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ABSTRACT Real-world products and physics-based simulations are becoming interconnected. In particular,
real-time capable dynamic simulation has made it possible for simulation models to run in parallel and
simultaneously with operating machinery. This capability combined with state observer techniques such as
Kalman filtering have enabled the synchronization between simulation and the real world. State estimator
techniques can be applied to estimate unmeasured quantities, also referred as virtual sensing, or to enhance
the quality of measured signals. Although synchronized models could be used in a number of ways, value
creation and business model development are currently defining the most practical and beneficial use cases
from a business perspective. The research reported here reveals the communication and collaboration meth-
ods that lead to economically relevant technology solutions. Two case examples are given that demonstrate
the proposed methodology. The work benefited from the broad perspective of researchers from different
backgrounds and the joint effort to drive the technology development towards business relevant cases.

INDEX TERMS Multibody simulation, finite element method, Kalman filter, state estimation, parameter
estimation, physics-based simulation.

I. INTRODUCTION
The importance of managing information and data in the
manufacturing industry has consistently grown and is already
more responsible for the competitiveness of enterprises than
the management of material or financial flows [1]. Modeling,
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simulation and enterprise information systems have devel-
oped rapidly and started to integrate leading to the recent
introduction of digital twins, which are the virtual represen-
tations of physical assets. Digital twins of higher maturity
level [2], [3] such as those employed in the automotive or
aviation domains [4], [5] are not only providing a simple visu-
alization or access point to machine Internet of Things (IoT)
data but are also supportingmultiple product processes across
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the lifecycle. Mature digital twins can draw from multiple
data sources [6] combining and contextualizing data with its
operational environment [7] and supporting decision making
through real-time simulation1 [8].

The ultimate aim for the scientific field of real-time sim-
ulation is to advance to the singularity point where a seam-
less fusion and synchronicity of both virtual and physical
assets is achieved. This will trigger a radical reorganiza-
tion of industrial business2 wherein digital twins serve as
the requisite scaffolding for interorganizational knowledge
flows and the realization of collaborative data collection, pro-
cessing, analytics, and exploitation on the ecosystem scale.
Already, we are seeing increases in the virtualization of work;
i.e., work performed in virtualized environments [10], [11];
making use of digital twins in product development and pro-
duction ([2], [12], [13]; implementing sophisticated industrial
automation and collaborative robotics [14]; and developing
new ways to collaborate and perform industrial design, plan-
ning, and implementation [15]. Digital twins have evolved
from mere simulation models to tools that enable the study of
real product behaviors in virtual environments. Physics-based
simulation enables developing virtual prototypes that are
subject to real-life physical constraints [16] while real-time
capability extends the use of simulation to further product
lifecycle stages. Computationally effective dynamics mod-
eling opens the possibility for, e.g., fault and state iden-
tification, problem root source debugging, and predictive
maintenance [17]. State-of-the-art simulationmodels can also
account for system hydraulics in real-time [18] and therefore
respond to user inputs as well. In the mobile heavy machine
industry, e.g., earth-moving equipment, this gives the operator
the needed awareness and control over the stresses and loads
on the equipment.

Digital-twin use is growing across a variety of
businesses, domains and ways to enhance company perfor-
mance [19], [20]. Digital-twin enabled virtual learning, stan-
dardized working environments, resource optimization, and
operational efficiency can provide value for the company’s
users and staff members [19]. Companies increasingly use
digital twins to enhance operational flexibility and gain a
view to their performance and operating conditions based
on real-time data [19] that can be leveraged to enable bet-
ter decision-making in operations such as condition mon-
itoring, function simulation, evolution simulation, dynamic
scheduling, predictive maintenance, and quality control [20].
Additionally, the real-time data made available by digital
twinning facilitates themonitoring and optimization of opera-
tions [20], [21], the development ofmore innovative products,
the realization of more effective service programs [22], the

1Here, simulation refers to computational dynamics based on multibody
system dynamics and its application to intelligent machines in real-time
simulation.

