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ABSTRACT Change detectionmethods aim to identify significantly changed areas in co-registered bitempo-
ral images taken of the same area. Since not only do bitemporal images usually have different environmental
conditions (i.e., different weather conditions, noises, and seasonal changes) but also changes irrelevant to
the purpose of change detection (e.g., road changes when detecting building change), which should not
be detected as changed areas, change detection methods often suffer from the problem of pseudo-change
detection. To alleviate this problem, we propose an encoder-decoder-based Siamese network with a channel-
wise co-attention module that considers the channel-wise correlations between a feature map in one image
and all feature maps in the other image. By comparing the feature map in one image with the revised feature
map in the other image considering the correlations, we are able to reduce the differences between the feature
maps when pseudo-changes exist, thereby rendering the proposed method more robust to pseudo-changes.
In addition, we apply a contrastive loss function that encourages the pairs of feature maps corresponding to
unchanged regions to be similar, which can help improve the performance of change detection. We verified
the performance of the proposed method through experiments using datasets such as the change detection
dataset (CDD) and building change detection dataset (BCDD). In the experiment, the proposed method
achieved significantly improved performance compared with existing methods in terms of recall, precision,
f1-score, and overall accuracy.

INDEX TERMS Attention, change detection, co-attention, deep learning, remote sensing, Siamese network.

I. INTRODUCTION
Change detection (CD) is the task of identifying changed
areas in two co-registered images of the same location
acquired at different times [1]. CD methods usually assign
a binary label to each pixel in a target image (also called
a T1 image) to indicate whether or not the pixel belongs
to the changed area from the reference image (also called
a T0 image) [2]–[5]. Although identifying changed pixels
based on the intensity values may seem straightforward,
CD is a challenging task due to the existence of pseudo-
changes, which should not be detected as genuine changes
even though the intensity values of the corresponding pixels
are significantly different. For example, pseudo-changes may
be generated due to environmental changes in two images as a
result of illumination changes or seasonal changes, as shown
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in Fig.1. Fig.1 shows example images from the change detec-
tion dataset (CDD) [6] and Figs.1(a) and (b) show bitemporal
image pairs with illumination change and seasonal change,
respectively. Although the two images are very different in
their pixel values, CD should determine that the areas in
the two images have not changed if the difference is caused
by a pseudo-change [7]. Even more challenging pseudo-
changes are application-specific pseudo-changes that can be
pseudo or genuine changes depending on the purpose of
the CD. For example, in the field of urbanization monitor-
ing, changes related to buildings are genuine changes while
changes related to trees are pseudo-changes [2], [3]. On the
contrary, in the field of deforestation monitoring, changes
related to trees are genuine changes [8].

Many CD methods have been studied using various image
processing methods [9]–[16]. Recently, with the successful
application of deep learning to computer vision and remote
sensing [7], [17]–[21], deep learning-based CD methods
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FIGURE 1. Illustrations of bitemporal image pairs in the CDD dataset [6]:
(a) image pair with illumination change and (b) image pair with
environmental change.

have attracted much attention [7], [22]–[29]. Some methods
apply deep learning networks to extract feature maps from
two images and then calculate the distance between the fea-
ture maps to generate a change map [7], [22], [23]. Other
methods combine feature maps extracted from two images
and then decode the combined feature maps to generate a
change map [24], [26]–[28].

Many deep learning-based CD methods use a Siamese
network that contains two identical networks that share
weights [7], [22], [23], [26]–[28]. Since Siamese network-
based CD methods identify changed areas based on the dif-
ference between two images, these methods often suffer from
pseudo-changes that may cause large differences in intensity
values. To alleviate the problem of pseudo-change detection,
some CD methods have applied attention modules that can
help obtain more discriminant feature representations by cap-
turing feature dependencies [7], [22], [23], [27], [30]–[32].
Some methods have applied self-attention modules that con-
sider feature dependencies within a single image to better
distinguish between changed areas and unchanged areas [7],
[30]–[32]. However, for improving robustness to pseudo-
changes, we believe that feature dependencies between
bitemporal images should be considered rather than depen-
dencies within a single image. Although several CD methods
have applied co-attention modules that consider spatial-wise
feature dependencies between bitemporal images, they focus
more on reducing errors caused bymisregistration than reduc-
ing pseudo-change detection [22], [27].

