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ABSTRACT Producing energy from a variety of sources in a power system requires an optimal schedule
to operate the power grids economically and efficiently. Nowadays, power grids might include thermal
generators and renewable energy sources (RES). The integration of RES adds complexity to the optimal
power flow problem due to intermittence and uncertainty. The study suggests a Multi-Objective Search
Group Algorithm (MOSGA) to deal with multi-objective optimal power flow integrated with a stochastic
wind and solar powers (MOOPF-WS) problem. Weibull and lognormal probability distribution functions
(PDFs) are respectively adopted to describe uncertainties in wind speed and solar irradiance. The MOSGA
incorporates crowding distance strategies, fast non-dominated sorting, and an archive selection mechanism
to define and preserve the best non-dominated solutions. The total cost, real power loss, and emission
were defined as the objectives for the MOOPF-WS problem. In the economic aspect, formulated cost
modelling includes both overestimation and underestimation situations related to wind and solar power
prediction. Further, uncertainty in load demand is represented by a normal PDF and is considered as a special
study case due to its novelty. The effectiveness of MOSGA was validated on the IEEE 30-bus and 57-bus
systems considering various combinations of objective functions as well as different loading scenarios. Its
performance was comprehensively compared with the other three well-regarded multi-objective optimization
algorithms including NSGA-II, MOALO, and MOGOA in terms of Spread metric, Hypervolume metric,
and the best compromise solutions for all scenarios. The comparisons showed MOSGA was capable of
obtaining well-distributed Pareto fronts and producing better quality solutions compared to the others in
all tested scenarios. In addition, MOSGA also obtained better solution quality than significant research in
the literature for all the comparable cases. These show the superiority of the MOSGA in dealing with the
MOOPF-WS problem.

INDEX TERMS Multi-objective search group algorithm, multi-objective optimal power flow, renewable
energy sources, wind power, solar power.

I. INTRODUCTION

The optimal power flow (OPF) was developed by
Carpentier [1], and the OPF problem has become a significant
function in the production and operation of modern energy
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systems [2]. Generation cost minimization is the primary
objective of traditional OPF. However, environmental con-
cerns and technical issues have led to the consideration of
different objectives, including emissions, real power loss,
voltage stability, and voltage profile. Thus, multi-objective
OPF (MOOPF) was formulated to optimize a group of
objectives simultaneously in power systems. In general,
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the MOOPF problem considers fossil fuel-powered thermal
generators. Renewable energy sources (RES), which are
environmentally friendly and sustainable, provide a better
solution, reducing the environmental impact and limiting
fossil fuel consumption. Studies of OPF integrating RES have
become necessary due to their increasing application in power
systems.

In the beginning stage of problem exploration, the MOOPF
problem was handled by several conventional methods like
gradient-based method [3], linear programming [4], quadratic
programming [5], Newton-based method [6], and interior
point method [7]. Despite having good convergence char-
acteristics and effectively handling inequality constraints,
such conventional methods cannot ensure global optimum
result [8]. In addition, conventional approaches are designed
specifically for each type of MOOPF problem. In other
words, each variant of the MOOPF problem is related to
a certain solution approach. Further, these approaches face
many difficulties when coping with the attributes of the
problem such as integer and discrete decision variables; non-
differentiable objective function; and large range of search
space. Moreover, the application of these methods to solving
the MOOPF problem is very complex [9].

In the later stage of exploration, with the advent of a
new field of computation known as soft computing, a large
number of optimization algorithms belonging to the meta-
heuristic class have been proposed. The main advantages of
such methods are that they can deal with large-scale search
spaces and are less dependent on problem characteristics.
Moreover, these algorithms are capable of estimating multi-
ple points in the search domain simultaneously due to their
population-based nature. Therefore, metaheuristic methods
are more effective in finding optimal solutions for OPF and
MOOPF problems in comparison with conventional meth-
ods [9]. In the literature, the MOOPF problem has been
studied extensively, and many powerful algorithms have been
applied with remarkable results. In an attempt to deal with the
MOOPF problem, Bouchekara et al. [10] proposed improved
colliding bodies optimization (ICBO). The performance of
ICBO was improved through iterations with increasing num-
bers of colliding bodies. Chaib et al. [11] studied a backtrack-
ing search optimization algorithm (BSA) considering several
objective functions: emissions, voltage profile, voltage sta-
bility, and fuel costs. In [12], the MOOPF problem was for-
mulated as multi-objective problems by assigning weighting
factors for power loss, voltage stability, deviation of voltage,
and emissions. A differential search algorithm (DSA) was
then proposed to deal with the MOOPF problem, and a moth
swarm algorithm (MSA) was also applied, with fourteen
different cases based on the weighting factor approach [13].
Additionally, Biswas et al. [14] applied differential evolu-
tion (DE) to handle the MOOPF problem with numerous case
studies considering different objectives. The authors dealt
with the operational constraints of the system by using a com-
bination of self-adaptive penalty and superiority of feasible
solution as constraint handling methods. A multi-objective
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differential evolution (MDE) technique was implemented by
Shaheen et al. [15] for the MOOPF problem on 118-bus
and 57-bus systems. Pulluri et al. [16] presented a mixed
crossover operator and self-adaptive strategy to improve the
DE for the MOOPF problem. In [17], the authors proposed
three different strategies to improve the strength Pareto evolu-
tionary algorithm (ISPEA?2). The outcomes showed that these
strategies enhanced the uniformity and distribution of Pareto
fronts. Recently, the multi-objective dimension-based firefly
algorithm (MODFA) was suggested by Chen ef al. [18] for
the MOOPF problem with nine cases in three test systems.
Fuzzy affiliation was also used to extract the best compro-
mise solution. Warid et al. [9] introduced a new method by
combining a Jaya algorithm with a quasi-oppositional (QO)
strategy. The new algorithm, QOMJaya, was implemented for
the MOOPF problem.

In the past decade, research studies mainly focused on
handling the OPF and MOOPF problems with thermal gener-
ators. Recently, the OPF problem integrated with RES has
attracted the attention of researchers due to the increasing
penetration of RESs into power systems. Henerica et al. [19]
proposed an OPF solution for an off-grid hybrid diesel-
solar PV-battery system. In [20], the MBFA technique was
applied to handle the OPF framework considering hydro-
thermal-wind (HTW) systems. Jabr ef al. [21] introduced
into the OPF a stochastic model of wind power, forecast-
ing power with a probability or relative frequency his-
togram. To address the same problem, Mishra ef al. [22]
developed the bacterial foraging algorithm (BFA) for the
OPF to consider wind generation. Stochastic wind speed
and power distribution were defined using the Weibull dis-
tribution. In [23], the authors introduced a wind-generated
cost model that included the opportunity cost of excesses
and shortfalls in wind power. The proposed method was
implemented using the IEEE New England system. In [24],
a modified bacteria foraging algorithm (MBFA) was applied
to simulate uncertainty in wind energy generation in the
OPF framework. In [25], the MBFA was implemented for
the OPF problem considering combined thermal-wind gen-
eration. Moreover, the voltage security aspect was improved
using shunt FACTS (STATCOM) devices to compensate
for reactive power. In [26], the author formulated the OPF
problem for a hybrid thermal-wind-solar-storage system.
A two-point estimating method and the GA method were
implemented to handle the proposed OPF strategy. In [27], the
authors solved a security-constrained OPF with wind plant
by using a fuzzy adaptive artificial physics algorithm. Roy
and Jadhav [28] studied the OPF with wind generation by
way of an Improved artificial bee colony (ABC) method.
In [29], a hybrid algorithm (HA) was applied for the OPF
problem with thermal-wind generators; a modified BFA tech-
nique and mutation techniques of the genetic algorithm (GA)
were combined to develop the HA method. A technique
based on the DE was suggested in [30] for the OPF
problem considering solar and wind powers. Some recent
applications of metaheuristic methods for OPF problem in
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presence of RES such as constrained multi-objective popula-
tion extremal optimization (CMOPEO) [31], a combination
of fitness—distance balance and adaptive guided differential
evolution (FDBAGDE) [32], levy interior search algorithm
(LISA) [33], grey wolf optimization (GWO) [34], barnacles
mating optimizer (BMO) [35], differential evolutionary par-
ticle swarm optimization (DEEPSO) [36], and Levy coyote
optimization algorithm (LCOA) [37].

A review of the literature has shown that the research on
OPF incorporating RESs is indeed encouraging. Although
some attempts have been made to address the OPF with the
incorporation of RES into power grids, previous research
typically only investigated the problem with the single-
objective function of optimal generation cost [21]-[27] or
the two-objective function of generation cost and emission
[28]—[37]. In addition to economic and environmental factors,
technical aspect also needs to be considered when examining
the effect of RES on power grids. For this regard, genera-
tion cost, real power loss, and emission should be optimized
simultaneously in the MOOPF problem. Further, from vari-
ous combinations of objective functions under different sce-
nario studies, the conflicts between objective functions can
be judged. To our knowledge, solving the MOOPF problem
with the stochastic RESs using multi-objective algorithms
have not been documented in the literature. In addition,
many research [38]-[43] considered only solar power or wind
power as a renewable source. Very few research [30]-[36]
examined both stochastic wind and solar power when solving
the MOOPF problem. Further, most of the previous research
considered only the invariable load case, which did not reflect
the characteristics of the actual load demand. Further study
is therefore needed to investigate the MOOPF problem in
a system comprising thermal, wind, and solar power gen-
eration with the variable loading condition; this constitutes
significant motivation for proposing a new technique to deter-
mine trade-off solutions for the MOOPF problem considering
stochastic wind and solar power along with uncertain load
scenario.

The search group algorithm (SGA) is a robust optimization
method proposed in [44]. Notably, SGA has the advantage of
striking a good balance between exploitation and exploration,
providing powerful searchability for finding the optimum
solution. Several recent studies have been done to verify the
SGA applicability for various optimization problems such
as truss optimal voltage regulation in power systems [45],
automatic generation control [46], networked control sys-
tem [47], steel frames optimization [48], and structure opti-
mization [49]. Moreover, SGA has not been applied to deal
with the MOOPF problem with the stochastic RESs.

Inspired by the above motivations, this paper aims to sug-
gest a novel multi-objective SGA (MOSGA) for MOOPF
incorporating the stochastic wind and solar power (MOOPF-
WS) problem. Three approaches are combined into the orig-
inal SGA to create the proposed MOSGA. The first one
named the fast non-dominated sorting technique is applied for
determining different non-dominated fronts in a population.
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The second one named crowding-distance calculation is to
preserve the diversity of non-dominated solutions in a spe-
cific front. The last one named Pareto archive selection is
used to store non-dominated solutions in an archive. The
archive is updated via a selection mechanism after each
iteration to avoid erroneous rejection of potential candidate
solutions during the optimization process. Further, a decision-
making process is implemented to obtain the best compro-
mise solution. The proposed MOSGA is implemented to find
the optimal operation points of the thermal, wind, and solar
generators with different case studies of objective functions.

