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ABSTRACT Unmanned aerial vehicle (UAV) formation rendezvous path planning problem is one of the
important research topics in multiple UAV (multi-UAV) coordinated path planning. Aiming at solving
low computational efficiency and poor scalability of the traditional multi-UAV path planning method, the
decentralized multi-UAV path planning method suitable for obstacle environments is proposed. Firstly, the
UAV rendezvous path planning problem with constraints such as the kinematics of UAVs and collision-free
constraints is modeled as a non-convex optimal control problem. To minimize formation rendezvous time
and energy consumption, a two-layer coordinative framework is developed to solve this problem. In the
coordination layer, relying only on the information of neighboring UAVs, each UAV in the decentralized
communication graph negotiates the desired flight time using a consensus protocol to achieve coordination
among UAVs. In the planning layer, the initial non-convex formation rendezvous path planning problem is
decoupled into several sub-problems, which can be solved in parallel by path planners distributed on each
UAV using sequential convex programming. Finally, numerical simulations are carried out to verify the
effectiveness and scalability of the proposed method. The results show that this decentralized multi-UAV
path planning method can handle the minimum-time rendezvous path planning problem and optimize the
energy consumption in flight, and the computing time does not increase significantly with the enlargement
of the UAV swarm. This decentralized framework scales well with the number of UAVs and can be applied
for future urban flight and supplies delivery tasks.

INDEX TERMS Unmanned aerial vehicle, path planning, decentralized coordination, sequential convex
programming, collision-free.

I. INTRODUCTION
Unmanned aerial vehicle (UAV) swarms have attracted
widespread attention, along with advances in processing,
sensing, and communication technologies [1]. More flexible
and robust than a single large UAV, UAV swarms are having
a significant impact in many areas, including agriculture [2],
powerline inspection [3], and Monitoring [4]. Multi-UAV
coordinated path planning is one of the key technologies for
UAV swarms to operate in complex environments such as
urban canyons. Path planning methods need to generate a
collision-free path from the starting position to the target posi-
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tion for each UAV in the swarm and minimize the total cost
of the swarm while meeting the constraints such as kinematic
and dynamic characteristics [5]. For UAVs taking off from
different locations, to make UAVs reach a predetermined
rendezvous state simultaneously, formation rendezvous path
planning is one of the most critical technologies for UAV
formation flight.

The difficulties of UAV formation rendezvous path plan-
ning are: 1) UAVs in the swarm are in the same working
space and will affect each other; 2) due to the increase in
the number of UAVs, the mathematical scale of the planning
problem is usually larger, especially when specific optimality
is required, the computational complexity of the problem
will increase significantly; 3) it is necessary to consider the
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coordination between different UAVs [6]. In recent years,
researchers have carried out some explorations on UAV
formation rendezvous path planning, many methods have
been proposed to solve such problem, which can be roughly
divided into four categories: 1) methods based on graph
search, such as A∗ [7], [8], state lattices [9]; 2) meth-
ods based on sampling, such as Rapidly-exploring Ran-
dom Trees (RRT) [10], Probabilistic Road Map (PRM) [11];
3) methods based on mathematical models, such as nonlinear
programming (NP) [12], mixed-integer linear programming
(MILP) [13]–[15]; 4) methods based on artificial intelligence,
such as genetic algorithm [16], ant colony optimization [17],
and reinforcement learning [18].

Compared with other algorithms, the path obtained by
the algorithm based on a mathematical model is generally
more accurate, smoother, and more traceable due to the
consideration of the UAV kinematics model and several
other constraints, and optimization algorithms can be used to
obtain optimal paths [19]. Althoughmulti-UAVpath planning
is usually modeled as a non-convex optimization problem,
sequential convex programming (SCP) can be used to approx-
imate it as a series of convex optimization sub-problems to
solve [20]. With the improvement of convex optimization
methods and the development of computer technology, large-
scale convex optimization problems have been able to obtain
optimal solutions in a limited time [21].

In multi-UAV path planning, the constraints brought by
multi-UAV coordination mainly include collision avoid-
ance [22], [23], connectivity maintenance [24], synchroniza-
tion requirements, heading coordination, and formation [25].
According to different communication topologies of UAV
swarms, coordination among UAVs can be roughly divided
into centralized and decentralized. Through coordination, the
overall cost of the swarm is minimized, that is, the overall
consumption of the swarm when completing tasks, which
usually includes time and resource costs [26].

In this paper, we propose a decentralized multi-UAV path
planning method based on the two-layer coordinative frame-
work for the UAV formation rendezvous problem in a three-
dimensional environment. The proposed method can plan
coordinated collision-free paths for the UAV swarm in obsta-
cle environments so that UAVs from different initial positions
can arrive at the designated positions at the same time and
form a predetermined formation. The main contributions of
this paper are as follows:

1) Using consensus protocols and SCP, we proposed a
decentralized multi-UAV path planning method based
on the two-layer coordinative framework. The pro-
posed method can handle the minimum time path plan-
ning problem and optimize the energy consumption
in flight. In addition, since this method combines the
consensus protocol and SCP, the UAVs in the swarm
can negotiate the desired flight time autonomously,
which avoids the unsolvable situation of the path
planning problem and avoids the waste of flight
time.

2) The decentralized path planning framework ensures
that the increase in the number of UAVs does not lead
to a significant boost in planning time, which enables
the proposed method to scale well with the number
of UAVs. Furthermore, in the obstacle environment,
relying only on the information of neighboring UAVs,
the proposed multi-UAV path planning method can
realize the coordination of UAVs in a decentralized
communication network.

3) The proposed method has a shorter computing time
than the standard SCP, and this advantage becomes
more pronounced as the number of UAVs increases.
Meanwhile, paths planned by the proposed method
have a shorter flight time than that planned by the
decoupled SCP.