Inspired by the above-mentioned attention modules,
we propose a channel-wise co-attention-based Siamese net-
work for CD, which we expect to be more robust to

pseudo-changes than existing methods. The channel-wise
co-attention module considers channel-wise feature depen-
dencies between bitemporal images. The idea behind the
proposed method is that if an area belongs to a pseudo-
change area, there may exist a similar feature map in another
image even though the map may be from a different channel.
Although a direct comparison between feature maps can
result in large differences, if we find a similar feature map in
the other image and compute the differences with the similar
feature map, the differences will be small. Based on this
idea, we believe that the proposed method can help reduce
the detection of pseudo-changes. In addition, to improve the
performance of CD, we apply a contrastive loss function that
encourages the distance between features from unchanged
regions to be small and the distance between features from
changed regions to be larger than a specific margin.

In this paper, we quantitatively demonstrate that the pro-
posed method can improve the performance of CD. The
proposedmethod shows superior performance comparedwith
existing methods for two open datasets: the change detection
dataset (CDD) [6] and building change detection dataset
(BCDD) [33].

The remainder of this paper is organized as follows.
In Section 2, we review related studies. We also explain the
proposed method in detail in Section 3. The experimental
results and conclusions are presented in Sections 4 and 5.

II. RELATED WORKS
A. SIAMESE NETWORK-BASED CHANGE DETECTION
A Siamese network is a neural network that contains two sub-
networks [19] and uses two images for input. The network
extracts features from the two images in parallel using each
sub-network and then considers the difference between the
extracted features for image comparison [19]. By sharing the
weights of the sub-networks, a Siamese network can identify
whether similar features exist, thereby comparing the two
images more effectively.

Although several CD methods such as the fully con-
volutional early fusion network (FC-EF) [24] and the
boundary-aware attentive network (BA2Net) [25] are based
on U-Net [18], recently, much research has been focused on
Siamese network-based CD methods. Some methods extract
feature maps from bitemporal images using a Siamese net-
work and then calculate the distance between the feature
maps to generate a change map. These methods include a
dual attentive fully convolutional Siamese network (DAS-
Net) [7], a spatial-temporal attention network (STANet) [22],
and a deeply supervised attention metric network (DSAM-
Net) [23]. DASNet [7] uses self-attention modules to obtain
more discriminant feature representations and attempts to
reduce the detection of pseudo-change. In STANet [22],
a basic spatial-temporal attention module (BAM) and a pyra-
mid spatial-temporal attention module (PAM) are used to
obtain illumination-invariant and misregistration-robust fea-
tures. DSAMNet [23] uses a combined attention module to
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FIGURE 2. Overview of the proposed method: Ch-Co-Att, Conv, and Conv_trans represent the channel-wise co-attention module, convolution layer,
and transposed convolution layer, respectively. All convolution and transposed convolution layers are followed by batch normalization and ReLU
layers.

FIGURE 3. Overview of the proposed channel-wise co-attention module.

recognize pseudo-changes. Other methods combine feature
maps extracted from bitemporal images using a Siamese
network and then decode the combined feature maps to gen-
erate a change map. These methods include a fully convolu-
tional Siamese network with concatenation skip connections
(FC-Siam-Concat) [24], a fully convolutional Siamese net-
work with difference skip connections (FC-Siam-Diff) [24],
and a pyramid feature-based attention-guided Siamese net-
work (PGA-SiamNet) [27].

B. SELF-ATTENTION MODULE
Recently, some CDmethods have applied self-attention mod-
ules to improve CD performance [7], [22], [30]–[32]. The
self-attention module considers feature dependencies within
a single image. For a feature vector at one position, the
self-attention module calculates the correlations between the
feature vector and all other feature vectors in the same image
to generate a refined feature vector, which is computed by

the linear combination of all other feature vectors using the
calculated correlations [7], [21], [22], [30]–[32], [34], [35].
Since the refined feature vectormay reflect features of objects
belonging to the same category but with different appear-
ances, using a refined feature vector may render CD methods
robust to pseudo-changes. However, since the features of one
image are compared with the features of the other image in
CD tasks, it is more effective to generate refined feature vec-
tors using feature vectors of the other image to reduce pseudo-
change detection. Based on this idea, studies on spatial-wise
co-attention modules have been conducted [22], [27].