This study contributes to the literature as follows:

o The MOOPF-WS problem was formulated as a con-
strained multi-objective optimization problem consid-
ering the scheduling of thermal power generation and
stochastic wind and solar power generation, whereas the
references [38]-[43] considered either solar power or
wind power as a renewable source. Three vital objec-
tive functions of total operational cost, power loss, and
emission were concurrently optimized, whereas only a
single objective or two objectives were optimized in the
references [21]-[37]. The control variables of the prob-
lem included most of the important parameters related
to the operation of a power transmission network such
as the active power output of thermal generators, the
active power output of wind and solar generators, volt-
age magnitudes at generation buses, settings of trans-
former tap, and reactive power output of shunt VAR
compensators. Most of the previous relevant research in
[30]-[36] examined the problem with a fewer number of
control variables that did not reflect the actual operating
condition of the transmission network.

o A new MOSGA was developed to handle the MOOPF-
WS problem. Three improvement techniques are inte-
grated into the search mechanism of the original SGA
to convert it into a true multi-objective optimization
algorithm. The development of MOSGA aims to pro-
vision Pareto optimal front and respective trade-offs
for conflicting objectives. Meanwhile, previous sig-
nificant research [30]-[36] used a weighted factors
method for transforming from a multi-objective func-
tion into a weighted sum function and applied a
single-objective optimization algorithm as the optimizer.
This workaround only offered a unique optimal solution
after a run, which did not reflect the degree of con-
flict between objectives as well as not provide multi-
ple options in terms of various operating solutions for
decision-makers.

o A practical case study relative to uncertainty in load
demand was examined to the MOOPF-WS problem
where a normal probability distribution function was
adopted to describe the variable situation of load
demand. Notably, this case study has been investigated
for the first time in the MOOPF-WS problem.

o The effectiveness of MOSGA was tested on adapted
30-bus and 57-bus systems incorporating RES with the
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consideration of various scenarios. Specifically, in the
two first scenarios of each network, the MOOPF-WS
problem was investigated in the fixed load situation with
two simultaneously optimized objectives, whereas the
third scenario was studied in the same load condition
for the simultaneous optimization of three objectives.
For the last scenario of each network, the problem was
solved in the variable load condition while minimizing
three objectives concurrently.

o The performance of MOSGA was comprehensively
compared with three other multi-objective optimization
algorithms including NSGA-II, MOALO, and MOGOA
for all scenarios. Comparisons were made in terms of
Spread metric, Hypervolume metric as well as the best
compromise solution. In all scenarios, statistical results
showed the MOSGA achieved better convergence and
distribution of Pareto optimal solutions than other multi-
objective algorithms. Further, when comparing with pre-
vious significant research [30]-[34], MOSGA acquired
better solution quality in all the comparable cases.

Section 2 introduces mathematical models for the
generation costs of thermal, wind, and solar genera-
tors. Section 3 formulates the MOOPF-WS problem.
Section 4 outlines the proposed MOSGA and its implemen-
tation for the MOOPF-WS problem. Section 5 details the
simulation outcomes, and Section 6 presents the conclusions.

Il. MATHEMATICAL MODELS

A. COST OF THERMAL GENERATION

The generation cost of thermal generators can be modeled as
follows:

Nrg
Cr(Pr) = Y _ (@i + biPrc.i + ciP}g.) (1

i=1

where a;, b;, and ¢; are the cost constants of the i thermal
generator that generates output power Pz ;, and N7g denotes
the total number of thermal generators.

B. COST OF WIND GENERATION

Being a renewable energy source, wind power has inherent
uncertainty related to variable wind power. Due to insuffi-
ciency and unavailability, wind turbines cannot effectively
provide schedule power as expected in some cases. As a
spinning reserve control unit, the independent system oper-
ator (ISO) is in charge of handling the deficit amount. Such
a situation is referred to as the overestimation of power from
renewable sources and should be included in the generation
cost because of keeping the spinning reserve. In the contrast,
if available power produced by wind turbines is greater than
schedule power, the ISO should pay a penalty cost for the
surplus amount. This situation is known as underestimation.
Therefore, the cost of wind power generation relates to three
components of direct cost, reserve cost, and penalty cost [30].
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The direct cost of a wind power plant can be expressed
as [30]:

Cw,j(Pws,j) = 8jPws,j (2)

where g; denotes the direct cost coefficient and P,y ; the
scheduled power for the j™ wind power plant.

As above mentioned, there might be another two costs
caused by overestimation and underestimation situations.
Precisely, the overestimation situation will lead to the reserve
cost, whereas the underestimation one will lead to the penal
cost. The wind power plant’s reserve cost can be determined
as [30]:

CRw,j(Pws,j - Pwav,j) = KRw,j(Pws,j - Pwav,j)
Py j

= KRw,j / (Pws,j _pw,j)fw(pw,j)dpw,j
0

(€)

where Py,qy j, Krw.j» and fi,(py,j) represent the actual available
power, reserve cost constant, and probability density function
for the j™ wind power plant, respectively.

The wind power plant’s penalty cost can be deter-
mined as [30]:

CPw,j(Pwav,j - Pws,j) = KPW,j(Pwav,j - Pws,j)

Py j

f (pw,j - Pws,j)fw(pw,j)dpw,j

P ws,j

= Kpy,j

“)

where Py, ; and Kp, ; denote rated output power and
the penalty cost constant for the j wind power plant,
respectively.

The wind speed distribution is defined using the Weibull
probability density function (PDF) with two parameters
[25], [50]. Hence, the probability of wind speed (v) is
expressed as:

k k—1 N3

Hv) = (-) (K) e (&) ford < v < 00 Q)
c) \c

where k is the shape coefficient and c is the scale coefficient

for the PDF.
The mean of the Weibull distribution can be stated as:

My =cxT(1+khH
0 —tex—1 (©)
Lx)= [y e 't ldr
The wind turbine power output can be defined as:
0 V< Vipand v > vy
V= Vin
Pw(V) = { Pwr ( > Vin SV = Vr @)
r — Vin
Pwr Vr <V = Vour

where p,,, represents the rated output power of the wind
turbine; vj,, v,, and v,y respectively denote the cut-in speed,
rated speed, and cut-out speed of wind turbine.
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According to Eq. (7), in a couple of zones of wind speeds,
the variable wind power is discrete. Specifically, the wind
power is zero for wind speed v smaller than v;;, or for v greater
than v,,;. The wind power is equal to the rated value when v
is between v, and v,,;. Probabilities for these discrete zones
can be calculated based on Weibull cumulative distribution
function (cdf) as follows [51]:

fw(pw){pw = 0}
= cdf Vin) + (1 — cdf Wour))

Vin \k Vour \ ¥
_l—exp[—(?)}—i—exp[—(c)} ®)
Sw@wpw = pwr}
= cdf (vour) + (1 — cdf (vy))
vr\K Vour \k
[ O[] o
For wind speed being between v;, and v,, the wind power

is a continuous variable. The continuous zone is related to the
probability as follows:

. k—1
Jwlow) = M [Vin + D vy — Vin)]

" X Pwr Pwr
, k
Vin + If_‘f("r = Vin)
X exp | — i (10)
C

Given the probabilities of available wind power at different
operating zones, Egs. (3) and (4) can be expanded to include
the PDF of wind power as in Egs. (11) and (12), as shown at
the bottom of the page, respectively.

Remark 1: The process of handling the stochastic wind
power can be summarized as follows: Firstly, the wind
speed distribution according to the Weibull probability den-
sity function (PDF) [41], [52]-[54] is established using
Egs. (5) and (6). With the known parameters of Weibull
shape (k) and scale (c), the Monte-Carlo method is adopted
for generating the wind speed frequency distribution and
Weibull fitting. Next, based on the power output function

of a turbine in Eq. (7) and the mathematical equations of
Weibull distribution, the available wind power probabilities
corresponding to different wind speed zones can be defined
by Eqgs. (8) — (10). Lastly, thanks to the probability functions
for available wind power estimation at different operating
zones, we can compute the cost of stochastic wind power
using Egs. (11) and (12).

Overall, the generation cost of wind generators can be
defined as:

Nwe
Cwe = Y [Cuj(Pus)) + Cruj(Pusj — Puav,)
j=1
+ CPw,j(Pwav,j - Pws,j)] (13)

where Ny represents the number of wind generators.

C. COST OF SOLAR GENERATION

Besides wind source, solar PV is another well-known renew-
able source. Generation of a solar PV plant also includes
a summation of direct cost, reserve cost, and penalty cost

components. The direct cost of the solar PV plant can be
modeled as in Eq. (14) [30]:

Cs,k(Pss,k) = hszs,k (14)

where Ay and Py, i denote the direct cost constant and sched-
uled power for the k" solar PV plant.

The solar PV plant’ reserve cost can be obtained using the
below relation [30]:

CRs,k(Pss,k - Psav,k)
= KRs,k(Pss,k - Psav,k)
= KRs,k st(Psav,k < Pss,k) X [Pss,k - E(Psav,k < Pss,k)]
(15)

where Py, x and Kgy ¢ are the actual available power and the
reserve cost constant of the k™ solar PV plant, respectively;
fs(Psavk < Pgx) denotes the occurrence probability of
solar power shortage from the schedule power (Pg, x); and
E(Psav.k < Pgs k) signifies the expectation of solar power
being less than Pg; .

CRw,j(Pws,j - Pwav,j)

Py, J

Ry ck x Pwr
0
+ (Pys,j — 0) X fiu(pw ){pw,j = 0}

CPw,j(Pwav,j - Pws,j)

Pwr.j
= KPw,j

kX pur
Pws.j

+(pwr - Pws,j) Xfw(pw,j){pw,j =pwr}
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kv, —v;
(Pws,j _pw,j) X M <Vin + Il:w

k(v, —v;
(Pw.j — Puws,j) X M (Vin + II:W

W k
k-1 Vip + %(Vr — Vin)
Wy — Vin) xexp | — s

C
(11)

, k

k-1 Vin + ll,)w Vr = Vin)
vr —vin) X exp | — =

c
(12)
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The solar PV plant’ penalty cost is as follows [30]:

CPs,k(Psav,k - Pss,k)
= KPs,k(Psav,k - Pss,k)
= Kps i Xfr(Psav,k > Pss,k) X [E(Psav,k > Pss,k) - Pss,k]
(16)

where Kps are the penalty cost constant relative to the
k™ solar PV plant; fs(Psav.k > Pgs,k) denotes the probability
that solar power is more than the schedule power (Pg; 4 ); and
E(Psav.k > Pgsx) signifies the expectation of solar power
being more than P .

Lognormal PDF is used to represent the solar irradiance
(Gy) distribution. Hence, the probability of solar irradiance
(Gy) is defined by the following equation [55]:

1 { —(Inx — p)?
ex
G027 P 202
where p is the mean and o is the standard deviation for the
PDE.

The mean of the lognormal PDF can be determined as
follows:

J6(Gs) = }foer >0 (17)

0.2
Mign = exp (M + 7) (18)

The solar irradiance (Gy) to energy conversion for solar PV
can be determined as follows [56]:

G2
Py, s ) for0 < Gy < R,
PG, = CaRe (19)
Psr o fOI'GS > RC
Gstd

where Py, denotes the rated output power of solar PV plant,
R, is the certain irradiance point, and Gy denotes solar
irradiance in the standard environment.

The reserve cost in Eq. (15) is rewritten as follows [30]:

CRS(PSS - Psav) = KRS(Pss - Psav)
N-
= KRS Z [Pss - Psn—] Xfm— (20)
n=1

where Py,_ signifies that available power falls short of sched-
uled power, fi;,,— denotes the relative frequency of occurrence
of Ps,—, and N~ signifies the number of pairs (Pg,—, fsn—)
created for the PDF.

Similarly, the penalty cost in Eq. (16) is defined as [30]:

Cps(Psay — Pss) = Kpg(Psay — Pss)

Nt
= Kps ) [Py — Pss] X finr  (21)

n=1
where Py, signifies that available power is greater than
scheduled power, f;,+ denotes the relative frequency of
occurrence of Pg,,, and NT signifies the number of pairs

(Psp+, fsn+) created for the PDF.
Remark 2: Similarly, the process of handling the stochastic
solar power can be summarized as follows: The lognormal
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PDF having characteristics as in Eqs. (17) and (18) is used
to express the distribution of solar irradiance. Via Monte
Carlo simulation, we can obtain the lognormal fitting and
frequency distribution of solar irradiance. Next, we calculate
the solar irradiance to energy conversion for solar PV plant
using Eq. (19). Given the distribution of actual available solar
power, the reserve and penalty costs related to stochastic solar
power can be computed using Eqgs. (20) and (21), respectively.

Overall, the generation cost of solar generators is as
follows:

Nsg
CSG = Z [Cs,k(Pss,k) + CRs,k(Pss,k - Psav,k)
k=1
+ CPs,k(Psav,k - Pss,k)] (22)

where Ngg represents the number of solar PV generators.

lll. PROBLEM FORMULATION

The MOOPF-WS problem is set out to optimize prede-

fined objectives while meeting several constraints by defin-

ing the optimum values of control variables. Therefore, the

MOOPF-WS problem may be expressed accordingly:
Minimize:

F(u,x) = [F1(u, x), Fo(u, x), ..., Fpn(u, x)] (23)
Subject to:

h(u,x) =0 24)
glu,x) <0 (25)

where F,,(u,x) is the mih objective function; 1 and x are the
vectors of control and state variables, respectively; h(u,x)
denotes the set of equality constraints and g(u,x) represents
the inequality constraints.

