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ABSTRACT Construction site preparation tasks rely on experienced operators and heavy machinery for
clearing debris, earthmoving, leveling, and soil stabilization. These actions require complex collaboration
between human teams to survey the site, estimate the material condition, and guide the operators accordingly.
In recent years there has been a critical labor shortage due to increasing demands in construction. Integrating
autonomous systems can mitigate this gap by replacing traditional methods with robotic solutions. However,
while ideal conditions for automatic systems are static and highly controlled, construction sites are
dynamic and unstructured environments. The ability of autonomous systems to overcome these conditions
during outdoor construction site preparation tasks relies on their capacity to map the material on-site
and continuously perform localization. This study suggests a solution to these problems by collaborating
between an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV). In this method, the
UAV produces a material map and monitors the UGV’s location relative to known static landmarks. These
measurements are then sent to the ground vehicle and are added to the onboard sensors using the Extended
Kalman Filter (EKF) approach. Thus, the UAV enhances the operation of the UGV by providing an accurate
localization andmapping from the air and allowing it to perform a site-preparation task beyondmere sensing.
This approach is examined with simulation and validated by outdoor experiments. Additionally, this method
is integrated within Shepherd, a custom-developed plugin for computer-aided design applications.

INDEX TERMS Autonomous systems, multi-robot systems, pose estimation, robotics and automation,
system implementation.

I. INTRODUCTION
The labor shortage is one of the biggest hurdles in the
construction industry today [1], with more than eighty-one
percent of construction firms recently reporting difficulty
filling different positions [2]. The global COVID-19 pan-
demic exacerbates this problem by reducing access to
labor. This situation emphasizes the need for automated
solutions to construction-related tasks that currently rely on
manual labor [3]. Recent advancements in robotics provide
a possible solution to this problem by exploring multi-
agent collaboration in the construction site. Multi-agent
collaboration allows performing complex construction tasks
such as assemblies of complex architectural buildings using
precise localization [4] or creating free-form embankments
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with agile control [5]. Incorporating robotic platforms in
construction can not only compensate for the shortage of
workers but also aid in performing complex tasks that require
high skill, such as preparing wire mesh reinforcements for
concrete or carving stone [6], [7].

Nevertheless, as construction usually begins with pre-
liminary site preparation activities, such as clearing debris,
earthmoving, leveling, and soil stabilization [8] need to be
met. These preparation tasks are traditionally performed
by human operators driving bulldozers, excavators, loaders,
and dump trucks. As these tasks are complex and labo-
rious, they rely on experienced human operators for their
successful accomplishment. The limited access to skilled
workers, recently worsened by the global pandemic, requires
developing alternative approaches to site preparation that
employ remote control and autonomy using Unmanned
Ground Vehicles (UGV) (Fig. 1).
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FIGURE 1. A team of a UGV and a UAV performing construction site preparation simulated in Gazebo.

In the recent decade, there has been a growing interest in
research of Unmanned Aerial Vehicles (UAVs) as assisting
platforms for various kinds of ground vehicles. This paradigm
can potentially improve the utility of ground

vehicles by providing themwith an additional pair of ‘‘eyes
in the sky’’ [9], [10]. In this context, the motivation for this
research is to enable human-guided autonomous construction
site preparation. Achieving this goal requires mapping
the material on-site and performing accurate localization
throughout the process.

The novelty of the presented research is in developing a
computer vision method for adaptive material mapping and
a collaborative Extended Kalman Filter (EKF) for localizing
the robotic platform on the ground using a UAV. These
capacities are crucial since interactions with the material
lead to changes in the environment and errors in the
localization of the UGV. By overcoming these challenges,
the paper contributes to UAV-UGV collaborative schemes
with specific applications to autonomous construction site
preparation.

The outcome of this research provides a method for
eliminating navigation errors caused by sharp maneuvers
and material pushing [11], as well as generating an online
grid map of the material on-site. This method is introduced
as a new capacity inside Shepherd, a custom-developed
plugin integrated with Rhinoceros 3D computer-aided design
application (CAD) and Grasshopper visual programming
user interface (UI). Shepherd provides an interface for
human-robot collaboration for site preparation with only
simple guidance from a human operator [12].

II. RELATED WORK
This section provides the state-of-the-art in the field of
autonomous robotics, focusing on localization and state
estimation as well as the gaps that hinder autonomy in robotic
applications for construction sites.