The remainder of this paper is organized as follows. Previ-
ous related research is presented in Section II. In Section III,
some mathematical tools used in this paper are reviewed
and the to-be-solved optimal control problem is established.
Section IV introduces the main results of the paper. A decen-
tralized multi-UAV path planning method based on the two-
layer coordinative framework is proposed. The non-convex
optimal control problem is transformed into a series of convex
optimization sub-problems using the SCP. The numerical
simulation results are presented in Section V. Finally, the
conclusions are made in Section VI.

II. RELATED WORKS
To ensure that UAV swarms can successfully perform coor-
dinative tasks, the UAV formation rendezvous path planning
problem has been studied extensively, including many meth-
ods based on the Dijkstra algorithm, particle swarm optimiza-
tion, reinforcement learning, and SCP.

Manathara and Ghose [27] applied velocity control and
wandering maneuvers to obtain formation rendezvous paths
for the UAV swarm based on the estimated time of arrival.
An alternative method is to assume that all UAVs are flying
at a constant and equal velocity, by generating paths of equal
length to achieve simultaneous arrivals [28]. In addition,
another approach is to plan the paths under the constraints
of the rendezvous time. Ma et al. [29] used the improved
Dijkstra algorithm to plan the rendezvous paths for UAVs
in a two-dimensional environment. However, such methods
are difficult to scale to high-dimensional systems. Swarm
intelligent algorithms are suitable for handling such path
planning problemswhen the problem is too complex or poten-
tially uncertain [30]. Shao et al. [31] proposed a distributed
cooperative particle swarm optimization algorithm with an
elite keeping strategy, which was used for rendezvous path
planning considering kinematic constraints. Reinforcement
learning can enable UAVs to learn how to behave by inter-
acting with the environment without plant and disturbances
models. Using Q-Learning, Hung and Givigi [32] developed
a path planning algorithm for the fixed-wing UAV swarm
and tested the algorithm in a stochastic environment. These
path planning methods have their advantages, but many of
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them can hardly obtain smooth, traceable, and precise optimal
paths within a limited time.

Benefiting from the advantages of calculating efficiency,
many researchers have applied convex optimization algo-
rithms to the coordinative path planning of spacecraft and
UAVs. Augugliaro et al. [33] applied SCP to obtain coordi-
nated paths for UAV swarm under consideration of collision-
free constraints. Lu and Liu [34] used a lossless relaxation
technique for the original nonlinear rendezvous path plan-
ning problem and SCP to solve a series of subproblems to
obtain paths. However, these methods are centralized and
can not fully utilize the limited computing resources of each
UAV in the swarm. Therefore, similar centralized UAV ren-
dezvous path planning methods are not suitable for large-
scale UAV swarms. To improve further the solving efficiency,
Chen et al. [35] developed a decoupled incremental SCP to
generate the optimal path for each UAV. However, in most of
these SCP-based coordinative path planning research, a flight
time will be pre-specified, which will increase the time for
the UAV swarm to complete the task, and may even lead to
unsolved path planning problems. Wang et al. [36] took the
shortest flight time as the objective function and proposed a
coupled SCP and a decoupled SCP for the UAV formation
rendezvous path planning problem. The decoupled SCP will
decompose the original problem into several decoupled sub-
problems, which can be solved in parallel, but this method
requires the flight time information of all UAVs during time
coordination, so it is not completely decentralized. Ramalho
et al. [37] proposed an online decentralized rendezvous path
planning method based on SCP, which uses only local infor-
mation to plan two-dimensional collision-free paths for the
multi-robot system. However, this method does not take into
account the presence of obstacles in the environment.

III. PROBLEM STATEMENT
This section reviews some fundamental mathematical tools,
including graph theory and notations used in this paper.
In addition, constraints such as the kinematics model of UAV
and collision-free constraints are analyzed, and the optimal
control model is formulated. Assuming that obstacles exist in
the environment, n homogeneous UAVs start from different
initial positions and assemble in the predetermined airspace,
as shown in Figure 1.

A. PRELIMINARIES
The rest of the paper uses the following notations. Ia is
the a-dimensional identity matrix, 1a×b is the a-by-b all-one
matrix, and 0a×b is the a-by-b all-zero matrix. We use bold
font to denote matrices or vectors,‖·‖ to denote the Euclidean
norm of a vector, (·)>to denote the transpose of a vector or
a matrix, max (·) to denote the maximum element in the set,
min (·) to denote the minimum element in the set, |·| to denote
the absolute value, g to denote the gravitational acceleration
constant.

Ignoring the signal transmission delay, the UAV swarm
communication network in this paper can be abstracted as

an undirected graph G = (V, E) consisting of a set of nodes
V = {1, 2, . . . , n} and a group of edges E . Nodes represent
UAVs in the swarm and n is the number ofUAVs in the swarm.
Each edge {i, j} ∈ E is denoted by an unordered pair of
distinct nodes. The edge set indicates whether an available
communication connection exists between two UAVs:{

{i, j} ∈ E, 0 ≤
∥∥pi − pj∥∥ ≤ rcmu

{i, j} /∈ E, otherwise
(1)

where i and j are the index of the UAV in the swarm, pi, pj are
the position vectors of the ith UAV and jth UAV respectively,
rcmu is the maximum communication radius between two
UAVs. The set of neighbors of node i is denoted by Ni =

{j| {i, j} ∈ E}. The degree of node i is represented by deg (i),
which is the number of neighbors of the node.

For the communication graph of the UAV swarm involved
in this paper, we make the following standard assumptions.
Assumption 1: Since UAVs in the swarm are often not far

apart, and the communication distance of the communication
equipment can be broad, it is assumed that the communica-
tion graph G is connected.

FIGURE 1. Schematic diagram of multi-UAV coordinative path planning in
an obstacle environment.