A. PREDEFINED OBJECTIVES
1) TOTAL COST MINIMIZATION

The total cost includes generation costs for the thermal, wind,
and solar PV generators, which is defined as a summation of
Egs. (1), (13), and (22):

Fy = C7(Pr6) + Cwe + Csg (26)

2) POWER LOSS MINIMIZATION
Real power loss can be expressed by the following equation:

N
Fy=Piss = Y _ Gygij [Vi2 + VP —2V,Vjcos(8; — aj)]
g=1
27

where N; denotes the number of transmission lines, G
denotes the transfer conductance between buses i and j; V; and
V; represent the voltage magnitudes at buses i and j, respec-
tively; d; and §; represent voltage angles at buses i and j,
respectively.
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3) EMISSION MINIMIZATION

Producing electricity using conventional fossil fuels would
release harmful emissions into the environment. The total
emission caused by thermal generators is defined as follows:

Nrg
Fy=>" [(Oti + BiPgi + viPy) + wie” ini)] (28)
i=1

where «o;, Bi, Vi, wi, and u; denote the emission constants of
the i thermal generator.

B. CONTROL VARIABLES
1) CONTROL VARIABLES
The set of control variables used is as follows:
- Prg.i: real power output of the i thermal generator,
except for the slack bus.
- Pywg.i: real power output of the ih
- Psg,;: real power output of the i™ solar PV generator.
- Vg,i: voltage magnitude at the ith generation bus.
- T;: setting of the i transformer tap.
- Qc.; : reactive power output of the i shunt VAR
compensator.
The vector of control variables (u) is stated as:

wind generator.

u = [Prg2, ..., P1G,Nrg> PWG,1,
s PwG, N> PsG,15 - - - PsG,NgG »
T
Voi,....Von T, ..., TN, Q1. ..., Qc N1 (29)

in which N, denotes the total number of generation buses,
N; denotes the number of transformers, and N, denotes the
number of switchable capacitors.

2) STATE VARIABLES
The set of state variables used is as follows:
- Pg,1: real power output at the slack generator.
- Qg: reactive power output of generation buses.
- VL: voltage magnitudes at the load buses.
- Sp: power flow in the transmission lines.
Thus, the vector of state variables (x) is expressed as:

x=PG.1,0G.1+ -+ Q6N Vis oo os VENG SL1s - SENIT
(30)
in which Ny signifies the number of load buses.
C. SYSTEM CONSTRAINTS
1) EQUALITY CONSTRAINTS
Np
PGi—Ppi=Viy_V;[Gycos(8j) + Bysin(8;)]:
j=1
i=1,...,N, (31)

Np
0c,i+Qc,i—0Opi=Vi Z V; [Gjj cos(8;5) — Bijsin(8;j)];
j=1
i=1,...,Np (32)
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in which N}, denotes the number of buses; Pp ; and Op ; rep-
resent real and reactive power demand at bus i, respectively;
G;; represents the transfer conductance and Bj; the suscep-
tance between bus i and bus j.

2) INEQUALITY CONSTRAINTS
Generator constraints:

PR < P < PRSii=1.....Nig 53)
rvxllflgj<PWGJ<PWGJJ_1 - Nwe (34
T < Psgk < PRk =1,...,Nsg (35
OF < Qr6i < QF&i=1,....Nig (36)

Qr‘%, < Qw,) = Qwg;ii=1...,Nwg 37
O3 < Osgx < Q3% k=1,...,Nsg (38)
me <Vgi< V(‘;“*l"‘, i=1,...,N, (39)

Shunt VAR compensator constraints:
0P < Qci < Q0P i=1,...,Ne (40)
Transformer constraints:
TR < T, < T i=1,...,N, (41)
Security constraints:

VR < V< VIS = 1, Ny (42)

SLi < Spihi=1,...,N (43)
IV. MULTI-OBJECTIVE SEARCH GROUP ALGORITHM

The MOSGA is created by integrating fast non-dominated
sorting, crowding distance strategies, and Pareto archive
selection into the SGA. The original SGA, the new integration
strategies, and the proposed MOSGA are detailed as below.

A. SGA

SGA is a metaheuristic method developed in [44]. An intro-
duction of the basic SGA is described as follows. To start
the optimization algorithm, a population P can be generated
randomly as the following equation:

Pij = Xjmin + (xj,max - xj,min)U[O’ 11;

i=1,..  nppj=1,....n (44)

where ny,,,, is the population size and n denotes the number of
design variables; P;; denotes the 7™ control variable of the i
individual of P, U [0, 1] denotes a random number ranging
from 0 to 1; Xj min and xj max respectively denote the lower
and upper limits of the j control variable.

The objective function value for each individual is com-
puted after population initialization. A number of good indi-
viduals are then extracted from population P to create a search
group R using a standard tournament selection. Further infor-
mation on the tournament selection is given in [57]. The
search group R is mutated at every iteration to improve global
exploration. Depending on the rank in search group R, the
worst member is chosen for mutation. The aim is to explore
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TABLE 1. Pseudocode of SGA.

Algorithm 1: Pseudocode of SGA

Initialize the initial parameters of the SGA:

-

Randomly generate an initial population P using Eq. (44):

Calculate the objective function values for population P:

Create the initial search group R* selecting . individuals from the initial population;
Replace rue individuals by new members created as described in Eq. (45);

Generate the families F; using Eq. (46);

DR AW

Select the new search group according to the rule:
- Global phase: search group R™! is formed by best member of each family:
- Local phase: search group R™!
8: Update &' accordingly to Eq. (47);
9: Make k= k+ 1.1f k > lternax. go to Step 10. otherwise return to Step 5:
10: Solution found: x” =R, -.

is formed by best ng individuals from the population.

TABLE 2. Pseudocode of MOSGA.

Algorithm 2: Pseudocode of MOSGA

Initialize the initial parameters of the MOSGA:
Randomly generate an initial population P using Eq. (44):
Calculate multiple objective function values for population P:

w e o=

Sort initial population P based on fast non-dominated sorting and crowding distance
strategies and store them in the Pareto archive:
. Create the initial search group R” selecting n, individuals from the imitial population;
Replace n,,, individuals by new members created as described in Eq. (45):
: Generate the families F, using Eq. (46):

: Store all newly created individuals in the advanced Pareto archive. Combine the current and
advanced archives;

W o

9: Select the best solutions for new Pareto archive using Pareto archive selection mechanism:
10: Select the new search group according to the rule:

- Global phase: search group R™" is formed by best member of each family;

- Local phase: search group R™ is formed by best i, individuals from Pareto archive;
11: Update ! accordingly to Eq. (47):
12: Make k= k + 1. if k > Itermas. go to Step 13, otherwise retum to Step 6;
13: Solution found: Pareto optimal solutions in the last Pareto archive

new areas in the search domain. Therefore, new individuals
are mutated as follows:

Xjmut = E[R.j] +teo[R;jl;j=1,...,n, 45)

in which x; my denotes the jth control variable of a specified
mutated individual, R. ; signifies the jth column of the search
group matrix, £ denotes the mean value, ¢ is the coefficient
that determines the position of a newly created individual,
¢ denotes a random variable, and o denotes the standard
deviation.

In SGA, a set comprising each search group member and
the respectively generated individuals is a family. Therefore,
after the search group is created, each member generates a
family by perturbation as follows:

Xjnew = Rj+ae;j=1,...,n, (46)

where o denotes the perturbation constant, which is reduced
by the iteration:

okt = pak 47)

in which b means the coefficient, which is defined by a
combination of the linear function.

SGA comprises global and local phases. The principal aim
in the global phase is to explore the entire design domain by
creating a new search group from the best member of each
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family. To exploit the region of the best current individual,
new search group is formed from the best n, individuals
from all the families in the local phase. Algorithm 1 in
Table 1 describes the SGA’s pseudocode.

B. FAST NON-DOMINATED SORTING TECHNIQUE
For each solution p of a set S, two entities are computed [58]:
- Domination count 7,,: the number of solutions that dom-
inate the solution p.

- Sp: the set of solutions dominated by solution p.

The solutions with a zero domination count (n,) are con-
tained in the first non-dominated rank (P). Afterwards, for
each solution p with zero domination count, the process visits
each solution ¢ of set S, and decreases the domination count
of each solution g by one. If a member g has a zero domination
count, it is located in a different list Q. These members are
also placed in the second front (P;). This process continues
with each member of Q to determine the third rank (P3) and
all non-dominated ranks.

C. CROWDING DISTANCE COMPUTATION

Crowding distance is computed to estimate the density
of solutions around a specific solution i in a specific
non-dominated front. The population needs to be sorted
by the values of the objective function in ascending order.
Then, an infinite distance value for each objective function is
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assigned to the solutions with minimum and maximum objec-
tive values, i.e., the boundary solutions. A distance value is
assigned to all other intermediate solutions; this value is the
absolute normalized difference between the objective values
of two neighboring solutions (i4+1 and i — 1). This computa-
tion is employed for other objectives. The value for crowding
distance is computed as the total of the individual distance
values for each objective. Before calculating the crowding
distance, each objective function is normalized. Fig. 1 shows
a schematic of the crowding distance computation.

The crowded-comparison operator (<) is used based on
non-dominated level (r) and crowding distance (d) to define
the better solution:

i <y jif (ri < 1j)or ((r; = rj) and (d; > d})) (48)

According to Eq. (48), the solution that belongs to the
better non-dominated level is prioritized; if both solutions are
in the same level, the one with the better value for crowding
distance is prioritized.

D. PARETO ARCHIVE SELECTION

The Pareto archive is utilized with the best non-dominated
solutions to maintain a non-dominated set. In the MOSGA,
all generated solutions are placed in the advanced archive.
Two archives are obtained (current and advanced), and these
are combined. The combined archive exceeds the fixed size
(1pop), and so this archive is truncated using the selection
strategy suggested by Deb et al. [58] for the next step of the
algorithm. Fig. 2 outlines this procedure.

Fast non-dominated sorting is used first to separate the
combined archive into non-dominated ranks (P, P>, ..., Py).
The solutions in the first non-dominated front (P;) are chosen
first for the new archive. If the first front (P;) is smaller than
the archive, the remainder of the archive is selected from
other non-dominated fronts in rank order (P,, ..., Py). The
process is implemented until the Pareto archive reaches its
limit, assuming that front Fy is the final non-dominated front,
after which no further sets can be added. Solutions from the
last front (Px) are chosen in descending order of the crowding
distance to select the number of solutions for the new Pareto
archive accurately.

E. THE PROPOSED MOSGA

The MOSGA begins the procedure by randomly generating
an initial population P. Objective values are calculated for
all individuals of P. Based on the non-dominated ranks of P,
a tournament selection is later employed to choose ng best
individuals from P to form an initial search group R for the
subsequent two processes (mutation and generation of the
families). Afterwards, the advanced archive is yielded, and
the current and advanced archives are combined. The selec-
tion strategy is implemented to choose 7, best individuals
for the new Pareto archive. Finally, a crucial stage of the
MOSGA is to select a new search group. This process in both
stages is carried out using a tournament selection. The new
search group is generated by the best member of each family
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in the global phase. Meanwhile, the selection mechanism is
adjusted in the local phase so that the best , individuals from
the new Pareto archive is extracted to generate the new search
group. The MOSGA process executes until the stopping con-
dition is met. The MOSGA’s pseudocode (Algorithm 2) is
presented in Table 2.

F. IMPLEMENTATION OF THE MOSGA FOR THE
MOOPF-WS PROBLEM

1) POPULATION INITIALIZATION

To implement the MOSGA for the MOOPF-WS problem,
each individual in the population P represents a vector of
control variables as follows:

Py = [P1G15 - » PTG NiG» PWG,15 - - s PWG Ny s PSG15
e 9PSG,ngs VGJ, e VG,Ncs
Tla~--7TN,7Q1a~--7QC,NC]T

d=1,..., N (49)

2) OBJECTIVE FUNCTION VALUE
In the MOOPF-WS problem, each objective function value is
calculated as follows:

Ng
Fp, = Fu+ Ky(PG.1 — OGN + Ky > _(Qa.i — Q¢
i=1

Ny Ny
+KY (VL= VI K (S — SPY (50)

i=1 i=1

in which F,, denotes the m™ objective for the MOOPF-WS;
K,, K4, Ky, and K denote the penalty constants. In this study,
penalty constants are set to 10°.

