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ABSTRACT 1t is crucial to conduct highly accurate estimation of the state of charge (SOC) of lithium-
ion batteries during the real-time monitoring and safety control. Based on residual constraint fading
factor unscented Kalman filter, the paper proposes an SOC estimation method to improve the accuracy of
online estimating SOC. A priori values of terminal voltage were fitted using cubic Hermite interpolation.
In combination with the Thevenin equivalent circuit model, the method of adaptive forgetting factor recursive
least squares is used to identify the model parameters. To address the problem of the UKF method strongly
influenced by system noise and observation noise, the paper designs an improved method of residual
constrained fading factor. Finally, the effectiveness of this method was verified by the test of Hybrid Pulse
Power Characteristic and Beijing Bus Dynamic Stress Test. Results show that under HPPC conditions,
compared with other methods, the algorithm in the paper estimates that the SOC error of the battery remains
between -0.38% and 0.948%, reducing the absolute maximum error by 51.5% at least and the average error
by 62.7% at least. Moreover, under the condition of Beijing Bus Dynamic Stress Test the algorithm estimates
the SOC error of the battery stays between -0.811% and 0.526%, the SOC estimation errors are all within
0.2% after operation of ten seconds. Compared with other methods, the absolute maximum error can be
reduced by 42.7% at least, the average error is reduced by 95% at least. Finally, the test proves that the
method is of higher accuracy, better convergence and stronger robustness.

INDEX TERMS Lithium-ion battery, state of charge estimation, residual constraint fading factor- unscented

Kalman filter, adaptive forgetting factor recursive least square, cubic Hermite interpolation.

I. INTRODUCTION

At present, new energy vehicles like Tesla, Chinese National
Institute of Oceanography (NIO), Xiaopeng and Build Your
Dream (BYD), are all powered by lithium-ion batteries
because of their long service life, great stability, high energy
density, non-pollution and moderate price [1]. However, the
capacity of individual lithium-ion battery is not enough to
meet the demand for daily driving range of electric vehicles,
automobile companies like to use battery packs in series
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or parallel as power sources [2]. Lithium-ion batteries are
highly electrochemically non-linear, susceptible to many fac-
tors such as operation temperature, charge/discharge current,
charge/discharge depth during operation [3]. With no real-
time condition monitoring and behavior control, batteries
will deteriorate rapidly and even explode, causing unex-
pected hazards [4]-[6]. As a result, the key technology in
doing lithium-ion battery research covers effectively improv-
ing the efficiency of lithium-ion batteries, expanding the
driving range within a charging cycle, extending the service
life of the lithium-ion battery pack, avoiding the battery
failures and other problems [7]. In [8], according to the
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fractional-order calculus, the authors of this study proposed
an SOC and SOH (state of health) co-estimation scheme,
established a decomposition equivalent circuit model, used
a double fractional-order extended Kalman filter to achieve
simultaneous estimation of SOC and SOH. In the presence
of initial deviation, noise and disturbance, the maximum
steady-state errors of SOC and SOH estimation can be within
1%, ensuring efficient and reliable operation of the battery
management system. In [9], based upon incremental capacity
analysis (ICA), it proposed a solution for the difficulties in
precisely metering SOH of the electric vehicles (EVs). Data
set collected from laboratory tests and EVs in people’s daily
life can be used to have verified the solution, which succeeded
in achieving precise estimation of SOH of battery pack in
laboratory and EVs in daily life. In [10], and what’s more,
based on large operating data of real-world EVs, the authors
suggested a data-driven charging capacity diagnosis method
that charging rate, temperature, State-of-Charge and accumu-
lated driving mileage acted as the inputs, a polynomial feature
combination was used for model training, and a CART-based
prediction model was built to predict vehicle failures caused
by batteries. Directly reflecting the available capacity of the
battery, the state of charge (SOC) can be used to calculate and
correct the SOH, state of energy (SOE), state of power (SOP),
and state of function (SOF) of the battery pack as a whole
[11], [12]. Hence, it was of great importance to achieve accu-
rate SOC estimation of Lithium-ion batteries [13]. However,
there were no sensors available for measuring the SOC of the
battery, it can be only acquired using estimation methods of
the model according to the external characteristic parameters
of the battery (voltage, current, temperature, etc.) [14], [15].

Normally, SOC estimation methods fall into four cate-
gories: ampere-hour integral (AHI) method, parametric char-
acterization method, data-driven method and model-based
method. Scholars considered the first two methods as open-
loop methods [16], [17]. Besides, Coulomb-counting method
was utilized for the connection between the SOC and the
cycling of the lithium-ion battery [18]. Nevertheless, despite
the easy implementation, error accumulation and the initial
SOC value requirement made this method unfit for online
SOC estimation [19]. In parametric characterization methods,
Open-circuit voltage (OCV) method [20] and electrochemical
impedance spectroscopy method [21] was most widely used.
In terms of application process, the two methods mentioned
above ran essentially the same way, querying the SOC value
through a mapping relationship or table [22]. However, these
methods were rarely suitable for real time online estimation
and used on large scale of BMS because of the long test time,
high costs, etc. [23]. In addition, when in use, these methods
failed to consider the ageing of the battery, they require
regular calibration, otherwise the SOC estimation results
will be inaccurate. The data based SOC estimation method
mainly includes Artificial Neural Network (ANN) method
[24], Support Vector Machine (SVM) method [25], etc. With
the SOC estimation accuracy high, it was particularly good
at solving non-linear problems, however, it required a large
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amount of experimental data as a priori knowledge and all the
data should be fully reflective of the battery characteristics.
Otherwise, it was most likely to cause over-fitting of the
model.

