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ABSTRACT Although recent years witnessed notable success for a cooperative setting in multi-agent
reinforcement learning (MARL), efficient explorations are still challenging primarily due to the complex
dynamics of inter-agent interactions constituting the high dimension of action spaces. For an efficient
exploration, it is necessary to quantify influences that can represent interactions among agents and use them
to obtain more information about the complexity of multi-agent systems. In this paper, we propose a novel
influence-seeking exploration (ISE) scheme, which encourages agents to preferably explore action spaces
significantly influenced by others and thus helps in speeding up the learning curve. To measure the influence
of other agents in action selection, we use the variance of joint action-values with different action sets of
agents that obtained by an estimation technique to lessen computation overhead. To this end, we first present
an analytical approach inspired by the concept of approximated variance propagation and then apply it to an
exploration scheme. We evaluate the proposed exploration method on a set of StarCraft II micromanagement
as well asmodified predator-prey tasks. Compared to state-of-the-art methods, the proposedmethod achieved
performance improvements of 10% in StarCraft II micromanagement and 50% in modified predator-prey
tasks approximately.

INDEX TERMS Multi-agent systems, reinforcement learning, deep learning.

I. INTRODUCTION
As successful at Go, StarCraft, and DoTA II [1], [2], multi-
agent reinforcement learning (MARL) has gained increasing
attention for its pivotal role in many real-world applications
such as autonomous cars and humanoid robots. Nevertheless,
finding an efficient solution is still considered as challenging
primarily because of the high dimension of action spaces.
In addition, constant interactions among multiple agents fur-
ther extend the size of the problem into another level.

Unlike single agent reinforcement learning, where the
reward of an action is solely given by the environment, the
reward can be significantly affected by the choice of other
agents inMARL. In addition, the actions of an agent are often
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not observable in many real-world scenarios, which makes
the problem more intractable. Thus, developing an efficient
exploration strategy, in particular, the ability to capture the
influence of other agents has become essential in dealing with
the problems that we face in our daily lives.

In cooperative MARL, a state-of-the-art approach widely
adopts to learn the policy of each agent by decomposing the
joint value function [3]–[8] and are known to outperform
another class, an actor-critic in general [9], [10]. For explo-
ration, even the former mostly rely on a simple mechanism
called ε-greedy, where exploration solely resorts to a small
probability of randomness. Thus, the existing exploration
technique lacks the ability to capture the influence of other
agents.

In this paper, we define influence as the measure of
evaluating the amount of interaction and propose a novel
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TABLE 1. List of notations.

TABLE 2. List of acronyms.

influence-seeking exploration (ISE) scheme as shown in
Fig. 1. To estimate the influence of other agents in action
selection, we use the variance of expected return with differ-
ent action sets of agents that obtained by an estimation tech-
nique to lessen computation overhead. To this end, we first
present an analytical approach inspired by the concept of
an approximated variance propagation and apply it to an
exploration scheme. Note that we limit the scope of MARL
approach under analysis to value-based ones since 1) it out-
performs the others in general and 2) it makes our analysis on
the inter-agent influence simple.

FIGURE 1. An example of influence-seeking exploration in a two-car
system. In Case 1, when agent 1 (red car) maintains the lane, the result
(collision or not) is not changed by agent 2’s actions. However, in Case 2,
when agent 1 changes lanes, the result is significantly changed by agent
2’s actions. From the perspective of agent 1, the result of lane-changing
behavior is highly influenced by other agents, and this behavior
represents an area where interactions between agents occur greatly.
Therefore, the lane-changing behavior of agent 1 is regarded as a
behavior that is highly influenced by other agents, and the proposed
method, influence-seeking exploration, refers to a method to frequently
select this kind of behavior.

We evaluated the proposed exploration scheme under
two popular experimental environments: StarCraft multi-
agent challenge (SMAC) [11] and modified predator-prey
(MPP) which is a small modification to well-known predator-
prey [12]. In the simulation-based experiments, the proposed
scheme showed improved performance approximately 10%
in SMAC tasks and 50% in MPP tasks on average. In par-
ticular, the proposed scheme significantly accelerated the
convergence speed of the value-based methods used as the
base model. Specifically, the contributions of this paper are
described as follows:
• We proposed a new exploration method, influence-
seeking exploration, for considering influences that one
agent receives from multiple agents at the same time in
MARL.

