cosine similarity and different
speakers are far apart in the embedding space.

During training, complete utterances are segmented into
partial utterances of 1.6 seconds. These parameters were kept
the same as explained by authors [51], [22]. The utterance
embedding is calculated using 800ms windows for inference,
with a 50% overlap. The silence was removed from the utter-
ances using the webrtcvad3 tool for Voice Activity Detection
(VAD). Each segment is passed through the network individ-
ually, the outputs are averaged and normalized to create the
final utterance embedding as described in [22].

The encoder model is trained using 4 datasets, MyST, Vox-
Celeb1, LibriSpeech, and VCTK. Equal Error Rate (EER) is
used as a metric for the validation of the speaker encoder. The
default EER metric from [51] is used in this work as authors
of [33] have not explicitly specified the training, test, and
validation criterion they are using for EER calculation. The
EER values are presented in Table 4. The model trained for
one million steps was used in the multi-speaker TTSmodel as

3https://github.com/wiseman/py-webrtcvad

TABLE 4. Speaker encoder training details.

FIGURE 2. Pipeline for Speaker Encoder training. The dotted line
represents the training loop for the Speaker Encoder training.

relatively insignificant improvements were seen in the EER
after this point.

All the datasets were pre-processed into the coding format
required for training the encoder as described in [51]. Even
though half the MyST dataset is not transcribed, the complete
MyST dataset can be used for Speaker Encoder training as it
does not require any transcription data. The pipeline for the
speaker encoder training can be seen in Figure 2.

AUMAP projection [52] is created to visualize the training
by taking a random set of 10 utterances from 10 speakers.
Utterances with similar embeddings are located close to each
other in the latent space representation and have similar
speaker characteristics.

This model creates individual clusters of speaker embed-
dings as can be seen in the UMAP projection (see Figure 3.
Each point on UMAP represents an utterance. The same color
points represent the same speaker. Encoder gradually learns
to separate the speakers. Initially, there is a lot of overlap
across speakers, but eventually, each speaker has their utter-
ances clustered and well separated from the other speakers.
The training evolves with increased training steps.

2) TACOTRON ACOUSTIC MODEL
For the speech spectrogram synthesis, the TTS model archi-
tecture and hyperparameters used in this study are the
same as in the work of [51] (More details are provided
in Section III). The authors used a modified version of the
original Tacotron architecture [8]. The model consists of an
encoder, an attention-based decoder, and a post-processing
network. Since Tacotron is originally a single-speaker TTS
model, it wasmodified towork formulti-speaker TTS by con-
necting the speaker encoder to it. Speaker embeddings from
the encoder are concatenated with text (character/phoneme)
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FIGURE 3. UMAP projections at different training steps for speaker
encoder training. Ten different colors represent ten different speakers
with ten utterances each.

embeddings from the text encoder, after which an attention
mechanism is applied prior to decoding into a spectrogram.
Unlike the speaker encoder, the acoustic model takes in both
audio(utterance) and associated text(transcript) as inputs.

In this work, the acoustic model was first trained with only
adult speech data (acoustic model training I), specifically,
the Librispeech ‘clean’ data, until it started to converge at
250k steps and then finetuned with the TinyMyST child
speech dataset (acoustic model training II) for up to 750k
additional steps (more details in Section III). The pipeline for
the acoustic model training can be seen in Figure 4.

3) WAVERNN VOCODER
The vocoder used is WaveRNN [20], which is an improve-
ment over the WaveNet [16] originally used by the authors
of [33]. WaveRNN is a recurrent network for perform-
ing sequential modeling of audio from mel-spectrograms.
An alternative version of WaveRNN is used, having a few
architectural changes as provided by the author in [53] due
to the popularity of the model as it reduces sampling time
while maintaining high output quality. WaveRNN uses Gated
Recurrent Unit (GRU) in comparison to convolutions used
in WaveNet. The input mel-spectrograms and their corre-
sponding waveforms are segmented at each timestamp. A 1D
Resnet-like model is used to generate features for layered
connections in the alternative WaveRNN architecture. The
upsampling is also performed on the mel-spectrogram to
match the length of the target waveform. The resulting vector
is passed through a combination of GRU and dense layer

