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ABSTRACT The target tracking algorithm of mobile wireless sensor networks involves target motion trend
prediction and subsequent node guidance. This study aims to solve the problems of global consistency of
node information and significant errors in forecasting fast-moving targets’ trajectories through traditional
distributed tracking methods in sensor networks. Initially, the average consistency algorithm is used to
average the local measurements of each node to achieve global consistency. Then, semantic moving
computing of the Internet of Things calculates and analyzes the node movement to support the subsequent
movement guidance of nodes and target movement prediction. Finally, the simulation experiment is carried
out to evaluate the commonly used target trajectory prediction model. The simulation results show that the
node movement algorithm by average consistency can effectively improve the positioning accuracy of the
network for moving targets. Besides, the positioning error decreases with the increase of the sensing radius
R, the number of moving nodes nm, and the total number of nodes ns deployed in a particular range in a
two-dimensional (2D) space. The positioning error after node movement in 2D space is about 20%−30%R
lower than that in a static state. After node movement in a three-dimensional (3D) space, the positioning error
is about 40%−50%R lower than in a dormant state. When the target moves at a speed greater than 7m/s, the
consistency-based moving computing algorithm’s target loss rate and tracking errors are about 0∼10% and
1.5%∼2% lower than the target tracking algorithm via Kalman Filter. Therefore, the algorithm reported here
can precisely track the high-speed moving target. The existing research on point target tracking has problems
of insufficient accuracy and robustness. The algorithm proposed here has stronger robustness, reduced data
error in multi-node, and more flexible node movements, providing a reference for the subsequent research
on distributed point target tracking.

INDEX TERMS Consistency algorithm, moving computing algorithm, mobile wireless sensor network,
distributed target tracking.

I. INTRODUCTION
The rapid development of sensors, video equipment, and
semiconductor technology has improved sensor networks.
Target tracking is a critical sensor network application to
obtain the state information of moving targets immediately
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and accurately [1]. Target tracking is crucial in many aspects,
such as civil or military navigation, timekeeping, and track-
ing. Among the technologies around target tracking, the dis-
tributed tracking technology of point targets under complex
backgrounds has attracted increasing attention and research
because of its extensive application range [2]. The distributed
tracking method has the characteristics of easy establishment
and high fault tolerance to node failure. It is suitable for
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multi-node sensor networks requiring big data processing.
Mobile wireless sensor networks are composed of decentral-
ized moving nodes. Each node has traditional static nodes’
sensing, computing, and communication capabilities and
additional mobility. Nodes can be arranged independently
without attaching to other objects [3]. The entire wireless
mobile sensor network needs to move with the targets and
keep them visible to track moving targets. This feature dis-
tinguishes the dynamic target tracking network from tradi-
tional ones [4]. There are two data processing frameworks
for wireless sensor networks: centralized and distributed. The
distributed framework has low communication consumption
and substantial stability and robustness to a node or link
failure [5]. Therefore, the distributed framework has attracted
much attention [6]. There are two main data processing meth-
ods in the distributed framework: consistency strategy and
cooperative diffusion strategy. The distributed algorithm via
consistency strategy may fail to work due to communica-
tion delay or intermittent network connection. Therefore, this
paper studies the distributed target tracking problem in sensor
networks with consistency policy optimized by semantic IoT
node moving computing.

There is little research on the target tracking problem of a
nonlinear dynamic system using the distributed framework.
The average consistency algorithm is used to de alienate
the data of each node and enhance its robustness. Then, the
algorithm is combined with the node movement algorithm
to predict the movement trend of nodes and targets in 2D
and 3D space, which provides a reference for the study of
node movement. Two algorithms are used to optimize the
standard target trajectory prediction model. The simulation
results show a decrease in the model’s target loss and tracking
error. This paper provides a specific significant reference for
the research of distributed target tracking in mobile wireless
sensor networks.