2Similar future scenarios have been envisioned by researchers of
blockchain governance (see e.g., Lumineau et al. [9]). In fact, these two
technology trends intersect and may end up accelerating the transformation.

diversification of business models, and more effective value
creation [23].

Digital twin technologies can also be seen as enablers
for new innovations in the era of digital transformation.
Aheleroff et al. [24] presented the Human, Technology, and
Process framework (see Figure 1) where establishing good
relationships and a balance among these aspects would lead
to achieving the highest organizational efficiencies. In the
digital space, the Digital Clone represents humans, theDigital
Twin and Digital Thread symbolize processes. Combined, the
three aspects cover the entire product development lifecycle.
This framework illustrates how a fully digital system should
function to support humans in achieving innovation, scalabil-
ity, and autonomy [24].

The digital twin approach makes use of information com-
ing from broad spectrum of viewpoints [19] that passes
through different departments and stakeholders with system-
atic methodologies that can enable processes to be automated
at a high level. From the technical point of view, the challenge
is that it is necessary to enable and exploit data flows across
many integrated systems to automate products and processes
at a high level. While data interoperability questions can be
solved, the exploitation of the data and analytics requires a
multidisciplinary understanding that is facilitated at multiple
levels. More specifically, extracting value from data in busi-
ness processes requires that 1) the information is shared to
the right teams and persons at the right time in a usable and
understandable form, 2) cross-functional teams are supported
within the organization, and 3) cross-organizational capabili-
ties, processes, and policies exist to support the collaborative
use of data. From the viewpoint of data use and sharing, there
must be sufficient cybersecurity, latency, and trust as well as
clearly defined data needs, flows, and responsibilities.

In this research, two case examples are given that demon-
strate the proposed methodology. They were designed to
use the virtual sensor concept to add both technical and
business value. While numerous case examples of digital
twin applications can be found in the state-of-the-art litera-
ture (see e.g., [4]), the process used to achieve the received
benefits has not been previously described. Here, in addi-
tion to presenting the two case examples, the steps taken to
accomplish the planned goals are also described. The focus is
especially on leveraging the physics-based simulation, which
is synchronized with the actual products, to enable the full
potential of virtual world information. The work was car-
ried out in close cooperation among innovative companies
and research organizations by multidisciplinary researchers
from a broad spectrum of backgrounds. The participating
companies, comprising multiple SMEs and midcap-sized
companies, are listed in the ending Acknowledgements. The
structure of the following text is as: Section II describes the
methodologies from a technical viewpoint: simulation mod-
els, Kalman filters, connectivity, connection to back-end, the
used digital twin framework concept and machine learning.
In addition, the value creation and utilization of digital twins
in benefits to business are described. In Section III, two case
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FIGURE 1. Digital transformation in humans, technologies, and processes (adapted from [24]).

studies are presented, where the virtual sensor application is
demonstrated. Section IV present a discussion about the solu-
tions and their business viewpoints. Section V summarizes
the results of the study.

II. METHODS
The foundation of a digital twin is the mathematical model
of the physical system. There are a variety of different
methodologies to construct this model, and selecting the
right one is case dependent. In this section, common meth-
ods are evaluated for physics-based simulation that is capa-
ble of providing relevant information with low latency, i.e.,
can provide real-time evaluation of the system or accept
alternative offline-taught data for specific identification
tasks. In physics-based simulation, two methods are widely
used: MultiBody Simulation (MBS) and the Finite Element
Method (FEM).

A. PHYSICS-BASED SIMULATION MODELS
Physics-based simulation models enable the virtual study of
component or system behaviors. They make it possible to
‘‘experience’’ realistic component or system behaviors. This
capability has been widely used in the product design phase,
e.g., to explore the dynamic behaviors of prospective designs,
leading to the design of products that will behave well in
actual operation. Through simulation, many resonance and
fatigue phenomena can be revealed in the design phase, and
the product design can bemodified accordingly. In the follow-
ing paragraphs, the two most common simulation methods,
multibody-based simulation and the finite element method,
are briefly described. Either of these can be used to investigate
industry application problems with high accuracy.