FIGURE 4. Pipeline for Acoustic Model training. A model with solid
contour represents the pretrained model. Dotted contours represent the
acoustic model training loop. Fine-tuning step for Acoustic model
training. Acoustic model training I represent the acoustic model being
trained with LibriSpeech dataset for up to 250k iterations. Acoustic model
training II represents fine-tuning the acoustic model I with the TinyMyST
dataset from 250k iteration onwards up to 750k iteration.

transformations in four-way connections. These connections
are concatenated at different steps to generate the correspond-
ing vector representation. This vector is passed through two
dense layer connections which finally generate the encoding
of raw audio. The output audio is generated at a 16-bit depth
and 16 khz sampling rate.

The predicted mels from the acoustic model trained on
LibriSpeech (from acoustic model training I) were used to
train the vocoder. The vocoder trained up to 250k iterations
was used to generate all waveforms in this study. The pipeline
for vocoder training can be seen in Figure 5. Fine-tuning
experiments with the TinyMyST dataset didn’t improve the
quality of the vocoder (more discussion in Future work).

Vocoder for child TTS hasn’t been explored before in
detail. This is a new area of research. It was observed
that WaveRNN has popularly been used as a universal
vocoder [54]–[56] and it evidently works well with unseen
speakers in multi-speaker models as well [57]. Therefore, for
the scope of this paper, WaveRNN (trained on LibriSpeech)
is used as a universal vocoder with synthetic child voices.

III. EXPERIMENTS
A. INITIAL EXPERIMENTS
In our initial experiments, multiple SOTA TTS models
[10], [13]–[15], [21] were unsuccessfully trained, including
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FIGURE 5. Pipeline for Vocoder training. Models with solid contours are
pretrained models. The dotted contour represents the training loop for
Vocoder.

Tacotron 2,4 using the transcribed subset of theMyST dataset.
Figure 6 shows an example of an alignment plot from
Tacotron 2 training. As can be seen, there was no sign of
alignment even after 200k iterations.

Further experiments were conducted using the cleaned sub-
set of MyST (TinyMyST), which showed some alignments as
seen in the Tacotron 2 alignment plot in Figure 7. However,
though child-like in terms of pitch, the synthesized speech
signals were completely unintelligible. Missing information
such as ‘End of sentence’ was observed which mostly con-
tained noise content.

Next, fine-tuning the pretrainedNVIDIATacotron 2model
on a single child’s MyST dataset utterances resulted in
slightly intelligible but highly robotic and unnatural synthe-
sized speech. Figure 8 shows the improved alignment plot
from the finetuned Tacotron2.

Since there were not enough MyST utterances for a single
child to sufficiently train Tacotron2, different multi-speaker
TTS models were explored [21], [26], [27], [58] and the
speaker verification-based method [33] produced the most
promising results. Hence, this method was used in our main
experiments.

B. MAIN EXPERIMENTS
As seen in our methodology (Section II.B), a modified
approach based on [33] was used by incorporating an extra
layer of fine-tuning in the training step.

The proposed neural child voice TTSwas trained on a Tesla
V100 GPU. Each of the three networks – Speaker Encoder,
Acoustic model, and Vocoder were trained separately.

The Speaker Encoder was trained with a batch size
of 128 and a learning rate of 0.0001. The model was
trained for 15 days for up to 1M steps. EER of 5% was
observed at this point with no further improvement afterward.

4NVIDIA/tacotron2: https://github.com/NVIDIA/tacotron2

FIGURE 6. Alignment plot for Tacotron 2 trained with MyST dataset for up
to 200k steps.

FIGURE 7. Alignment plot for Tacotron 2 trained up to 200k steps with
TinyMyST Dataset.