II. RELATED WORK
At present, the Kalman Filter algorithm is one of the
most commonly used algorithms to deal with the time-
domain noise of real-time online target tracking. The classical
Kalman Filter algorithm is a linear equation based on state
and searches primarily for point target tracking in a linear sys-
tem. However, nonlinear systems are more common in prac-
tical applications than linear systems [7]. Yu et al. proposed
a distributed extended Kalman Filter algorithm based on
optimizing the classical Kalman filter algorithm for nonlinear
systems. Still, this algorithm introduced linearization error,
resulting in limitations such as slow convergence speed [8].
Wang and Ren put forward a distributed mixed information
filtering algorithm by combining extended information filter-
ing with the covariance intersection algorithm [9]. With the
development of wireless networks and computing devices,
the Distributed Particle Filter algorithm eliminates dynamic
systems’ linear and Gaussian constraints. Besides, it is sim-
pler and easier to operate than the traditional filter algo-
rithms [10]. The primary challenge of mobile wireless sensor

networks is to keep the global estimation provided by each
node consistent through the local measurement of each node
and the communication interaction between adjacent nodes.
Consistency theory is a communication-based cooperative
control theory for multi-intelligent systems. The consistency
algorithm ensures that each node achieves a consistent infor-
mation interaction rule. It can solve a series of problems
covering control and state estimation in wireless mobile sen-
sor networks. The commonly used consistency algorithms
include Raft, Paxos, and Practical Byzantine Fault Tolerance
(PBFT) algorithms [11]. Zaidi et al. proposed two data pro-
cessing methods of discrete change and continuous change
in the consistency of multi-individual information under
dynamic topology. They also developed a consistency algo-
rithm via the distributed observer for the multi-agent system
with time-varying communication topology. They completed
the construction through a new framework guiding the con-
sistent synchronization of multi-agent and complex networks
[12]. Thomson et al. combined the consistency algorithm and
potential game theory to obtain the optimal joint decision
matrix for collaborative control by mapping each state of
the intelligent system [13]. Venâncio et al. explored how
to eliminate the excessive dependence of software-defined
networks on the centralized controller and the limited avail-
ability and scalability of the controller. They adopted the
Paxos algorithm to ensure the strong consistency between
multiple controllers in the software-defined network. In this
scheme, the controller could perform its control plane activ-
ities without the high consumption tasks required to main-
tain consistency. The experimental results showed that this
scheme could effectively reduce costs and improve the actual
benefits, especially in low controller overhead [14]. Hu and
Liu reported that the Raft consistency algorithm was one of
the typical consistency algorithms in distributed systems to
manage the consistency of log replication. Besides, it had
the same function as the Paxos algorithm. However, the Raft
algorithm was easier to understand and apply to practical
systems than Paxos [15]. Li et al. proposed an optimized
consistency algorithm based on PBFT. Aiming at the short-
comings of PBFT, such as unable to dynamically join nodes,
low consistency efficiency of multiple nodes, and selection
of controller nodes, the authors designed a hierarchical struc-
ture to improve scalability and consistency efficiency. The
simulation results showed that compared with the traditional
PBFT algorithm and RAFT algorithms, the optimized con-
sistency algorithm supported more nodes, improved the data
throughput, and effectively reduced the consistency delay and
the number of communication between nodes [16].

Semantic technology can solve the heterogeneous prob-
lems of data, protocols, and systems in the IoT. Jiang et al.
proposed a semantic gateway framework, which could pro-
vide public interfaces for many heterogeneous devices and
networks to add semantics to the data of terminal nodes and
translate interconnection protocols [17]. Semantic IoT refers
to a new network that associates the semantic web with the
IoT and associates semantic information with natural objects,
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FIGURE 1. Invocation time and relationship of components in distributed
target tracking.

locations, events, and other state information. Formal seman-
tics carries out data exchange in a machine-understandable
way, and the semantically annotated data can also be found,
integrated, and used [18]. IoT devices communicate with the
cloud platform and provide computing, analysis, and storage
near the terminal at the edge node of the communication
network. The actual data is annotated and supplied to the
terminal node through the semantic gateway. The node resets
the state of the edge node through the moving algorithm to
continuously track the motion tracking target according to the
changing network edge.

III. NODE MOVEMENT MODEL CONSTRUCTION AND
PARAMETER SETTING BY AVERAGE CONSISTENCY FOR
THE SIMULATION EXPERIMENT
A. BASIC PRINCIPLE OF DISTRIBUTED TARGET TRACKING
There are parallel execution tracks in the distributed track-
ing process, which is a directed acyclic graph composed of
multiple spans. Each span represents a continuous execution
segment named and timed in tracking. In distributed target
tracking, each component usually contains one ormore spans.
FIGURE 1 illustrates each element’s composition relation-
ship, including the component’s calling time and calling
correlation.