1) MULTIBODY-BASED SIMULATION
Multibody simulation is a straightforward process of defin-
ing the dynamics of a system by deriving its equations of

motion. It is especially applicable when large displacements
and/or rotations occur, and bodies are connected together via
joints. Computational efficiency is important when model-
ing complex systems, such as those prevalent in industrial
applications, and real-time solutions are needed to accom-
modate user input, an important consideration of machine
performance. For these applications, MBS is often used.
A multibody system can be defined as an assembly of bod-
ies connected using kinematic constraints [25]. Furthermore,
bodies can also be indirectly connected via force elements
such as springs, dampers, and actuators. The bodies can be
assumed to be rigid or deformable. In general, multibody
modeling approaches fall into one of two categories. They
can be global formulations or formulations based on relative
coordinates such as the semi-recursive formulation. In this
study, the semi-recursive formulation was used. Formulations
can be further categorized as open- or closed-loop systems.
In the semi-recursive formulation, a closed-loop system can
be converted into an open-loop system by introducing a
temporary cut-joint in its kinematic loop. The equations of
motion for a closed-loop system can be formulated by incor-
porating the cut-joint constrained equations into the dynamics
of the open-loop system [26]. As demonstrated recently, the
semi-recursive formulation is well suited for real-time simu-
lation applications [10], [27], [28]. The accuracy of MBS can
be improved by also addressing the deformation of bodies,
which results in a more computationally intensive simula-
tion. The Floating Frame of Reference Formulation (FFRF)
can be used to describe the deformation of flexible com-
ponents by adding the component’s dynamics. The modal
reduction technique is also used to reduce the number of
degrees of freedom and enhance computational efficiency.
However, in large applications (e.g., an excavator) where
dynamics are important, this can result in less accuracy with
less realistic results if the reduction method is not properly
selected.
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2) FINITE ELEMENT METHOD
The finite element method is widely applied over a broad
range of applications in engineering. One is rotordynamics.
Rotordynamics analysis using finite elements must consider
the dynamics of the entire rotating drivetrain including driver
and driven shafts, connection elements, bearing systems,
and support structures. For a standard electric motor rotor
(often axisymmetric) operating at moderate speed, a one-
dimensional (1D) beam element approach can be used.
However, beam elements have limitations in high-speed
applications since they do not account for deformation of
the shaft cross section or for flexibility of attached com-
ponent, e.g., impellers or sleeves [29]. High rotating speed
and high energy density make it necessary to consider addi-
tional effects such as internal stresses, contact interfaces, and
temperature gradients. Using two-dimensional (2D) axisym-
metric harmonic [30] or three-dimensional (3D) solid finite
elements (FE) [31], [32], these effects can be modeled.
Figure 2 depicts a beam and solid element-based model of
a steam turbine-generator rotor.

3D-solid element-based FEM models are typically com-
putationally expensive making the approach unsuitable for
real-time applications. In rotating system applications this is
usually acceptable, because the operator/user is not directly
connected to machine performance. On the other hand,
a beam-elements-based model can be made real-time capable
using either model order reduction techniques or frequency
domain solution methods [33], [34]. The performance and
durability of industry-scale structures can be evaluated by
applying physics-based model-driven methods or data-driven
measurement-based methods. Recent research has demon-
strated that combining these approaches can result in excel-
lent simulation performance and accuracy [17]. In principle,
the accuracy of calculation models correlates with the level
of detail built into the structural model, i.e., the number of
elements used (fineness of the mesh). Despite the advances in
finite element simulations and computational approaches of
rotordynamics, the uncertainties related to operational load-
ings, manufacturing tolerances, boundary conditions, contact
interfaces, and thermal gradients still present a challenge to
the accurate prediction of dynamic behaviors.