• We proposed an approximation method based on the
concept of variance propagation to reduce computa-
tional cost when calculating the influence among mul-
tiple agents.

The rest of this paper is organized as follows. In Section II,
we summarize the related work on value-based methods and
exploration strategies in MARL. We describe the previous
research to be used as a baseline for the proposed scheme in
Section III. The proposed scheme is detailed in Section IV.
In Section V, the simulation results are presented followed
by the concluding remarks in Section VI.

II. RELATED WORK
A. PRIMARY STUDY IN RL AND MARL
Reinforcement learning (RL), in which an agent learns a
sequence of actions that maximizes its reward in a given
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TABLE 3. Comparison between highly relevant studies and the proposed method. A task that is solved under a monotonic constraint, which was
introduced in [4], is called a monotonic task. A task that can be solved when the monotonic constraint is slightly relaxed is called a low non-monotonic
task, otherwise, it is called a high non-monotonic task. MGS indicates a Multi-domain Gaussian Squeeze task.

environment, is a field of machine learning that has
been continuously studied with the development of com-
puting devices. In particular, since the advent of Deep
Q-network [13], a huge number of RL studies have been con-
ducted [14]–[17], and various related fields have also begun
to receive attention. Recently, not only single-agent RL but
also MARL has attracted considerable interest considering
real-world applications and scalability of RL algorithms, and
thus numerous MARL algorithms have been developed.

To obtain decentralized policies that enable collaboration,
recent MARL studies are based on the centralized train-
ing and decentralized execution (CTDE) paradigm. This
paradigm is that the agents share their observations during
the training for learning cooperative behavior, and the trained
behavior is decomposed to be applicable only with observa-
tions of individual agents. The CTDE paradigm was success-
fully applied in [10] and these methods have been advanced
for complex cooperative and competitive scenarios [18]–[20].

B. VALUE FACTORIZATION METHOD
For a cooperative setting in MARL, value-based meth-
ods which train each agent by value decomposition of
joint action-values have also been significantly studied and
exhibit state-of-the-art performances. Value Decomposition
Networks (VDN) [3] was proposed, which train the joint
action-value function as the sum of decomposed action-
value functions. To improve the model structure of VDN,
QMIX [4] proposes a mixing neural network to connect the
joint action-value function to decomposed action-value func-
tions called an individual utility function using a monotonic
constraint. QPLEX [21] introduces a new framework using a
duplex dueling architecture to encode Individual-Global-Max
(IGM) conditions in the form of a neural network. For non-
monotonic multi-agent tasks, QTRAN [5] balances between
the suboptimality and decentralization by introducing relaxed
L2 penalties in the loss function of RL.WQMIX [6] improves
QMIX by weighting the loss function for sub-optimal actions
to overcome the limitation of restricted function class due

to the monotonic constraint. Recently, distributional RL and
risk-sensitive RL, which have previously been successful in
single-agent scenarios, have been extended to multi-agent
scenarios [22], [23]. In addition, role-based learning [24] was
proposed for decomposing multi-agent tasks.

C. EXPLORATION FOR MULTI-AGENT SYSTEM
Although value-based methods in MARL achieve notable
progress, the studies of relevant exploration methods are not
much in terms of handling large action spaces and interactions
among agents at the same time. Entropy-based exploration
algorithms for value-based methods [25], [26] accelerate
exploration for large action spaces, but interactions among
agents cannot be considered in these methods. Another pop-
ular method for exploration is curiosity-based exploration
[27], [28]. In these studies, authors addressed the problem
by giving a small memory of recently taken actions, and pre-
viously unseen actions are preferably selected. This method
enables an effective exploration of a wide range of actions;
however, it is still not the fundamental solution for consider-
ing interaction among agents.