FIGURE 8. Alignment plot for Tacotron 2 trained up to 200k steps with
TinyMyST Dataset, pretrained with LJ Speech Dataset up to 100k steps.

Additional parameters settings are mentioned here.5 The
default embedding size of 256 was used for this training.

For the acoustic model, the network was trained using
a learning rate of 0.0001 for 250K steps (pretraining) and
0.00001 for 750k steps (fine-tuning). The batch size was kept
constant at 72. Entire training (up to 750k steps) took 9 days to
complete. Additional parameters details were kept the same
as Tacotron 1, these details are mentioned here.6

The alignments plot for encoder-decoder timestamps can
be seen in Figure 9, the x-axis represents the encoder
timesteps and the y-axis represents the decoder timesteps
of Tacotron training. The training is done on LibriSpeech
up to 250k steps generated a good alignment plot. Align-
ment weakens when switched to TinyMyST Dataset, but it

5Encoder Hyperparameters: https://github.com/CorentinJ/Real-Time-
Voice-Cloning/blob/master/encoder/params_model.py

6Acoustic Model Hyperparameters: https://github.com/CorentinJ/Real-
Time-Voice-Cloning/blob/master/synthesizer/hparams.py
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FIGURE 9. Alignment plots at different training steps during transfer
learning from adult to child Tacotron TTS.

gradually improves with increasing training steps. During
inference, our model was tested on multiple checkpoints
taken at intervals of 50k iterations. A few of these iterations
are mentioned in Figure 9. Even though the alignment at
some of these steps looks the same, an improvement was
noted over time with the synthesized child voices. This was
determined subjectively during training by listening to the
synthetic child speech generated. The training was halted
at 750k steps as improvements in the alignment graph had
become imperceptible after 700k steps. The output waveform
did not show any improvements beyond this step. The model
trained up to 750k iterations is used to provide audio samples
in this paper.

The Vocoder was trained at a batch size of 128 and learning
rate of 0.0001 and took 4 days of training to reach 250k
iterations. Most of the parameters for the vocoder were kept
the same as the original code.7

The synthetic child voices during inference were natural
sounding and the trained model demonstrated an ability to
synthesize quite challenging phrases that were unseen in the
TinyMyST dataset. This was tested by using ‘tongue twisters’
as a reference text for synthesizing speech. However, it was
also noted that some phonemes were not synthesized cor-
rectly and lost their meaning during synthesis. These findings
are discussed in more detail in Section IV.

Code-related material and synthesized speech from
these experiments will be made available in our GitHub
Repository.8

IV. RESULTS AND EVALUATION
The evaluation in TTS is usually done by taking a Mean
Opinion Score (MOS) [59] on the synthetic speech for Speech
Similarity and Speech Naturalness.

7Vocoder Hyperparameters: https://github.com/CorentinJ/Real-Time-
Voice-Cloning/blob/master/vocoder/hparams.py

8GitHub for this paper: https://github.com/C3Imaging/ChildTTS

There are many objective and subjective evaluation meth-
ods proposed by researchers [60]–[66]. These traditional
speech evaluation methods work well for evaluating adult
speech but are not so suitable for child speech. A perfect adult
speech will contain fluent pronunciation of a word/phoneme
however this is not the case for most child speech. Natural-
ness in child speech includes pauses, breaks, and pronunci-
ation difficulties in the speech. Other challenges were noted
with the start and end of phrases where children tend to be
somewhat hesitant when starting a phrase and may wander
towards the end of one. Children can also mispronounce
words, or struggle with the phonetics of a particular phrase.

These characteristics tend to manifest in the speech model
and a range of artifacts were noted that affect the quality of
the phrases synthesized by our pipeline. It was noted that
the first or last words in many phrases were either missed
entirely or subject to various distortions or artifacts. In the
middle of a phrase, there could occasionally be slurring or
arbitrary elongating of one or more words. Another artifact
observed was that the pace or tone of voice could change
abruptly in the middle of a phrase. Despite these artifacts,
the majority of phrases were quite intelligible, and a large
proportion was also very natural sounding. Therefore, there
is a need for a better subjective evaluation method for child
speech synthesis.