FIGURE 1 shows the authorization between clients and
load balancers, the invocation time between remote calls and
assemblers, the hierarchical relationship between services,
and the serial/parallel invocation relationship between pro-
cesses and tasks. These are conducive to finding and tracking
the critical path of the system invocation. Analyzing the exe-
cution process of the essential way can optimize the crucial
position in the course, maximize the system performance, and
enhance the target tracking efficiency.

B. AVERAGE CONSISTENCY ALGORITHM
Sensors with different observation performances usu-
ally receive various echoes. Thus, this paper selects the

consistency principle of local average to locally average the
data after the interaction of sensor network measurement
information and obtain the average node measurement and
neighbor node measurement.

One of the primary research methods of the consistency
algorithm is the graph theory, which takes a graph consisting
of given points and connecting lines as the research object.
It is usually used to describe the relationship between things
[19]. In this study, the point represents the tracking target
and sensor network; the edge represents the point commu-
nication between the two components. Correspondingly, the
graph represents various communication relationships in the
designed target tracking system. There is a target tracking
network composed of n randomly separated sensor nodes
in region G. An undirected connection graph represents the
communication topology between sensor nodes in the net-
work, denoted as M = (A, B, C). Among them, A = {a1, a2,
L, an} indicates the set of n nodes in the network; n refers
to a non-zero integer; B ⊆ A × A expresses the opposite
side set of node order in the graph, denoting the interaction
link of working data between nodes. Besides, bij = (ai, aj)
indicates the node communication, where ai is the starting
node and aj stands for the terminal node. If bij ∈ B, the node
aj is the neighbor node of the node ai. For the node ai, there
is a neighbor node set Ni. C = [cij] indicates the weighted
adjacencymatrix of the graphM , where cij = 0. Additionally,
if aji ∈ B, the weight cij > 0, otherwise cij = 0. If all nodes
meet

∑n
j=1 cij =

∑n
j=1 cji, the graph M is balanced, and the

in-degree of each node is equal to the out-degree.
dij =

∑n
j=1 ciρ(i = 1, 2, . . . . . . , n) is defined as the in-

degree of the node ai, demonstrating the number of edges
pointing to the node ai in the graph M . D = [dij] refers to
the in-degree matrix of the graph M . Definition is made on
the harmonic matrix Ln = D − C = [lij] of the graph M ,
D represents the in-degree matrix and C means the weighted
adjacency matrix. Eq. (1) illustrates the relationship between
the parameters.

lij =

{∑n

j=1,j6=i
cij, i = j

−cij, i 6= j
(1)

Eq. (1) indicates that if cij /∈ B, there is lij = −cij = 0.
Additionally, Ln accords to Eq. (2).

lij < 0;
∑n

j=1
lij = 0, i = 1, 2, . . . , n (2)

Eq. (2) reveals that the harmonic matrix Ln contains ‘‘zero
eigenvalues’’. In graph M , if any node ai and node aj meet
cji = cij, the graph is undirected M and vice versa. An undi-
rected graph can be considered a specially directed graph
whose weighted adjacency matrix is symmetric, so an undi-
rected graph is always balanced [20]. The consistency algo-
rithm updates the state variables of nodes in the network
through the communication between nodes to ensure that the
state variables of each node converge to the same stable value.
For a multi-agent system with n nodes, the state variable of
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the ith agent is set as yi. Eq. (3) manifests the expression of
the average consistency algorithm in continuous time.

yi(t) = −
∑n

j=1
cij
(
yi(t)− yj(t)

)
, i = 1, 2, . . . , n (3)

In Eq. (3), cij refers to the (i, j)th term of the weighted
adjacency matrix C of graph M . This is the standard form
of average consistency algorithm. Each node first produces
its initial state variable in the system, recorded as yi(0).
Then, each node communicates with each other according to
the given relationship and uses the consistency algorithm to
calculate according to the information sent by the neighbor
nodes. When the system reaches a steady state, trends of all
the yi are consistent, as illustrated by Eq. (4).

lim
t→∞

yi(t) = 0 (4)

In the standard form, the information state variables of all
nodes will reach the initial average of all yi(t), as signified by
Eq. (5).

lim
t→∞

yi(t) =
1
n

∑n

i=1
yi(0) (5)

In practical application, the steady-state value generally
does not accord with Eq. (5). In general, as long as Eq. (4)
is satisfied in a steady state, it is considered that the state
variable yi converges to the uniform state. According to the
properties of the matrix, the multi-agent system correspond-
ing to the connected graph can converge to uniform.