B. DYNAMIC MODELING
The UAV considered in this paper is a type of multi-rotor

UAV. Set s =
[
s
>

1 , s
>

2 , . . . , s
>

n

]>
as the state matrix of the

UAV swarm, and u =
[
u
>

1 ,u
>

2 , . . . ,u
>

n

]>
as the control

matrix of the UAV swarm, where si =
[
xi, yi, zi, vix , viy, viz

]>
is the state vector of the ith UAV, ui =

[
Tix ,Tiy,Tiz

]> is the
control vector of the ith UAV. To characterize the motion state
of the UAV relative to the ground, the curvature of the earth
is ignored and e (Oxyz) is defined as the earth-fixed frame.
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The origin O is located at a certain point in the departure area
of the UAV swarm, Ox points east in the horizontal plane,
Oz is perpendicular to the ground, and the right-hand rule
defines Oy. In the earth-fixed frame e (Oxyz), the simplified
three-dimensional kinematics model of a single UAV can be
expressed as follows:

ṡi =
[
03×3 I3
03×3 03×3

]
si +

1
mi

[
03×3
I3

]
ui +

[
03×3
I3

]
g, (2)

where xi, yi, zi are the position of the UAV in X, Y,
and Z dimension in the Cartesian coordinates respectively,
vix , viy, viz are the velocity of each dimension of the UAV,
Tix ,Tiy,Tiz are the thrust of each dimension of the UAV, mi
is the mass of the UAV, g = [0, 0,−g]> is the gravitational
acceleration vector.

C. CONSTRAINTS
1) PERFORMANCE CONSTRAINTS
To improve the feasibility of the planned path, the perfor-
mance constraints for UAVs should be considered when plan-
ning, which gives

‖Esi‖ ≤ vi,max ,

‖ui‖ ≤ Ti,max , (3)

where the role of E = [03×3, I3] is to extract the velocity
information of the UAV, vimax is the maximum flight speed
of the ith UAV, and Timax is the maximum thrust of the ith
UAV. The above constraints are collectively referred to as
performance constraints, which represent the maneuverabil-
ity of UAVs and are used to avoid planning paths that the
UAV cannot track. In addition, the constraints brought by
the environment and tasks should also be considered when
planning the paths.

2) OBSTACLE AVOIDANCE CONSTRAINTS
Many obstacles exist in complex environments such as cities
or indoors. In practice, the shapes of obstacles are various,
but they can be wrapped by a limited number of cylindrical
obstacles. Although such an approximation would make the
path planning problem more conservative, the obstacle is
modeled as several cylindrical obstacle regions of infinite
height for flight safety and to keep the planning algorithm
simple [38], [39]. During the flight, all UAVs are restricted
to stay outside the obstacle area all the time, which can be
formulated as ∥∥Fsi − pob,m∥∥ ≥ rob,m + rsafe, (4)

where the role of F = [I2,02×4] is to extract the position
in X and Y dimensions in the UAV state vector, pob,m =[
xob,m, yob,m

]>
is the position of the center of the bottom

surface of the cylindrical obstacle, rob,m is the radius of the
cylindrical bottom surface, rsafe is the safety radius of the
UAV, m ∈ {1, 2, . . . ,M} is the index of the obstacle area,
and M is the number of obstacles in the environment.

3) FLIGHT ALTITUDE CONSTRAINTS
In addition to obstacles, the flight environment often brings
flight altitude constraints for UAVs, such as the minimum
flight altitude limit brought by the ground and the maxi-
mum flight altitude limit brought by the aviation control.
Assuming that the minimum flight altitude is hmin and the
maximumflight altitude is hmax, the flight altitude constraints
can be expressed as follows:

hmin ≤ Gsi ≤ hmax, (5)

where the role of G = [0, 0, 1, 0, 0, 0] is to extract the
position in the Z dimension in the UAV state vector.

4) COLLISION-FREE CONSTRAINTS
In multi-UAV path planning, the possible conflicts between
UAVs should also be considered. If a collision exists between
UAVs, it will not only affect the completion of the mission
but also threaten the safety of other robots or humans in
the environment. Therefore, it is necessary to introduce UAV
collision-free constraints in the coordinative path planning,
which gives ∥∥Hsi −Hsj∥∥ ≥ 2rsafe, ∀j ∈ Ni, (6)

where H = [I3,03×4] is used to extract the position infor-
mation of the UAV, and j is the index of another UAV in the
swarm. Equation (6) shows that the ith UAV only avoids other
UAVs within its communication range because UAVs outside
the communication range are far away and will not pose a
threat to the flight safety of the ith UAV.

5) INITIAL AND TERMINAL STATE CONSTRAINTS
In the rendezvous task, UAVs needs to arrive at the ren-
dezvous area simultaneously from the different starting point
and form in a predetermined formation. It can be assumed
that the formation configuration to be formed is

Pd =
(
p1,d , p2,d , . . . , pn,d

)
, (7)

where pi,d =
(
xi,d , yi,d , zi,d

)>
is the desired position of

the ith UAV in the predetermined formation. All UAVs need
to reach their respective designated locations at the end of
the designed paths. In addition, in order to ensure that the
UAV swarm can fly in the predetermined formation after
rendezvous, the velocity of UAVs at the terminal of the paths
should also be the same. Here, assume that vfd is the desired
terminal velocity of the UAV swarm. To keep it concise,
the constraints brought by the desired terminal position and
the desired terminal velocity, together with the initial state
constraints, can be expressed as the UAV initial and terminal
state constraints. Assuming that UAVs depart at the same
time, the constraint can be expressed as

Hsi (t0) = pi,0,

Esi (t0) = vi,0,

Hsi
(
tf
)
= pi,d ,

Esi
(
tf
)
= vfd , (8)
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where t0 is the initial moment, tf is themoment when theUAV
reaches the desired position, pi,0 is the initial position of the
ith UAV, and vi,0 is the initial velocity of the ith UAV.