C. SPATIAL-WISE CO-ATTENTION MODULE
As mentioned above, spatial-wise co-attention modules
that consider spatial-wise correlations between bitemporal
images may help reduce the detection of pseudo-changes.
In addition, spatial-wise co-attention modules can be helpful
for reducing errors due to misregistration because a feature
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vector in an image is compared with a similar feature vector
in the other image regardless of position [22], [27]. However,
we think that the performance improvement provided by a
spatial-wise co-attention module is limited because misregis-
tration is minimal for most CD methods since co-registered
bitemporal images are used. In terms of pseudo-change detec-
tion, because the module computes the refined feature vec-
tor using similar feature vectors in the other image, if the
same structure in the other image generates different feature
vectors due to pseudo-changes, these pseudo-changes may
be detected as a genuine change since the feature vectors
are different. To alleviate this problem, we believe that the
inclusion of the channel-wise co-attention module that con-
siders channel-wise correlations between bitemporal images
is beneficial since similar features may be present in differ-
ent channels due to pseudo-changes. Based on this obser-
vation, we propose a novel CD method with channel-wise
co-attention module, which is explained in Section 3.

III. PROPOSED METHOD
In this section, we present our channel-wise co-attention-
based CDmethod. We first explain the overall network archi-
tecture and a novel channel-wise co-attention module for CD
in detail. Finally, we describe total loss functions for the
proposed method.

A. NETWORK ARCHITECTURE
We propose an encoder-decoder-based Siamese network with
channel-wise co-attention modules. Fig.2 shows the structure
of the proposed network, which consists of an encoder net-
work with an atrous spatial pyramid pooling (ASPP) mod-
ule [36] to extract high-level features without compromising
spatial resolution, the channel-wise co-attention module, and
a decoder network. As shown in Fig.2, the encoder extracts
feature maps from two images in parallel using the same con-
volution layers and merges the extracted feature maps to use
them as input to the decoder. Then, the decoder determines
whether or not a pixel belongs to a changed area using the
convolution layers with the merged feature maps and fea-
ture maps from the co-attention module, which is explained
later. As one may intuitively expect, the feature maps of the
changed areas in the two images may have large differences,
while those of the unchanged areas show only moderate
differences as long as there are no pseudo-changes. However,
if pseudo-changes exist, the corresponding feature maps can
be significantly different because the intensity values for the
areas can be significantly different.

To reduce the problem of pseudo-change detection,
we apply channel-wise co-attention modules to the out-
puts of the 3rd and 4th convolutional blocks of the encoder
(i.e., feature maps right before max-pooling layer) and trans-
fer the output of each co-attention module to the corre-
sponding convolutional block of the decoder in the form of
skip-connections. Given bitemporal image pair T0 and T1,
we denote the extracted feature maps from T0 and T1 with
F0 ∈ RH×W×C and F1 ∈ RH×W×C , respectively, where

H is the height, W is the width, and C is the number of
channels. The channel-wise co-attention module computes
the correlations between the ith feature map in one image
and all the feature maps in the other image and then uses the
correlations as weights for computing a linear combination
of the feature maps in the other image. We use the linear
combination as the generated feature map, expecting that
the generated feature map is similar to the ith feature map
in one image even though there exist pseudo-changes. The
intuition behind this expectation is that there may be similar
feature maps in the other image in different channels since the
different characteristics of the two images may show similar
shapes under pseudo-changes. For example, if two images
are acquired under different lighting conditions, features from
different color filters may have similar shapes.