To consider interactions among agents, intrinsic rewards
for influence-based exploration were proposed in multi-agent
systems [29]. This is one conspicuous relevant research,
which models the influence of one agent on the transition
dynamics of other agents based on the mutual information
and value of interaction. However, there are two major differ-
ences between the proposed method and [29]: the difference
in application method and the number of agents that can be
handled. [29] focuses on finding the influence between each
pair of agents, which has limited application to numerous
agents. On the other hand, the influence by more than two
agents can be calculated in our method based on an analytical
approximation. Also, [29] uses the form of intrinsic reward,
our idea is directly applied to the general action-selection
scheme, ε-greedy policy. Finally, as a summary of the related
works, we show Table 3 comparing the main references and
this study.
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III. BACKGROUND
A. DEC-POMDP
A fully cooperative multi-agent task can be formulated as
decentralized partially observable Markov decision process
(Dec-POMDP) [30], which consists of a tuple G =< S,
U,P, r,Z,O,N , γ >, where s ∈ S is the true state of
the environment. At each time step, each agent i ∈ N :=
1, . . . ,N selects an action ui ∈ U , forming a joint action
vector, u ∈ UN . All state transition dynamics are conducted
according to the state transition function P(s′|s,u) : S ×
UN
7−→ [0, 1], where s′ ∈ S is the successor state from

the current state s. All agents share the same joint reward
function r(s,u) : S × UN

7−→ R, and γ ∈ [0, 1) is the
discount factor. All agents have their individual and partial
observations z ∈ Z according to observation functionO(s, i) :
S × N 7−→ Z . The action-observation history for an agent
i is τi ∈ T := (Z × U)∗ on which it conditions its policy
π (ui|τi) : T × U 7−→ [0, 1].

B. IGM CONDITION
Value decomposition for value-based methods in MARL
should satisfy the Individual-Global-Max (IGM) condition
described in (1):

argmax
u

Qjt (τ ,u) =
( argmaxu1 Q1(τ1, u1)

...

argmaxuN QN (τN , uN )

)
, (1)

where Qjt is the joint action-value function to estimate the
expectation of discounted cumulative rewards, τ is the joint
action-observation history, u is the joint action, and Qi is
the individual utility function which acts as an action-value
function for each agent. With this condition, Qjt can be fac-
torized byQi, which indicates that the optimal joint actions of
all agents can be obtained using the collection of individual
optimal actions of each agent.

C. QMIX
The monotonic constraint for the joint action-value func-
tion was introduced as the sufficient condition for IGM in
QMIX [4] as follows:

∂Qjt
∂Qi
≥ 0. (2)

Qi is the function of the individual action-observation history
and the current action, Qi = g(τi, ui), and Qjt is the function
of the individual utilities and states, Qjt = fm(Qi, s). g and
fm are also called agent network and mixing network, respec-
tively. The agent network is constructed as Deep Recurrent
Q-Networks (DRQN) [31]. The mixing network is a feed-
forward network that receives the output of the agent network
as input. In QMIX, separate hypernetworks that take states as
input produce the weights of the mixing network which are
constrained by using non-negative weights to satisfy Eq 2.

QMIX is learned by minimizing the squared temporal
difference (TD) loss of joint action-value function:

b∑
k=1

(Qjt (τ ,u, s)− yk )2, (3)

where b is the batch size of the data sampled from the replay
buffer and yk = r+γ maxu′ Qjt (τ ′,u′, s′) is treated as a fixed
target. QMIX is a practical and powerful method satisfying
the IGM condition; however, it sometimes cannot find the
optimal policy with the restricted function class due to the
monotonic constraint.

D. WQMIX
To overcome the limitation of QMIX, the unrestricted
joint action-value function Q̂∗ is additionally trained in
WQMIX [6]. Qjt has the restricted function class because
of the monotonic constraint, whereas Q̂∗ has no constraint.
Q̂∗ also has agent networks and a mixing network as QMIX,
and the structure of agent network is same as QMIX. The
mixing network is also a feed-forward network using the state
and the output of agent networks as input; however, separate
hypernetworks are not used. Based on Qjt and Q̂∗, each
joint action is weighted according to its importance. As the
weighting methods in WQMIX, two types of weighting were
proposed: centrally-weighting and optimistically-weighting.
Centrally weighting (CW) is worked by approximating the
maximal joint action over the unrestricted action-value func-
tion Q̂∗. Unlike CW, Optimistically weighting (OW) does
not use any approximation and explicitly weight the joint
actions based on Qjt . Detailed equations for CW and OW are
described in (4) and (5), respectively.