C. NODE MOVING COMPUTING ALGORITHM
IoT is a network refers to a network that establishes commu-
nication, connection, and information sharing between things
and the Internet through standard protocols to realize posi-
tioning, monitoring, and management. The core elements of
the IoT are terminal perception, network communication, and
application services [21]. Semantic technology is a specific
method to connect a computer’s representation with the real
world. It is critical to solving the integration and cooperation
problems of heterogeneous systems. By integrating semantic
web and big data technology, the semantic description of
IoT information is realized to implement semantic interop-
erability and collaboration between heterogeneous systems
of IoT and the intellectualization of IoT applications [22].
With moving computing technology, computers and other
intelligent terminal devices can realize data transmission
and resource sharing in a wireless environment and transfer
information to a distributed computing environment under a
remote server [23]. Semantics annotates the data at the node
into a computing language that computers and intelligent
devices can understand to assist in the movement of real-time
state data of nodes during target tracking.

The node moving model is constructed. In the model, the
sensing radius of each node in the network is set to be the
same, and the target is detected and located within the node
sensing radius. In the model, the nodes outside the target
sensing range are selected to move to the target. FIGURE 2

FIGURE 2. Node moving model of wireless sensor networks in 2D space.

displays the node moving model of the wireless sensor net-
work in the 2D planar.

In FIGURE 2, R represents the radius of the sensing node,
and di refers to the distance between the moving node and
the target at the next time. In the 2D plane, assuming that a
node perceives the target in the static state, its coordinates are
(xi, yi), i = 1, 2, . . . , n, Eq. (6) describes the target estimation
and positioning.

Si2D =
(∑n

i=1 xi
n

,

∑n
i=1 yi
n

)
(6)

Eq. (7) determines the positioning error Pr2D of the target
under the static network.

Pr2D =

√(∑n
i=1 xi
n
− x

)2

+

(∑n
i=1 yi
n
− y

)2

(7)

In Eq. (7), r refers to the perceived range radius. It is
assumed that nm selected moving nodes in the network are
within the range after moving. The coordinates of them after
moving are (xn+i, yn+i, zn+i) , i = 1, 2, . . . , nm, Eq. (8) illus-
trates the new definition error P′r2D of the network to the
target after moving.

P′r2D = 1/2(
(∑n

i=1 xi
n
− x

)2

+

(∑n
i=1 yi
n
− y

)2

) (8)

Concurrently, if the nodemovement algorithm canmeet the
following conditions, the positioning error of the target will
be dramatically reduced; meanwhile, the positioning accu-
racy will be significantly improved, which can be expressed
as P′r2D < Pr2D.

Pi2D =
√
(xn+i − x)2 + (yn+i − y)2

< Pr2D, i = 1, 2, . . . , nm (9)

In Eq. (9), Pi2D represents the new positioning error of a
location network to the target after moving. Compared with
P′r2D, if the moving length is less than the moving length of
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FIGURE 3. Node moving model of wireless sensor networks in a 3D space.

the maximum error within the allowed range, the tracking
accuracy is acceptable.

Considering the actual situations, this paper also explores
the problem of target tracking in the 3D space. FIGURE 3
displays the moving model of wireless sensor network nodes
in a 3D space.

The meaning of each letter in FIGURE 3 is consistent with
that of the 2D model. In the 3D space of real life, the small
yellow box is the target’s current position, and the small red
box is the target’s actual position the next time. Assuming
that the position coordinates are (x, y, z), it is necessary to
locate it at first. The sphere area can perceive the position of
the target at the next time, and its internal nodes can perceive
the target and locate the target. Now several nodes need to
be selected from outside the sphere area to move towards the
next time position of the target, and the red triangle is the node
after moving. Assuming that a node perceives the target in the
static state and its coordinates are (xi, yi, zi), i = 1, 2, . . . , n,
Eq. (10) manifests the calculation of the target estimation and
positioning.