On the other hand, possibilities to validate models by
monitoring real data are always limited, e.g., in terms of
observability and the number of available sensors. To over-
come this challenge a hybrid method for virtual sensing was
utilized, which integrates real measurements to synchronize
physics-based simulation model and exploits the model to
gather data that is unavailable using traditional approaches
alone. The aim of this new approachwas to predict or virtually
measure the dynamic response of the entire structure using a
minimum number of direct measurements.

B. KALMAN FILTERS
The Kalman filter, also known as a linear quadratic estima-
tor (LQE), was originally developed by Rudolf Kalman in

FIGURE 2. Finite element models of a 1 MW integrated steam
turbine-generator rotor a) beam element model b) 3D-solid element
model.

the 1960’s as an optimal way to solve the state estimation
problem for a linear dynamic system with known Gaussian
noise properties [35]. The Kalman filter is often seen as a
sub solution for the linear quadratic control problem (LQG),
which comprises the linear quadratic regulator (LQR) and
linear quadratic estimator (LQE). Therefore, it is widely used
in, e.g., control engineering [36], mechatronics [37], and heat
transfer [38]. However, its system linearity requirement limits
the application of the original Kalman filter in multibody
systems. Non-linear variants of the Kalman filter are often
more suitable for multibody system problems. One of the
fundamental requirements of state-space models, the basis
for the Kalman filter, is to describe system dynamics using
linearly independent states, i.e., no state can be expressed in
terms of another state. In multibody systems, requiring state
independency presents a challenge, since systems are often
constrained, which makes some coordinates dependent on
others. To address this issue, Cuadrado et al. [39] proposed
a method that uses coordinate partitioning to construct the
system model by replacing states with independent coordi-
nates. To estimate the states of a mechanical system, the inde-
pendent coordinate method was introduced by [40]. In their
approach, the independent positions and velocities of the
multibody model are considered the states of the Kalman fil-
ter. With this method, a system of full coordinates can be esti-
mated in terms of independent coordinates in both open- and
closed-loop multibody models. The independent coordinate
method is further extended to hydraulically actuated systems
for state estimation [41] and parameter estimation [42].

In the following paragraphs, four different non-linear
variants of the Kalman filter are discussed from the
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multibody system perspective. These include the Extended,
Indirect Extended, Unscented, and Adaptive Unscented
Kalman filters. Later in this manuscript, these variants are
simply referred to as Kalman filters. The Kalman filters are
used here to synchronize the (real-time) simulation models
with the systems they represent with low complexity and
a minimum number of sensors to carry out, e.g., parameter
estimation.

1) EXTENDED KALMAN FILTER
The extended Kalman filter (EKF) is one of the first
non-linear variants of the original Kalman filter. The original
Kalman filter equation consists of a state prediction term
(data from the model) and a state update term (data from
the measurements). Both are linear. In contrast, the EKF uses
a non-linear plant model for the state prediction term and a
linearized version of the non-linear plant model for the state
update term. In the EKF, the state or parameter variables
are propagated through the non-linear plant model analyti-
cally using the first-order Taylor series approximation [43] to
compute the Jacobean of the system. In general, the EKF is
applied for the simulation of nonlinear systems [44] and [45].
In the field of multibody dynamics, the EKF has been imple-
mented in Continuous, Discrete, and Error-state formats [40]
using the independent coordinate method to carry out state
estimation. With the Continuous EKF, the Jacobian of the
multibody plant model is computed using the state vector at
the prediction stage. The resulting differential equation can
be solved using forward integration in the continuous time
frame [40]. However, the Discrete EKF uses the transition
model of the system to compute the Jacobean of system [40]
in discrete time steps. The transition model can be calculated
using the time step, velocity, and acceleration vectors of
the dynamic system. The Error-state EKF considers errors
in the independent positions and velocities of the system
as the states of the plant model [40]. Among these types,
the Error-state EKF has been, in many use cases, the most
efficient format [40]. It has typically been applied in an
indirect filter form to state estimation for hydraulically driven
systems.