The aforementioned operation of the channel-wise
co-attention module is implemented as shown in Fig.3. First,
we compute the affinity matrix S ∈ RC×C between F0 and
F1 using the cosine similarity as follows:

sij =
F̌ (j)
0 · F̌

(i)
1

‖F̌ (j)
0 ‖‖F̌

(i)
1 ‖

(1)

where sij is the jth element in the ith column of affinity matrix
S ∈ RC×C and represents the degree of similarity between
the jth feature map of F0 and the ith feature map of F1.
F̌0 ∈ RM×C and F̌1 ∈ RM×C are reshaped feature maps
from F0 and F1, respectively, M is the multiplication of H
andW , F̌ (j)

0 denotes the jth column of F̌0, and F̌
(i)
1 denotes the

ith column of F̌1.
Next, given two reshaped feature maps F̌0 and F̌1, the

channel-wise co-attention module generates modified feature
maps considering the channel-wise correlations with feature
maps from the other image as follows:

F̂0 = F̌0S = [F̂ (1)
0 , F̂ (2)

0 , . . . F̂ (i)
0 . . . F̂ (C)

0 ] ∈ RM×C

F̂ (i)
0 =

1
C

C∑
j=1

F̌ (j)
0 sij ∈ RM , (2)

where F̂0 represents the revised feature maps from F̌0. F̂
(i)
0

indicates the ith column of F̂0 and reflects the correlations
between the ith feature map of F1 and all feature maps of F0.
Similarly, the revised feature maps F̂1 can be computed by
F̂1 = SF̌T1 .

For a feature map in one image, if similar feature maps
exist in the other image in different channels, the difference
between the same channel feature maps may be large, but the
difference between the feature map in one image and similar
feature maps in the other image can be small enough to avoid
detection of the pseudo-changes. Based on this, we consider
the difference between the feature maps in one image and the
feature maps obtained from the channel-wise co-attention as
follows:

Datt = abs(fg([F0; F̃0])− fg([F̃1;F1])) ∈ RH×W×K (3)
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where F̃0 ∈ RH×W×C and F̃1 ∈ RH×W×C are reshaped
feature maps from F̂0 and F̂1, respectively, [;] denotes the
concatenate operation, and fg is a 1 × 1 convolution layer in
which the number of filters is K . In addition to Datt , we also
use the same channel-wise difference between the feature
maps F0 and F1 to prevent the proposed method frommissing
the detection of changed areas as follows:

Dfeat = abs(F0 − F1) ∈ RH×W×C . (4)

We combine the difference maps obtained from Equation
(3) and (4) to reduce detection of pseudo-changes without
compromising the performance of detecting genuine change.
The optimal combination is determined during training using
trainable weights as follows:

Dout = fh([Datt ;Dfeat ]) ∈ RH×W×L (5)

where fh is a 1 × 1 convolution layer in which the number
of filters is L. The combined difference maps Dout are trans-
ferred to the corresponding decoder layer in the form of skip
connections.

B. LOSS FUNCTION
We also incorporate a loss function to reduce detection of
pseudo-changes. In addition to the usual cross-entropy loss
function for labeled data, we add a contrastive loss func-
tion that encourages the difference between features from
the unchanged areas of the two images to be small while
enforcing features from the changed areas to be larger than
a specific margin. The contrastive loss function was shown
to be effective in improving the performance of CD in previ-
ous investigations [7], [22]. We compute the contrastive loss
function using outputs of the encoder as

Lcont =
∑
i,j

w(1− yij)d2ij + (1− w)yij[max(m− dij, 0)]2,

(6)

where dij is the distance between the feature vectors of F0 and
F1 at position (i, j) and m is the margin for changed feature
pairs. w is used to balance the weights of the two terms in
Equation (6), and yij is a label at position (i, j). We set the
label in the changed area to 1 and the label in the unchanged
area to 0. Therefore, the first term is zero in the changed
areas while the second term is zero in the unchanged areas.
By minimizing the loss function, the distance between the
features from the unchanged areas should be close to zero
because the first term of Equation (6), wd2ij , is minimized.
On the contrary, the distance between the features from the
changed areas should be larger than margin m because the
second term of Equation (6), (1 − w)[max(m − dij, 0)]2,
is minimized.