The model-based method of SOC estimation assumed that
the battery was a dynamic system, described the state space
using battery modelling. Then a variety of filters or observers
such as Kalman filter (KF) family algorithms [26], Particle
filter (PF) algorithms [27], and nonlinear observer algorithms
were used to estimate the state variables [28]. This method
was widely used because it enabled the estimation of closed-
loop self-calibration and had the advantages of high accuracy
and better real-time performance. Especially KF algorithms
were intelligent tools to estimate the dynamic state of the
battery.

In [29], based on the extended Kalman filter (EKF) and
adaptive extended Kalman filter (AEKF), SOC estimation
method was established and tested under the federal urban
driving schedule of America. In [30], an adaptive improved
unscented Kalman filtering (AIUKF) algorithm was devel-
oped to realize the iterative calculation process, aiming to
overcome the rounding error in the numerical calculation
treatment when it was used to estimate the nonlinear state
value of the battery pack. In [31], a new SOC estimation
method was raised according to a novel safety assurance
method based on the compound equivalent modelling and
iterative reduction of particle-adaptive Kalman filter. In [32],
adopting the forgetting factor recursive least squares (FFRLS)
technique, and combining the EKF with the untraced Kalman
filter (UKF) for an accurate estimation of battery charge state,
SOC estimation accuracy can be reached as high as 2%.
In [33], the research proposed a joint online SOC estimation
method of the fixed memory recursive least squares (FMRLS)
method and Sigma-point Kalman Filter (SPKF) algorithm,
and this achieved dynamic identification of model parame-
ters, and battery SOC estimation. Through the above analysis,
it was clear that the overall estimation accuracy of KF family
algorithms depends on accuracy of equivalent model and the
initial parameter, such as initial SOC error, covariance matrix
elements.

In the study, we realized an accurate online SOC esti-
mation, and made improvements in the initial value fitting,
model parameter identification and SOC estimation meth-
ods. The segmented cubic Hermite interpolation method took
place of the existing polynomial fitting method in order
to obtain continuous smooth open circuit voltages, and to
provide quite real a priori values for model identification.
Then, the paper introduced forgetting factor optimal mean
square error objective function, solving the problems of
data saturation and adaptive capability of the RLS method.
In contrast with the FFRLS and FMRLS methods in [32]
and [33], and the adaptive identification capability of the
model became stronger. The UKF transformation process
was derived because of EKF, and the introduction of the
residual constraint fading factor was done for the UKF
method improvement, reducing the influence of system noise
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and observation noise. Finally, based on residual constraint
fading factor unscented Kalman filter, the study advanced
the adaptive state of charge estimation method of lithium-
ion battery. Moreover, the nonlinear verification experiments
were established because of this new idea. Then the method
proved effective through the hybrid pulse power characteristic
(HPPC) test, Beijing Bus Dynamic Stress Test (BBDST) and
robustness test.

Il. BATTERY MODELLING AND PARAMETERS
IDENTIFICATION

A. BATTERY MODELLING

For Model-based methods of SOC estimation, it needs a
model first, and the model may describe the external char-
acteristics of the power battery accurately. The widely used
models include electrochemical model, empirical model and
equivalent circuit model.

The electrochemical model is a battery model based on
porous electrodes and solution concentration theory [34],
and the terminal voltage and SOC of the battery can be
calculated according to the electrochemical reaction process.
The Pseudo-2-Dimensinal (P2D) model, most typical, uses
a set of coupled partial differential equations to describe
the concentration and potential of solid-phase lithium-ion
batteries [35]. Though this model with high accuracy mainly
reflects the internal chemical reaction mechanism of the bat-
tery, it is hard to realize an accurate estimation just for numer-
ous parameters, and its computational complexity is high and
time-consuming [36]. In [37], it presented certain simplified
electrochemical models such as the Nerst model, Shepherd
model and Unnewehr model. The simplified electrochemical
models are from the practice, and they are referred to by
scholars as empirical models. In [29] and [38], a new com-
bined model was proposed combining the Nerst, Shepherd
and Unnewehr models. The equation of the model is shown
as follows

Uoe =ko—RyI —k{x+ko /x+k3 In(x) —k4 In(1 —x)
(D

where U, means the OCV of the battery, kj 234 are the
coefficients of polynomial equation respectively, and x the
SOC of the battery.

The equivalent circuit model consists of conventional cir-
cuit elements such as resistors, capacitors and constant volt-
age sources, uses an RC network to describe the dynamics
of the power battery. With higher applicability to various
operating conditions, it is easy for analysis and application.
Considering an appropriate trade-off between accuracy and
complexity, the study selects Thevenin equivalent circuit
model for lithium-ion battery as the battery model in the
study. Physically simple and clear, this model can be used
to simulate charging and discharging characteristics of the
battery. The specific circuit is shown in Fig. 1.

In Fig.1 i(t) is the load current. Ry is the internal ohmic
resistance to describe the rapidly changing ohmic polariza-
tion within the battery. R, and C, are respectively polarization
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FIGURE 1. Thevenin equivalent circuit model (discharge).

resistance and polarization capacitance of the battery, RC net-
works describe the slowly changing concentration polariza-
tion within a battery. Uy, represents the terminal voltage.
From Fig.1, defining the power battery charging current as
positive and the discharging current as negative, the mathe-
matical expression of the model is expressed as follows
ot g o
pLp P
UL(t) = Uoc + i(1)Ro + Up(1)

InEq (2), U, (t) is the voltage across the RC network, which
reflects a polarized electromotive force of the battery. Uy (t)
and i(t) are measured with the sensors and are discrete data.
Uoc, Ro, Ry, and C, are unknown parameters to be identi-
fied online by the adaptive forgetting factor recursive least
squares. After discretization of Eq.2, a difference equation (3)
is achieved as follows

Up(t) = —

R
UL(s) = Upe(s) + i(s)(Ry + ———2—— 3
L(8) = Uoc(s) + i(s)(Ro ¥R, C,,s) (3)
UL (s) — Uyc(s) in the following equation is defined as the
system output, i(s) is defined as the system input, and the
transfer function of the system is rewritten as the equation (4)

UL(s) — Upc(s) _ Rp
i(s) T T¥R,Cps
After a bilinear transformation, the transfer function of the

system is converted to the Z-domain, and the equation (5) is
decided.