2) INDIRECT KALMAN FILTER
The Indirect Kalman filter is based on the previously
described Extended Kalman filter. In the indirect (error-state)
filtering approach [27], [40], [46], instead of estimating the
variables of interest, the errors of the variables are esti-
mated. Here, a multibody model is run without modifica-
tions, and the indirect (error-state) filter estimates the drift
of the multibody model with respect to the measurements
available. After every measurement, the multibody model is
corrected based on the estimated errors. This approach makes
it possible to use any multibody formulation and integrator.
However, some terms of the multibody formulation are gen-
erally used in the propagation of the covariance matrix of
the estimation error and in the Jacobian matrix of the sensor
model.

3) UNSCENTED KALMAN FILTER
As mentioned previously, the prediction stage of the
Extended Kalman filter uses a first-order Taylor series
approximation to analytically compute the Jacobean of the
state transition matrix. This can lead to errors in the true
means and covariances [43]. As a result, EKF state estimation
may not be very accurate [43]. To address this problem, the
Unscented Kalman filter (UKF) uses the unscented transfor-
mation method, which can approximate the true means and
covariances to a third-order Taylor series for a non-linear
plant model [43]. The unscented transformation method
is based on calculating the sigma points of system states
and propagating them through the non-linear plant model.
Because it avoids using the Jacobeans of the state transition
matrix, which may be unclear in many complicated heavy
machines, the UKF is easier to implement. Further, the UKF
does not require Jacobean sensor models in its implementa-
tion. The UKFwas previously implemented in the framework
of multibody system dynamics by [40].

4) ADAPTIVE UKF
The EKF and UKF are the most common Kalman filter
versions used to carry out state estimation for nonlinear sys-
tems. TheUKF overcomes EKF drawbacksmentioned in [47]
and [48]. However, process and measurement noise statistics
must be known and provided to the UKF for it to func-
tion correctly. In the real world, these statistics are difficult
to determine. Mistuning covariance matrices, especially in
applications that require high accuracy and a very small sam-
pling time, can degrade performance and lead to divergence.
The Adaptive UKF can provide accurate state and parameter
estimation of the multibody system subject to completely
unknown process and measurement noise statistics. [49]

C. LIFECYCLE, CONNECTIVITY AND FRAMEWORK, AND
NEURAL NETWORK
The following paragraphs describe the information flow in
industrial processes and machines including existing plat-
forms (back-end systems), the lifecycle perspective, and an
exemplary framework to exchange information in real-time.
Especially with digital twins, unless a manufacturing oper-
ation is being built from the ground up, integration with an
existing infrastructure is necessary.

1) LIFECYCLE OF DIGITAL TWINS
Digital twins can bring added value throughout the lifecycle
of the product or system [50]. The digital twins of exist-
ing products or systems provide valuable information about
operational conditions, loading, and performance. Together
with the digital models, this information can be used to better
design and optimize new products, to improve operations
and maintenance and eventually to enable safe and efficient
product or system disassembly or disposal. The lifecycle of its
simulationmodels, required software, and computing compo-
nents must all be considered part of the lifecycle of a product
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or system with a digital twin that relies on physics-based sim-
ulation and simulation models. If the expected lifecycle of the
product or system is long, e.g., several decades and the simu-
lation approach used in the digital twin has computationally
challenging features, such as advanced models of physical
phenomena or system simulation, lifecycle management of
the digital twin can be challenging.

For several decades, researchers have investigated and
discussed how a single computer-aided design model could
be used with multiple distinct engineering tools [51], [52].
The main obstacles to this data exchange challenge have
been solved, mainly with the standardization of common
file format, e.g., the STEP-file format (standards ISO 10303,
AP203, AP214 and AP242). However, issues remain with
the exchange of simulation model data for multibody system
simulation [53]. The application of physics-based simulation
models in digital twins makes this data exchange challenge
relevant over the entire lifecycle of the product. With the
advent of digital twinning not only product engineers, but
also users and operators make use of the simulation models.
Therefore, long-term robust operation of the digital twins and
preservation of the simulation models and their data become
crucial. The number of individual simulation models also
increases with every delivered system that has a digital twin.
Any systemic issue with the digital twin, such as incompati-
bility with the latest computer operating systems, may affect
a large fleet of digital twins and may cause a serious risk to
the business.