The total loss function of the proposed method is
defined as

Ltotal = λLcont + (1− λ)Lce, (7)

FIGURE 4. Illustrations of the CDD dataset [6]: (a) T0 image, (b) T1 image,
and (c) ground truth.

where Lcont is the contrastive loss function, Lce is the
weighted cross-entropy loss function between the prediction
and ground truth, and λ is the weight between the two losses.

IV. EXPERIMENT
To verify the effectiveness of the proposed method, we com-
pared the performance of the proposed method with that
of conventional CD methods such as FC-EF [24], FC-
Siam-Conc [24], FC-Siam-Diff [24], DASNet [7] that uses
self-attention modules, and STANet [22] that uses both
self-attention module and spatial-wise co-attention module.
We conducted experiments involving the detection of changes
in the well-known CDD [6] and BCDD [33] datasets.

A. DATASETS
1) CDD DATASET
The CDD dataset is a remote sensing change detection dataset
that is open to the public [6]. The dataset contains 11 full-size
image pairs of season-varying images, of which 7 image pairs
are 2, 700 × 4, 725 pixels and 4 image pairs are 1, 000 ×
1, 900 pixels [6]. The spatial resolutions of the images in
the dataset are between 3 cm to 100 cm per pixel. In [6],
the original image pairs are cropped into images that are
256 × 256 pixels to generate a cropped dataset that con-
tains 10,000 images for training, 3,000 images for test, and
3,000 images for validation. We used the cropped datasets for
this investigation. Fig.4 shows example images of the cropped
CDD dataset, Figs.4(a) and (b) show bitemporal image pairs,
and Fig.4(c) shows the ground truth images.

2) BCDD DATASET
The BCDD dataset covers an area that was rebuilt
after the occurrence of a 6.3-magnitude earthquake in
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FIGURE 5. Illustrations of the BCDD dataset [33]: (a) T0 image,
(b) T1 image, and (c) ground truth.

February 2011 [33]. The main purpose of the dataset is to
detect changes related to buildings before and after the earth-
quake. Because the dataset contains only one image pair, the
size of which is 15, 354 × 32, 507 pixels [33], we cropped
the original image into small-sized images with a size of
256 × 256 pixels for deep learning. We divided the cropped
images for use in the training set, validation set, and test
set with the ratio of 8:1:1. The cropped dataset contains
6,096 images for training, 762 images for test, and 762 images
for validation. Fig.5 shows example images of the cropped
BCDD dataset, Fig.5(a) and (b) show bitemporal image pairs,
and Fig.5(c) shows the ground truth images.

B. IMPLEMENTATION DETAILS
The encoder of the proposed network was designed based on
VGG16 [37]. We used the first four convolutional blocks of
VGG16 as the first four convolutional blocks of our encoder.
Additionally, we used the weights of the pre-trained VGG16
with the ImageNet dataset [38] as the initial weights of the
first four convolutional blocks of the encoder.

We set the number of filters K in Equation (3) to be the
same as the number of channelsC of the input for the channel-
wise co-attention module, the number of filters L in Equation
(5) to C , and the balance weight w and margin m for the
contrastive loss function to 0.4 and 2.0, respectively. The
balanced weight λ between the two losses in Equation (7) is
set to 0.1 for the CDD and BCDD dataset.

We implemented DASNet and STANet using the
PyTorch [39] codes provided by the authors without modify-
ing the network structures [7], [22]. We implemented FC-EF,
FC-Siam-Conc, FC-Siam-Diff, and the proposed method
using the TensorFlow2 library [40]. We trained the proposed
method using the Adam optimizer with a fixed learning rate

of 1× 10−4 on an NVIDIA TITAN XP graphics card. We set
the batch size to 8, maximum epoch to 200, weight decay to
1 × 10−4, and patience for early stopping to 30. In addition,
we do not perform data augmentation for the CDD dataset or
BCDD dataset.