The limitation values of the state variables are defined
according to Eq. (51):

Xmax if X > Xmax
lim

X = { Xmin  If X < Xmin (629
X otherwise
where x'™ and x denote the limited values and calculated

values of Qg, Vi, and Sy, respectively.
The power flow problem was addressed using the
Matpower 6.0 toolbox [59].

3) BEST COMPROMISE SOLUTION

A decision-making method based on a fuzzy membership
function is used to define the best compromise solution. The
membership function w;; represents the degree of satisfaction
of the i solution for the /™ objective [60]:

1 if Fl:,' < min(F,')
max(Fj) — Fj; if min (F) < Fy < (F)
Hij max(F;) — min(F}) IR = F = maxtdy
0 if Fyj > max(F))

(52)
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Wind generator Solar PV generator

FIGURE 3. The modified IEEE 30-bus system incorporating RES.

Thermal generator

where min(F;) and max(F}) are the minimum and maximum
values of the /™ objective, respectively. The normalized mem-
bership function of the i solution can be defined as:

Nopj

Do i
j=1

Npf Nobj
> Mij
i=1j=1

Wi = (53)

where n,; denotes the number of objective functions and n,y;
denotes the number of non-dominated solutions, respectively.
The best compromise solution is the one with a maximum
value of the normalized membership function.

4) OVERALL PROCEDURE
The MOSGA implementation for the MOOPF-WS is as
follows:

Step 1: Define detailed data of the test system and accept-
able ranges of control variables;

Step 2: Set the controlling parameters for MOSGA, includ-
ing population size (n,p), number of search group members
(ng), number of mutations (n,,,), perturbation factor (c),
Pareto archive size (Ng), maximum number of iterations
(Iteray), and global iteration ratio (GIR);

Step 3: Create the initial population P as in Eq. (44);

Step 4: Execute a power flow calculation using Matpower
6.0 to evaluate objective function values (Fy, F2, F3) for each
individual of P;

Step 5: Sort all the individuals in the initial population P
using fast non-dominated sorting and crowding distance com-
putations and place them into a Pareto archive;

Step 6: Choose the best n, solutions from P to generate the
initial search group R¥. Set k = 0;

Step 7: Begin the main loop, k = k+ 1;

Step 8: Perform the mutation phase for n,,,; individuals
using Eq. (45);
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Step 9: Create families (F;) for each search group member
using Eq. (46);

Step 10: Store all newly generated solutions into an
advanced archive. Combine the advanced and current
archives;

Step 11: Choose the best Ng solutions from the combined
archive as the new Pareto archive;

Step 12: Select the new search group in two stages:

- Global stage: select the best member of each family to

create search group RA*1;

- Local stage: select ng best solutions from the archive to

create search group R¥*1,

Step 13: Determine o**! according to Eq. (47);

Step 14: If k < Itery,y, return to Step 7; or else, go to
Step 15;

Step 15: Solutions achieved: non-dominated solutions in
the archive set;

Step 16: Define the best compromise solution based on the
defined approach;

G. PERFORMANCE METRICS

1) SPREAD INDICATOR

The diversity of non-dominated solutions of a specified algo-
rithm is provided by the spread (A) indicator, which shows
the spread of extreme solutions and the distribution of solu-
tions in the generated non-dominated set. This parameter is
defined in the following equation [61]:

3 dEL D) + Ygeg |dX, ) — ]
A= (54)
S d(E Q) + (9] - m)d

i=1

where
dX,Q2)=_min ||F(X)—F()] (55)
YeQ,Y #X
i} 1
d= a me dX, Q) (56)

where 2 is the generated Pareto optimal front, E; is the
i extreme solutions in true Pareto front, and m represents
the number of objective functions. The smaller value of the
A indicator provides better diversity (i.e., the better extent of
spread and distribution) in a non-dominated set.

2) HYPERVOLUME

This metric computes the volume related to members of
a non-dominated set in the objective space. The hypervol-
ume (HV) can be computed [62]:

HV = U Vi (57)
i=1

where v; is a hypercube for each solution i € €2 formed with
a reference point W. The HV values after normalization lie
within the range [0, 1]. It is desirable that the algorithm has a
large HV value.
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TABLE 3. Different scenarios of the MOOPF-WS problem.

Scenario Active power loss Emission Load demand System
Total cost - -
Fixed Variable

Scenario 1 4 4 v

Scenario 2 4 v v IEEE 30-bus

Scenario 3 v v v v system
Scenarios 4.1-4.4 v v v v

Scenario 5 v v v

Scenario 6 v v v IEEE 57-bus

Scenario 7 v v v v system
Scenarios 8.1-8.4 v v 4 v

TABLE 4. Summary of the IEEE 30-bus system incorporating RESs.

System characteristics Value Detail
Bus 30 [63]
Branch 41 [63]

Thermal generator (TG1, TG2, TG3) 3

Wind plant (WG1, WG2)
Solar PV plant (SG1)

Shunt VAR compensators

Buses: 1,2, and 8

2 Buses: 5Sand 11

1 Buses: 13

9 Buses: 10, 12, 15, 17,

20, 21, 23, 24 and 29

Branches: 11, 12, 15
and 36

24 -

Transformers with tap changers 4

Control variables

TABLE 5. Cost constant and emission constant of thermal generators for
modified IEEE 30-bus system [2].

Generator TG1 TG2 TG3
Bus 1 2 8

a 0 0 0
b 2 1.75 3.25
c 0.00375 0.0175 0.00834
o 0.04 0.025 0.053
s -0.055 -0.06 -0.035
y 0.064 0.056 0.033
w 0.0002 0.0005 0.002
I 6.667 3.333 2

V. SIMULATION RESULTS

The MOSGA was implemented to deal with the MOOPF-WS
problem on the adapted IEEE 30-bus and 57-bus systems
incorporating RES. Table 3 summarizes the scenarios consid-
ered in this study. The initial parameters of MOSGA, includ-
ing Mpop, Ngs Mot af, and GIR, were chosen as 100, 20, 5,
2, and 0.3, respectively, for all test systems. The optimization
process of the MOSGA was independently run thirty times
for each scenario. The number of function evaluations (NFEs)
was set as 30,000 and 50,000 for the 30-bus and 57-bus
systems, respectively. The Pareto archive size was kept at
100 for all trials.

Moreover, MOSGA was compared with multi-objective
ant lion optimizer (MOALO) [64], multi-objective grasshop-
per optimization algorithm (MOGOA) [65], and non-
dominated sorting genetic algorithm II (NSGA-II) [58].
The population size for all algorithms was fixed at 100.
In MOGOA, the maximum and minimum values of decreas-
ing coefficient (cmax and cmin) were set to 1 and 0.00004,
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TABLE 6. PDF parameters and cost constants for wind generators for
modified IEEE 30-bus system [30].

Wind generator # WGl (bus 5) WG2 (bus 11)
Number of wind turbines 25 20
Rated power (MW) 75 60
Weibull PDF parameters c=9,k=2 c=10,k=2
Weibull mean v="7.976 m/s v=7.976 m/s
Direct cost constant ($/MW) 1.6 1.75

Reserve cost constant ($/MW) 3 3
Penalty cost constant ($/MW) 1.5 1.5

TABLE 7. PDF parameters and cost constants for solar PV generator for
modified IEEE 30-bus system [30].

Solar PV # SPV (bus 13)
Rated power (MW) 50
Lognormal PDF parameters u=6,0=0.6
Lognormal mean G =483 W/m?
Direct cost constant ($/MW) 1.6

Reserve cost constant ($/MW) 3
Penalty cost constant ($/MW) 1.5

respectively. NSGA-II used a mutation probability of 0.5,
a crossover probability of 0.9, and distribution indexes for
mutation and crossover operators of n,, = 20 and n, = 20,
respectively.

A. IEEE 30-BUS SYSTEM

Table 4 summarizes the modified IEEE 30-bus system incor-
porating the RES used in this study; its topology diagram is
displayed in Fig. 3. Of note, locations of RESs were chosen
similar to the references [30] to make a fair results com-
parison. In this context, some conventional generators were
replaced by respective renewable generators. Table 5 details
the fuel cost and emission factors for thermal generators.
Tables 6-7 give PDF parameters and cost constants for wind
and solar PV generators. After performing 8,000 Monte-
Carlo scenarios, Figs. 4-5 depict wind frequency distributions
for two wind farms. Similarly, Fig. 6 displays the frequency
distribution of solar irradiance for a solar PV plant. Stochastic
power output from the solar PV plant is presented in Fig.
7. For the initial scenario, the system has a total cost of
834.6627 $/h, a real power loss of 5.7866 MW, and an emis-
sion of 0.2694 ton/h.
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TABLE 8. Simulation results obtained by multi-objective algorithms for scenarios 1 and 2.

Parameters Min Max Scenario 1 Scenario 2
MOSGA NSGA-IIT. MOALO MOGOA MOSGA NSGA-IT MOALO MOGOA
Prci (MW) 50 200 87.2602 84.4137 84.6407 86.5867 100.7536  96.8823 100.9380  101.2253
Prca (MW) 20 80 38.0082 39.7378 50.5884 38.3918 47.5322 49.0439 47.6395 48.8515
Pwci (MW) 0 75 57.0495 58.3995 57.3018 58.2082 45.5621 46.7923 44.0522 49.1663
Prg: (MW) 10 35 26.7210 26.3622 11.5691 26.5124 18.3870 19.6006 15.6313 12.6419
Pwa2 (MW) 0 60 41.8188 41.5309 44,5543 41.5451 39.3667 39.1580 34.1195 39.0103
Psai (MW) 0 50 35.8393 36.2655 38.3737 35.5043 36.1707 36.1618 45.7678 37.1107
V161 (pu) 0.95 1.1 1.0640 1.0420 1.0541 1.0596 1.0722 1.0434 1.0468 1.0505
Via: (pu) 0.95 1.1 1.0557 1.0315 1.0447 1.0514 1.0574 1.0331 1.0347 1.0425
Vwar (pu) 0.95 1.1 1.0407 1.0126 1.0260 1.0390 1.0341 1.0120 1.0099 1.0277
Vi3 (pu) 0.95 1.1 1.0436 1.0176 1.0272 1.0378 1.0386 1.0173 1.0152 1.0198
Vwaz (pu) 0.95 1.1 1.0699 1.0779 1.1000 1.0960 1.0486 1.0881 1.0476 1.0327
Vsai1 (pu) 0.95 1.1 1.0550 1.0622 1.0542 1.0328 1.0310 1.0601 1.0648 1.0465
Qcio (MVar) 0 5 42118 2.8393 0.3708 0.0819 1.9717 2.6122 0.9995 0.6896
Qc12 (MVar) 0 5 2.2092 3.1181 3.7932 3.7310 1.8951 3.2688 3.0244 2.6883
Qcis (MVar) 0 5 3.8990 3.6860 0.5683 4.9555 1.0475 4.0385 2.5078 1.9591
Qci7 (MVar) 0 5 2.5930 3.7523 2.9165 1.1022 3.0748 3.6970 2.4343 3.4270
Qc0 (MVar) 0 5 2.9253 3.4639 4.9722 4.6229 4.6955 2.3673 3.4680 0.8015
Qca2i (MVar) 0 5 3.2965 3.2540 1.9241 4.4982 2.8604 3.7899 4.4961 1.8996
Qc2; (MVar) 0 5 1.6797 3.2887 1.6227 3.8377 2.3548 2.8929 3.4334 1.7955
Qc24 (MVar) 0 5 49334 4.3268 4.8508 4.4080 3.1577 4.4009 0.2824 5.0000
Qcz9 (MVar) 0 5 3.8667 2.5364 2.6443 4.8598 3.3686 3.0551 2.1262 3.2380
T (pu) 0.9 1.1 1.0093 0.9728 1.0268 0.9846 1.0360 0.9901 1.0643 1.0638
Tz (pw) 0.9 1.1 0.9465 0.9832 0.9606 1.0957 0.9515 0.9528 0.9120 0.9128
Tis (pw) 0.9 1.1 0.9883 0.9880 0.9816 0.9833 0.9954 0.9850 1.0687 0.9883
Ts6 (pu) 0.9 1.1 0.9796 0.9595 0.9724 1.0087 0.9750 0.9620 0.9656 0.9422
Total Cost ($/h) - - 799.1777 801.4558 800.1741  800.4808  784.7058  787.2669  788.0518  785.7272
Real Power Loss (MW) - - 3.2970 3.3097 3.6280 3.3484 - - - -
Emission (ton/h) - - - - - - 0.2788 0.2382 0.2815 0.2856
800 800
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FIGURE 4. Wind speed distribution for wind generators #1 at bus 5.