The traditional means to overcome interoperability issues
is standardization. It provides the basis for a long-lasting
solution to the data exchange challenge and lowers the risks
of data becoming unusable and killing interoperability. The
drawback of the approach is that it is time consuming and
expensive, and for simulation domains such as system simu-
lation, it is technically challenging. Standardization can be
achieved, and simulation models and required simulation
software can be maintained in source code using a stan-
dardized programming language such as the C or C++ lan-
guage. However, this approach does not usually work with
commercial simulation tools and software, because they are
rarely available as source code. Depending on the application
the challenge of digital twin data lifecycle management can
be met by standardizing model data representation, using
software source code to present the computing software and
simulation model data, and making use of established simu-
lation languages such as Modelica3 and Julia.4

2) DIGITAL TWIN CONNECTIVITY TO BACK-END
Effectively integrating the digital twin into existing IT Sys-
tems brings value to both the manufacturer and operator.
This increases the value of the overall business system and
offers new ways to use the information and the results of
simulations. The primary purpose of the digital twin is to

3The website of the Modelica Association: https://modelica.org/
4The website of the Julia programming language: https://julialang.org/

virtually model an existing or planned real-world system as
it functions within its operating environment [54]. To achieve
this purpose, the digital twin relies on information that isman-
aged by the Information Management System [50]. Given
this information, the digital twin can remain aligned with
reality and the analysis of systems or operations, either being
developed or ongoing, and the subsequent implementation of
corrections is both faster and more accurate.

In addition to representing a product or system, a digital
twin can also represent manufacturing or supply chain pro-
cesses. In these cases, the digital twin can provide a data
bridge to the existing IT systems (ERP, CRM, PLM)5 making
information available that will enable the manufacturer, sup-
pliers, and operators to develop an ecosystem over the life-
cycle of the product or system that will improve operational
efficiencies and help identify new business opportunities. The
goal of implementing new digital services built on IoT data
and data analytics can also benefit from adopting digital twins
to simulate new services and running what-if scenarios faster
than real-time to select optimal operating characteristics [55].

3) DIGITAL TWIN FRAMEWORK CONCEPT
A physics-based Digital Twin (DT) requires a computer
program to run its simulation (the DT program). In some
application areas (e.g., manufacturing) the DT program can
be executed in or near the product or system it represents
with good connectivity to the sensors providing measurement
data. In other scenarios, however, such as a digital twin for
an off-road mobile machine, proximity and connectivity to
the measurement data is a challenge. The mobile machine
may operate in a harsh and remote environment, which puts
demands on computer hardware reliability and makes it dif-
ficult to monitor and update the program. A cloud-based
approach can be beneficial for remote scenarios. If the appli-
cation is sensitive to data transmission delay, fog or edge
computing could be used to move calculations closer to the
data source.6 Therefore, a DT program should be capable of
running in cloud, edge, and fog computing environments on
different types of hardware, and its architecture should sup-
port periodic updates and the application of security patches.

To describe, construct, and deploy physics-based digital
twins in heterogeneous execution environments, a reference
architecture was developed by [56]. It uses operating system-
level virtualization (containerization) to implement standard-
ized DT programs with the longevity and ability to run in
different execution environments. A description of a con-
tainerized DT program is stored together with information
about the actual product, its sensors, and the model used to
develop the DT program. All these data are used by a digital
twin management system implementing the reference archi-
tecture to execute DT programs for many instances of the
actual product. The digital twin management system interacts

5Enterprise Resource Planning, Customer Relationship Management,
Product Lifecycle Management.

6On-board execution can be considered a special case of edge computing
in such scenarios.
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with the back-end system, which combines the output of DT
programs with other product-related data to construct digital
twins that provide business value.