In the following, we present the results obtained using
the proposed subjective evaluation method and the various
listening tests performed (subsection 4.A), two objective
evaluation methods, based on MOSNet (subsection 4.B) and
an ASR system (subsection 4.D) and we evaluate the simi-
larity of the synthesized speech and natural child speech (in
subsection 4.C).

A. PROPOSED SUBJECTIVE EVALUATION METHOD
To check the phonetic coverage of our child speech TTS,
Harvard sentences [60] were used, which are a set of 720
phonetically balanced sentences. These sentences cover most
of the phoneme range and were designed to be implemented
with Voice over Internet Protocol (VoIP) technology. These
texts were used to generate synthetic child speech. This was
done to check the subjective quality of synthesized audio with
respect to phoneme coverage.

Our evaluation method uses a MOS-like evaluation with
different categories for scoring. When generating synthetic
voices using Harvard sentences, it was observed that some
sets of phonemes were not pronounced correctly even when
synthesized using different reference child speakers (more
detail in a later section). After our initial subjective study of
these 720 synthesized audio samples, it was decided that a
more detailed evaluation protocol was required to address the
various artifacts observed and identify what additional data
samples might be needed to further improve our model. For
this reason, our evaluation was performed in two phases. For
each of the two phases, different evaluators were gathered to
perform the speech evaluation. Each evaluator was asked to
listen to synthetic audio files using Headphones/Earphones
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in a noise-free environment. They were asked to rate each
of the synthetic voices assigned to them from a range of
1 to 5, for each of the different categories in two phases. The
categories included Speech Intelligibility, Voice Naturalness,
and Voice Consistency. Voice Consistency contained three
sub-categories of its own namely, Start of Phrase quality,
Middle of Phrase quality, and End of Phrase Quality.

Evaluation data was provided in a OneDrive Environment.
All the synthetic voices were shared in a common OneDrive
folder to the evaluators and a common spreadsheet was circu-
lated containing the utterance ID of Harvard sentences used
for synthesizing a child’s voice. While listening to many
different natural child voices, it was also noticed that recorded
child audio can be a difficult task to understand if not pro-
vided with a suitable transcript. Some of the child’s speech
can be non-meaningful as mentioned in problems with the
MyST section. After performing many different tests and
trials using child speech, the use of transcripts as a part of
MOS-based evaluation is considered to be a more natural
way of evaluating child speech. Therefore, corresponding
transcript information is also provided in the spreadsheet to
each evaluator to base their conclusion on ‘what they hear
in child audio’ and ‘what they read in child transcripts’.
This way more coherent patterns can be observed among the
phonemes and graphemes in a child’s voice for each of the
mentioned categories. An example of this spreadsheet can be
seen here.9

By performing the evaluation using OneDrive environ-
ment, it was easy to distribute the synthetic speech files to dif-
ferent evaluators without having to spend time and resources
on expensive Mushra-based evaluations [67] or crowdsourc-
ing the evaluation task on platforms like Amazon Mechani-
cal Turk (AMT) [59], [68]. Mushra-based evaluations were
also avoided due to potential biases that can occur in these
tests and how these biases can impact synthetic child voice
evaluation for MOS [69]. Most of these TTS evaluations
have been conducted before with synthetic adult speech, this
novel synthetic evaluation is implemented for first-time with
synthetic child speech. Using a common spreadsheet made it
effective to perform analysis of spreadsheet for MOS using
pandas and other python-based tools.

1) PHASE-I EVALUATION
For the phase-I evaluation, all 720 Harvard sentences were
generated using our proposed TTS method. Two random ref-
erence utterances were selected from the TinyMyST dataset
and were used to generate all the Harvard sentences. These
720 sentences were shared among 5 evaluators in a spread-
sheet document, who rated the voices from 1 to 5 based
on Speech Intelligibility and Voice Naturalness. The MOS
ratings from 1 to 5 were further explained in the spreadsheet
file as can be seen in Table 5.