w(s,u) =

{
1 ŷk > Q̂∗(τ , û∗, s) or u = û∗,
α otherwise

(4)

w(s,u) =

{
1 ŷk > Qjt (τ ,u, s)
α otherwise

(5)

where w is the weighting factor, α is the weight value for
suboptimal action, û∗ = argmaxu Qjt (τ ,u, s), and ŷk :=
r + γ Q̂∗(s′, τ ′, argmaxu′ ,Qjt (τ

′,u′, s′)) is treated as a fixed
target. The unrestricted joint action-value function Q̂∗ is
trained using TD loss, and the restricted joint action-value
function Qjt is trained with CW or OW as follows:

b∑
k=1

(Q̂∗(τ ,u, s)− ŷk )2, (6)

b∑
k=1

w(s,u)(Qjt (τ ,u, s)− ŷk )2. (7)

QMIX with CW is called Centrally-Weighted QMIX
(CW-QMIX) and QMIX with OW is called Optimistically-
Weighted QMIX (OW-QMIX).

47744 VOLUME 10, 2022



B. Yoo et al.: Novel and Efficient Influence-Seeking Exploration in Deep Multiagent Reinforcement Learning

Algorithm 1 Calculation of Influence
1: Input: agent ID i, individual utility function Qi, joint action-value function Qjt ,

variance of individual utilities νi
2: Initialize covariance matrix 60

i with νi according to (14)
3: for each layer of mixing network l = 1 to L do
4: Compute covariance matrix in l-th layer 6li according to (13)
5: end for
6: Set Influence Ii = 6Li
7: return Ii

Algorithm 2 Influence-Seeking Exploration
1: Input replay bufferD, influence Ii, individual utility function Qi, weight value β
2: while step < stepmax do
3: t = 0, s0 = initial state
4: while st 6= terminal state and t < episode limit do
5: for each agent i do
6: Get current observation zti
7: Set τ ti = τ

t−1
i ∪ {(zti , u

t−1
i )}

8: Compute ψi according to (16)
9: Compute uti according to (17)
10: end for
11: Get reward r t and next state st+1

12: Store {st ,ut , r t , st+1} inD
13: t = t + 1, step = step+ 1
14: end while
15: end while

E. QTRAN
Another sufficient condition for IGM was proposed and
proved in QTRAN [5]:

N∑
i=1

Qi(τi, ui)− Qjt (τ ,u)+ Vjt (τ ) =

{
0 u = ū
≥ 0 u 6= ū,

(8)

where

Vjt (τ ) = max
u

Qjt (τ ,u)−
N∑
i=1

Qi(τi, ūi)

ū = [ūi]Ni=1, ūi = argmax
ui

Qi(τi, ui).

QTRAN has larger expressiveness with the constraint
described above, and thus QTRAN can solve the task which
has a high degree of cooperation.

The methods described above basically use the ε-greedy
exploration with their trained individual utility functions.
In complex scenarios, it often fails even when performing
many iterations. This means that the exploration is not effi-
ciently performed in a large action space with constant inter-
actions among agents.

IV. INFLUENCE-SEEKING EXPLORATION
In this section, we describe the definition and calculation of
influence and its application to exploration strategy.

A. INFLUENCE BY OTHER AGENTS
1) DEFINITION OF INFLUENCE
As the first step, influences by other agents need to be
defined. In general, the fact that a factor has a large influence
on a certain event means that the result of the event can be
greatly changed by that factor. From the point of view of
MARL, since the outcome of an event is considered as the

expectation of return, we define influences by other agents
as the variance of the expectation of return according to the
actions of other agents. For the variance of expected return,
joint action-values for different actions of other agents are
calculated based on the joint action-value function which is
trained for estimating expected return over a joint action.
Consequently, the influence based on the variance can be
estimated as follows:

µi =
1
M−i

M−i∑
m=1

Qjt (ui,u−i,m), (9)

Ii =
1
M−i

M−i∑
m=1

(
Qjt (ui,u−i,m)− µi

)2
, (10)

where Ii indicates the influence of agent i affected by other
agents, µi indicates the averaged joint action-values for dif-
ferent actions of other agents, u−i indicates a joint action
except actions of agent i, and M−i indicates the number
of all u−i. This calculation can be performed by sampling
different joint action values; however, an excessive number
of samples are required to calculate the variance accurately
for a large number of agents and actions, which demands a
high computational cost.