D. PROBLEM FORMULATION
The coordinative path planning of UAVs can be formulated
as an optimal control problem. The goal of this problem is to
calculate the optimal control input so that UAVs in the swarm
can arrive at the rendezvous area at the same time without
any collisions. In this paper, to shorten the time of UAV
rendezvous and save the energy of UAV, the weighted sum
of the flight time and the square of the Euclidean norm of the
control vector is selected as the objective function. Usually,
choosing this objective function in a path planning prob-
lem can obtain a smoother path. To sum up, the multi-UAV
coordinative path planning problem can be expressed as
follows:

P0 : min J = ntf +
n∑
i=1

a
∫ tf

t0
‖ui‖2dt

s.t. (2)− (6) , (8) ,

∀i ∈ V,∀j ∈ Ni, ∀m ∈ {1, 2, . . . ,M} , (9)

where a is a constant coefficient.

IV. PATH PLANNING BASED ON THE TWO-LAYER
COORDINATIVE FRAMEWORK
In this section, we propose a decentralized multi-UAV path
planning method based on the two-layer coordinative frame-
work. By consensus protocol and decomposition of con-
straints, P0 is decomposed into several sub-problems that can
be solved in parallel by each UAV.

A. DECENTRALIZED COORDINATION AND DECOUPLING
The main difference between multi-UAV coordinated path
planning and single UAV path planning is that UAVs in
the swarm need to reach an agreement in a certain sense.
In the considered UAV rendezvous task, vfd and Pd can be
pre-designated for the UAV swarm according to the mis-
sion requirements. However, the flight state of each UAV is
unknown in advance, so it is difficult to pre-designate the
desired flight time of the swarm. If the specified desired
flight time is too large, energy may be wasted. If the desired
flight time is too small, the problem may be unsolved.
Therefore, a two-layer coordinative planning framework is
adopted, which includes path planning at the bottom layer and
coordinated planning at the top layer, as shown in Figure 2.
The coordinated planning at the top layer is responsible
for coordinating and managing the desired flight time of
the UAV swarm, while the path planning at the bottom
layer is completed by the local path planner scattered in
each UAV.

In the coordination layer, information sharing is a nec-
essary condition for multi-UAV coordination, and the mini-
mum amount of information required to achieve coordination
is called coordination variables [40], [41]. The concept of

FIGURE 2. Schematic diagram of the two-layer coordinative path
planning framework.

coordination variables can be found in many other works on
coordination [42], [43]. For example, an ‘‘action reference’’
can be introduced, which would help maintain formation if
every UAV in the swarm knew about it [44]. In the UAV
rendezvous problem considered in this paper, the desired
flight time tfd is selected as the coordination variable, which
defines mission-critical timing information. Set the average
value

(
1
/
n
)∑n

i=1 t̂i,f of the predicted flight time t̂i,f of each
UAV as the desired flight time tfd , which is easy to achieve
in a centralized communication network. However, in the
decentralized communication network, the ith UAV can only
communicate with UAVs around it, so it can not directly
average all t̂i,f .
To reach a consensus on the desired flight time of each

UAV, we employ a linear consensus protocol. Suppose the
predicted flight time t̂i,f is the initial value ti,fd (0) of the
desired flight time of the ith UAV. At each step, the ith UAV
exchanges the desired flight time with other UAVs around
it. After several steps, each UAV gets all the initial values
of all UAVs, so the average can be computed. The update
formula for the desired flight time of the ith UAV is as
follows:

ti,fd (h+ 1)=Wiiti,fd (h)+
∑
j∈Ni

Wijtj,fd (h) , h=0, 1, 2, . . .

(10)

where h is the number of iterations, Wii,Wij is the weight on
ti,fd and tj,fd at ith UAV, respectively. Set Wij = 0 for j /∈ Ni,
then all weights can form a weight matrix W . For ti,fd (h)
to quickly converge to the average value

(
1
/
n
)∑n

i=1 t̂i,f ,
a weight matrix with local-degree weights is chosen.
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This method is to assign the weight according to the larger
degree of two incident UAVs, as follows [45]:

Wij =
1

max {deg (i) , deg (j)}
, {i, j} ∈ E, (11)

and then determine Wii according to W1n×1 = 1n×1. Since
the weights at the ith UAV only depend on the degrees of
the ith UAV and its neighbors, this method is very suitable
for decentralized averaging. For the convenience of solv-
ing, a relatively simple consensus protocol is adopted here.
To improve the performance of a certain aspect or complete
a specific task, some more suitable consensus protocols can
be designed [46], [47].

The planning layer consists of several local path planners,
so the problem P0 needs to be decoupled and divided into
several sub-problems that can be solved in parallel. It can be
noticed that the objective function of problem P0 is additive.
In fact, the team objective function is composed of the indi-
vidual objective functions of each UAV in the swarm. The
objective function and most of the constraints of P0 can be
split directly, but the collision-free constraints involve not
only the position information of the ith UAV itself but also
the position of the jth UAV. During the path planning, the real
position of the jth UAV is unknown because it is what will
happen in the future. Therefore, the predicted state ŝj of the
jth UAV is used instead of the real state sj, and the decoupled
UAV collision-free constraint is expressed as follows:∥∥Hsi −Hŝj∥∥2 ≥ 2rsafe, ∀j ∈ Ni. (12)

After decoupling the problem P0, the path of each UAV is
planned independently, so the flight time of different UAVs is
likely to be different. For the swarm to achieve time coordina-
tion, the time coordination constraints should be considered
when planning the path, as follows:∣∣ti,f − ti,fd ∣∣ ≤ εt , (13)

where εt is a variable tolerance, which is used to enable
the flight time to be progressively smaller in iterations.
The specific value of εt will be described in detail later.
Time coordination constraints, when satisfied, can be used
to define the occurrence of coordination. In summary, the
overall path planning problem is decomposed into several
sub-problems P0i.

P0i : min Ji = ti,f + a
∫ ti,f

t0
‖ui‖2dt

s.t. (2)− (5) , (12) , (13) ,

Hsi (t0) = pi,0,

Esi (t0) = vi,0,

Hsi
(
ti,f
)
= pi,d ,

Esi
(
ti,f
)
= vfd ,

∀j ∈ Ni, ∀m ∈ {1, 2, . . . ,M} , (14)

where ti,f is the flight time of the ith UAV. In this paper, SCP
is used to solve this set of sub-problems.