9Example Spreadsheet: https://www.github.com/C3Imaging/ChildTTS/
blob/main/synthetic%20evaluation%20example/Example.xlsx

TABLE 5. MOS (from 1 to 5) explained for speech intelligibility and voice
naturalness.

TABLE 6. MOS from phase-I evaluation with 95% confidence interval

The spreadsheet was later analyzed to get the final mean
opinion score in each category. MOS of 3.88 for voice nat-
uralness and 4.13 for speech intelligibility was observed as
seen in Table 6.

An average score for each of the 720 sentences was cal-
culated for the combined value of speech intelligibility and
voice naturalness. All the 720 sentences were sorted into
difficult and easy sentences with respect to the children’s
linguistic capabilities. This was done to keep track of Harvard
sentences where synthesized speech becomes unintelligible
and inarticulate.

2) PHASE-II EVALUATION
After our phase-I evaluation, a common set of sentences
were observed where pronunciation sounds unintelligible
at the start, middle, or end of sentences for specific
words/phonemes. There was an inconsistency in voice qual-
ity. These sets of sentences are the ones that were not learned
properly during training or were missing in the training
dataset for child audio. To make a note of these sentences,
extra categories of ‘Voice Consistency’ were added to the
phase-I evaluation. Therefore, all the 3 sub-categories under
Voice Consistencywere used in the second phase of the eval-
uation. These subcategories included ‘Start of Phrase Qual-
ity’, ‘Middle of phrase quality’ and ‘End of phrase quality’.
TheMOS ratings from 1 to 5 for each of these categories were
also explained in the spreadsheet as mentioned in Table 7.

For the second phase of evaluation, the evaluation was
undertaken by 20 evaluators divided into 4 groups. This was
done as per the guidelines mentioned in [70] for performing
MOS evaluations. For each group, a speaker identity was
selected from the TinyMyST dataset. All the speaker iden-
tities were sorted, and the top 20 speaker identities were
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TABLE 7. MOS (from 1 to 5) explained for voice consistency and its three
sub-categories.

TABLE 8. Selected speaker identity information in TinyMyST VS TTS
utterances for the same speakers.

selected, having themost minutes. Among these 20 identities,
4 speaker identities were randomly selected. All the 4 groups
are named as ‘013020’, ‘008045’, ‘002113’, and ‘995737’,
corresponding to each identity label. This approach was taken
to select speakers with the most data and also to keep the
process randomized. More information on these selected
speakers can be seen in Table 8. This table is also used for
speaker similarity and objective intelligibility experiments in
the future sections.

A reference child utterance was selected randomly from
each of these groups, and 50 Harvard sentences were selected
randomly for each of the groups. Therefore, 50 Synthetic
utterances were generated, and all the evaluators were asked
to rate the utterances assigned to them.

MOS results from the phase-II evaluation are presented
in Table 9. MOS of 3.95 was observed for Speech Intel-
ligibility, 3.89 for Voice Naturalness, and 3.96 for over-
all Voice Consistency (including the three sub-categories).
MOS of 4.07 was observed for ‘Start of phrase quality’,
4.18 for ‘Middle of phrase quality’, and 3.62 for ‘End of
phrase quality’. The MOS score implies that the quality of
synthesized child speech is quite good. However, there is still

TABLE 9. MOS from phase-II evaluation with 95% confidence interval.

room for improvement in the ‘End of phrase quality’ of Har-
vard sentences. There is information loss observed at the end
of most sentences containing inarticulate and unintelligent
information or noise. The reason for this information loss can
be redirected back to the child dataset used for training. Even
though TinyMyST is much cleaner than the MyST dataset,
it still contains some of the problems seen in Section II.A.1.
The information obtained from voice consistency will be
discussed more in future work.