2) APPROXIMATION FOR CALCULATING INFLUENCE
To reduce computational overhead, sampling-free estima-
tion based on approximated variance propagation [32]
is employed. For the approximated variance propagation,
a covariance matrix of inputs and Jacobian of the estimated
function should be calculated or modeled to transform a
covariance of inputs to an approximated output variance. For
example, the propagation in a bivariate function f (x, y) is
performed as follows:

σ 2
f ≈

(
∂f
∂x

)2

σ 2
x +

(
∂f
∂y

)2

σ 2
y + 2

∂f
∂x
∂f
∂y
σxy, (11)

where σ 2
f is the variance of the output, σ 2

x is the variance of
x, σ 2

y is the variance of y, and σxy is the covariance between
x and y. Equation 11 can be reformulated into a matrix form
as follows:

σ 2
f ≈

[
∂f
∂x

∂f
∂y

] [σ 2
x σxy

σxy σ 2
y

] ∂f
∂x

∂f
∂y

 , (12)

where the innermost matrix is known as the covariancematrix
and the outermost matrix as the Jacobian matrix.

To apply the approximated variance propagation for a deep
neural network, the propagation would be performed layer by
layer, which requires the covariance and Jacobian matrix at
each layer as follows:

6l
i ≈ J l−16l−1

i (J l−1)T , (13)

where 6l
i indicates the covariance matrix of l-th layer for

agent i, and J l−1 is the Jacobian of the function mapping
between l − 1-th layer and l-th layer. At each layer, the
non-linearity of activation functions should be handled for
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FIGURE 2. A diagram of training based on ISE. The red box indicates the procedure of ISE, and the yellow box
indicates the training of value function. Based on ISE, agents choose actions to get a reward and observations.
Actions, observations, and rewards are stored in the replay buffer. The joint action-value function and utility
functions are trained using the data sampled from the replay buffer based on TD loss.

Jacobian. In [32], the first-order Taylor expansion of various
activation functions was presented to approximate the non-
linearity, and thus we also employ those approximations.
In short, without calculation of (10) by sampling, an output
variance can be estimated using (13) with the Jacobian and
the input covariance.

Our approach requires additional matrix multiplications
in each layer of the neural network as in (13) to calculate
influences among agents. Therefore, the time complexity of
our work than others is O(n3LT ) because the time com-
plexity of naive matrix multiplication is O(n3), where n is
the number of agents, L is the number of layers, and T is
the total number of training steps. In terms of memory, the
memory complexity of the matrix multiplication is O(n2).
The additional matrix multiplications in (13) are performed
in every training step, but the calculations in the current step
do not need to use in the next training step. Therefore, the
memory complexity of our work than others is O(n2L).
Actions are inputs of the joint action-value function, and

thus the covariance matrix of actions is required to calculate.
However, the variance of actions is difficult to calculate on
many test-beds that are handled in value-based RL since
the actions are set to be categorical variables (e.g. attacking
action in a battle game). To be applicable even in these cases,
we assume that Qjt is the function of Qi, Qjt = fm(Qi),
where fm is the mixing network. Then, the categorical actions
are mapped to the individual utility function Qi as numerical
values. After that, the variance of individual utilities is used
as the input covariance:

60
i =


ν1 0 . . . 0
0 ν2 . . . 0
...
...
. . .

...

0 0 . . . νN

 , (14)

where 60
i indicates the covariance matrix of inputs for agent

i, and νi is the variance of Qi. Note that νi is set to be zero
when computing 60

i because we need to calculate only the
influence by other agents, excluding the target agent i as
defined in (10). 60

i is formed as a diagonal matrix since it is
reasonable to set that inputs are independent at the first layer
(input layer). In contrast, 6l

i when l > 0 is not a diagonal
matrix since the linear combinations of inputs at the previous
layer are used as inputs of the next layer.

With calculating the covariance matrix, the Jacobian
matrix is also calculated at each layer of the mixing network
fm as in 12 and [32]. To sum up, the output variance 6L

i is
estimated by propagating the covariance of inputs60

i through
the function fm using (13). The estimated variance according
to this procedure is applied as the influence I , and its cal-
culation for the mixing network with L layers is described
in Algorithm 1. After the estimation of influences by other
agents, the influences are applied to exploration.