1) SCENARIO 1: SIMULTANEOUS OPTIMIZATION OF TOTAL
COST AND ACTIVE POWER LOSS

The MOSGA was executed to optimize the total cost and real
power loss concurrently in scenario 1. Fig. 8 portrays the best
Pareto optimal front associated with the best HV metric for
scenario 1, which shows a trade-off between the two objec-
tives considered. Table 8 reports the simulation results found
by MOSGA, NSGA-II, MOALO, and MOGOA, including
optimal values of design variables and objective functions for
the best compromise solution. Table 8§ also indicates that the
MOSGA offered a total cost of 799.1777 $/h and a real power
loss of 3.2970 MW for the best compromise solution. Thus,
total cost and real power loss reductions for this scenario
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FIGURE 5. Wind speed distribution for wind generators #2 at bus 11.

were 4.2514% and 43.0223%, respectively, in comparison
with the initial scenario. Moreover, it showed that the best
compromise solution obtained by MOSGA (799.1777 $/h
and 3.2970 MW) was better than those obtained by NSGA-II
(801.4558 $/h and 3.3097 MW), MOALO (800.1741 $/h and
3.6280 MW) and MOGOA (800.4808 $/h and 3.3484 MW).
Therefore, MOSGA is capable of finding a better optimal
solution for this case study.

2) SCENARIO 2: SIMULTANEOUS OPTIMIZATION OF TOTAL
COST AND EMISSION

In this scenario, the MOSGA minimized the total cost and
emission concurrently. Fig. 9 demonstrates the Pareto front
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FIGURE 8. Pareto front obtained by MOSGA for scenario 1.

obtained by MOSGA for this scenario. As stated above,
the best Pareto optimal front is the one that corresponds to
the best value for the HV metric. The curve in Fig. 9 shows the
conflicting nature of total cost and emission due to the equa-
tion characteristics of objective functions. Table 8 displays
simulation output obtained from the MOSGA, NSGA-II,
MOALO, and MOGOA for the best compromise solution.
The total cost and emission for the best compromise solu-
tion yielded by MOSGA were 784.7058 $/h and 0.2788
ton/h, respectively. These correspond to a reduction in total
cost of 5.9853% and an increase in emissions of 3.4754%,
as compared to the initial scenario. Compared with NSGA-II,
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FIGURE 11. Load bus voltage profiles for scenarios 1, 2, and 3.

MOSGA acquired the best compromise solution with lower
total cost and higher emission. For a comprehensive compar-
ison, MOSGA not only found a better result than MOALO
and MOGOA in both objectives, but it also obtained the best
value for the total cost objective among other algorithms for
best compromise solution. Hence, MOSGA can provide a
good-quality best compromise solution for scenario 2.

To further investigate its performance, MOSGA was
also compared with published results in the literature
for scenario 2. Table 9 shows comparative results of
MOSGA and other prominent algorithms in the previous

48391



IEEE Access

T. H. Bao Huy et al.: Performance Improvement of Multiobjective OPF-Based RES Using Intelligent Algorithm

0.04

0.035

(=
o
)

0.025

Probability density
g o
= o
(%, N

=]
o

0.005

40 50 60 70 80 90
Load demand (%)

100 110

FIGURE 12. Representation of uncertainty in load by a normal
distribution with x; = 70 and o) = 10.

TABLE 9. Comparative results of MOSGA and previous studies for
scenario 2.

Algorithms Total cost Emission
MOSGA 784.7058 0.2788
SHADE-SF [30] 792.516 0.891
CMOPEO [31] 804.5355 0.5167
CNSGA-II [31] 805.5781 0.6018
FDBGADE [32] 786.1897 0.9216
ISA [33] 793.021 0.813
LISA strategy I [33] 808.307 0.729
LISA strategy II [33] 807.162 0.642
GA [34] 787.7 1.36
PSO [34] 791.88 0.98
CSA [34] 793.13 0.92
ABC [34] 793.46 0.89
GWO [34] 792.73 0.86

studies, including success history based adaptive differ-
ential evolutionary with superiority of feasible solutions
(SHADE-SF) [30], CMOPEO [31], constrained NSGA-II
(CNSGA-II) [31], FDBAGDE [32], ISA [33], LISA strategy
1[33], LISA strategy II [33], GA [34], PSO [34], crow search
algorithms (CSA) [34], ABC [34], and GWO [34]. As for
scenario 2, MOSGA yielded the best minimum value of total
cost and emission objectives in best compromise solution
among published results. Hence, MOSGA can provide a
good-quality best compromise solution for scenario 2.

3) SCENARIO 3: SIMULTANEOUS OPTIMIZATION OF TOTAL
COST, ACTIVE POWER LOSS, AND EMISSION

The total cost, real power loss, and emission were minimized
concurrently by way of the MOSGA in this scenario. Fig. 10
portrays the Pareto optimal front found by the MOSGA,
indicating the relations between the three objectives. The best
compromise solution was also extracted through the decision-
making method. Table 10 represents simulation outcomes
for the best compromise solutions yielded by MOSGA,
NSGA-II, MOALO, and MOGOA. Table 10 also shows
that the best compromise solution provided a total cost of
807.6874 $/h, a power loss of 3.0442 MW, and emission
of 0.1342 ton/h, corresponding to a total cost reduction of
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TABLE 10. Simulation results obtained by multi-objective algorithms for
scenario 3.

Parameters MOSGA NSGA-II MOALO MOGOA
P16 (MW) 77.8160 73.5283 75.6901 79.5689
Prc2 (MW) 41.4778 47.7872 42.4501 39.6572
Pywei (MW) 60.4941 56.8714 65.2252 61.6539
Prgs (MW) 29.0592 29.7145 11.9243 31.2635
Pwc, (MW) 41.5488 41.5110 51.0904 39.4725
Psai (MW) 36.0483 37.1260 40.1614 34.8559
Va1 (pu) 1.0621 1.0588 1.0564 1.0684
Ve (pu) 1.0534 1.0461 1.0457 1.0562
Vwar (pu) 1.0346 1.0222 1.0307 1.0459
Ve (pu) 1.0409 1.0297 1.0313 1.0379
Vwa (pu) 1.0605 1.0508 1.0589 1.0811
Vsai (pw) 1.0663 1.0504 1.0274 1.0476
Qc1o (MVar) 3.2258 1.7242 4.2364 4.9770
Qciz (MVar) 2.1065 2.7411 0.4017 1.4943
Qcis (MVar) 2.3569 2.0901 3.2604 5.0000
Qci7 (MVar) 3.2783 3.2354 1.7343 4.8643
Qca0 (MVar) 1.9136 3.4792 4.8988 1.0396
Qca1 (MVar) 3.4459 1.9895 1.9876 4.9496
Qca3 (MVar) 2.6009 2.7361 4.8610 1.4816
Qcas (MVar) 45637 22284 4.5499 49061
Qc9 (MVar) 2.0493 2.3987 0.9339 2.9942
Tii (pu) 1.0046 0.9834 0.9638 1.0007
T, (pu) 1.0301 0.9673 1.1000 1.0886
Tis (pu) 0.9883 0.9948 1.0424 0.9753
Tss (pu) 0.9741 0.9681 0.9595 0.9997
Total Cost ($/h)  807.6874  809.0396  816.1904  808.4487
Real Power Loss 3.0442 3.1384 3.1414 3.0718
(MW)
Emission (ton/h) 0.1342 0.1233 0.1312 0.1395

TABLE 11. Scenarios of loading and corresponding probabilities.

Items Scenario of loading
Scenario Scenario Scenario Scenario
4.1 4.2 43 44
Percent loading
mean 54.7486 65.4013 74.5986 85.2512
(B™)
Probability of 0.1587 0.3413 0.3413 0.1587

scenario (Jy..)

3.2319%, a real power loss reduction of 47.3919%, and an
emission reduction of 50.1767%, respectively, in comparison
with the initial scenario. It can be seen that MOSGA domi-
nated MOGOA in all three objectives in the best compromise
solution. Moreover, MOSGA outperformed NSGA-II and
MOALO in two out of three objectives. Therefore, MOSGA
had great potential in finding a better compromise solution.
According to the results obtained from this scenario, all
three objective functions indicate a remarkable improvement
using the MOSGA. Precisely, all the objectives were met
simultaneously to the maximum extent, an optimal result for
the best compromise solution. Moreover, an essential con-
straint in the MOOPF-WS problem is that load bus voltage
must be maintained within a specific range; Fig. 11 shows
voltage profiles of load buses for scenarios 1-3, and it can be
seen that the voltages are all within specified boundaries.
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TABLE 12. Simulation results obtained by proposed MOSGA algorithm for
loading scenarios 4.1-4.4.

Parameters Scenario Scenario Scenario Scenario
4.2 4.3 4.3 4.4
Prgi (MW) 50.0199 50.0416 52.0470 61.1147
Prca (MW) 31.4462 22.5247 29.6573 34.4575
Pwai (MW) 23.6867 50.7413 49.5255 54.3755
Prgs (MW) 18.3428 16.7805 19.1227 20.5994
Pwez (MW) 16.9226 27.4983 33.0982 39.3083
Psc1 (MW) 16.1253 18.9085 29.4924 33.8109
Vra1 (pu) 1.0144 1.0488 1.0576 1.0589
V62 (pu) 1.0040 1.0444 1.0480 1.0519
Vwar (pu) 0.9981 1.0369 1.0319 1.0365
Vras (pu) 0.9908 1.0360 1.0371 1.0432
Vwaz (pu) 1.0003 1.0748 1.0378 1.0666
Vsai (pu) 0.9957 1.0418 1.0307 1.0293
Qcio (MVar) 1.5008 1.4587 3.4604 1.9499
Qci2 (MVar) 2.3222 0.0263 3.7348 3.3675
Qcis (MVar) 0.9766 2.0323 4.4984 2.1593
Qci7 (MVar) 1.2045 2.6489 2.0928 1.7187
Qc20 (MVar) 2.5313 1.7954 1.0430 2.1351
Qc21 MVar) 4.1492 4.7667 2.7054 3.0946
Qc23 (MVar) 2.1710 2.8856 1.6427 1.4985
Qc24 (MVar) 3.6903 0.9253 3.4766 1.9356
Qc29 (MVar) 2.2945 2.7793 2.5635 0.9248
Tu (pu) 0.9827 1.0439 0.9930 1.0014
Ti2 (pu) 1.0065 0.9733 0.9794 1.0130
Tis (pu) 1.0224 0.9740 0.9936 0.9962
Ts6 (pu) 1.0061 0.9848 0.9786 0.9881
TCyc. ($/h) 429.9974 512.7754  580.1097 673.5231
PLy.. (MW) 1.3858 1.1473 1.5306 2.0643
E,.. (ton/h) 0.0992 0.1018 0.1004 0.1062
ETC ($/h) 548.1304
EPL (MW) 1.4615
EFE (ton/h) 0.1016
0.106
£0.104
c
£0.102
0
é 0.1
2
E 0.008
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FIGURE 13. Pareto front obtained by MOSGA for scenario 4.1.

4) SCENARIO 4: SIMULTANEOUS OPTIMIZATION OF TOTAL
COST, ACTIVE POWER LOSS, AND EMISSION (UNCERTAIN
LOAD DEMAND CASE STUDY)

This case study considers a practical variable situation of
load demand. Normal PDF is utilized to reflect the uncer-
tain nature of load [66]. Next, we apply the scenario-based
method to implement the process of optimization at some
discrete load levels. Fig. 12 portrays the load demand uncer-
tainty in relation to the graphic form of normal distribution,
in which the horizontal axis deputizes the percentage of
network loading. The PDF parameters include a mean (u;)
and a standard deviation (o7) of 70 and 10, respectively.
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FIGURE 16. Pareto front obtained by MOSGA for scenario 4.4.