A. AUTONOMOUS ROBOTICS IN CONSTRUCTION
In recent years, accelerated technological advances have
allowed robots to operate with greater speed and precision in
indoor environments, while significant challenges regarding
outdoor environments remain unsolved. In this context, recent
studies have focused on achieving autonomy in construction
in on-site conditions [13]. These studies span from designing
construction application algorithms for building motion-
supporting structures such as ramps [14] to the assembly
of dry stone walls [15]. Others present algorithms for
autonomous safety implementation using LiDAR measure-
ments [16] or robust planning and control approach for
excavation [17]. While existing research focuses on enabling
robotic applications in highly controlled static environments,
achieving autonomy on-site requires overcoming dynamic
and unstructured conditions. A fundamental capacity for
achieving on-site autonomy relies on localization and mate-
rial mapping - the ability to determine the location of the
robot with respect to its environment during the earth moving
task while mapping the material in the work environment in
real-time.

B. UGV-UAV COLLABORATION
The growing interest in UAV-UGV collaboration is demon-
strated by research on collaborative path planning, localiza-
tion, obstacle avoidance, and mapping [9], [10]. Previous
work on the topic provides a control scheme to coordinate
ground and aerial vehicles for locating moving targets in
a given area [18]. As this research focuses on distributed
control and obstacle avoidance, it does not employ UAVs
to assist the UGVs. Research on decentralized aerial and
ground cooperation schemes uses a vision-based tracking
controller for object transportation in unsafe industrial
areas [19]. Here, visual data collected by the UAV is
used for assisting the UGVs, but it is limited to obstacle
avoidance.
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Recent research expands collaboration schemes by provid-
ing a framework for vision-based cooperative path-planning
using an optimal A∗ algorithm [20]. However, for local-
ization, the study relies on an ultra-wideband indoor posi-
tioning system that requires deploying multiple sensors
on-site. An alternative approach employs a UGV-UAV team
for collaborative Simultaneous Localization and Mapping
(SLAM) [21]. However, this approach assumes a static
environment where all robots perform the same mapping
task. In contrast, autonomous construction site preparation
requires specialized robots to perform specific tasks that
change the environment in which they work. Hence, the
presented research requires methods and tools that enable
localization and material mapping in dynamic environments.

C. MATERIAL MAPPING
Material mapping is defined here as a process allowing for
tracking the location of the gravel on-site. This process is
essential for autonomous site-preparation tasks as it enables
planning the earthmoving action according to the current
location and dispersion of the material. This process requires
distinguishing the material from its surroundings – a capac-
ity relying on computer vision. Existing computer vision
methods perform such tasks using semantic segmentation
based on advanced deep learning that relies on pre-existing
data sets [22]. However, due to large variability in the
used material (gravel), this method requires building a
comprehensive data set and performing exhaustive model
training.

In contrast, human operators can easily recognize objects
on-site without prior knowledge, while robots can accurately
map the material during the task [23], [24]. Additionally,
integrating material mapping and path planning with human
operation increases the system’s capabilities, making it more
flexible and robust to various site preparation scenarios [25].
Therefore, in the presented research, a human performs initial
material recognition while the robotic system is used for
online material mapping throughout the task.

D. ROBOT LOCALIZATION
Localization during outdoor construction tasks is challenging
due to unstructured environments, moving objects, and
dynamic efforts that are highly complicated to model. For
instance, as wheel odometry estimates the robot’s motion
according to the rotary encoder’s measurements and the
wheel shape [26], its output suffers from accumulated errors
when performed in rough terrain. Over time, these errors
accumulate and lead to severe drifting of the localization.
In contrast, skidding does not affect visual odometry as it
relies on tracking the geometrical features in a frame to assess
the camera motion [27]–[29]. Nevertheless, visual odometry
requires a static environment and cannot recognize similar
features while performing sharp maneuvers.

Currently, a common solution for achieving accurate
outdoor localization relies on real-time kinematic position-
ing (RTK) to correct for common errors in satellite navigation

systems (GNSS). The RTK-GNSS measurements are satis-
factory in many autonomous tasks in which the environment
is static. However, these measurements can be distorted by
weather conditions or disruptions in communication [30].
In addition, construction tasks require reliable and con-
stant localization for accurate implementation. Furthermore,
the robot needs a relative localization that matches the
construction plans, requiring a challenging and expensive
global mapping process to coordinate the axis systems. The
presented research uses static landmarks in the construction
zone to enable localization relative to other objects by
performing on-site state estimation.