B. APPLICATION TO EXPLORATION METHOD
In exploration methods of existing value-based MARL algo-
rithms, each agent uses independent action-selections over its
utility function based on ε-greedy as follows:

ui =

{
argmaxQi(τi, ui) with prob. 1− ε
a random action with prob. ε

. (15)

Instead of only using the individual utility, the linear combi-
nation of the individual utility and the influence is used in the
proposed exploration as follows:

ψi = Qi + βIi, (16)

where Ii is the influence of agent i, and β is the weight value
balancing between the influence and the utility function. As a
result, an action is selected randomly with a probability of ε,
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and an action that has the largest value for the linear combina-
tion of the influence and the utility function is selected with
a probability of 1− ε as follows:

ui =

{
argmaxψi(τi, ui) with prob. 1− ε
a random action with prob. ε

. (17)

We named the proposed exploration method with the
influence as Influence-Seeking Exploration (ISE) which is
explained in Algorithm 2. Agents select actions by ISE to
interact the environment and store the experience samples in
the replay buffer. The data sampled from the replay buffer
is used to train the joint action-value function Qjt . Finally,
overall procedure including training value function and ISE,
which is explained in Section IV, is summarized in Fig. 2.

FIGURE 3. An example for explaining the influence. R means return
values and uij indicates the j-th action of agent i . The influence for action
u11 of agent 1 is defined as the variance of expected return with different
action set of agent 2, which is marked as the red arrow.

C. EXPECTED EFFECT OF ISE IN MARL
To describe why ISE works in MARL, additional explana-
tions with a graphical example are presented. The advantage
of using the proposed influence is related to relative overgen-
eralization (RO). RO is that a sub-optimal Nash Equilibrium
is preferred over an optimal Nash Equilibrium in the joint
action space for MARL. As exemplified in Fig. 3, u12(= 3.8)
could be preferred in terms of u1 considering arbitrary actions
of the other agent, u2, even though the joint optimal action
u∗, (−2,−2), includes u11. This is the simple example to
explain RO in the system with only two agents. To explore
the optimal action with overcoming RO, we need the measure
to quantify the variation of expected returns. As described
in IV-A, the variance of joint action-values is defined as
the influence. The influence could be used as an indicator
to make u11 more favorable, which is marked as the red
arrow in Fig. 3. As the variation of expected return increases,
it becomes more difficult to find the optimal policy because
RO is more likely to occur. Accordingly, the influence should
be considered to help solve RO, especially in an environment
with the high variation of expected returns.

FIGURE 4. Reward structure in modified predator-prey (MPP) task. The
red circle and green triangle indicate a predator and a prey, respectively.
The black solid arrow and red dotted arrow mean moving and catching
action, respectively. If two predators catch a prey simultaneously as in
Case 1, the reward is r (r is positive). If a single predator only catches a
prey as in Case 2, the penalty is −p (p is positive).

TABLE 5. Detail information of agents in SMAC.

V. EXPERIMENT
In this section, we present our experimental setup and results
to verity the validity of the proposed method. All experi-
ments were performed using our computational power sys-
tem (GPU = RTX 2080 Ti, CPU = Intel(R) Xeon(R) Gold
5115 @ 2.40GHz, RAM = 128GB). All simulations and
algorithms in this work were implemented in the PyMARL
framework1with Ubuntu version 16.04 [11].

A. EXPERIMENTAL SETUP
1) EXPERIMENTAL ENVIRONMENT
Experiments were performed in two popular test-beds:
StarCraft Multi-Agent Challenge (SMAC) and partially-
observable modified predator-prey (MPP) tasks. SMAC was
created by focusing on battles of small units in StarCraft II
of Blizzard. Allied units trained using the developed algo-
rithm battles with enemy units operated by the built-in AI,
and the winning means that allied units defeat all enemy
units. We tested six different scenarios with difficulty levels
of easy, hard, and super-hard defined in [11]. The detailed
information about agents and scenarios in SMAC is presented
in Table 4 and Table 5, respectively. For SMAC tasks, 32 test
episodes were implemented, and the winning percentage in
test episodes, i.e., test win rate., was measured. The average
test win rate of five independent runs is reported as the per-
formance. Additional experimental details for SMAC were
followed on the training setup in [6], [11].

1The code of PyMARL is available at https://github.com/oxwhirl/pymarl
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TABLE 4. Description of test scenarios in SMAC [11].