SCP is a local optimization method that can be used to
solve non-convex optimization problems. SCP transforms the
original non-convex optimization problem into a series of
convex optimization sub-problems for an iterative solution,
to obtain the approximate optimal solution of the original
problem. Convex optimization theory has shown that as long
as an optimization problem can be represented as a convex
form, the global optimal solution of the problem can be
obtained in polynomial time [48]. Problem P0i is a typi-
cal non-convex optimization problem. If the SCP method is
applied to solve it, the nonlinear and non-convex constraints
need to be discretized and convex to establish the approximate
convex problem of P0i.

B. CONVEXIFICATION
P0i is a free-final-time optimal control problem. The flight
time ti,f of the UAV is unknown, so the dynamic equation
in P0i cannot be discretized. Therefore, the flight time domain[
t0, ti,f

]
is mapped to the given interval [0, 1], as follows:

τi =
t − t0
ti,f − t0

, t ∈
[
t0, ti,f

]
, (15)

where τi is the new independent variable. After replacing the
independent variables, (2) and (8) become

ṡi = ti,f

[
03×3 I3×3
03×3 03×3

]
si +

ti,f
mi

[
03×3
I3×3

]
×ui + ti,f

[
03×3
I3×3

]
g, (16)

Hsi (0) = pi,0,

Esi (0) = vi,0,

Hsi (1) = pi,d ,

Esi (1) = vfd . (17)

However, after changing the independent variables, the
original convex objective function becomes non-convex, so it
also needs to be convex. The convexification process and
results of the objective function are given by

Ji = ti,f + a
∫ 1

0
‖ui‖2ti,f dτ,

⇔

 Ji = ti,f + a
∫ 1
0 αi,1dτ,

‖ui‖2 ≤
αi,1

ti,f
,

⇔


Ji = ti,f + a

∫ 1
0 αi,1dτ,

‖ui‖2 ≤ 2αi,1αi,2, αi,2 ≥ 0,

2αi,2 −
1
ti,f
≤ 0,

(18)

⇔



Ji = ti,f + a
∫ 1
0 αi,1dτ,

‖ui‖2 ≤ 2αi,1αi,2, αi,2 ≥ 0,(
2α∗i,2 −

1
t∗i,f

)
+

[
2

1
t∗
i,f 2

][
αi,2 − α

∗

i,2
ti,f − t∗i,f

]
≤ 0,∣∣∣αi,2 − α∗i,2∣∣∣ ≤ ρ1,∣∣∣ti,f − t∗i,f ∣∣∣ ≤ ρ2,

45700 VOLUME 10, 2022



Z. Cheng et al.: Decentralized Multi-UAV Path Planning Based on Two-Layer Coordinative Framework

where ρ1 and ρ2 are trust regions. After changing the inde-
pendent variable, the dynamic equation is still nonlinear, so
the dynamic equation needs to be linearized at the nomi-
nal solution. In the SCP method, an initial guess is usually
selected as the initial nominal solution, and the solution from
the previous iteration is taken as the nominal solution for
this iteration. Assuming that this iteration is the kth iteration,
the state vector s(k−1)i , control vector u(k−1)i , and flight time
t(k−1)i,f obtained from the (k-1)th iteration will be used as the
nominal solutions s∗i , u

∗
i , and t

∗
i,f for this iteration. According

to the nominal state s∗i , the nominal control vector u∗i , and the
nominal flight time t∗i,f , the approximate dynamic equation
after linearization is obtained as follows:

ṡi = Ai(t∗i,f )isi + Bi(t
∗
i,f )ui
+C i(s∗i ,u

∗
i )ti,f + Di(s

∗
i ,u
∗
i , t
∗
i,f ), (19)

where the matrices A, B, C, and D are as follows:

Ai(t∗i,f ) = t∗i,f

[
03×3 I3×3
03×3 03×3

]
,

Bi(t∗i,f ) =
t∗i,f
mi

[
03×3
I3×3

]
,

C i(s∗i ,u
∗
i ) =

 Es∗i
1
mi
u∗i + g

 ,
Di(s∗i ,u

∗
i , t
∗
i,f ) = −t

∗
i,f

 Es∗i
1
mi
u∗i

 . (20)

The obstacle avoidance constraints in the problem are
concave. Linearization is an effective convexity method for
a class of non-convex optimization problems with concave
constraints [49]. According to the nominal state s∗i , the
obstacle avoidance constraint is linearized, and the approx-
imate constraint is obtained as follows:

∥∥Fs∗i − pob,m∥∥+ (Fs∗i − pob,m)>∥∥Fs∗i − pob,m∥∥ (Fsi − Fs∗i )
≥ rob,m + rsafe, (21)

When dealing with collision-free constraints, the nominal
state s∗j of the jth UAV is chosen as its predicted state ŝj,
that is, only avoiding the paths of other UAVs obtained in
the previous iteration. In the SCP, the result of the iterative
calculation will gradually converge to a path, so when the
algorithm converges, the processed collision-free constraints
are equivalent to the initial constraints. At the nominal states
s∗i and s∗j , the collision-free constraints are linearized as
follows:

∥∥∥Hs∗i −Hs∗j ∥∥∥+
(
Hs∗i −Hs

∗
j

)>∥∥∥Hs∗i −Hs∗j ∥∥∥
(
Hsi −Hs∗i

)
≥ 2rsafe,

(22)

where j ∈ Ni. To ensure the effectiveness of linearization,
trust-region constraints are introduced when solving approx-
imate path planning problem.∣∣xi − x∗i ∣∣ ≤ ρ3,∣∣yi − y∗i ∣∣ ≤ ρ4,∣∣zi − z∗i ∣∣ ≤ ρ5,∣∣vix − v∗ix ∣∣ ≤ ρ6,∣∣∣viy − v∗iy∣∣∣ ≤ ρ7,∣∣viz − v∗iz∣∣ ≤ ρ8, (23)

where ρ3 − ρ8 are trust regions. The above trust-region
constraints are affine functions of the state variable, which
do not affect the convexity of the problem.