E. STATE ESTIMATION METHODS
The state estimation problem is typically solved using meth-
ods that integrate data from a variety of sensors to minimize
localization error [31] - for example, the non-parametric
approach for state estimation such as Adaptive Monte Carlo
Localization (AMCL). The AMCL algorithm is a filter
initialized by placing scattered particles on the map and
examining their weight by comparing the expected and
actual measures. Implementing the AMCL requires prior
knowledge of the environment, such as a static map. While
a static map can be generated from georeferenced aerial
images [32]–[34], using an offline map is not possible
for construction tasks in which robotic platforms actively
change their environment. This phenomenon can be seen by
moving bricks around during robotic wall building [35] or
by altering the entire topography during autonomous robotic
excavation [5].

Another common method for state estimation is the two-
stage Kalman filter approach, using the UGV model to
predict the motion and then correct the state by utilizing
onboard sensors data [36]. However, the Kalman filter is
adequate only for linear systems, which are only a few in
relative to the non-linear systems. In contrast, the Extended
Kalman Filter (EKF) uses a linearization technique to handle
non-linear systems. This allows the EKF to be deployed
in multiple systems, providing the state estimation problem
fast and simple solution [37]. Implementing onboard sensor
data is limited and may reduce the efficiency of the system
and result in unreliable localization. For example, using an
onboard laser range finder and matching the data requires
slow base motion, thus increasing the time to finish a
task [35]. In other cases, such as using symmetric maps
without relative measurements, the localization may not
converge at all [38]. Therefore, research can benefit from
the use of an additional agent providing accurate online
localization by monitoring the UGV.

As the study of robotic collaboration is not entirely covered
yet, different agents can improve the performance of the
task and provide complementary capabilities. The studies
are focused on developing algorithms for the autonomous
collaborative process [39], [40], assuming perfect local-
ization or available RTK-GNSS measurements [41]. Other
studies consider the localization problem but either use
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similar agents [42] or enable work in static environ-
ments [21]. The presented research employs collaboration to
address these gaps using a quadrotor UAV to perform Site
Localization – estimating the location of a UGV on-site in
real-time during construction tasks. The research suggests
using the Extended Kalman Filter (EKF) on the UGV while
integrating accurate data of online localization from the UAV.
The localization acquired by the EKF is local and relative to
static objects inside the construction site.

III. FRAMEWORK AND METHODS
The following section provides the research framework and
methods that enable vision-based UAV-UGV collaboration
for localization and material mapping, supporting site
preparation tasks that involve granular and soil interactions.
These capacities allow a UAV to accurately use prior
knowledge on the location of static landmarks to locate a
UGV on-site. In this process, Shepherd is used for designing
and implementing the site preparation action (Fig. 2). The
framework is presented through four main topics: (1) system

FIGURE 2. The Shepherd user interface in Rhino 3D Grasshoper plugin
and a sample visual code of converting a Rhino 3D curve to a robot path.

overview, (2) site visualization, (3) material mapping, and
(4) site localization.

A. SYSTEM OVERVIEW
The proposed system is assembled from three components:
Shepherd a human-robot interface, a UGV, and a UAV
(Fig. 3). The collaboration between the components allows
to perform the task and enhances the overall capabilities of
the system. The robot team used in this research consists
of a quadrotor UAV and a four-wheeled UGV. The UGV is
equipped with a custom front shovel covering the entire front
of the platform for material pushing tasks (Fig.4). The UGV’s
field of view is limited, and its maneuverability depends on
the site conditions. Therefore, a quadrotor equipped with a
monocular downward-facing camera is used to provide an
online top-view of the construction site. The top-view images
allow closing the loop of the autonomous task by visually
monitoring the UGV as well as additional objects in the
construction zone (Fig. 5).

The monitoring loop allows real-time visual analysis
by providing information relevant to the task. Specific
information crucial to site preparation is the localization
of the UGV. The view provided by the quadrotor allows
to reliably measure the position of the UGV in relation to
static objects on-site. For this purpose, the system includes
landmarks inside the construction zone. The landmarks used
are ArUco markers [43], which are placed in known locations
in the map, and on top of the UGV.