Gs) = @)

-1 ap + asz
G = 1+az7! ©)
Eq. (5) satisfies Eq. (6).
4t = T —2R,C, 0 = RoT + RpT + 2RoR,C)p
Ig;zRPCP’ T +2R,C, ©)
ol +R,T — 2RoR,C,
“= T +2R,C,

where T is the sampling time. It is assumed that U, and Ry
stay constant during a sampling period because the sampling
time is very short. Then a discretization formula (7) of the
model is obtained through the inversion of Z.

UL(k) = Upe(k) — a1[Ur(k — 1) — Upce(k — 1)]
+ api(k) + azitk — 1)
(7N
where aj, ay and a3 are coefficients of the equation to be

identified.
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B. SEGMENTED CUBIC HERMITE INTERPOLATION

We need to obtain U,.(k) as an a priori value in order to
identify the model parameters. It is usual that a polynomial
fit method to the SOC-OCYV discrete data is used to obtain
the value of U,.(k). But this method failed to ensure that all
the OCYV test points fall on the fitted curve and the modelling
accuracy is low accordingly [39], [40]. The study we did uses
a segmented cubic Hermite interpolation to fit the SOC-OCV
curve for reliability of the a priori value.

The segmented cubic Hermite interpolation method
enables the interpolation points to be within the interpolation
function, ensuring that there are the same first, second and
even higher order derivatives are available at each interpo-
lation points. Therefore, this method made the interpolation
points continuous smooth, also reflected the real changes
of the data well. For the changes of each parameter in
the equivalent model of the lithium battery, these changes
are non-linear, and especially irregular. It is more scientific
and accurate that segmented cubic Hermite interpolation is
adopted to approximate the real variation of the parameters.

It is assumed there exist nodes x; within any interval [a, b]
andi=0,1, "n,a=x) < x| << x, <b, and a derivative
value y;.

For any two vectors of nodes to be interpolated (x;, y;) and
(Xi+1, Yi+1), here x; means the measurement of the SOC, y;
the value of the corresponding function OCV. The distance
of i decided as h; and the primary difference quotient as §;,
as is shown in Eq. (8)

hi = Xit1 — xi, 8; = Yl
hi
Now it is decided that variable s equals x-x;, and that h
equals A;, a function expression of segmented cubic Hermite
interpolation is shown in Eq. (9)

®

3h% — 242 W3 — 3hs? + 253
Hx) = —5—Vis1 + ———5—i
h h
2 2
s<(s — h) s(s — h)
+ Tdi—i—l + h—zdi (©)]

and Eq. (9) satisfies Eq. (10).

H(x;) = yi, H(xiy1) = yir1, H' (%) = diy H' (xi1) = di1
(10)

where d; and d; are the derivation value of y;, y;4 respec-
tively, which can be approximated by the difference quotient
operations of the nodes before and after the interpolation
points.

C. FORGETTING FACTOR RECURSIVE LEAST SQUARES
METHOD

Easy to understand and fast to converge, least square (LS)
method is widely used in the parameter identification for the
equivalent circuit model of lithium-ion batteries. An expres-
sion of the difference equation is shown in Eq. (11)

vk = h(k)T 0(k) + v(k) (11)
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where h(k)T is an observable quantity, 0(k) is a vector of
parameters with discrimination, v(k) is system noise.

From Eq. (7) and Eq. (11) comes the least square expres-
sion of the Thevenin model as shown in Eq. (12)

yi = UL(k)
h(k) = [1 Upe(k — 1) = Up(k — 1) i(k) itk — 11"
0(k) = [ Upc(k) a1 az a3 1"
12)

where U, (k-1) denotes the open circuit voltage input at the
time k-1, Ur (k-1) the terminal voltage input at the time k-1,
and i(k) denotes the current input at the time k.

In the process of online identification, the latest data should
be input and output constantly, and the estimation accuracy
of 6 is improved by continuous iteration until a satisfactory
accuracy is achieved. For the system model and parameters
greatly influenced by external factors, the method can accu-
rately capture the real-time characteristics of the system by
automatically correcting and updating the system parame-
ters. However, with the times of algorithm data iterations
increasing, data saturation may occur. As a result, a method of
forgetting factor recursive least squares in [41] was purposed
for an improvement of the online estimation capability of the
RLS algorithm. According to Eq. (11), extending y and h(k)
to N dimensions, and introducing the noise error e(k), the
residual sum of squares is required to be minimal according
to the principle of recursive least squares, and a formula
for FFRLS for recursive operations are obtained finally. See
Eq. (13)

Ok)y=0k -1 +K k) [yk) —hk)" 6k —1)]
P(k — 1) h (k)
K (k) =
A+ hT (k)P (k — 1) h (k)
P(ky=2r"1[I-K & h ()]P(* -1

13)

where é(k) is the estimated value of the model parameters
at the time k, K (k) the gain matrix at the time k, P(k) the
updated covariance matrix at the time k, and X the forgetting
factor ranging from 0-1, the closer the factor is to 1, the better
the simulation.