A similar experiment was also performed using the real
utterances from Table 8 to obtain a baseline MOS on natural
child speech. 15 random real utterances were selected from
the real speakers mentioned in Table 8. Evaluators were asked
to perform a similar evaluation as done in phase-II evaluation
for all the selected 60 utterances. A comparison between the
baseline MOS on Natural MyST and synthetically generated
utterances is mentioned in Table 10.

Synthetic Speech MOS for three categories is very close to
Natural Speech MOS. There is a MOS difference of ‘0.26’
for Speech Intelligibility, ‘0.16’ for Voice Naturalness, and
‘0.12’ for Voice Consistency between natural and synthetic
speech. From Table 10, it can be concluded that the MOS
for Natural and Synthetic child speech are quite close to
each other. This subjective evaluation approach is proposed
as a part of this paper. Due to very limited work done on
child speech synthesis, we did not find any reliable way of
performing subjective evaluation over the synthesized child
speech. From our experience with the evaluation of synthetic
child speech, this new metric of evaluation can help evalu-
ate synthetic child speech and can help further this area of
research. It is also intended to use this proposed approach for
our future work with child speech synthesis.

B. OBJECTIVE NATURALNESS EVALUATION USING A
PRETRAINED MOSNET
For this objective evaluation, a pretrained MOSNet was used,
which is trained on VCC 2018 dataset from Blizzard Chal-
lenge [66] comprising of adult speech. According to their
paper, MOSNet predictions yield a high correlation to human
ratings. AsMOSNet was trained on adult speech, it is unlikely
that it will generalize well for child speech. It won’t be
possible to train a MOSNet with child voices as there is not
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TABLE 10. MOS natural speech VS MOS synthetic speech with 95%
confidence interval.

FIGURE 10. Spectrogram comparison between reference and synthesized
child audio for 5 audio samples used with MOSNet.

enough data to perform a large-scale evaluation such as a
blizzard challenge. This objective evaluation was performed
to see the correlation between reference child audio and
synthetic child audio. A random set of 50 utterances were
selected from the TinyMyST dataset as a part of this inside
test. These utterances were used as reference utterances and
the corresponding transcripts were used to generate synthetic
speech for each of these utterances. This gave us 50 reference
and 50 synthetic utterances which were used to calculate
MOS using MOSNet. MOS score for 5 samples can be seen
in Table 11. The spectrograms for these 5 samples can be seen
in Figure 10.

Table 12 shows the overall MOS output forMOSNet.MOS
of 2.96 was observed for reference child audio and 2.66
for synthetic child audio. There is only a 0.3 difference in
MOS between reference and synthetic child voices. MOSNet
trained on adult speech data is not expected to give MOS
ratings correlated with human MOS ratings for child speech
data. MOSNet was only used to get a correlation between the

TABLE 11. MOSNet output for 5 samples.

TABLE 12. MOSNet output for 50 samples with 95% confidence interval.

reference child audio and synthetic child audio. This gave us
a comparison between reference and synthetic child voices
as to how close they are to each other in terms of audio
features calculated usingMOSNet. The results confirmed that
MOSNet output for reference child speech and synthetic child
speech are very close to each other with a comparativeMOS
difference of 0.3.

C. SPEAKER SIMILARITY EVALUATION USING A SPEAKER
VERIFICATION SYSTEM
Speaker similarity between a synthesized speech and a real
speech can be calculated using a Speaker Verification (SV)
system. The pretrained speaker encoder from section 2.B.1.
was used with a third-party tool10 to extract and visualize
the speaker embeddings. This tool uses cosine distance to
calculate the similarity between the two embeddings. The
same speakers mentioned in our subjective evaluation (see
Table 8) were used for this evaluation. 10 utterances were
randomly selected for both real and synthetic speech for each
of the 4 speakers mentioned in Table 8. 1 male and 1 female
speaker from the LibriSpeech dataset were also added with
10 utterances each to show the speaker similarity comparison
between an adult and child speaker. A visualization of this
similarity in a 2D projection can be seen in Figure 11, ‘gt’ is
used as a label for the ground truth of the speaker and ‘ss’ is
used as a label for the synthetic speech of the same speaker.
‘Adult_Male’ and ‘Adult_Female’ are two randomly selected
male and female speakers from the LibriSpeech Dataset.