Controlling the UGV is done using Shepherd, a custom
tool developed for simulating and controlling mobile robotic
platforms using the Rhinoceros 3D Grasshopper UI [12].
The tool allows non-expert operators to (1) rapidly explore
alternative paths by employing parametric motion planning,
(2) simulate them within the Rhinoceros 3D modeling
environment, and (3) execute them using Grasshopper UI to
control a Robotic Operation System (ROS) running robotic

FIGURE 3. High-level model of the system decribing the function of the three main components: Shepherd, the UGV and the UAV.
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FIGURE 4. The UGV agent jackal of clearpath with a custom blade.

FIGURE 5. Illustration of the top-view image of the construction zone
from the quadrotor, in black the ArUco tags as a static landmarks.

platforms in real-time. Its capacities include (1) generating
paths using primitive geometries, (2) simulating the behavior
of robotic platforms in the Gazebo open-source robot
simulator, and (3) controlling robotic platforms running
ROS. Shepherd enables publishing and subscribing to ROS
topics, navigating between waypoints, and performing image
processing for peripherals such as RGB and depth cameras
positioned on the robot or external platforms such as UAVs.

The communication between Shepherd and the robot
is performed using a server-client software model, which
enables controlling multiple robotic platforms in parallel
(Fig. 3). This communication is achieved by implementing
the Rosbridge library, which provides an API to ROS
functionality for non-ROS programs [44], and Roslibpy – a
library enabling robot control using Python and IronPython
without running a ROS interface on the server [45].

Robot control using Shepherd is performed in one of three
main approaches: (1) sending a direct speed and direction
command (employing a velocity topic), (2) navigating to a
specific point in space (using a goal topic), or (3) navigating
along a path. This research implements the third approach,
in which a curve in Rhinoceros 3D represents a path in space.
The path is divided into a set of points that are translated to
a list of goals iteratively sent to the robot. The robot arrival
at a goal is determined in relation to a predefined distance,
measured as a radius from the point on the curve. Following
each successful arrival of the robot to the goal, it continues
moving to the following position in the list.

During the study we focus on three types of trajectories:
Slalom, Spiral, and Fork. We produced these trajectories
using Shepherd, demonstrating the simplicity of using
Shepherd to generate trajectories for robotic systems (Fig. 6).

B. SITE VISUALIZATION
We propose using top-view online images taken by a UAV
to localize the UGV position on-site. The site localization
is presented as a relative location of the UGV within the
site. Typically, conservative localization is initially begun by
defining the origin of the local coordinate system on the
robot’s position with onboard sensors. However, using only
wheel odometry with IMU leads to positioning errors which
rapidly increase over time due to cumulative errors of the
sensors. Therefore, we provide an approach to estimate the
position of the UGV relatively to local static landmarks while
avoiding drifting errors.

The UGV’s position measurement is based on prior
knowledge about static landmarks’ location on the site.
The origin is set in a location that allows continuous
relative measurement of the UGV’s position throughout
the operation. This measurement does not depend on the
camera’s movement and allows defining measurements
relative to the static landmarks. This means the process is
invariant to the motion of the UAV, thus improving the
localization robustness. Using the position of the landmark
provides stable boundaries and features in the frame and

FIGURE 6. The Slalom, Spiral, and Fork trajectories generated using
Shepherd in Grasshopper (left) and simulated in Rhinoceros 3D (right).
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enables interpretation from pixel coordinates to the actual
relative location of the UGV.

In the first step, the UAV needs to be placed where the top-
view image contains the UGV and the landmarks. Then, the
pixel coordinate location of the landmarks is transformed into
a metric representation based on the knowledge of the actual
location of the landmarks. The transformation between image
coordinates to local frame coordinates is performed by using
the scale transformation:

fX =
XL,li − XL,lj
xL,li − xL,lj

(1)

fY =
YL,li − YL,lj
yL,li − yL,lj

(2)

where f defines the relative scale,X ,YX,Yare the local plane
landmarks coordinates, x, y are the image plane location, and
li, lj are two arbitrary static landmarks in the camera frame.