The color-filled areas manifest four different scenarios of net-
work load demand (P;) considered. For a certain scenario, the
mean loading and its occurrence probability can be estimated
by the following equations [66].

Probability of the i loading scenario is calculated by:

P
1 Pr — )
Socei = | ——exp | ———H\4p 58
e [/O’[«/E P 207 : 8
P

in which P;“i and P;’IZ are the lower and upper bounds
of the i loading scenario. Next, mean of the i loading
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TABLE 13. Comparison of network performance profiles optimized by different algorithms for scenarios 4.1-4.4.

Algorithm Scenario TCy.. ($/h) PL,.. (MW) E,. (ton/h) ETC ($/h) EPL (MW) EE (ton/h)
MOSGA Scenario 4.1 429.9974 1.3858 0.0992 548.1304 1.4615 0.1016
Scenario 4.2 512.7754 1.1473 0.1018
Scenario 4.3 580.1097 1.5306 0.1004
Scenario 4.4 673.5231 2.0643 0.1062
NSGA-II Scenario 4.1 426.6767 1.2090 0.1005 536.9252 1.673 0.1019
Scenario 4.2 491.6359 1.4759 0.1021
Scenario 4.3 571.5105 1.8390 0.1018
Scenario 4.4 670.1939 2.2040 0.1033
MOALO Scenario 4.1 434.2370 1.4254 0.0986 549.9583 1.5593 0.1024
Scenario 4.2 511.8956 1.2447 0.1020
Scenario 4.3 584.7860 1.5873 0.0997
Scenario 4.4 672.6370 2.3093 0.1126
MOGOA Scenario 4.1 461.3624 1.0474 0.1001 555.102 1.4149 0.1025
Scenario 4.2 508.7890 1.2727 0.1020
Scenario 4.3 591.1768 1.3538 0.1021
Scenario 4.4 670.8597 2.2197 0.1067

Voltage (p.u.)

—=e@—— Scenario 4.1 —v¥— Scenario 4.3
0.96] —=— Scenario 4.2 —=—— Scenario 4.4

0.94 . * : ’
5 10 15 20

Bus Number

FIGURE 17. Load bus voltage profiles for scenarios 4.1-4.4.

TABLE 14. Summary of the IEEE 57-bus system incorporating RESs.

System characteristics Value Detail
Bus 57 [59]
Branch 80 [59]
Thermal generator (TG1, TG2, TG3, 4 Buses: 1, 3, 8, and 12
TG4)
Wind plant (WG1, WG2) 2 Buses: 6 and 9
Solar PV plant (SG1) 1 Buses: 2
Shunt VAR compensators 3 Buses: 18, 25 and 53
Transformers with tap changers 17 Branches: 19, 20, 31,
35,36, 37,41, 46,
54,58, 59, 65, 66,
71,73, 76 and 80
Control variables 33 -
scenario is computed:
1 y 1 P
1111;ean — / exp | — (P 2pL1) dr; (59)
’ Ssce,i / [RY 2 20‘1
P 0

1i

Table 11 provides information on the estimated means and
probabilities for all loading scenarios. For a specific scenario,
the demands in all nodes are adjusted by multiplying them by
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FIGURE 18. The modified IEEE 57-bus system incorporating RES.

the percent loading, given the nominal loading of the network
of 100%. At each scenario, the proposed MOSGA algo-
rithm optimizes the multi-objective function as formulated
in Eq. (50). Hence, the control variables of scheduled power
from all generators, voltage magnitudes at generation nodes,
transformer tap settings, and VAR compensators’ output are
optimized in each scenario of loading. Of note, the case study
with the implementation of OPF at certain time intervals
for various objectives optimization is similar to the practical
operation condition of an electrical network.

Regarding the boundaries of control variables, they were
set the same as in the fixed loading case. Simulation results
related to various scenarios of loading of the 30-bus net-
work are tabulated in Table 12 using MOSGA optimizer.
Figs. 13-16 depict the Pareto optimal fronts found by the
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TABLE 15. Cost constant and emission constant of thermal generators for
modified IEEE 57-bus system [2].

Generator TG1 TG2 TG3 TG4
Bus 1 3 5 7

a 0 0 0 0
b 2 3 1 3.25
c 0.00375 0.025 0.0625 0.00834
a 0.04 0.04 0.05 0.06
p -0.05 -0.05 -0.05 -0.05
y 0.06 0.04 0.045 0.05
10} 0.00002 0.00001 0.00004 0.00001
) 0.5 1.0 2.0 1.5

TABLE 16. PDF parameters and cost constants for wind generators for
modified IEEE 57-bus system [36].

Wind generator # WG (bus 6) WG2 (bus 9)
Number of wind turbines 50 40
Rated power (MW) 75 60
Weibull PDF parameters c=9,k=2 c=10,k=2
Weibull mean v=7.976 m/s v=7.976 m/s
Direct cost constant ($/MW) 32 35
Reserve cost constant ($/MW) 3 3
Penalty cost constant ($/MW) 6 6

TABLE 17. PDF parameters and cost constants for solar PV generator for
modified IEEE 57-bus system [36].

Solar PV # SPV (bus 2)
Rated power (MW) 80
Lognormal PDF parameters n=6,06=0.6
Lognormal mean G =483 W/m?
Direct cost constant ($/MW) 32
Reserve cost constant ($/MW) 6
Penalty cost constant ($/MW) 3

MOSGA for scenarios 4.1-4.4, respectively. As for each
loading scenario, the optimized values of the total cost
(TCjce), active power loss (PLgc.), and emission (Es..) are
also reported in Table 12. Afterwards, the expected values
of the total cost (ETC), active power loss (EPL), and emis-
sion (EE) over all scenarios can be computed according to
Eqgs. (60)-(62) [67]:

Ngce

ETC = Z 5sce X TCSCE (60)
sce=1
Ngce

EPL = Z (Ssce X PLSCE (61)
sce=1
Ngce

EE = Z asce X Esce (62)
sce=1

in which, ns., and 8, are the total numbers of load scenarios
and the likelihood of a scenario, respectively (Table 11).
From the simulated outcomes in Tables 10 and 12, the
total operational cost, power loss, and emission achieved
by the uncertain loading case were justifiably lower than
those achieved by the fixed loading case. The change in
network loading resulted in a significant change in sched-
ule power of generators, especially in solar PV and wind

VOLUME 10, 2022

800
(I Wind distribution

600

oy Weibull fitting

c

3400 /

o

w
200}

0
0 5 10 16 20 25
Wind speed (m/s) for wind generator at bus 6

FIGURE 19. Wind speed distribution for wind generators #1 at bus 6.
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FIGURE 20. Wind speed distribution for wind generators #2 at bus 9.

power generators. Specifically, the optimal schedule power
of generators increased when the load demand of network
increased. To satisfy the increasing load demand, solar PV
and wind generators were preferred to be scheduled. This
may contribute to the notable improvement level of network
performance profiles in examined discrete loading scenarios
as well as of expected performance profiles over all scenarios.
Compared with the fixed loading case, the uncertain loading
case proposed a more flexible and effective scheduling of
generators that led to lower total cost and power loss, and
emission. Besides MOSGA, three multi-objective optimiza-
tion algorithms including NSGA-II, MOALO, and MOGOA
were also applied for results comparison in this case study.
A comparison of results optimized by the four methods
is summarized in Table 13. Clearly, MOSGA dominated
MOALO and MOGOA in two out of three objectives in
the best compromise solutions for all considered discrete
loading scenarios. These helped MOSGA achieve lower three
expected values (i.e., total cost, power loss and emission)
over all scenarios than those of MOALOQO, whereas MOSGA
achieved lower expected values of total cost and emission
over all scenarios than those of MOGOA. Compared with
NSGA-II, MOSGA obtained the best compromise solution
with the better two out of three objectives for the second and
third discrete loading scenarios while it excelled at only one
objective for the first and fourth loading scenarios. Notably,
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TABLE 18. Simulation results obtained by multi-objective algorithms for scenarios 5 and 6.

Parameters Min Max Scenario 5 Scenario 6
MOSGA NSGA-IIT MOALO MOGOA MOSGA NSGA-IT MOALO MOGOA
Prai (MW) 0 575.88 131.4550 154.6992  120.1551  147.2304 178.1255 179.1888  206.9137 181.6055
Psgi (MW) 0 80 80.0000 79.9244 80.0000 80.0000 80.0000 79.9951 79.9959 79.9575
Prgy (MW) 40 140 52.0719 64.6718 50.1005 46.4158 80.4906 84.5556 84.6171 76.7879
Pwai (MW) 0 150 150.0000  150.0000  123.2709  149.9913  150.0000  149.9982  150.0000  150.0000
Pra; (MW) 100 550 326.6197  282.2865 360.4569 309.0656 332.8897 330.6756 365.2597 329.6130
Pwg, (MW) 0 120 119.8949  119.9736  120.0000  120.0000  120.0000  119.9969  120.0000  119.9994
Pras (MW) 100 410 402.6125 409.9684 409.2017 410.0000 323.8810 320.6863  263.0030  328.7181
Vi1 (pu) 0.95 1.1 1.0580 1.0364 1.0542 1.0719 1.0555 1.0417 1.0269 1.0808
Vsai (pu) 0.95 1.1 1.0519 1.0325 1.0512 1.0671 1.0429 1.0376 1.0233 1.0730
Va2 (pu) 0.95 1.1 1.0501 1.0270 1.0458 1.0593 1.0406 1.0327 1.0252 1.0517
Vwar (pu) 0.95 1.1 1.0617 1.0341 1.0611 1.0562 1.0612 1.0406 1.0605 1.0665
V163 (pu) 0.95 1.1 1.0608 1.0299 1.0679 1.0324 1.0664 1.0407 1.0670 1.0682
Vwaz (pu) 0.95 1.1 1.0413 1.0160 1.0490 1.0222 1.0368 1.0185 1.0313 1.0427
Va4 (pu) 0.95 1.1 1.0447 1.0306 1.0564 1.0374 1.0316 1.0218 1.0245 1.0401
Qcis (MVar) 0 20 13.7042 10.9840 16.7307 4.9981 8.8921 10.5418 10.1151 2.7765
Qc2s (MVar) 0 20 14.5091 14.4975 19.9056 18.3832 12.6597 15.0978 11.8106 12.6753
Qcs3 (MVar) 0 20 11.8367 12.7640 19.7594 15.1515 5.1954 12.3728 12.1821 4.8298
Tiy (pu) 0.9 1.1 0.9334 0.9601 1.0582 1.0038 1.0526 0.9868 1.0511 0.9903
Tao (pu) 0.9 1.1 1.0863 0.9878 0.9818 0.9878 0.9886 0.9719 1.0930 1.0860
Tz (pw) 0.9 1.1 0.9777 1.0206 1.0531 1.0185 1.0254 1.0061 0.9471 0.9444
Tss (pw) 0.9 1.1 0.9993 1.0028 0.9641 1.0197 0.9445 1.0193 0.9559 0.9865
Ts6 (pu) 0.9 1.1 0.9721 1.0084 1.0930 1.0616 1.0738 0.9757 1.0106 0.9659
Ts7 (pw) 0.9 1.1 1.0100 1.0101 1.0124 1.0290 0.9864 1.0072 1.0198 1.0224
Ta (pw) 0.9 1.1 1.0071 0.9637 1.0112 0.9927 1.0048 0.9752 1.0238 0.9882
Tas (pu) 0.9 1.1 0.9783 0.9715 1.0264 0.9482 0.9625 0.9548 0.9930 0.9626
Ts4 (pu) 0.9 1.1 1.0438 0.9044 0.9619 1.0219 0.9635 0.9312 0.9848 0.9620
Tss (pu) 0.9 1.1 0.9950 0.9557 1.0232 0.9744 0.9693 0.9688 0.9452 0.9859
Tso (pu) 0.9 1.1 0.9860 0.9463 0.9837 1.0063 1.0034 0.9629 0.9659 0.9511
Tes (pu) 0.9 1.1 0.9743 0.9567 1.0603 0.9707 0.9885 0.9737 0.9467 0.9736
Te6 (pu) 0.9 1.1 0.9841 0.9224 0.9636 0.9332 0.9406 0.9381 0.9456 1.0962
T71 (pu) 0.9 1.1 1.0086 0.9460 0.9856 0.9422 0.9551 0.9488 0.9651 0.9748
T7; (pu) 0.9 1.1 1.0086 0.9937 1.0703 0.9771 1.0125 0.9768 0.9733 1.0711
T (pu) 0.9 1.1 0.9640 0.9766 0.9366 1.0548 0.9374 0.9855 1.0577 0.9999
Tso (pu) 0.9 1.1 1.0225 0.9623 0.9906 0.9866 1.0133 0.9686 0.9788 1.0049
Total Cost ($/h) - - 30212.29  30666.39 30944.81 30359.67 30575.27 30667.70 31043.30  30606.79
Real Power Loss (MW) - - 11.8540 10.7240 12.3851 11.9031 - - - -
Emission (ton/h) - - - - - - 1.0043 0.9911 1.0220 1.0129
2500 . . 0.25 .
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FIGURE 21. Solar irradiance distribution for solar PV at bus 2.

when considering the overall performance across all loading
scenarios, MOSGA was superior in two out of three expected
performance profiles over NSGA-II. Further, the voltage pro-
files at buses of the 30-bus network for all scenarios after the
optimization by MOSGA are plotted in Fig. 17. The solutions
obtained by MOSGA led to a significant improvement in bus
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FIGURE 22. Available solar PV power (MW) at bus 2.

voltage profiles for all loading scenarios while ensuring the
permissible limits of bus voltage.