D. ADAPTIVE FORGETTING FACTOR PROCESSING

Batteries are non-linear, changes in current input and external
noise do not maintain a certain predictable trend, and errors
in the calculation will vary with time. Therefore, according
to the system characteristics, battery operation at different
stages requires different forgetting factors. A simple RLS
approach with a fixed forgetting factor failed to meet the
needs of different operation conditions and stages of the
electric vehicle. Reference [42] proposed a variable forgetting
factor (VFF) strategy using an exponential curve approach
to describe the forgetting factor changing with error, and
the FFRLS performance was improved. While in [43], there
raised a Limited Memory RLS algorithm for the purpose of
modulating the error covariance matrix in real time by adding
a fading factor to weaken the effect of old data. Through the
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FIGURE 2. Computational flowchart of the AFFRLS online identification method.

above research, we introduces the RLS method with adaptive
forgetting factor (AFF) to obtain the optimal forgetting factor
by solving for the minimum estimation of the prior error.
Then, data saturation can be overcome and there will be
adaptive online identification of parameters [44].

The AFFRLS method aims to calculate A that optimizes
the mean squares of priori error. Therefore, the cost function
is determined as shown in Eq. (14).

1
J'(n) = 5E[|e<k>|2], e(k) = UL (k) —h (k)" 6 (k) (14)

where e(k) is a priori error referred to above, E[ ] is the
expectation operator.

The partial derivative of J'(n) in Eq. (14) with respect to A
is completed for optimization, see Eq. (15).

aJ'(k) _ lE |:8e(k) )+ de* (k)

v, (k) =
»(6) ar 2 | o A

e(k)]

1
=—E [wH (k — Dh(k)e* (k) +h () (k — l)e(k)]
(15)

where W(k) is the derivative of the estimated vector with
respect to A, and S(k) the derivative of the covariance matrix
with respect to A. The superscript symbol H indicates a
transpose, and he superscript symbol * the accompanying
matrix. According to the “method of steepest descent,” we
can use the recursive form of Eq. (16) to express the forgetting
factor as in the following equation.

k) = Ak — 1) — aVi(k) = Ak — 1)

+ aRe [W’ (k — 1)h(k)e*(k)]t (16)

where a is a small, positive learning-rate parameter. A4
denotes the upper limit, while A_ the lower limit.

In summary, the update process of the adaptive forgetting
factor of AFFRLS is expressed as follows

S(k) =[G~ [I— K (k)hH (k)] Sk — DI—h(k)K ™ (k)]
+AOI K (OKH (k) — [~ P(k)
Y (k)=[I — K()h" (k)] v (k — 1)+Sk)h(k)e* (k)

(17)
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FIGURE 3. Thevenin equivalent circuit model (discharge).

From the above analysis, it can be intuitively found that
the variable forgetting factor becomes smaller when the priori
error e(n) deviation grows larger. On the contrary, the corre-
sponding variable forgetting factor becomes larger when the
estimation deviation becomes smaller. Then, the gain matrix
and variance matrix can be corrected through changes of
forgetting factor. Therefore, the specific flow chart for iden-
tifying the parameters in Thevenin model using the AFFRLS
method is shown in Fig. 2.

As shown in Fig.2, the calculation process in the black
scheme is the online identification method FFRLS, and the
calculation process in the red scheme with dotted line is a
improved method proposed in the paper. From the calculation
process in Fig.2 and Eq. (8), we can invert the values of Ry,
R, and Cp, as shown in Eq. (18).

az—ap 2(ajaz—a3z) T(a%—2a1+1)
R(): pzz—l’ pz—
aj—

ai—1° 4(az—ayaz)

(18)

where ay, ay and a3 were defined in the Eq. (7).

IlIl. ESTIMATION OF BATTERY STATE OF CHARGE
The interior of the lithium-ion battery is a typical nonlinear
system. A closed-loop system is constructed in the study in
order to obtain the internal state parameters, as is shown in
Fig.3.

where i(k) and Uy, (k) mean the input current, the voltage
at the output at the time k respectively. U, (k) and e(k) are the
estimated value of the terminal voltage at the time k and the
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error respectively, S @C(k) is the estimate of the SOC at the
time k.

A. ESTIMATE BATTERY SOC BASED ON EKF

EKF method aims at transformation of the state equation
of the nonlinear system into a linear one. In the process of
expanding the nonlinear discrete function, the second-order
and higher-order functions are discarded, and an approximate
linear space equation is obtained after linearization of the
equation [16]-[45]. The general expression for the linearized
equation is shown as follows

X = Ag—1Xk—1 + Br—1ug—1 + wik—1 (19)

Yk = Crxx + Dyug—1 + v
where xj is the state vector, y; is the observation vector,
uy is the input vector, wy and v; are independent Gaus-
sian white noises. The first part of the equation represents
the state equation, and the second part means the observa-
tion equation. Ay is the state transfer matrix, By the input
matrix, Cy the observation matrix, and Dy, the direct transfer
matrix.

Combined with the Thevenin equivalent circuit model, the
voltages U, and the SOC in the model work as state variables
of the system, the terminal voltage Uy, of the battery as the
system observation, and the charge/discharge current i as the
system excitation. With the Euler’s formula, a discrete state
equation of the system is obtained from Eq. (20) and AHI
method [47], as is shown in Eq. (20).