From Figure 11, it can be inferred that Male, Female, and
Child speech have a difference in similarity from each other.
Male and Female adult speakers are far apart from each other
and from child speakers in this 2D projection of speaker
embeddings.

To further comment on the similarity between real child
speech and synthetic child speech, the ‘child speech’ contour
from Figure 11 is extended to get a more visual representation
of embeddings. This can be seen in Figure 12. The ‘gt’ labels
and very close to ‘ss’ labels in this 2D projection space.

These embeddings are 256-dimensional feature vectors
trained by our speaker encoder. Therefore, cosine similarity
was used to further calculate the cross-similarity between

10Resemblyzer: https://github.com/resemble-ai/Resemblyzer
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FIGURE 11. Projections of embeddings between different real and
synthetic child speech along with adult speech. The child Speech region
[both ground truth and synthetic speech] is outlined by a solid black
rectangle. The projections include a cluster of 10 voices selected from
10 different speakers. ‘ss’ refers to synthetic child speech and ‘gt’ refers
to ground truth child speech.

FIGURE 12. Projections of embeddings between different real and
synthetic child speech. A solid black line is used to show the distance
between the ground truth and synthetic speech from the same speakers.
This line was drawn from the centroid of each cluster to show the visual
representation of similarity between real and synthetic speech.

each speaker. Each of the 10 Speakers with 10 utterances
each (1 Adult Male, 1 Adult Female, 4 Ground Truth Child,
and 4 Synthetic Speech Child) were divided into 2 sets A and
B. Embeddings are extracted for each of the utterances for
each of the sets and averaged together for each speaker. This
gave us 10 unique speaker embeddings in sets A and B each
for 10 speakers. Cosine similarity is finally used to measure
the similarity between each of the 10 speaker embeddings in
sets A and B. A plot for the cross similarity between speakers
can be seen in Figure 12.

In Figure 13, speaker similarity between synthetic speech
and ground truth for speaker ‘995737’ is 0.91, whereas for
speakers ‘013020’ and ‘008045’ is approximately around
0.82 and finally for the speaker ‘002113’ is approximately
0.7. This cross-similarity matrix gives us an idea of how
close synthetic child voices are in comparison to the real
child voice. It also shows us how different an Adult Male
and Female Speech is in comparison to a child’s speech.
Overall, the similarity between most of the child and adult
speech is between 0.3-0.4 whereas the similarity between
most of the synthetic child speech and ground truth child
speech is between a range of 0.65-0.85. Cross-similarity
across the diagonal signifies that an utterance in set-A is 95%
similar to utterances in set-B having the same speakers. More
conclusions can be drawn from Figure 13, however, for the
scope of this research, it is only used to show the different

FIGURE 13. Cross-similarity between 10 speakers in Set A and Set B. The
rectangular black box represents the similarity between real and
synthetic child speech for respective speakers in set-A and set-B. Set-A is
along the x-axis and Set-B is along the y-axis. ‘ss’ represents the synthetic
speech and ‘gt’ represents the ground truth (real) speech.

speaker similarities between real child speech and synthetic
child speech and to draw a conclusion that our synthetically
generated child speech is very close to real speech in terms
of speaker similarity with an average similarity of 81%.