Si3D =
(∑n

i=1 xi
n

,

∑n
i=1 yi
n

,

∑n
i=1 zi
n

)
(10)

Eq. (11) can further illustrate calculation of the positioning
error of the target in the static network, (11), as shown at the
bottom of the next page.

In Eq. (11), r refers to the sensing range radius. Assume
that the selected moving nodes in the network are all in the
sphere area after moving, and the position coordinates after
moving are (xn+i, yn+i, zn+i), i = 1, 2, . . . , nm. Then, the
network has a new definition error for the target after the
node’s moving, as shown in Eq. (12), as shown at the bottom
of the next page.

Moreover, the node movement algorithm meeting the fol-
lowing conditions can significantly reduce the target posi-
tioning error and improve the positioning accuracy, expressed

as P′r3D < Pr3D. Eq. (13) signifies the process, where i =
1, 2, . . . , nm.

Pi3D =
√
(xn+i − x)2 + (yn+i − y)2 + (zn+i − z)2 < Pr3D

(13)

In Eq. (13), Pi3D denotes the new positioning error of a
location network to the target after moving. If the moving
length is less than the moving length of the maximum error
within the allowed range, the tracking accuracy is acceptable
compared with P′r3D.
This experiment sets several nodes to move to the next

position to obtain satisfying tracking and positioning effect.
Two nodes in the randomly distributed node network are
selected to move to the next position in the 2D space. Besides,
three nodes are chosen to approach the target in the 3D space
to get precise positioning results. In addition, this experiment
evaluates the performance of the node mobility algorithm
through the target location estimated by the centroid local-
ization algorithm, the perceived distance of each node in the
network, and the area of the deployment area.

D. TARGET TRAJECTORY PREDICTION MODEL BASED ON
AVERAGE CONSISTENCY AND MOVING COMPUTING
ALGORITHM
This experiment tests the target trajectory prediction effects
of the above two algorithms. The specific experiment steps
are as follows. The target moving trajectory is divided into
linear motions in several small clusters, i.e., linear segments
[24]. Suppose that the current calculated target position is
L(xt , yt ), the target position at the previous time is Lt−1(xt−1,
yt−1), and the sampling interval 1t . Eqs. (13) and (14)
describe the velocity and acceleration of the target.

vt =
√
(yt − yt−1)2 + (xt − xt−1)2/1t (14)

at = (vt − vt−1) /1t (15)

Eq. (16) demonstrates the moving direction θ of the target.

θ = arccos
xt − xt−1√

(yt − yt−1)2 + (xt − xt−1)2
(16)

Eq. (17) signifies the position Lt+1(xt+1, yt+1) of the target
at the next moment.

xt+1 = xt + vt1t cosθ +
1
2
at cosθ1t2

yt+1 = yt + vt1t cosθ +
1
2
at sinθ1t2

(17)

The moving speed and direction of the target determine the
residence time andmoving distance of the target in the current
cluster. The linear function of the target y = ax + b can be
constructed using the historical position information of the
target to calculate the sum of parameters a and b. The cluster
head node of the current target tracking cluster is set as the
coordinate’ origin. x2 + y2 = r2 is considered as the curve
function of the perception boundary of the current cluster
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head, where r refers to the radius of the current monitoring
area, and x and y are the unknown coordinate information
of the target, respectively. The motion trajectory and curve
functions are connected to obtain Eq. (18).{

x2 + y2 = r2

y = ax + b
(18)

Eqs. (19) and (20) calculate the final position coordinates
L of the tracking target leaving the current cluster.

L =
(
−ab± c
1+ a2

,
−a2b± ac
1+ a2

+ b
)

(19)

c =
√
a2r2 + r2 − b2 (20)

In Eq. (20), c stands for a constant parameter.
The final position of the target is determined by Eq. (19)

and the target’smoving direction. The targetmoving direction
and the final position after the target leaves the current cluster
are determined by judging the difference of axis coordinates.
The target’s initial position entering the current cluster is set
as A0(x0, y0). Eq. (20) demonstrates the value of the moving
distance d of the target in the current cluster.

d =

√(
−ab± c
1+ a2

− x0

)2

+

(
−a2b± ac
1+ a2

+b− y0

)2

(21)

Eq. (20) signifies the residence time tstqv of the moving
target in the current cluster.

tstqv =


d
vt

at = 0√
v2t − 2atd − vt

at
at 6= 0

(22)