SOC, | |1 0 SOCy—1
Up,k o OeiT/r Up,k

20
n T/Qn : (20)

Uf—
R,(1—e Ty |
UL ik = Upe(SOCy) + ixRox + Upk

where k is the time point, SOCy the state value at the k time
point, T the period specified during the experiment, and
the time constant, reflecting the speed of response changes
in the circuit, T = R,C,. Upc(SOCy) denotes the nonlinear
function relationship between SOC and OCV, Uy is the
terminal voltage at the time k, Oy is the rated capacity of
the battery. Combining Eq. (19) and Eq. (20), the coefficient
matrix is expressed as follows

1 0 T/Qo
Ap_1 = ,Bi_q =
k—1 0 eT/r} k—1 |:Rp(1 _eT/T)} (21)
AU,c(SOCy)
= | 2% _1|,D;y =[R
o= | g = 1] = [Rox)

For the linearized model and matrix of the coefficients,
the basic formula of the KF algorithm is used to get the
recursive process of an extended Kalman filter, as is shown in
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Eq. (22).
X =1 ()
P = Ar—1Pro1Al_| + Ok
Ki = P Cl(CPr CT + Ro)™! (22)

X =x; + Kilye — h(x;)]
P =[I + Ky Ci 1P,

where P represents the mean square error, K the Kalman
gain, I the identity matrix, and R and Q the expected value
of observation noise v and process noise w respectively.

B. ESTIMATE BATTERY SOC BASED ON UKF
The battery’s open circuit voltage, internal resistance, ter-
minal voltage, and state of charge show the strong nonlin-
ear changes under battery operating conditions. For strong
nonlinear systems, EKF will fail, requiring stronger estima-
tion methods: the sigma-point approach in those cases was
often preferred, as stated in [11], [48], and [49]. Although,
the sigma-point approach was conceptually more complex
than the EKF, but its computational complexity was identical
to the EKF. This was mainly because the Jacobian matrix
was solved unnecessarily when approximating a non-linear
function. And it did not ignore higher order terms either, and
enjoyed a higher computational accuracy for the each non-
linear statistics.

Steps of estimate battery SOC are based on UKF [50]:

(1) Initialization of UKF:

{)?(0) = E(xo)

23
Pyo) = El(xo — X)(xo — X)T] )

where X(0) is the variance of xg, Py (o) is the covariance of xo.
The state vector x; contains SOC and U,,. The initial value of
SOC is obtained from the SOC-OCYV curve by looking up the
table. When Uj, initial value is zero, the polarization effect of
the battery at the initial moment is minimized.

(2) Updating status time:

Sigma-point is acquired in Eq. (24)

MO
xD =x+/n+DPy,i=1,2,...,n (24)
xD=x—Jn+DP,i=n+1,n+2,...,2n

where X is the mean value of variable x at the n-dimensional
state, P, the covariance, and A the scaling factor. Then
weighting factors is calculated as follows

l
wg,(,)):—,l:az(n—}—k)—n

n+l
O] 2
Ve — 41— b 25
we n+l+( a”+b) (25)
0) 0) .
= D a— :l,L,Z
Win We 2(n+l)l n

where w;,, and w, are the weights needed to calculate the
mean and variance of the Sigma points respectively. The scale
factor « is used to determine the distribution of Sigma points.
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And B is a non-negative weight, reducing a parameter of
higher order errors.
And status time is updated. See Eq. (26)

2n
Skte-1) = ) Wi Xlek—1) (26)
i=0
(3) Errors is updated as shown in (27):
2n ‘
Pk—1y = Y Wi Ctii—1) — F—1)
i=0
(X(ik|k_1) — -1 + Ok (27)
(4) The priori is estimated as listed in (28):
2n
Skt = Wiy (28)
i=0
(5) Gain updated is found in (29):
2n
i - i A T
Koy = ) Wi -ty = Rkle—1) K-ty —Fekie—1)
i=0
2n
i - i A T —1
[wai)(x(lk|k—1)_x(k\k—l))(X(lk\k—l)_x(klk—l)) +R)]
i=0
(29)
(6) The state estimation is updated, See Eq. (29)
Xy = Xklk—1) + Koy Oty -k jk—1)) (30)
(7) The posterior covariance is calculated in Eq. (31)
Py = Piik—1) — Kao P K, G

C. ONLIN ESTIMATE BATTERY SOC BASED ON RCFF-UKF
1) ESTIMATE BATTERY SOC BASED ON RCFF-UKF
UKEF method achieves nonlinear filtering through ‘‘approxi-
mate probability,” without linearization operation of nonlin-
ear system, and it has ideal filtering accuracy. However, this
method is very sensitive to the noise model of the system.
Lithium-ion batteries are affected by temperature, charge and
discharge ratio, charge and discharge times and other factors,
so the state noise and observation noise of the system are
colored noise rather than zero-mean Gaussian white noise as
we usually think. Therefore, the paper introduced the idea of
fading memory with residual constraint [51], [52] to enhance
the correction of strategy information through the weighted
processing of the estimation error covariance matrix of UKF,
and the divergence of filtering can be suppressed, the stability
of UKF can be improved accordingly.

The transformation of the error update in the UKF method
of Eq. (27) forms the following results (Eq.32):

2n .
Pkjk—1) = LMDy, _X(:)Wf,-)(x(lk‘k_l) — X(klk—1))
i=

' . 32
K1y = Tawe—)" + Ok (32)

LMDy, = diagIni i, m2k -+ Nkl
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where LMDy is the diagonal asymptotic array, and 7n; the
asymptotic factor.

Residual constraint fading memory UKF is very strong
about robustness to the variation of real system parameters.
The sufficient condition for making the non-polar Karl filter a
residual constraint is to determine the time-varying gain array
K} online, where the conditions are as follows:

Elxx — X][xx — %17 = min

33
E[8k8Z+j]:Ok=1,2,"~,jzl,z,... ( )

where ¢ is the sequence of observation residuals, derived
from the vector of state estimates at the time k, which contains
the information obtained from the observation vector yy at the
time k. An equation is expressed as follows:

ek = Yk — "X, vi) (34)

where vy, is the observation noise.