B. IEEE 57-BUS SYSTEM
Table 14 describes the 57-bus system incorporating RES; its
topology diagram is shown in Fig. 18. Notably, locations of
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TABLE 19. Simulation results obtained by multi-objective algorithms for
scenario 7.

Parameters MOSGA  NSGA-I  MOALO  MOGOA
P11 (MW) 1599512  176.2043  202.7236  173.3578
Psg1 (MW) 78.3546 79.8647 80.0000 69.7586
Py (MW) 67.7556 79.1197 68.3884 89.5941
Pwai (MW) 150.0000  149.8122  150.0000  149.6149
Prg; (MW) 291.8846  288.4601  302.2815  286.7908
Pwca (MW) 120.0000  119.8832  120.0000  119.9460
Prgs (MW) 394.6979  369.3791 3409147  374.2587
Vrai (pu) 1.0504 1.0498 1.0615 1.0434
Vsar (pu) 1.0389 1.0430 1.0512 1.0389
Ve (pu) 1.0386 1.0376 1.0507 1.0393
Vwar (pu) 1.0552 1.0423 1.0643 1.0403
V63 (pu) 1.0545 1.0434 1.0656 1.0416
Ve (pu) 1.0313 1.0243 1.0507 1.0232
Vs (pu) 1.0335 1.0347 1.0644 1.0342
Qcis (MVar) 15.1187 10.3863 15.4906 4.9504
Qcas (MVar) 17.5603 13.8036 14.3377 19.2641
Qcs3 (MVar) 10.7133 11.4029 14.0523 8.0197
Tyo (pu) 1.0494 0.9766 1.0025 1.0288
Tao (pu) 1.0168 0.9764 1.0215 0.9582
Ts1 (pu) 1.0030 0.9946 1.0236 0.9931
Tss (pu) 0.9896 1.0048 1.0107 1.0481
Ts6 (pu) 1.0201 0.9906 0.9970 0.9616
Ts7 (pu) 1.0079 1.0022 0.9908 1.0436
Ta1 (pu) 1.0019 0.9760 0.9996 1.0234
Tys (pu) 1.0003 0.9469 1.0091 0.9876
Tsy (pu) 1.0077 0.9521 1.0527 0.9615
Tss (pu) 1.0170 0.9725 0.9800 0.9721
Tso (pu) 0.9523 0.9689 0.9888 0.9961
Tes (pu) 0.9648 0.9726 0.9926 1.0461
Tes (pu) 0.9743 0.9397 0.9896 1.0058
T (pu) 0.9538 0.9595 0.9726 0.9440
Ts3 (pw) 0.9564 1.0018 0.9803 1.0093
Tys (pu) 0.9495 0.9907 0.9968 0.9025
Tso (pu) 0.9866 0.9752 0.9992 1.0140
Total Cost ($/h)  30663.58  30823.51  30763.29  31421.10
Real Power Loss ~ 11.8439 11.9233 13.5082 12.5209
(MW)
Emission (ton/h) 1.0846 1.0168 1.0091 1.0261

RESs were selected the same as the references [36] by replac-
ing some conventional generators with respective renewable
generators. Table 15 details the fuel cost and emission factors
of thermal generators. Tables 16-17 provide the PDF param-
eters and cost constants of wind and solar PV generators.
Figs. 19-20 depict wind frequency distributions for two wind
farms after Monte-Carlo simulations with 8000 scenarios
obtained for each. Fig. 21 displays the frequency distribution
of solar irradiance for a solar PV plant. Stochastic power
output from the solar PV plant is depicted in Fig. 22. For the
initial scenario, the system has a total cost of 51795.8561 $/h,
a real power loss of 27.5627 MW, and an emission
of 2.6474 ton/h.

1) SCENARIO 5: SIMULTANEOUS OPTIMIZATION OF TOTAL
COST AND ACTIVE POWER LOSS

In this scenario, the MOSGA method simultaneously
optimized total cost and real power loss objectives.
Fig. 23 presents the Pareto optimal front obtained by the
MOSGA for scenario 5. Similar to scenario 1, scenario
5 also shows the conflicting relationship between the total
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TABLE 20. Simulation results obtained by proposed MOSGA algorithm for
loading scenarios 8.1-8.4.

Parameters Scenario Scenario Scenario Scenario
4.2 43 4.3 44
Prgi (MW) 63.5990 60.3554 99.6512 118.7943
Psg1 (MW) 73.4479 79.3816 79.3954 68.2492
P12 (MW) 44.8917 47.9778 65.3644 63.3125
Pwei (MW) 147.8180 148.8233 146.1072 150.0000
Prg; (MW) 100.0000 174.2209 179.3368  246.8164
Pwg: (MW) 112.3398 120.0000 118.6825 119.7239
Prgs (MW) 148.7603 194.9880  252.5502  308.9685
Va1 (pu) 1.0096 1.0190 1.0341 1.0392
Vsai (pw) 1.0100 1.0188 1.0392 1.0348
Vi (pu) 1.0226 1.0235 1.0412 1.0264
Vwai (pu) 1.0367 1.0337 1.0468 1.0380
Vi3 (pu) 1.0279 1.0216 1.0403 1.0293
Vwa: (pu) 1.0255 1.0095 1.0195 1.0177
V164 (pu) 1.0257 0.9957 1.0102 1.0260
Qcis (MVar) 2.3330 8.4819 11.6109 11.4148
Qczs (MVar) 11.4329 7.5471 11.2996 12.6569
Qcs; (MVar) 13.4633 8.8970 8.9685 6.1451
Tio (pu) 1.0644 1.0120 1.0878 1.0535
Tao (pu) 0.9527 1.0142 1.0732 1.0077
Ts1 (pu) 1.0069 1.0298 0.9518 1.0137
Tss (pu) 1.0951 1.0629 0.9886 1.0543
Ts6 (pu) 0.9833 1.0329 1.0388 1.0124
Ts7 (pu) 1.0261 1.0405 1.0335 0.9637
Ta1 (pu) 0.9886 0.9756 1.0261 0.9779
Tss (pu) 0.9270 0.9318 0.9893 0.9507
Ts4 (pu) 0.9851 1.0135 1.0147 1.0213
Tss (pu) 0.9885 1.0026 1.0156 0.9629
Tso (pu) 0.9894 1.0040 0.9949 0.9511
Tes (pu) 0.9581 0.9656 0.9546 0.9643
Tes (pw) 0.9715 0.9311 0.9368 0.9774
Tz (pu) 0.9639 1.0253 1.0123 0.9355
T (pu) 0.9273 1.0009 0.9375 1.0294
Tss (pu) 1.0044 0.9924 0.9866 0.9025
Tso (pu) 0.9905 0.9840 0.9761 0.9584
TCy.. ($/h) 11100.56 14634.46 18837.96  23534.84
PLy.. (MW) 6.0607 7.7067 8.0082 9.5417
E,.. (ton/h) 0.1998 0.3105 0.4338 0.6799
ETC ($/h) 16920.7749
EPL (MW) 7.8396
EE (ton/h) 0.3936

cost and real power loss. Table 18 shows the optimization
values of the best compromise solution from the MOSGA,
NSGA-II, MOALO, and MOGOA. The best compromise
solution from MOSGA provided a total cost of 30212.29 $/h
(i.e., 41.6705 % total cost reduction), along with a real
power loss of 11.8540 MW (i.e., 56.9926 % real power loss
reduction) compared to their initial scenario values. From
Table 18, MOSGA (30212.29 $/h and 11.8540 MW) obtained
lower total cost and real power loss values than MOALO
(30944.81 $/h and 12.3851 MW) and MOGOA (30359.67 $/h
and 11.9031 MW), which indicated that MOSGA domi-
nated those of MOALO and MOGOA for best compro-
mise solution. In addition, MOSGA outperformed NSGA-II
in one out of two objectives optimized. Hence, MOSGA
was able to highly compete with MOALO, MOGOA,
and NSGA-II in finding the high-quality best compromise
solution.
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TABLE 21. Comparison of network performance profiles optimized by different algorithms for scenarios 8.1-8.4.

Algorithm Scenario TCy.. ($/h) PL,.. (MW) E,.. (ton/h) ETC ($/h) EPL (MW) EE (ton/h)
MOSGA Scenario 4.1 11100.56 6.0607 0.1998 16920.7749 7.8396 0.3936
Scenario 4.2 14634.46 7.7067 0.3105
Scenario 4.3 18837.96 8.0082 0.4338
Scenario 4.4 23534.84 9.5417 0.6799
NSGA-II Scenario 4.1 11324.33 4.4141 0.2240 17203.9955 5.9416 0.4327
Scenario 4.2 15259.48 49911 0.3629
Scenario 4.3 18870.84 6.6900 0.4807
Scenario 4.4 23680.82 7.9036 0.6883
MOALO Scenario 4.1 12267.25 5.0256 0.2359 17616.4555 6.8869 0.4306
Scenario 4.2 15692.63 6.2541 0.3445
Scenario 4.3 19209.82 7.5076 0.4678
Scenario 4.4 23676.35 8.7744 0.7306
MOGOA Scenario 4.1 10992.92 6.6343 0.2289 17094.5259 7.3934 0.4235
Scenario 4.2 15146.37 5.9813 0.3600
Scenario 4.3 18659.91 8.5108 0.4467
Scenario 4.4 24019.32 8.7860 0.7047
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FIGURE 23. Pareto front obtained by MOSGA for scenario 5.
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FIGURE 24. Pareto front obtained by MOSGA for scenario 6.

2) SCENARIO 6: SIMULTANEOUS OPTIMIZATION OF TOTAL
COST AND EMISSION

The total cost and emission were simultaneously optimized
using the MOSGA in this scenario. The Pareto optimal front
yielded by MOSGA is described in Fig. 24. Table 18 shows
the simulation outputs from four algorithms for scenario 6.
The total cost and emission were reduced to 30575.27 $/h and
1.0043 ton/h for the best compromise solution, corresponding
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FIGURE 26. Load bus voltage profiles for scenarios 5, 6, and 7.

to 40.9697% and 62.0652% reductions. Therefore, both
objectives were significantly improved upon compared to the
initial scenario. In this case, MOSGA obtained better results
than MOALO and MOGOA for the total cost and emission
objectives. Meanwhile, the optimal solution of MOSGA was
better than NSGA-II in the objective of total cost only. Hence,
MOSGA had great potential in finding better compromise
solution.
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FIGURE 27. Pareto front obtained by MOSGA for scenario 8.1.
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FIGURE 28. Pareto front obtained by MOSGA for scenario 8.2.

e
~

=
o

Emissions (ton/h)
o o
ES 3

Best Compromise
Solution

2 x10%

Real Power Loss (MW) 1.8 Fuel Cost ($/h)

FIGURE 29. Pareto front obtained by MOSGA for scenario 8.3.