We then use the scale transformation to calculate the
relative location of the UGV as follows:

XL =
(
XUGV − XL,li

)
fX (3)

YL =
(
YUGV − YL,li

)
fY (4)

where XLXL and YL YL are the site’s local coordinates of the
UGV.

C. MATERIAL MAPPING
Specific focus is given to developing a capacity for the
material mapping process. Mapping the material enables
tracking the gravel location during the site preparation
task and thus improves the planning of the autonomous
action. This method is implemented using data derived
from the UAV site visualization by applying computer
vision techniques that enable segmenting different materials
in the construction site, as demonstrated in Fig. 8. This
functionality allows monitoring the process advancement
while considering the site S as an area that includes all the
scattered material piles S ∈ {Oi | i= 1, ..,n}. The material
pile is defined as a minimal bounding box according to
Oi = ((xmin, ymin) , (xmax , ymax)), where (xmin, ymin) is the
top left corner of the pile and (xmax , ymax) is the bottom
right corner. The initial mapping process operation involves a
human operator to draw a bounding box OUser that contains
the material. The bounding box functions as prior visual
knowledge for the segmentation process and is defined as
OUser∈ {(Ri,Gi,Bi) |i ∈ 1, .., n} where (Ri,Gi,Bi) are the
red, green, blue channels respectively. Then we use OUser as
a representative sample for recognizing the material.

Assuming a Gaussian distribution of the image color
as RGB∼

(
µ, σ 2

)
, we calculate the mean color vector as

follows:

−→µ =

∑−−→
RGBi
n

(5)

where
−−→
RGBi is the value vector of colors in cell i, and −→µ is

the estimated mean color vector.

Then we calculate the color Standard Deviation (SD):

−→σ =

√√√√∑(
−−→
RGBi −

−→µ
)2

n
(6)

where −→σ is the vector of the color SD, which we
use as an estimated color value for finding the material
on-site. Then, manually chosen by the operator klow,
and khigh determines the segmented area according to[
−→µ − klow

−→σ ,−→µ + khigh
−→σ
]
.

D. VISION-BASED SITE LOCALIZATION
In order to leverage the site localization for UGV state
estimation, we integrate an EKF filter with the site localiza-
tion data. The EKF was developed for a generic UGV. The
dynamic model of the robot is presented as a set of non-linear
equations:

xt = f (ut , xt−1)+ ωt (7)

where state at time t is defined as xt , the action command
ut , and the process noise is represented by ωt . In the same
manner, we describe the sensors’ measurement as follows:

zt = h (xt)+ et (8)

where zt define the measurement, h (xt) defines the measure-
ment process, and et the measurement noise.

Both the process and the measurement noise are assumed
as zero-mean multivariate Gaussian noises with the covari-
ances Qt and Rt respectively, written as:

ωt ∼ N (0,Qt) (9)

et ∼ N (0,RT ) (10)

The EKF algorithm is a double-stage Gaussian filter
approach that relies on the dynamic model and sensors
measurements to estimate the robot state. The first stage of
the EKF is called State Prediction. This stage calculates the
predicted state xt and estimates the corresponding process
covariance according to the following equations:

xpt|t−1 = f
(
xct−1|t−1, ut

)
(11)

6
p
t = Gt−16c

t G
T
t−1 + Rt (12)

The Jacobian matrix Gt−1 is set as Gt−1 =
∂f

∂xpt|t−1,ut
, and can

be calculated using the first order Taylor expansion.
In the second stage, called State Correction, the EKF uses

the sensors’ data to correct the state prediction, which can be
written as:

Kt = 6
p
t H

T
t

(
Ht6

p
t H

T
t + Qt

)−1
(13)

xct|t = xpt|t−1 + Kt
(
zt − h

(
xpt|t−1

))
(14)

6c
t = (I − KtHt)6

p
t (15)

The observation matrix Ht is the partial derivatives of the
measurement model with respect to the state variables,
defined as Ht = ∂h

∂xpt|t−1
, the Kalman gain is Kt , and xct|t , 6

c
t

are the corrected state and the covariance.
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IV. AUTONOMOUS SITE PREPARATION
The following section describes the simulations and the
experiments in detail. In both cases, the system is similar:
a Clearpath Jackal UGV equipped with a custom 40 by
50 cm front shovel tool emulating a dozer blade and a
Parrot Bebop 2 UAV equipped with a 1080p camera using a
180-degree wide-angle lens. The size of the worksite is 3.6 by
5 meters, as shown in Fig. 7.