From the priori knowledge of the system, the ratio of the
individual state fading factors in 7; is determined to be the
following equation:

Mk M2k Npk =ar:ay---ay (35)

where q; is the scale factor. Let n; equal to aj.c, and if the
common factor ¢ to be determined can be solved, an asymp-
totic array LMDy, is obtained.

By the filter optimality principle and after a series of
derivations, ci is obtained as follows:

trlcox — Ryi]

o = (36)

n 2n

> aj[i(:) Wi Oik = Ji )ik = I
ji=

This leads to the derivation of #; x in the asymptotic array
as in Eq.(37):
a;Cr
Mk =14

The update formula for the residual array cq x is listed in
the following equation:

8181T k=0
ok = T
peok + k1€ /(1 +p) k=1

ik = (37)
aic, < 1

(38)

where p is the forgetting factor and takes values from O to 1.
The larger the value is, the smaller the proportion of informa-
tion available before the time &, and the more prominent the
influence of the current residual vector. Therefore, it is quite
able to track sudden changes in state.

Combining the relevant equations and ideas, the paper
composed the SOC estimation method based on RCFF-UKF
for lithium-ion batteries, and a calculation flow chart obtained
is shown in Fig. 4.

In Fig. 4, the calculation in the black solid line box is
Kalman Filter method, the calculation in the light blue dotted
line box is UKF method, and the calculation in the red dotted
line box is an improved method proposed by the paper.
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FIGURE 5. Core idea of the flow chart of algorithm.

2) ONLINE ESTIMATE BATTERY SOC

When used, Lithium-ion battery is of time-variant character-
istic. The model parameters of the battery change constantly
under different SOC, charge-discharge ratio, temperature and
aging conditions. So what is actually necessary is a joint algo-
rithm of online self-adaptive parameter identification of the
battery and SOC estimation model. And the paper proposes a
flow chart of the joint algorithm as shown in Fig. 5:

Fig. 5 shows that a method described in the red dotted line.
The highlights of the paper contain the following three parts.
(1) The method of cubic Hermite interpolation is adopted
to improve the fitting accuracy of SOC-OCV. (2) AFF-RLS
identification method is used to improve the parameter iden-
tification accuracy of lithium-ion battery model, and to
provide an accurate model for online SOC estimation of
the battery. (3) The UKF method improved can improve
the SOC estimation accuracy, and reduce the sensitivity of
noise and initial value, and achieve strong robustness of the
system.
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FIGURE 7. Current and voltage values of HPPC.

IV. EXPERIMENT AND ANALYSIS OF RESULTS
With 70Ah ternary lithium-ion battery as the research object,
the working condition tests HPPC and BBDST are designed
in order to verify the effectiveness of the proposed method.
The test platform in the whole experiment is shown in Fig.6.
Moreover, comparison and analysis are made about the iden-
tification of battery model parameters, terminal voltage pre-
diction and SOC estimation.

Changes of current and voltage in HPPC test are shown in
Fig.7. In addition, Part of the current and voltage change data
of BBDST working condition test is shown in Fig.8.

A. COMPARISON OF SOC-OCV CURVE FITTING

From the part 2.1 and 2.2 mentioned above, the curve fit-
ting quality of SOC-OCYV directly affects the prior value of
Uoye(k). In order to verify the effectiveness of the segmented
cubic Hermite interpolation method proposed in the paper,
a comparison is made between this method and the simplified
electrochemical model, SO-OCV curve fitting by polynomial
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FIGURE 9. SOC-OCV fitting curves.

fitting method. Fig. 9 shows the comparison results of HPPC
test data fitting. The test voltage values are used to subtract the
voltage values fitted by three methods, and the error curves
obtained are shown in Fig.10.

From Fig. 9, all the three methods make a good description
of SOC-OCV curves. However, when the data that SOC is
0.8 is enlarged, it can be find that the value of cubic Hemite
Interpolation is 3.9326V, the same as the real value; the value
of simplified electrochemical method is 3.9292 V with an
error of 0.086%, and the value of 7-order fitting method is
3.9398 V with an error of 0.18%.

According to Fig. 10, when SOC value is less than 0.05, the
fitting errors of the three methods are relatively larger because
the battery is more nonlinear within the range, more sensitive
to current changes. While the value of SOC approaches 0, the
simplified electrochemical method is affected by the variable
In(SOC) in the equation, and there is a meaningless fit in
theory. When the value of SOC is close to 1, the simplified
electrochemical method is affected by the parameter In(1-soc)
in the equation, and there lies fitting situation with meaning-
lessness. There exists larger error in 7-order fitting method
just because the accurate data of measurement points fail
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to fall on the fitting curve. The Cubic Hemite Interpolation
method works well throughout the SOC change process.

B. COMPARISON OF MODEL PARAMETER
IDENTIFICATION

In the sections 2.3 and 2.4, the paper derives the method
of FFRLS to identify the Thevenin model and propose an
improved method of adaptive forgetting factor. In order to
verify the effectiveness of this method, FFRLS method and
the improved method aim to identify HPPC and BBDST
working conditions in section 4.1 online. The model parame-
ters identified are used to estimate terminal voltage of the bat-
tery. The estimation results are shown in Fig. 11, where 11(a)
stands for the terminal voltage estimation result under HPPC
condition, and 11(b) means the terminal voltage estimation
result under BBDST condition. Then with the test value
subtracting, the estimated value corresponding error curve
can be obtained, as shown in Fig.12, where 12(a) is the
estimated error result of the terminal voltage under HPPC
conditions and 12(b) the end voltage estimation error result
under BBDST condition.