FIGURE 5. Average test win rates in easy scenarios: a) 2s3z, b) 3s5z. Learning curves of all baselines (QMIX, QPLEX, QTRAN, and WQMIX)
and the proposed method (ISE) are shown and compared. In these easy scenarios, ISE does not significantly affect the results. This is
because the optimal policy can be found quickly with a simple exploration scheme based on ε-greedy policy in these scenarios.

TABLE 6. Common parameter settings for all methods.

TABLE 7. Hyper-parameters applied differently depending on the task.

The MPP task [5] was created based on the predator-prey
task in which predators get rewards when catching preys.
Predators are agents to be trained, and the state of predators
is the position in grids. Predator can select six actions: move
left, move right, move up, move down, catch, and stay. The
difference from the original predator-prey is that if more than

two predators catch a prey, then they get a reward; however,
if only one predator catches a prey, it gets a penalty as shown
in Fig. 4. For the experiment in theMPP task, the reward r was
set to 10, and the punishment p when only a single predator
catch a prey was set as four cases: −2, −4, −6, and −8.
For testing, 16 episodes are repeated, and the average return
of five independent runs was measured. Detailed experi-
mental settings for MPP tasks were based on the training
setup in [33].

2) EXPERIMENTAL SETTING FOR ALGORITHMS
We compared our approach with state-of-the-art MARL
algorithms: QMIX [4], QTRAN [5], WQMIX [6], and
QPLEX [21]. In WQMIX, optimistically-weighting is used
for overall good performance. The proposedmethod is imple-
mented based on WQMIX which has agent networks, a mix-
ing network of Qjt , and a mixing network of Q̂∗. All agent
networks have a DRQN structure with a recurrent layer of a
GRU [34]. The dimension of the hidden state in this GRU
is 64, and a fully-connected (FC) layer exists before and
after this GRU layer. The mixing network in Qjt is formed
by a single hidden layer with 32 nodes using ELU non-
linear activation function. The weights of the mixing network
in Qjt are produced by the hypernetworks. The hypernet-
work is composed of a single hidden layer of 32 units with
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FIGURE 6. Average test win rates in hard and super-hard scenarios: a) 2c_vs_64zg, b) 3s_vs_5z, c) Bane_vs_Bane, d) 6h_vs_8z. Learning
curves of all baselines (QMIX, QPLEX, QTRAN, and WQMIX) and the proposed method (ISE) are shown and compared. In more difficult
scenarios, ISE improves the performance significantly because of efficient searching in exploration.

a ReLU non-linearity. The mixing network in Q̂∗ has a
feed-forward structure with three hidden layers of 256 dimen-
sions and ReLU activation functions. Each run takes approx-
imately 24 hours with slight differences depending on the
scenarios.

Although our approach requires additional matrix multi-
plications to calculate influences, our computation time is
not significantly different from existing MARL methods in
the test environment such as SMAC and MPP tasks. This is
because the number of agents in the test environment is at
most 20 to 30, and the calculation time of the added process
in the proposed method is not relatively large compared to
the calculation time of the main algorithm part. For these rea-
sons, this paper focuses more on performance improvement
rather than computational complexity. Experimental settings
commonly applied to all methods are shown in Table 6,
and hyper-parameters changing with tasks are described
in Table 7.

B. EXPERIMENTAL RESULTS
1) STARCRAFT MULTI-AGENT CHALLENGE
Fig. 5 and 6 show the learning curve of the proposed method
and baselines, and Table 8 describes the final average per-
formance which is the maximum average across the test-
ing intervals within the last 250k of training. The proposed
method, ISE, improves the performance in the difficult sce-
narios shown in Fig. 6. In 3s_vs_5z scenario, the convergence
speed of QMIX is fast since the searching space is not quite
huge due to the small number of agents and actions; how-
ever, the final win rate of ISE is higher than that of QMIX.
Although the original purpose of this study is to propose
a solution to difficult scenarios that cannot be solved by
the existing methods, the final win rate of ISE is similar or
slightly greater than those of baselines even in easy scenarios
shown in Fig. 5. From this, we can claim that the proposed
method can be used in general regardless of the difficulty of
scenarios.
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FIGURE 7. Average test return in modified predator prey: a) p = −2, b) p = −4, c) p = −6, d) p = −8. p indicates the punishment of capturing
by a single predator. Learning curves of all baselines (QMIX, QPLEX, QTRAN, and WQMIX) and the proposed method (ISE) are shown and
compared. It is difficult to find an optimal policy because agents avoid capturing preys because of large p. Even in these scenarios, ISE
succeeds in finding the optimal policy.