A. SIMULATION SETUP
The software system communicates using ROS and is divided
into simulative and experimental sub-systems. A realistic
simulation was established based on the dynamic Gazebo
engine, which compared the drone top-view localization
performance with the actual experiments. The simulation
consists of rough terrain produced using the Blender 3D
modeling software alongside multiple aggregates in different

weights and sizes produced in Gazebo. These are used to
illustrate the localization performance in a realistic scenario
of autonomous site preparation with UGV. The baseline used
in the setup is a simple IMU with wheel odometry for
local EKF state estimation. This is then compared with the
collaborative visual-based site-localization EKF. Both were
implemented synchronously throughout the simulations and
compared with the ground truth.

Using Shepherd, we designed three trajectories: Slalom,
Spiral, and Fork. The Slalom demonstrates simple motion
over the site requiring moderate orientation maneuvers. The
Spiral trajectory demonstrates changing radius maneuvers
over the entire site. Lastly, the Fork is the most challenging
trajectory, as it requires performing sharp rotation maneuvers
in place. These trajectories are shown in simulations and
experiments in Fig. 7 as top view images of the UGV taken
by the UAV.

FIGURE 7. The UGV performing the (a) Slalom, (b) Spiral, and (c) Fork trajectories simulated in Gazebo (left), and the
experiments (right). Both are respectively shown as top view image sequences of the simulated and actual UAV.
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B. EXPERIMENTAL SETUP
The experimental setup addresses the performance contri-
bution of online communication with the drone. To isolate
the additional factors of the estimation reliability, we imple-
mented two similar EKFs, working synchronously, while
only one of them is listening to the drone localization. The
experiment was conducted on a high grip surface, causing
skid steering vehicles to produce unreliable orientation
estimations. The localization was examined on the same
trajectories of the simulation (shown in Fig. 7).

The communication between the Jackal UGV, Shepherd,
and the Bebop UAV is performed using the bebop_autonomy
package [46], which provides an online wireless commu-
nication framework. The Jackal motion control is achieved
by implementing the ROS navigation stack [47] MoveBase
package, which provides the motion control for the Jackal.
Fig. 7 shows the UGV performing the trajectories designed
in Shepherd. Setting up the material mapping is divided
into 3 stages: (1) sampling the material color for tracking,
(2) defining the color segmentation bounds, and (3) selecting
the region of interest (ROI) for mapping on the aerial image
(Fig. 8). Following this, the UAV autonomously maps the
material in the ROI and continuously updates the map which
is sent to Shepherd. The material mapping was examined on
the Fork trajectory since it is a strategy commonly used for
earthmoving [48].

V. RESULTS
The evaluation of the localization has been performed with
different initial conditions. A hundred simulations tested
each trajectory with various aggregate configurations to
illustrate the moving construction site materials. The results
of the simulations were summarized in Fig. 9 representing
the mean of 100 runs x̄ =

∑
xi

100 . During the runs, the
error of each measurement was calculated as ē = X̄ − x̄
while X̄ is the ground truth. The results for the trajectories
experiment presented in Fig. 10 show a significant difference
between the EKF estimator using the drone measurements
and the baseline EKF. The poor results of the baseline

EKF in comparison to the site-localization EKF are caused
by several reasons: (1) The slip of the wheels causing
idle wheel rotation, (2) the estimated wheel radius is not
accurate, (3) the terrain is not known and assumed as
a 2D plate, and (4) the interaction with the aggerates -
causing a change in the dynamics of the UGV motion.
The estimated trajectory of the EKF’s is represented in
Fig. 9 (d1-d3).

The results of the baseline EKF show a shorter path
than the ground truth, inaccurate orientation estimation, and
accumulation of errors. The shorter path may be caused by
an effective wheel radius assumption in the estimated model,
which results in an unreliable motion model. The orientation
error is a result of wheel slip and rough terrain, which
causes an idle rotation of the wheels. These errors lead to
error accumulation in the baseline EKF during the operation.
In contrast, the site-localization EKF is overcomes these
errors and performs accurate localization during operation
with an absolute error of less than 0.2m. This is implemented
using the site visualization from the UAV, creating the
site-localization EKF.