C. DISCRETIZATION
Since computers cannot handle continuous-time problems,
it is necessary to discretize the approximate path planning
problem. Select the time step1τ = 1

/
N to getN+1 discrete

times τ0, τ1, . . . , τN , which satisfies τq = τ0 + q1τ, q ∈
{0, 1, 2, . . . ,N }. Using the trapezoidal method to discretize
the convex approximation problem P0i, the continuous-time
dynamic equation can be expressed as the following lin-
ear equation constraints on discrete-time state and control
variables.

si,q = si,q−1 +
1τ

2
×
[(
Ai,q−1si,q−1 + Bi,q−1ui,q−1
+C i,q−1ti,f + Di,q−1

)
+
(
Ai,qsi,q + Bi,qui,q + C i,qti,f + Di,q

)]
, (24)

where si,q = si
(
τq
)
is the state vector of the UAV at time τq,

ui,q = ui
(
τq
)
is the control vector of the UAV at time τq,

Ai,q = A
(
t∗i,f
)
, Bi,q = B

(
t∗i,f
)
, C i,q = C

(
s∗i
(
τq
)
,u∗i

(
τq
))
,

Di,q = D
(
s∗i
(
τq
)
,u∗i

(
τq
)
, t∗i,f

)
. The discretized approxi-

mate obstacle avoidance constraint can be expressed as(
Fs∗i,q − pob,m

)>∥∥∥Fs∗i,q − pob,m∥∥∥
(
Fsi,q − Fs∗i,q

)
+

∥∥∥Fs∗i,q − pob,m∥∥∥ ≥ rob,m + rsafe, (25)

where s∗i,q = s∗i
(
τq
)
is the nominal state at time τq. The

discretized approximate collision avoidance constraint can be
expressed as(
Hs∗i,q−Hs

∗
j,q

)>∥∥∥Hs∗i,q−Hs∗j,q∥∥∥
(
Hsi,q−Hs∗i,q

)
+

∥∥∥Hs∗i,q−Hs∗j,q∥∥∥≥2rsafe,
(26)
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The objective function and its derived constraints can be
discretized as follows:

Ji = ti,f + a1τ
N∑
q=0

αi,1,q, (27)

∥∥ui,q∥∥2 ≤ 2αi,1,qαi,2,q, αi,2,q ≥ 0,(
2α∗i,2,q −

1
ti,f

∗
)
+

[
2

1

t∗i,f
2

][
αi,2,q − α

∗

i,2,q
ti,f − t∗i,f

]
≤ 0,∣∣∣αi,2,q − α∗i,2,q∣∣∣ ≤ ρi,1,∣∣∣ti,f − t∗i,f ∣∣∣ ≤ ρi,2,
(28)

where αi,1,q and αi,2,q are auxiliary variables at time τq.
The performance constraints, flight altitude constraints, trust-
region constraints, and initial/terminal state constraints can be
expressed as follows:∥∥Esi,q∥∥ ≤ vi,max , (29)∥∥ui,q∥∥ ≤ Ti,max ,

hmin ≤ Gsi,q ≤ hmax, (30)∣∣∣xi,q − x∗i,q∣∣∣ ≤ ρi,3,∣∣∣yi,q − y∗i,q∣∣∣ ≤ ρi,4,∣∣∣zi,q − z∗i,q∣∣∣ ≤ ρi,5,∣∣∣vix,q − v∗ix,q∣∣∣ ≤ ρi,6,∣∣∣viy,q − v∗iy,q∣∣∣ ≤ ρi,7,∣∣∣viz,q − v∗iz,q∣∣∣ ≤ ρi,8. (31)

Hsi,0 = pi,0,

Esi,0 = vi,0,

Hsi,N = pi,d ,

Esi,N = vfd , (32)

To sum up, in the kth iteration, the discretized convex
approximation sub-problem P1(k)i can be expressed as

P1(k)i : min J (k)i = ti,f + a1τ
N∑
q=0

α1,q

s.t. (13) , (24)−(33) ,

∀j ∈ Ni, ∀m ∈ {1, 2, . . . ,M} ,

∀q ∈ {0, 1, 2, . . . ,N } . (33)

Then the team objective function of the multi-UAV path
planning problem in the kth iteration is J (k) =

∑n
i=1 J

(k)
i .

D. SEQUENTIAL CONVEX PROGRAMMING
The SCP method converts the original non-convex opti-
mization problem into a series of sub-problems and obtains
the approximate optimal solution of the original problem
by iteratively calculating these convex approximate sub-
problems. During the iterations of SCP, the rendezvous paths

are sequentially refined, and the additional conservatism
brought by the convex approximation is gradually eliminated.
Compared with the basic convex optimization method, the
SCP method reduces the dependence on the initial guess.
In practice, the SCPmethod can always obtain a feasible solu-
tion at a lower cost, which is suitable for the rapid planning of
the UAV flight path. The proposed algorithm flow is shown
in Figure 3.

FIGURE 3. Flowchart of the proposed method.

In the SCP method, the initial guesses s(0), u(0), and
t(0)f = [t(0)1,f , t

(0)
2,f , . . . , t

(0)
n,f ]
> will be used as the nominal

solutions for the first iteration, which will be used to convex
the non-convex optimization problem, and the solutions s(k)i ,
u(k)i , and t(k)i,f generated by each iteration will be used as the
nominal solutions for the next iteration.