Despite these performance improvements, the proposed
method does not increase the training time significantly in
SMAC as shown in Table 9. This is because the number
of agents in the environment is at most 20 to 30, and the
calculation time of the added process in the proposed method
is not relatively long compared to the calculation time of the
main algorithm part.

2) MODIFIED PREDATOR-PREY
Fig. 7 shows the learning curve of the proposed method and
baselines, and Table 10 describes the final average return.
In the MPP tasks, as the punishment increases, it becomes
more prone to RO and eventually more difficult to discover
the optimal policy. With the punishment of −2, the pun-
ishment is relatively small compared to the reward value,
the weighting in WQMIX is sufficient to converge the

TABLE 8. Final average test win rate (%) of six different scenarios in
SMAC. The bold text indicates the best performance in each scenario.

optimal policy. However, when the punishment is−4 or less,
WQMIX cannot search for the desired behavior, and the
effect of ISE is clearly visible in these cases. Even though
the average return of QTRAN increased with the training
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TABLE 9. Computation time (h) required by baselines and the proposed
influence-seeking exploration for different scenarios in SMAC.

TABLE 10. Final average test return of four different cases in MPP. The
bold text indicates the best performance in each scenario.

TABLE 11. Computation time (h) required by baselines and the proposed
influence-seeking exploration for different scenarios in MPP.

step, the convergence speed is considerably slow due to its
constraints which apply decentralization based on relaxed L2
penalties. From these results, we verified that ISE helps to
find the optimal policy and accelerates convergence speed
even in environments with a high chance to occur RO as
explained in IV-C.

To show the computational cost of the proposed method,
we compare the computation time of baselines and the pro-
posed method in MPP tasks as shown in Table 11. It was con-
firmed that there was no significant difference in calculation
time for the same reason as in the SMAC environment.

Finally, to consider an extension to other multi-agent sce-
narios, we analyze how many agents can be handled con-
sidering computation time and time complexity for training.
In general, a computational power system requires 1 second
to perform 108 operations. The parameter of our model is that
L is set to be 3 and the maximum of T is set to be 5 million.
For each run, the existing algorithms take approximately
16 hours which is estimated based on the results in SMAC.
Considering the computation time and time complexity, the
maximum number of agents that can be trained within the
limited computation time is calculated as shown in Table 12.
The larger the training time, the higher the maximum number
of agents it can handle. This estimation can be different from

TABLE 12. The maximum number of agents that can be handled within
the limited computation time. We set 16 hours as 100% for computation
time, and thus +100% means 32 hours. The maximum number of agents

(Nmax ) is calculated as
( tA×3600×108

LT

)1/3
.

actual calculations; however, this interpretation is meaningful
because it gives the scale information of systems that the
proposed algorithm can handle.

VI. CONCLUSION
In this paper, we studied the problem of multi-agent
exploration and proposed the influence-seeking exploration
method which encourages agents to significantly explore
action spaces influenced by others. The influence was defined
as the variance of joint action-values with different actions of
other agents, and then the approximated variance propagation
was employed for the feasible application under the assump-
tion that the joint action-value is the function of individual
utilities. For applying the influence as an exploration scheme,
the linear combination of the individual utility and the pro-
posed influence is utilized in collecting experience samples.

We verified that the proposed method improves perfor-
mance by approximately 10% in StarCraft multi-agent chal-
lenge and 50% in modified predator-prey tasks. Moreover,
our approach can accelerate the convergence of the value-
based methods. From the improved results, we verified that
the proposed exploration method could help in finding sam-
ples to achieve the optimal policy even if RO is easy to occur
in multi-agent systems.

The restriction of the proposed method is that it only con-
siders the influence by other agents even though the source
of influence exists more such as stochasticity of the envi-
ronment. In future work, we plan to combine the influences
from the two sources: other agents and the environment. For
this work, the characteristics of these two influences need
to be analyzed, and the way of incorporating them into the
exploration method should be updated.
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