D. OBJECTIVE INTELLIGIBILITY EVALUATION USING A
PRETRAINED ASR SYSTEM
A pretrained wav2vec2 model is used to provide verification
on synthetic utterances. A comparison of the speech tran-
scription between real and synthetic child voices is presented.
Child speech recognition is a challenging task of its own. The
ASR on child speech is a part of our future work. Our intent
to use this model for this paper is based on the popularity of
the model, being SOTA on adult speech. A wav2vec2 model
trained on adult speech data is used to provide that compari-
son. This speech transcription was obtained for the synthetic
and real utterances mentioned in Table 8. A random set of 30
utterances for each speaker for both real and synthetic voices
are selected. The instruction for using thismodel ismentioned
in their Github.11

A comparison of this model is also provided using adult
speech by selecting the equal number of adult voices from the
LibriSpeech dataset. Word Error Rate (WER) is calculated
from the output of wav2vec2 and is mentioned in Table 13.
The Flashlight12 library is used to calculate the WER using
Viterbi decoding. No external language model (LM) was
used.

From Table 13, it can be inferred that the WER for Adult
Speech (Librispeech_test_clean) is 3.43, evidently, due to the
model being trained on adult speech data, the WER for real
child speech is 15.27 and in comparison, WER for synthetic
utterances is 25.63. An ASR model was able to recognize

11wav2vec2: https://github.com/pytorch/fairseq
12Flashlight: https://github.com/flashlight/flashlight
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TABLE 13. WER on adult speech, real child speech and synthetic child
speech.

75% of the synthetic speech with a relative difference of
10 WER when compared with real child speech recognized
by the same model for the same speakers.

V. CONCLUSION AND FUTURE WORK
In this paper, a pipeline for generating synthetic child speech
in a limited training data scenario is proposed. A small
set of child speech data is created by cleaning an existing
child speech dataset and making it suitable for TTS training.
A transfer learning approach is used to train our model with
adult speech data in a pretraining setting and child speech data
as low as 19 hours for fine-tuning. MOSNet based objective
evaluation shows a high correlation between real and synthe-
sized child voices. A subjective evaluation method suitable
for synthesized child speech is also proposed and demon-
strated. Subjective MOS of synthesized voices is observed
as 3.95 for speech intelligibility, 3.89 for voice naturalness,
and 3.96 for overall voice consistency which is very close
to Natural speech MOS. These MOS values tell us about
how good the synthesized child voices are. However, voice
inconsistency for ‘End of phrase quality’ containing noise and
unintelligible information was also observed. There is scope
for improvement for these phrases. WER for synthetic child
voices using a pretrained adult speech wav2vec2 ASR model
came to be 25.63 as compared to WER of real child voices
of 15.27. Synthetic child speech samples can be viewed in
our GitHub repository.13 Multi-speaker TTS can be the key
to child speech synthesis with limited training data. Child
speakers with speech duration between 5-7 minutes in TTS
training gave 81% average cosine similarity with a synthetic
speech from the same speakers. This choice of the model
allows the TTS to learn useful speaker information which can
be leveraged to produce better quality synthetic voices even
with limited child speech.

For future work, our aim is to improve this method by
incorporating more information to our multi-speaker TTS
model such as duration predictor and energy as implemented
in FastSpeech2 [12]. The trained vocoder was also finetuned
on the TinyMyST dataset. However, there was no significant
improvement in the quality of the generated audio waveforms
and an additional noise was observed in some of the synthesis.
More child speech data would be required to achieve any
significant improvement over the quality of the vocoder. It is
also intended to implement GAN-based SOTAVocoders such
as HiFi-GAN [19] for future experiments. More experiments
such as training a forced aligner using children’s voices is
also part of our future work. It will help to generate more
meaningful alignments for splitting the longer audio files

13https://c3imaging.github.io/ChildTTS/

to increase the training dataset. The information collected
from our subjective evaluation such as voice consistency in
Harvard sentences will be used to improve child speech.
This information will be used to collect better TTS-based
child speech data based on Harvard sentences to accord with
‘end of the phrase’ information loss and voice inconsistency
observed with our current results. The use of synthetically
generated child speech to improve other areas of child speech
research such as ASR and speaker recognition will also be
investigated in future work. TTS-generated child voices can
be used as a data augmentation technique for training these
models with additional data. It is also intended to use the
subjective evaluation method proposed in this paper for per-
forming all future subjective evaluations with TTS generated
child speech.
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