After forecasting the target position, the cluster head node
judges the number of nodes in the cluster where the target
is about to arrive in the tracking area. It also calculates
the predicted position of the target and the current position
of the cluster of the target. Meanwhile, it controls the nodes
in the target area to turn on the tracking state. The nodes
receiving the message first confirm whether it is in the target
prediction area. If yes, it will turn on the working state; other-
wise, it will discard the information. The nodes in the tracking
state continuously perceive the target’s information, while
the nodes out of the tracking maintain the original periodic
detection mode [25]. When the target moves from a tracking

TABLE 1. Basic parameter setting of simulation.

cluster to a new tracking cluster, it needs to constantly update
the motion state and position of the target. Before time tstqv
runs out, the head node of the current tracking cluster wakes
up the adjacent cluster head nodes according to the predicted
final position of the current cluster to track the hands of
clusters.

E. SIMULATION SETTINGS OF THE ALGORITHM
The target trajectory prediction is simulated and tested by
MATLAB to verify the feasibility and accuracy of the algo-
rithm. Besides, this experiment compares the tracking tar-
get loss rate and tracking error of this algorithm and the
Extended Kalman Filter (EKF) for performance verifica-
tion [26]. TABLE 1 lists the basic settings of the simulation.

IV. RESULTS AND DISCUSSIONS
A. SIMULATION RESULTS OF THE NODE MOVEMENT
ALGORITHM IN 2D AND 3D SPACES
In this experiment, nm equals 0 and 2 in 2D and 3D space,
respectively; ns equals 20 and 50 in 2D space, and it equals
60 and 100 in 3D space. FIGURE 4 reveals the experimental
simulation results as the sensing nodes’ radius changes.

FIGURE 4 shows the positioning errors of the target in the
static network when nm equals 0 and nm equals 2. The target
tracking model via the node movement algorithm effectively
improves the positioning accuracy of the network for moving
targets. The positioning error after nodes move in 2D space is
20%−30%R less than that in the static state; the positioning
error after nodes move in 3D space is about 40%−50%R less
than that in a static state. Concurrently, the four curves in
the 2D space decrease with the growth of the sensing radius,
suggesting that the increase of the sensing radius can improve
the positioning accuracy of the network in the 2D space.
In the 3D space, with the increase of the perceived radius,

Pr3D =

√(∑n
i=1 xi
n
− x

)2

+

(∑n
i=1 yi
n
− y

)2

+

(∑n
i=1 zi
n
− z

)2

(11)

P′r3D =

√√√√(∑n+nm
i=1 xi
n+ nm

− x

)2

+

(∑n+nm
i=1 yi
n+ nm

− y

)2

+

(∑n+nm
i=1 zi
n+ nm

− z

)2

(12)
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FIGURE 4. Variation trend of positioning error under the changes of the
radius of sensing nodes.

FIGURE 5. Positioning error under different network deployment areas.

the positioning error increases at first and then decreases, and
the four 3D curves have maximum values at 1.3m. This result
indicates that the positioning performance of the network
to the moving target is the worst when the perceived radius
is 1.3m.

Suppose that in 2D and 3D space, the average sensing
radius R is 2m, and nm equals 0, 1, 3, and 5 in 2D and
3D space, respectively. FIGURE 5 presents the experimen-
tal simulation results under an increasing number of node
deployments ns.

FIGURE 5 reveals that when the node sensing radius R is
2m, the positioning error of the network to the target changes
with values of ns. In 2D space, with the increase of the total
number of nodes deployed, the network’s target positioning
error gradually declines. Except when nm equals 3, the posi-
tioning error increases when ns equals 80, which may result
from the information acquisition of nodes. Besides, the posi-
tioning accuracy of the network increases with more mobile
nodes, and the positioning accuracy is higher than that of the
static network. However, the target positioning error of the
network in the 3D space does not change sharply with the rise
in ns. The reason may be the impact of nm on the positioning

FIGURE 6. Node distribution and target trajectory.

error. FIGURE 5 also indicates that when nm equals 3 in the
3D space, the network achieves the best performance and the
highest positioning accuracy. Meanwhile, when the number
of moving nodes is 0, the positioning error in the 3D space is
much higher than the other three cases in the 2D space. This
phenomenon indicates that in the 3D space, the number of
moving nodes can significantly reduce the positioning error
of network targets.