From Fig. 11, the method raised by the paper and FFRLS
method enjoyed the good tracking effects, besides, under
these two working conditions, the results estimated by dif-
ferent methods changed in the same way. When the for-
getting factor was 1, FFRLS method was replaced by the
recursive least-squares method. Nevertheless, the experiment
results in the paper show that RLS method also worked
well. In the experiment of HPPC, when forgetting factor was
0.9992, FFRLS method committed a larger error. While in
the BBDST experiment, when forgetting factor was 0.98, the
FFRLS method had a larger error too. All these situations
resulted from the current mutation of charge and discharge.
As shown in Fig.7, Fig.8, most of the time the current in
HPPC test is in a state of continuous change or static state,
requiring relatively weak model tracking capability, and for-
getting factor was oriented to 1 as possible. While the current
in BBDST test varied dramatically, requiring a strong model
tracking capability. With the forgetting factor decreasing,

44557



IEEE Access

J. Feng et al.: Adaptive State of Charge Estimation Method of Lithium-ion Battery

T T T T T
42 Experiment value J
) = =Forgetting factor=1
l f== = Forgetting factor=0.9992
a0k r_= Adaptive forgetting factor| |
238}
)
on
3
S36F
z |
34} I
32F l
L " L 1 | -
0 15000 30000 45000 60000 75000
Time (s)
a. Terminal voltage estimation values on HPPC.
42 ¢ Experiment voltage -
== =Forgetting factor=1
4.0 (=« =Forgetting factor=0.98 -
= = = Adaptive forgetting factor|
3.8
g 3.6
[5)
1]
Z 34
>
8.2
30F
2.8 350
29000 29100 _ 29209 29300 29400 < .

0 8000 16000 24000
Time (s)

b. Terminal voltage estimation values on BBDST.

32000 40000

FIGURE 11. Terminal voltage estimation results.

the fixed value of critical divergence was relatively smaller.
Therefore, it is very important to select an appropriate value
in FFRLS method. AFFRLS method proposed in the paper
can solve such problem.

From the error results in Fig.12, estimation errors of
AFFRLS method are smaller than that of FFRLS method in
both working conditions. When sudden changed happen in
current, the system stability was broken, though the value of
forgetting factor decreased, the tracking ability of the system
became stronger, and its sensitivity to noise increased, the
error increased accordingly. However, with the stability of
current change, the forgetting factor gradually tended to be 1,
the tracking ability of the system became weaker, and the
convergence estimation error became smaller. In AFFRLS
method, forgetting Factor adjusted itself automatically with
the change of external current input, ensuring the model
accuracy at any time. But in FFRLS, forgetting factor is fixed
and it failed to do the way AFFRLS method did.

According to the data in Fig.11, Fig.12, AFFRLS method
proved effective in an identification of Thevenin model. Then,
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FIGURE 12. Terminal voltage estimation error results.

to further analyze the influence of the two working conditions
on the change of forgetting factor, the result of forgetting
factor changing with time were plotted on two charts as
shown in Fig. 13. Fig. 13(a) shows the curve of the forgetting
factor under HPPC, and Fig. 13 (b) shows the curve of the
forgetting factor value change under BBDST.

As shown in Fig. 13, changes in the values of forgetting
factor are consistent with analysis in Fig. 11. It means that the
forgetting factor changes with the current. Again, this verified
the effectiveness and accuracy of AFFRLS method proposed
in the paper.

C. COMPARISON OF SOC ESTIMATION

SOC estimation of lithium-ion battery proposed in the paper
(see Flow Chart 5) verifies the effectiveness of RCF-UKF
method. At first, Cubic Hemite Interpolation and AFFRLS
method are used to identify Thevenin model, and the model
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FIGURE 13. Change curves of forgetting factors.

parameters are acquired to provide an accurate model for
SOC estimation. Then, based on the same experimental data,
methods like ampere-hour integral method, EKF method,
UKF method and RCFF-UKF method were used to esti-
mate SOC respectively. The online SOC estimation results
of lithium-ion battery are shown in Fig.14, where 14(a) is the
estimation value of SOC under HPPC, 14(b) is the estimation
value of SOC under BBDST. Moreover, the online SOC
estimation error is shown in Fig. 15, where 15(a) is the error
under HPPC, 15(b) is the error under BBDST.

In Fig.14, the Experiment value curve works as the theo-
retical value, the value of the batery SOC calculated with the
device according to the ampere-hour integral method. When
the forgetting factor is 1, RLS-EKF curve represents the SOC
value estimated by EKF method. Other curves represent a
method of combining AFFRLS of on-line identification of
model parameters suggested in the paper and SOC estimation,
in which RCFFUKEF is the improved UKF method proposed
in the paper. From the results in Fig. 14, under the two
conditions HPPC and BBDST, all the SOC results estimated
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with the four methods conform to the theoretical value of
SOC. While in Fig. 14(a), there exists a long time abeyance
in HPPC test after discharging with a large current, and in
the absence of input, state variables and observation variables
change at any time, and colored noise is introduced into the
state and observation. RCFFUKF method was based on the
acquisition of the minimum residual array, the optimal time-
varying gain array was obtained online to reduce the influence
of colored noise. As a result, compared with EKF and UKEF,
the estimation error of this method was relatively small, and
the tracking performance was much better. In Fig. 14(b), due
to the interference of current changes and noise, there came
the largest error in estimation error of RLS-EKF method. But
the estimation error of the method raised in the paper was the
smallest and tended to be stable on the whole.