C. PERFORMANCE METRICS
To evaluate the performance of the CDmethods, we analyzed
the precision, recall, f1-score, and overall accuracy. The pre-
cision is defined as

P =
TP

TP+ FP
, (8)

where TP is the number of true positives andFP is the number
of false positives. The precision is the ratio of the number of
pixels correctly classified as changed pixels to the number of
pixels detected as changed pixels. We define recall as

R =
TP

TP+ FN
, (9)

where FN is the number of false negatives. The recall is
the ratio of the number of pixels correctly classified as
changed pixels to the total number of actually changed pixels.
We define the f1-score as

F =
2PR
P+ R

, (10)

where F is the f1-score, P is precision, and R is recall.
We define the overall accuracy as

OA =
TP+ TN

TP+ TN + FP+ FN
, (11)

where OA is overall accuracy and TN is the number of true
negatives. We compute all the metrics in pixel units in this
investigation.

D. EXPERIMENTAL RESULTS
1) CDD DATASET
We present the precision, recall, f1-score, and overall accu-
racy of eachmethod for the CDD dataset in Table 1. As shown
in the table, the proposed method achieves the best perfor-
mance with the highest recall (95.67%), precision (96.06%),
f1-score (95.86%), and overall accuracy (98.95%). The recall,
precision, f1-score, and overall accuracy are approximately
2.23%, 5.91%, 4.10%, and 1.09%, respectively, higher than
those of STANet, which achieves the second-best perfor-
mance. The proposed method demonstrates a significant
performance improvement compared with other methods in
terms of both recall and precision. We believe that the reason
for the improvement in the precision is that the proposed
method may reduce the differences in unchanged areas by
comparing a feature map in one image with similar fea-
ture maps in the other image. In addition, we think that
the proposed method achieves the best performance with-
out compromising the probability of detection because the
channel-wise co-attention module also considers the differ-
ence between the featuremaps from the two images, as shown
in Equation (5).
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FIGURE 6. Illustrations of the results of the channel-wise co-attention module for the CDD dataset [6]: (a) T0 image, (b) T1 image, (c) ground truth,
(d) mean(abs(F0 − F1)), (e) mean(abs(F0 − F̃1)), and (f) mean(abs(F̃0 − F1)).

FIGURE 7. Comparison of the proposed method with other CD methods for the CDD dataset [6]: (a) T0 image, (b) T1 image, (c) ground truth,
(d) FC-EF, (e) FC-Siam-Diff, (f) FC-Siam-Conc, (g) DASNet, (h) STANet, and (i) the proposed method. The changed parts are shown in white.

To further verify the effectiveness of the channel-wise
co-attention module, we compared the absolute difference
between the feature maps from the two images (i.e., abs
(F0 − F1)) with the absolute difference between the feature
maps from an image and feature maps generated from the
attention module (i.e., abs(F0− F̃1) and abs(F̃0−F1)). If the
channel-wise co-attention module is effective in reducing dif-
ferences between the feature maps from the unchanged areas,
the absolute difference between F0 and F̃1 and between F̃0

and F1 will have smaller values than the absolute difference
between F0 and F1. Fig.6 shows the absolute difference map
averaged in the channel direction for visualization. As can
be observed, for the unchanged areas, the absolute difference
maps between F0 and F̃1 and between F̃0 and F1 have smaller
values compared with the absolute difference map between
F0 and F1. From these results, we can confirm that the
channel-wise co-attention module is effective in alleviating
the problem of pseudo-change detection.
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FIGURE 8. Illustrations of the results of the channel-wise co-attention module for the BCDD dataset [33]: (a) T0 image, (b) T1 image, (c) ground
truth, (d) mean(abs(F0 − F1)), (e) mean(abs(F0 − F̃1)), and (f) mean(abs(F̃0 − F1)).

FIGURE 9. Comparison of the proposed method with other CD methods for the BCDD dataset [33]: (a) T0 image, (b) T1 image, (c) ground truth,
(d) FC-EF, (e) FC-Siam-Diff, (f) FC-Siam-Conc, (g) DASNet, (h) STANet, and (i) the proposed method. The changed parts are shown in white.

In addition, we think that the contrastive loss function
is effective in reducing pseudo-change detection because it
forces the features from the unchanged areas of the two
images to be similar. The contrastive loss function was also
used in previous methods such as STANet and DASNet
[7], [22], which may explain why STANet and DASNet per-
formed better than the other conventional methods.