B. SIMULATION RESULTS OF TARGET TRAJECTORY
PREDICTION
This test verifies the feasibility of the algorithm. The curve
moving trajectory in the target is divided into several linear
movements in clusters, and the plane coordinate system is
set to x = [−200, 200], y = [−200, 200]. The initial
target position is set as (−50, 70), and the speed variation
range of the target is 1-20m/s. FIGURE 6 provides the node
distribution and target trajectory.

According to FIGURE 6, the algorithm can predict the
direction of the target in different directions and locate it in
time. The actual trajectory of the target is an irregular curve;
the whole monitoring area is divided into several clusters.
The irregular curve is wirelessly divided into small segments
according to calculus theory. When the target moves at a
random speed, the algorithm can also predict the motion
trajectory of the target.

This algorithm is compared with the tracking trajectory
of the commonly used target tracking algorithm based on
the Kalman Filter. When the target motion direction changes
slightly, both algorithms can track the actual motion tra-
jectory of the target. However, when the motion direction
changes by more than or equal to 90◦, the algorithm is more
effective for piecewise linear fitting prediction.

Target loss rate refers to the proportion of invalid position-
ing times to the total number of positioning times in target
tracking [27]. The target loss rate is calculated according to
the research algorithm and the target tracking algorithm based
on the Kalman Filter. FIGURE 7 illustrates the calculation
results.

FIGURE 7 proves that the target loss rate of the two
algorithms increases with the increase of target speed. The
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FIGURE 7. Comparison of target loss rates.

FIGURE 8. Comparison of tracking errors.

two algorithms have stability and a low loss rate when the
target moves slowly because the algorithms adopt an effective
prediction mechanism to adapt to the change of speed. Hence,
the target loss rate increases slightly, and the target loss rate
is less than 30% in the speed change range. Compared with
the two algorithms, when the target speed is higher than 7m/s,
the target loss rate of the research algorithm is lower, and the
difference between the two algorithms increases gradually.
The reason is that this algorithm combines static clustering
and a reasonable target recovery mechanism. It can quickly
find the lost target and reduce the target loss rate [28].

The tracking error can reflect the tracking accuracy of
the algorithm. The tracking error is calculated according to
the research algorithm and the target tracking algorithm via
Kalman Filter. FIGURE 8 shows the calculation results.

In FIGURE 8, the tracking errors of the two algorithms
are generally low when the target motion speed is low. They
can both meet the target tracking requirements below 4m.
When the target speed reaches more than 7m/s, the tracking
error of the research algorithm is lower than that of the target
tracking algorithm via Kalman Filter because the prediction
mechanism adopted by the algorithm can motivate the track-
ing target in advance and reduce the error.

V. CONCLUSION
The consistency algorithm applied to the system is charac-
terized by security, high availability, and independent timing

to ensure consistency. The node movement algorithm can
reduce the impact of network delay for real-time calculation.
Therefore, the average consistency and semantic IoT node
movement algorithm establish the target trajectory predic-
tion model. The simulation results of the node movement
algorithm show that within a specific range, the positioning
error decreases with the increase of sensing radius R, the
number of nodes moving nm, and the total number of nodes
ns deployed in 2D space. However, there is no obvious law in
3D space. The experimental results of the prediction model
show that the target loss rate and tracking error distance of
the two algorithms grow with the increase of the tracking
target speed. When the target tracking speed is greater than
7m/s, the research algorithm’s target loss rate and tracking
errors are about 0∼10% and 1.5%∼2% lower than the target
tracking algorithm via Kalman Filter, respectively. However,
when the tracking speed of the research algorithm is less than
7m/s, the tracking accuracy is lower than the Kalman Filter
algorithm.

Previous studies have insufficient accuracy and robustness
in target tracking. Combining the two algorithms makes a
more robust target tracking method possible. In other words,
the scheme reported here reduces the data error of multiple
nodes, continuously updates the node cluster state, and main-
tains the original periodic detectionmode of untracked nodes.
Besides, the mobility of nodes is more flexible than in a static
state, inspiring future distributed point target tracking. Due to
the limited energy, this experiment only compares and eval-
uates the proposed algorithm with a general algorithm. The
follow-up research will comprehensively evaluate multiple
algorithms according to the specific situation to provide a
reference for improving the algorithm.
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