In contrast to the simulation, the UGV performed the
experiment only once for each trajectory, in which we
continuously repeat the trajectory multiple times. The
experiments presented in Fig. 10 validate the results obtained
in the simulation. We ran the UGV along the trajectory
multiple times during the experiment while comparing the
estimators.

The site-localization estimator shows accurate results
similar to the simulation, while the baseline EKF diverges.
In contrast to the simulation, the experiment was imple-
mented on a high grip plate terrain. The results present
an increased error in the orientation, as expected from
the skid steering platform, which depends on slipping for
rotation maneuvers. But unlike the simulations, the estimated
path of the baseline EKF is longer, which may cause by
an error in wheel radius, wheel slipping, or inaccurate
velocity estimation. The site-localization EKF presents
stable and accurate UGV localization estimation during

FIGURE 8. The setup stages of the material mapping are displayed in a preliminary experiment: (a) an initial sample of the material color for tracking,
(b) defining the color segmentation bounds, and (c) autonomous mapping by the UAV within the region of interest for mapping.
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the runs in the experiments (see supplementary video for
reference).

Incorporating the material mapping capacity in the exper-
imental stage enabled real-time tracking of the specific

location and relative dispersion of the aggregates on-site
(Fig. II). Therefore, it provides an account of the progression
of the task and can potentially indicate whether it is successful
or not according to predefined measures.

FIGURE 9. The results of the simulations, for Slalom (a1-e1), Spiral (a2-e2), and Fork trajectories (a3-e3). Presenting the results of the baseline EKF in red
color, Site-localization EKF in blue color, and the ground-truth in green color.
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VI. LIMITATION AND CONCLUSIONS
As shown in Section V, the collaborative site visualization
significantly improves the EKF estimation. As presented
in the results, the maximal error of the site-localization
EKF is 0.2m. Additionally, the suggested method allows
for overcoming fault wheel radius, wheel slipping, and
inaccurate velocity estimation of the UGV.

Nevertheless, additional factors should also be considered,
specifically regarding the UAV’s flight. These factors include
drifting in the location of the UAV due to external forces and
limited flight time. In this context, as long as the UGV and
the landmarks are kept inside the UAV’s camera frame, the
site visualization is invariant to shifts in the UAV’s location.
This is demonstrated in the experiments by the successful
localization of the UGV despite wind disturbances. Lastly,
as the task duration is limited by the UAV’s flight time, its
use is preferable to a static camera since it can cover larger
areas while locating multiple UGVs across the site.

VII. FUTURE WORK
As this is ongoing research, the methods and tools are
continuously developed. Future work will therefore focus on
addressing current limitations, improving the feedback in the
system, and expanding its collaborative capabilities.

As construction site preparation tasks can benefit from
increasing the accuracy of the outcome with respect to the
desired location and shape of the material, a future iteration
of this research will include adaptive material shaping. In this
process, the UGV is given a placement task - arranging
material in specific shapes. This goal requires understanding
the material location after each pushing sequence and
adapting the path accordingly. The material location changes
throughout the process, and thus the material mapping
method updates the map for the path planner before each
pushing sequence.

While currently the research assumes that the site is
free from static obstacles, future work will focus on safe
path planning in environments that contain static and
dynamic obstacles such as existing infrastructure, human
collaborators, or other vehicles. Additionally, while the
UAV is stationary in the presented experiments, there is no
technical limitation regarding the suggested algorithm for
moving the UAV during the experiments. Therefore, future
work will incorporate a ‘‘smart camera’’ method in which
an optimal path for the UAV will be explored. Furthermore,
future research will expand the collaborative capabilities of
the system by exploring the use of multiple UGV’s to perform
a site preparation task. This will require developing strategies
for distributing the task between the platforms and is expected

FIGURE 10. The results of the experiments, for Slalom (a1-c1), Fork (a2-c2), and Fork trajectories (a3-c3). Presenting the results of the baseline EKF in red
color, Site-localization EKF in blue color, and the ground-truth in green color.
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FIGURE 11. The results of the material mapping process during the experiment: on the top is the site with the generated bounding boxes of the
aggregate material, and on the bottom is the material binary grid.

to increase the resilience of the entire system by providing
redundancy and reducing the time it takes to perform a similar
task using only a single UGV.
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