For a more intuitive evaluation, Fig.7 compares the detec-
tion results of the proposed method with other CD methods.

Figs.7(a) and (b) show bitemporal images affected by illu-
mination changes and seasonal changes, Fig.7(c) shows
the ground truth images, and Figs.7(d), (e), (f), (g), (h),
and (i) show the detection results of FC-EF, FC-Siam-Diff,
FC-Siam-Conc, DASNet, STANet, and the proposed method,
respectively. As can be observed, the result of the pro-
posed method is the most similar to the ground truth, which
means that the proposed method is more robust to envi-
ronmental pseudo-changes than other methods. In addition,
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TABLE 1. Performance results for the CDD dataset.

we qualitatively confirm that a channel-wise co-attention
module may be more effective in reducing pseudo-changes
than self-attention and spatial-wise co-attention modules,
as shown in Figs.7(g), (h), and (i).

2) BCDD DATASET
To further evaluate the performance of the proposed method,
we also conducted experiments using the BCDD dataset.
We present the precision, recall, f1-score, and overall accu-
racy in Table 2.

TABLE 2. Performance results for the BCDD dataset.

As shown in Table 2, the proposed method also achieves
the best performance with the highest recall (91.11%), pre-
cision (95.03%), f1-score (93.03%), and overall accuracy
(99.34%). The recall, precision, f1-score, and overall accu-
racy are approximately 1.77%, 6.15%, 3.92%, and 0.4%,
respectively, higher than those of DASNet, which achieves
the second-best performance. In particular, the proposed
method demonstrates significant performance improvement
compared with other methods in terms of precision, which
implies the proposed method is effective in reducing the
detection of pseudo-changes.

We also identify whether the proposed method can reduce
differences between feature maps when comparing feature
maps from unchanged regions of two images with envi-
ronmental changes. Fig.8 compares the absolute difference
between the feature maps from two images (i.e., abs(F0−F1))
with the absolute difference between feature maps from an
image and feature maps generated from the attention mod-
ule (i.e., abs(F0 − F̃1) and abs(F̃0 − F1)). As shown in
Figs.8(d), (e), and (f), for the unchanged areas, the abso-
lute differences between F0 and F̃1 and between F̃0 and
F1 have smaller values than the absolute difference between
F0 and F1. From this figure, we can observe that the proposed
method reduces the difference between feature maps from
unchanged areas, which is consistent with the experiments
using the CDD dataset.

Fig.9 illustrates the prediction results of each method using
the BCDD dataset. Figs.9(a) and (b) show bitemporal images,
Fig.9(c) shows the ground truth images, and Figs.9(d), (e), (f),
(g), (h), and (i) show the detection results of FC-EF, FC-Siam-
Diff, FC-Siam-Conc, DASNet, STANet, and the proposed
method, respectively. From this figure, we also confirm that
the proposed method is effective in reducing the detection of
pseudo-changes.

V. CONCLUSION
In this study, we propose a channel-wise co-attention-
based Siamese network system to detect changes between
high-resolution bitemporal images. Compared with existing
change detection methods, the proposed method is more
robust to pseudo-changes caused by different imaging con-
ditions and/or changes irrelevant to the purposes of change
detection. The key element of the proposed method for reduc-
ing pseudo-change detection is the channel-wise co-attention
module that considers channel-wise correlations between
one feature map in an image and feature maps from the
other image to find similar feature maps in the other image.
By comparing the feature map in one image with the com-
bination of similar feature maps in the other image instead
of comparing the same channel feature maps, the proposed
method reduces the detection of pseudo-changes. In addi-
tion, the contrastive loss function of the proposed method
encourages the features of the two images from unchanged
areas to be more similar, thereby facilitating the determina-
tion of unchanged areas as unchanged areas, also alleviating
the problem of pseudo-change detection. We verified that
the proposed method is more robust to pseudo-changes than
conventional methods through experiments using the change
detection dataset (CDD) [6] and building change detection
dataset (BCDD) [33]. The proposed method achieves sig-
nificant performance improvement compared with existing
methods in terms of both recall and precision as demonstrated
in the experiments.
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