Fig. 15 shows the errors of SOC estimation with four
methods under HPPC and BBDST. Macroscopically, the of
estimation error AFFRLS-RCFFUKF was the smallest and
relatively stable. Meanwhile, the paper employed ideas in
mathematical statistics like maximum error, minimum error,
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TABLE 1. Comparison of battery SOC estimation errors.

Conditi  Fitting Min error Max ME RMSE
on test method error
RLS-EKF -0.02153 0 -0.0117 0.00369
AFFRLS-
ppC EKF -0.02173 0 -0.0105 0.00293
AFFRLS-
UKF -0.01957  0.0097  0.0109 0.00407
AFFRLS-
RCFFUKF -0.0038 0.0094  0.00391 0.00294
RLS-EKF -0.01538  0.0064  -0.01165  0.00176
SII;I::RLS— -0.01832 0.0064 -0.01012 0.00416
BBDST  AFFRLS-
UKF -0.01416  9.1E-4  -0.00905  0.0038
AFFRLS-
RCFFUKF -0.00811 0.0052  -4.1E-4 0.00106

mean error and RMSE indexes to have objectively analyzed
the estimation results of the above methods, and the results
are shown in Table 1.

Table 1 shows that under HPPC, the SOC error estimated
by the algorithm of the paper lies between -0.38% and
0.948%, contrasted with other methods, the absolute max-
imum error was reduced by 51.5% at least, and the aver-
age error was reduced by 62.7% at least. Under BBDST,
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FIGURE 16. SOC estimation results at different staring SOC values.

the SOC estimation errors by the algorithm of the paper
remains between -0.811% and 0.526%, and the SOC esti-
mation errors are within 0.2% after 10 seconds of operation.
Compared with other methods, the absolute maximum error
is reduced by 42.7% at least, and the average error is reduced
by 95% at least. The above data and analysis results proved
that AFFRLS-RCFFUKF could better estimate the SOC of
lithium batteries.

D. ROBUSTNESS TEST

With the initial value of SOC imprecise, a discussion is made
about the convergence energy of SOC estimation method.
Based on BBDST experiment, the paper analyzed the four
groups of imprecise SOC initial values including 0.9, 0.8,
0.7 and 0.2, and Fig. 16 shows SOC estimation results. For
a comparative analysis to be made, we draw error curves of
SOC estimation before the first 10 seconds. As is shown in
Fig.17

It was clear that the degree of SOC initial error affected
the convergence rate. However, it was worth noting that such
method can correct the SOC estimation error even when the
battery was in a static state.

As is shown in Fig.17, data sampling time is 0.1s. The
initial value of SOC is 0.1, the maximum estimation error is
1% after 4.5s, that is, after 45 convergent calculations. For
other initial values, the estimation error has converged to 1%
within 2.2s (22 calculations). Therefore, the convergence rate
was pertinent to the inaccuracy of SOC initial value, but after
a certain number of iterative operations, any initial error can
be corrected accurately.

To discuss the adaptability of SOC estimation method
to different temperatures, according to BBDST experiment,
analyses are made about three groups of experiments at
15°, 25° and 35° respectively. To observe these data, some
SOC estimation results are shown in Fig.18. The comparison
results of SOC estimation errors are shown in Fig.19, and the
statistical analysis results of the error are shown in Table 2.
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TABLE 2. Comparison of battery SOC estimation errors.
Conditi Fitting Min error  Max error ME RMSE
on test method
15°C -0.00789  0.0904 -0.00354  0.00212
BBDST  25°C -0.00081 0.00426 -0.0004 0.00106
35°C -0.00619  0.00657 -0.00177  0.00224

It was obvious that the experimental value of SOC differed
under the same BBDST test current condition, and that the
main temperature caused a huge impact on the dynamic of
the battery. The relevant SOC became small when the tem-
perature corresponding to the open circuit voltage was a bit
lower.

With the temperature at 25°, the error fluctuation stays
relatively steady and the error remains relatively small, this
is mainly affected by the prior value. When the temperature
is at 15°, the error fluctuated greatly and the error becomes
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relatively larger, but the average error can still keep within
0.36%. Therefore, the SOC estimation erroris affected by
temperature, but after the calculation of the method proposed,
the SOC estimation accuracy is relatively high, and its adapt-
ability to different temperatures grows quite stronger.

V. CONCLUSION

The paper proposed a series of improvement measures for a
higher estimation accuracy of lithium-ion battery SOC. These
measures covered the polynomial fitting, the online identi-
fication of Thevenin model parameter, and the UKF SOC
estimation method. These improved methods were tested
under the two working conditions HPPC and BBDST, and a
contrast was made between these methods with the traditional
methods. The results show as follows:

1) On the basis of SOC-OCYV discrete data, the segmented
cubic Hermite interpolation method can be used to replace
the traditional polynomial fitting method, obtaining the prior
value of HPPC test terminal voltage. The segmented cubic
Hermite interpolation method can keep all the interpolation
points within the interpolation function, realizing the continu-
ous smooth interpolation points, and better reflecting the real
changes of HPPC test data.

2) According to Thevenin model, AFFRLS method instead
of FFRLS method can be used to identify model parameters.
Through comparative analysis of test data under the working
conditions HPPC and BBDST, it is obvious that AFFRLS
method is more accurate.

3) For the problem that the traditional UKF method is
greatly affected by system noise and observation noise, the
paper presented an improved UKF method with residual con-
straint fading memory. After comparative analysis of HPPC
and BBDST test data, AFFRLS-RCFFUKF method is high
in precision, good in convergence and strong in robustness in
terms of SOC estimation of the battery.

The method proposed by the paper is mainly designed
to solve the problem of on-line adaptive model parameter
identification and SOC estimation of lithium-ion battery. And
the improvements proposed are also applicable to other state
estimation methods of lithium-ion battery.
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