3) SCENARIO 7: SIMULTANEOUS OPTIMIZATION OF TOTAL
COST, ACTIVE POWER LOSS, AND EMISSION

In scenario 7, the MOSGA simultaneously minimized the
total cost, real power loss, and emission. Fig. 25 portrays
the Pareto optimal front found by MOSGA. Table 19 gives
the simulation results generated by the MOSGA, NSGA-II,
MOALO, and MOGOA for the best compromise solution in
this scenario. For MOSGA, the total cost, real power loss,
and emission were reduced to 30663.58 $/h, 11.8439 MW,
and 1.0846 ton/h, respectively. Hence, MOSGA found a total
cost reduction of 40.7992% and a power loss reduction of
57.0292%, along with a reduction of 59.0327% in emis-
sion for the best compromise solution. Although MOSGA
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Emissions (ton/h)

Best Compromise
Solution

x104

Real Power Loss (MW) 5 22 Fuel Cost ($/h)

FIGURE 30. Pareto front obtained by MOSGA for scenario 8.4.
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FIGURE 31. Load bus voltage profiles for scenarios 8.1-8.4.

was not able to directly dominate NSGA-II, MOALO, and
MOGOA, MOSGA obtained better total cost and real power
loss values than the others in the best compromise solution.
Hence, MOSGA was more advantageous in handling the
MOOPF-WS problem with the large-scale system.

It can be seen that the implementation of the MOSGA for
the MOOPF-WS problem offers a notable improvement for
all three objective function values. Fig. 26 depicts the voltage
profiles of load buses for scenarios 5-7, which shows that the
voltage limits were all within acceptable limitations.

4) SCENARIO 8: SIMULTANEOUS OPTIMIZATION OF TOTAL
COST, ACTIVE POWER LOSS, AND EMISSION (UNCERTAIN
LOAD DEMAND CASE STUDY)

Similarly, experiment outcomes for the uncertain load case
of the 57-bus network obtained by MOSGA are presented
in Table 20. Figs. 27-30 show the Pareto optimal fronts
found by the MOSGA for scenarios 8.1-8.4, respectively.
Comparing the results between Table 19 and Table 20 shows
the uncertain case of load demand offered justifiably lower
network performance profiles of total cost, power loss, and
emission than those of the fixed loading case. Again, the
scheduling of generators from the uncertain load case was
more suitable with the variable load demand. Solar PV and
wind power generators were preferable to schedule due to
their positive impacts in reducing network operation cost,
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TABLE 22. Comparisons of multi-objective methods using A indicator for scenarios 1-8.

Scenario MOSGA NSGA-II MOALO MOGOA

Average Standard Average Standard Average Standard Average Standard

deviation deviation deviation deviation
Scenario 1 0.5737 0.0393 1.0522 0.0364 1.0906 0.0681 1.4364 0.2089
Scenario 2 0.8593 0.0532 1.1079 0.0665 1.1744 0.0889 1.5547 0.1583
Scenario 3 0.8727 0.0396 1.0265 0.0346 1.1240 0.0927 1.3775 0.1769
Scenario 4.1 0.7385 0.0304 1.0206 0.0185 1.0153 0.0119 1.3410 0.1204
Scenario 4.2 0.8976 0.0313 1.0140 0.0167 1.0159 0.0189 1.3993 0.1720
Scenario 4.3 0.8997 0.0294 1.0137 0.0118 1.0302 0.0345 1.4540 0.1873
Scenario 4.4 0.8798 0.0297 1.0347 0.0231 1.0597 0.0341 1.4717 0.2144
Scenario 5 0.9323 0.0312 1.0332 0.0468 1.0021 0.0026 1.0470 0.0414
Scenario 6 0.6778 0.0415 1.0734 0.0432 1.0259 0.0115 1.3240 0.1990
Scenario 7 0.8394 0.0554 1.0297 0.0260 1.0085 0.0050 1.1165 0.0825
Scenario 8.1 0.8124 0.0690 1.0176 0.0208 1.0065 0.0038 1.1095 0.1484
Scenario 8.2 0.8049 0.0524 1.0136 0.0113 1.0140 0.0112 1.1346 0.1415
Scenario 8.3 0.7954 0.0585 1.0208 0.0144 1.0122 0.0067 1.1828 0.1178
Scenario 8.4 0.8343 0.0573 1.0128 0.0121 1.0077 0.0041 1.1875 0.1500

TABLE 23. Comparisons of multi-objective methods using HV indicator for scenarios 1-8.

Scenario MOSGA NSGA-II MOALO MOGOA
Average Standard Average Standard Average Standard Average Standard
deviation deviation deviation deviation
Scenario 1 0.7487 0.0042 0.5719 0.0260 0.4898 0.0769 0.6688 0.0234
Scenario 2 0.9285 0.0015 0.6898 0.0715 0.6784 0.1312 0.8933 0.0112
Scenario 3 0.6707 0.0115 0.5173 0.0253 0.4341 0.1108 0.6017 0.0286
Scenario 4.1 0.4852 0.0308 0.2807 0.0574 0.1963 0.0548 0.4295 0.0609
Scenario 4.2 0.7100 0.0289 0.4725 0.0523 0.3052 0.1192 0.5976 0.0700
Scenario 4.3 0.7644 0.0199 0.5679 0.0268 0.4105 0.1030 0.6538 0.0515
Scenario 4.4 0.7061 0.0160 0.5603 0.0158 0.3780 0.1092 0.6129 0.0371
Scenario 5 0.8336 0.0273 0.7691 0.0473 0.2869 0.1344 0.5787 0.1922
Scenario 6 0.8046 0.0083 0.6200 0.0316 0.2761 0.1254 0.6327 0.2138
Scenario 7 0.4460 0.0698 0.4167 0.0840 0.1768 0.0527 0.2700 0.0893
Scenario 8.1 0.4814 0.0435 0.4078 0.0572 0.1692 0.0504 0.2651 0.0872
Scenario 8.2 0.5189 0.0443 0.4481 0.0457 0.1702 0.0741 0.3119 0.1337
Scenario 8.3 0.5333 0.0466 0.4626 0.0480 0.1920 0.0806 0.3072 0.1136
Scenario 8.4 0.5016 0.0467 0.4304 0.0578 0.1845 0.0563 0.2683 0.1197
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FIGURE 32. Box plots of A metric of multi-objective algorithms for scenarios 1-8.

power loss, and emission. To confirm the effectiveness of NSGA-II, MOALO, and MOGOA (Table 21). Obviously,
MOSGA, the obtained best compromise solutions related MOSGA showed its domination in two of three objectives
to four scenarios of loading were compared with those of when compared with NSGA-II, MOALO, and MOGOA for
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FIGURE 33. Box plots of HV metric of multi-objective algorithms for scenarios 1-8.

all discrete loading scenarios. As a result, MOSGA acquired
lower three expected values of the total cost, power loss,
and emission over all scenarios than MOALO. In comparison
with NSGA-II and MOGOA, MOSGA obtained lower two
expected values of total cost and emission over all scenarios.
Moreover, for all scenarios, bus voltage profiles of the 57-bus
network were significantly enhanced and completely satisfied
with the limits after the optimization by MOSGA (Fig. 31).

C. STATISTICAL COMPARISONS AND ANALYSIS

This section demonstrates the comparisons among MOSGA,
NSGA-II, MOALO, and MOGOA based on A and HV met-
rics. The initial parameters of all algorithms were retained at

the same values as in the preceding section.

1) SPREAD (A) METRIC
Table 22 shows statistical results attained by the MOSGA,

NSGA-II, MOALO, and MOGOA for the A indicator for
scenarios 1-8. Boxplots of the statistical analysis for A metric
are depicted in Fig. 32. As can be seen, the MOSGA provided
the best solutions for the A metric, with the best distribution

TABLE 24. Comparisons of multi-objective methods in terms of
computational time in seconds.

Scenario MOSGA  NSGA-II  MOALO  MOGOA
Scenario 1 148.3135 355.9984 176.8823 3459891
Scenario 2 147.4339  347.0797 175.2286  342.0755
Scenario 3 144.4651 340.8604 173.9698  346.2734
Scenario 4.1 1459328  356.9026 174.0651 350.2344
Scenario 4.2 145.6260  342.7177 174.1245  350.2964
Scenario 4.3 138.3401 328.2177 178.9667  353.3510
Scenario 4.4 139.3932  330.6724 184.9313  359.9552

Scenario 5 278.8974  629.9411 346.8786  728.2135

Scenario 6 273.5693  626.9396  352.6557  753.5177

Scenario 7 276.1229  644.7474  347.4177 7428672
Scenario 8.1 274.2589  635.2438  357.7776  746.1943
Scenario 8.2 274.5833  649.5932  357.5052  756.2760
Scenario 8.3 271.5552  628.1484  351.5760  793.7339
Scenario 8.4 277.1661 633.0042  347.6344  739.2438

Therefore, MOSGA found a better quality Pareto optimal
front in comparison to NSGA-II, MOALO, and MOGOA.
As seen in Figs. 33, MOSGA was also superior to the other
methods in terms of stability and robustness.

for Pareto optimal fronts among the four methods for all

scenarios. Hence, the proposed MOSGA showed superiority

over the others for scenarios 1-8.

2) HYPERVOLUME (HV) METRIC

Table 23 gives the optimization results of four methods for the
HYV metric for scenarios 1-8. Figs. 33 shows the boxplots of
the HV metric for scenarios 1-8. From Table 23 and Fig. 33,
MOSGA was better than the other methods for the average
value of the HV metric, which indicated that solutions yielded
by the MOSGA had the best convergence and diversity.

VOLUME 10,
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3) COMPUTATIONAL TIME

In this study, MOSGA, NSGA-II, MOALO and MOGOA
were executed on a 2.6 GHz 4-core computer with 16 GB of
RAM. Table 24 presents the average computational times of
MOSGA, NSGA-II, MOALO and MOGOA for all scenarios.
The computational times of MOSGA were significantly faster
than those of NSGA-II, MOALO, and MOGOA for all case
studies. Hence, MOSGA outperformed the other methods for
the solution quality, robustness, and computational times in
all cases.
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VI. CONCLUSION

This study suggested a new MOSGA for the MOOPF-WS
problem, in which thermal, wind and solar PV generators
were integrated into the grid. Different PDFs were used to
model uncertainties relative to RES and load demand as
well. The MOSGA integrated fast non-dominated sorting and
crowding distance methods in defining the non-dominated
ranks and densities of the solutions obtained. Furthermore,
the Pareto archive selection strategy was applied for the
distribution maintenance of the non-dominated solutions.
The MOSGA was implemented successfully to the adapted
30-bus and 57-bus systems incorporating RES where various
combinations of objective functions and different loading sce-
narios were examined. The findings showed that system per-
formance is significantly improved for the best compromise
solution in both fixed and variable loading scenarios. Notably,
in scenario 7, the total cost, real power loss, and emis-
sion were decreased by 40.7992%, 57.029%, and 59.0327%,
respectively, in comparison with the initial scenario. For the
variable loading case, the expected performance profiles over
all discrete loading scenarios were significantly lower than
the respective ones found by the fixed loading case. This
proved that solving OPF in the variable load situation offered
more flexible and effective scheduling of generators than in
the fixed load situation, resulting in lower expected perfor-
mance profiles. Moreover, the performance of the MOSGA
was compared with NSGA-II, MOALO, and MOGOA using
A and HV indicators. In all cases, the MOSGA showed
superiority in convergence and diversity of Pareto optimum
solutions compared with the other three methods. As a result,
the MOSGA could detect a broader range of non-dominated
solutions for all objective functions. Furthermore, when com-
paring with significant research in the literature, MOSGA
obtained better solution quality in all the comparable cases.
These revealed the strengths of the MOSGA and validated its
potential in dealing with the MOOPF-WS problem. In future
studies, the MOOPF-WS problem can be expanded in some
specific aspects such as connection consideration of small-
hydro source, electric vehicles, and flexible AC transmission
system (FACTS) devices.
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