In each iteration, the coordination layer will calculate the
coordination variables ti,fd of the swarm based on the nom-
inal solutions t∗i,f and t∗j,f ,∀j ∈ Ni The UAV swarm will
independently negotiate the desired flight time, which not
only improves the autonomy of planning but also reduces
the possibility of no solution to the optimization problem.
To ensure the convergence of the iteration while shortening
ti,f , εt in (13) should decrease as the iteration proceeds.
Therefore, in the first iteration, give εt a value large enough
to ensure that the first iteration is not unsolvable. Then, in the
kth iteration, εt is assigned a value according to the t

(k−1)
i,f and

the t(k−2)i,f , as follows:

εt =

∣∣∣t(k−2)i,f − t(k−1)i,f

∣∣∣ , (34)

where k ≥ 2. As the iteration proceeds, the solution of
the convex approximation problem will gradually approach
the optimal solution of the original problem. For the free-
final-time path planning problem, the stopping condition of
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the iteration can be set as the maximum deviation between
the paths obtained by the two iterations before and after,
that is, when the path obtained in this iteration basically
coincides with the path obtained in the previous iteration
and the flight time of each UAV is basically the same, the
algorithm can be considered to converge. In fact, to balance
the optimality and rapidity of path planning, the conver-
gence conditions of iteration can be appropriately relaxed,
to plan a feasible sub-optimal path in a relatively short
time. The pseudocode of the coordinative path planning
algorithm is shown in Algorithm 1. Introduce the following
sets:

X = {max (X1) ,max (X2) , . . . ,max (Xn)} ,

Y = {max (Y1) ,max (Y2) , . . . ,max (Yn)} ,

Z = {max (Z1) ,max (Z2) , . . . ,max (Zn)} ,

T =
{∣∣∣t(k)1,f − t

(k−1)
1,f

∣∣∣ , ∣∣∣t(k)2,f − t
(k−1)
2,f

∣∣∣ , . . . , ∣∣∣t(k)n,f − t
(k−1)
n,f

∣∣∣} ,
(35)

where

Xi=
{∣∣∣x(k)i,0 − x

(k−1)
i,0

∣∣∣ , ∣∣∣x(k)i,1 − x
(k−1)
i,1

∣∣∣ , . . . , ∣∣∣x(k)i,N − x
(k−1)
i,N

∣∣∣} ,
Yi=

{∣∣∣y(k)i,0 − y(k−1)i,0

∣∣∣ , ∣∣∣y(k)i,1 − y(k−1)i,1

∣∣∣ , . . . , ∣∣∣y(k)i,N − y(k−1)i,N

∣∣∣} ,
Zi=

{∣∣∣z(k)i,0 − z(k−1)i,0

∣∣∣ , ∣∣∣z(k)i,1 − z(k−1)i,1

∣∣∣ , . . . , ∣∣∣z(k)i,N − z(k−1)i,N

∣∣∣} .
(36)

Algorithm 1 SCPAlgorithm for Coordination of UAVs at kth
Step
Initialization: Maximum number kmax of iterations for the
SCP method, Maximum flight velocity vimax and maximum
thrust Timax of all UAVs i ∈ V , Minimum flight altitude hmin
and maximum flight altitude hmax, UAV safety radius rsafe,
pob,m and rob,m of all obstacles, predetermined formation Pd ,
desired terminal velocity vfd , accuracy ε = (ε1, ε2, ε3, ε4)

>.
Set the number of iterations k = 1. Design initial guesses
s(0), u(0), and t(0)f as nominal solutions s∗, u∗, t∗f . The initially

desired flight time t(0)fd is determined according to the initial

flight time guess value t(0)f . Give εt a value large enough.
while max (X ) ≤ ε1 and max (Y) ≤ ε2 and max (Z) ≤ ε3
and max (T ) ≤ ε4 do

Calculate the coordination variables ti,fd .
Solve each convex optimization sub-problem P1ki
separately, and obtain the solutions s(k)i , u(k)i , and t(k)i,f of
each sub-problem, so as to indirectly obtain the solutions
s(k), u(k), t(k)f .

Taking s(k), u(k), and t(k)f as nominal
solutions s∗, u∗, and t∗f separately.
Calculate X , Y , Z and T .
k = k + 1.
Calculate εt .

end while

V. NUMERICAL RESULTS
Numerical simulation is carried out for the multi-UAV coor-
dinative path planning problem to evaluate the proposed
coordinative path planning algorithm. The scenario used to
test the effectiveness of the algorithm involves five UAVs.
UAVs start with different initial conditions and are sched-
uled to form a diamond-shaped formation in the area near
(60 m, 60 m, 60 m), thereby simulating the formation ren-
dezvous task of the UAV swarm in an obstacle environ-
ment. The initial and final state of UAVs are shown in
TABLE 1, and the desired flight velocity of the swarm is
(2 m/s, 2 m/s, 0 m/s).

TABLE 1. The initial and final state of the UAV swarm.

Two infinitely high cylindrical obstacles exist in the simu-
lated scenario, and the UAV can only fly around and cannot
cross from above. The coordinates and radius of the center
of the obstacle’s bottom surface are shown in TABLE 2. The
mass of the UAV mi = 1 kg, i=1,2, . . . ,5, the safety radius is
0.5 m, the maximum flight velocity is 10 m/s, and the max-
imum thrust is 15 N. The line connecting the starting point
and the ending point is used as the initial guess path, and it is
assumed that the control inputs in both X and Y dimensions
are 0 and the control inputs in the Z dimension are mig, that
is, UAVs fly at a constant velocity along this path. The sim-
ulation uses a fixed number of discrete points, set predefined
number of intervals N = 50, taking 51 points with equal
distances on the path as the initial guess of the UAV position,
taking the terminal flight velocity (2 m/s, 2 m/s, 0 m/s) as the
initial guess of UAVs’ flight velocity, and calculates the guess
value of UAVs’ initial flight time. The initial guesses of the

auxiliary variables are set to α(0)i,1,q = t (0)i,f

∥∥∥u(0)i,q∥∥∥2 and α(q)i,2,1 =
1
/
t (0)i,f , and the weight coefficient a = 0.1 is set. To balance

the solution efficiency while ensuring that the approximate
problem has a solution, the trust regions for the kth iteration
are shown in TABLE 3. The convergence condition is set to
ε = [0.1m, 0.1m, 0.1m, 0.01s]>.

TABLE 2. Information about obstacles.

The simulations are implemented on a computer with
an Intel Core i7-10750H Processor and 16GB of RAM.
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TABLE 3. The trust regions for the kth iteration.

FIGURE 4. 3D view of the planned flight path.

FIGURE 5. Top view of the planned flight path.

The programming environment of numerical simulation is
MATLAB 2020b, and the Parallel Computing Toolbox is
used to solve each sub-problem P1(k)i in parallel. The
YALMIP toolbox andMOSEK R© solver are used for problem
modeling and solving respectively. The flight paths obtained
by the multi-UAV path planning algorithm based on the two-
layer coordinative framework are shown in Figure 4 and
Figure 5. The simulation results verified that the five UAVs
started from different positions and finally formed the desired
formation.

FIGURE 6. Distance of UAV from obstacle1 and obstacle2.

FIGURE 7. Minimum distance between the i th UAV and other UAVs.

The distance between the UAV and the obstacle is shown
in Figure 6, the minimum distance between the swarm and
obstacle 1 and obstacle 2 is equal to or greater than the safety
radius rsafe = 0.5 m, that is, all UAVs will not enter the
obstacle area during flight, avoiding the collision between
the swarm and the environment. Similarly, according to the
simulation results shown in Figure 7, the minimum distance
between the ith UAV and other UAVs in the swarm is greater
than 2rsafe, which meets the position coordination require-
ments for swarm flight.

The desired speed and desired thrust of the path are
shown in Figure 8 and Figure 9 respectively. The algorithm
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FIGURE 8. Desired flight velocity.

FIGURE 9. Desired thrust.

plans the desired control variables that satisfy the perfor-
mance constraints for the five UAVs. The flight times of the
five UAVs are 12.2558 s, 12.2559 s, 12.2594 s, 12.2594 s,

FIGURE 10. Relationship between computing time and predefined
number of intervals N .

FIGURE 11. Simulation scenarios with different numbers of obstacles.

and 12.2610 s respectively, and the maximum time difference
is 0.0052 s. It can be considered that the five UAVs can
reach the desired position at the same time, which meets
the requirements of time coordination. Thus, the proposed
method proves to be effective in solving the UAV formation
rendezvous path planning problem.

A series of simulations are performed on the effect of the
predefined number of intervalsN and the number of obstacles
on the proposedmethod. In the above simulation scenario, the
effects of differentN values on the computing time are shown
in Figure 10. Here, the runtime of the simulation programs
is used to represent the computing time. The simulation
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FIGURE 12. Relationship between computing time and the number of
obstacles.

FIGURE 13. The comparison of computing time when using the proposed
method and centralized SCP.

results show that with the increase of N , the computing
time gradually becomes longer. However, this phenomenon is
reasonable because the increase of N will lead to an increase
in the scale of the sub-problem P1(k)i , so it is necessary to
select an appropriate number of intervalsN in the application.
To compare the computing time of the proposed method

under different numbers of obstacles, different numbers of
cylindrical obstacles with a radius of 4 m are arranged in the
above numerical simulation scenario, as shown in Figure 11.
The relationship between computing time and the number
of obstacles in Figure 12 shows that the computing time
increases slightly with the number of obstacles. Furthermore,
the computing time does not increase by more than 1.7 s for
each additional obstacle. Therefore, to reduce the scale of the
sub-problem, obstacles far from the UAV can be disregarded
in path planning.

To demonstrate the scalability of the proposed method,
we conduct comparative studies on the proposed decentral-
ized path planning method and centralized SCP using the first
simulation scenario on the same computer. Figure 13 displays
the comparison of computing time when using the proposed
method and centralized SCP, with different numbers of UAVs.
The computing time of the centralized SCP is always longer
than that of the proposed decentralized path planningmethod,
and the computing time of the centralized SCP increases
much faster with the increase of the number of UAVs.

FIGURE 14. The comparison of flight time when using the proposed
method and decoupled SCP.

Both the decoupled SCP [36] and the proposed method can
solve the multi-UAV path planning sub-problems in parallel,
and shortening the flight time is one of the optimization goals
of both. In the initial simulation scenario of this chapter,
the flight time of the paths planned by the two methods is
compared. From Figure 14, paths planned by the proposed
method have a shorter flight time than that planned by the
decoupled SCP. Therefore, the proposed method has better
optimality.

VI. CONCLUSION
This paper presents a decentralized multi-UAV path planning
method with high computational efficiency and scalability.
In the multi-UAV rendezvous task, all UAVs need to arrive at
the designated position at the same time to form a formation
and avoid collisions with obstacles or other UAVs in the
swarm during flight. According to the mission requirements
and physical constraints of formation rendezvous, a non-
convex optimal control model is established for the coor-
dinated path planning of multi-UAV. Then, a decentralized
multi-UAV path planning method based on the two-layer
coordinative framework is proposed, which decouples the
original non-convex problem into several sub-problems that
can be solved separately and uses the SCP method to solve
them after linearization and discretization. In this method, the
coordination layer uses the consensus protocol to calculate
the coordination variable according to the nominal state of
each UAV in the swarm. The planning layer is composed
of path planners distributed in each UAV, which will plan
a coordinated path according to the coordination variable.
Finally, the effectiveness and scalability of the proposed
method are verified by numerical simulation of a specific
example. This method can realize swarm coordination and
disperse the computational pressure on each UAV. Benefiting
from the decentralized planning method, the increase in the
number of UAVs will not significantly boost the solving time.
Therefore, the method proposed in this paper is suitable for
the cooperative path planning of large-scale UAV swarms.
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The future work will focus on the problem of multi-UAV real-
time path planning in a dynamic environment that includes
other traffic participants. In this case, more consideration
should be given to the signal transmission delay between
UAVs and the interaction between the swarm and other traffic
participants. Local path planning of UAV swarms in dynamic
environments is also a technique that needs to be improved.
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