4) MACHINE LEARNING
Although physics-based digital twins cover most of the issues
related to engineering, design and manufacturing, the opera-
tion and maintenance areas still commonly rely instead on
measurement data. Decision-making in operations and main-
tenance should be based on enhanced situational awareness,
for which connectivity of the actual digital twin implementa-
tion is crucial. From the application point of view, good con-
nectivity means, in practice, that data should be comparable
between the real and virtual worlds, i.e., between measured
data and data predicted by simulation. Therefore, the feature
extraction, e.g. physical quantities, process is designed is to
find relevant information from the data [57]. In large sensor
networks, in addition to the problem of finding good physi-
cally meaningful features, finding the most relevant features
or combinations of features is complicated. Sensitive features
can also be nonphysical. Examples include autoregressive
coefficients (e.g., [58], [59] and some other model parameters
(e.g., [60], [61]).

The main premise of applying machine learning models as
data-based digital twins is that a chosen model can explain
the data under normal conditions. Faults, failures, damage,
or anomalies are seen as outliers. To detect novel events,
the machine learning system is first trained with the data
taken under normal conditions. If no prior information or
data on unexpected events is available, the detection problem
must be solved and the novelty detection approach applied to
new unseen data. Luckily, the training data from such events
can be simulated effectively using the physics-based digital
twins. The trained machine learning models are then used
to identify and classify data, i.e., to build up the enhanced
situational awareness and basis for decision-making. A con-
venient by-product of the feature selection and classification
processes in machine learning systems is the feasibility of
the process to also address the minimum number of sensors
and their preferable predefined locations [62]. Therefore,
enhanced connectivity for the situational awareness can be
maintained.

D. VALUE CREATION AND EXPLOITATION OF DIGITAL
TWINS
The real-time capability of a digital twin enables it to provide
additional information about system performance. This can
be exploited to make better process and business decisions.

1) BUSINESS NETWORKS & ECOSYSTEM
To enhance value creation in an ecosystem-based business
that includes digital twins, several prerequisites must be sat-
isfied. Companies are aware of value co-creation endeav-
ors in an ecosystem-based business, but they still see many
challenges in fitting together the processes, operations, and
goals of the different ecosystem actors. However, trust and

openness, which are central building blocks in an ecosystem-
based business, cannot be achieved without universal agree-
ment as to shared goals and values. To solve this issue,
e.g., [63] emphasized the importance of gaining a thor-
ough understanding of the pains, gains, and jobs of the dif-
ferent actors before a digital-twin solution can be applied
in a collaboration ecosystem. Establishing common stan-
dards and rules and defined responsibilities are consid-
ered central preconditions for ecosystem design [64], as is
the balance between the companies’ own profitability tar-
gets and shared ecosystem value. Even though business
ecosystem thinking should be based on mutual dependency
(e.g. [65]), an orchestrating actor is needed to define the
businesses relevant to the ecosystem. Moreover, better coor-
dination of the membership is needed to meet the chal-
lenges of interconnectivity, interoperability, and competing
interests [66].

2) SELLING DATA-BASED SOLUTIONS
Selling data-based solutions (i.e., digital twins) is about sell-
ing value to the customer and understanding the customer’s
business, i.e., value creation in the value chain. Value-based
sales means finding the offering’s most valuable benefit
for the customer business. Only satisfying the customer’s
expressed needs is insufficient [67]. Selling complex data-
based solutions, such as digital twins is seen as very com-
plex because perceived and real value can be different even
to different persons in the customer company. Therefore,
a framework to sell a data-based solution was constructed
in a previous publication [68]. The selling process for a
data-based solution could be divided into parts to clarify the
value from different perspectives. In addition to understand-
ing the offered value-adding data-based solution, a salesper-
son must understand the customer’s sub processes, processes,
and business. Figure 3 shows how the understanding of the
digital twin should increase with the level of ecosystem com-
plexity.

3) VALUE CREATION
Value creation can be defined as the group of activities and
processes that enforce the integration of resources and the
roles of the various actors in a service ecosystem [69]. The
first step in creating value with digital twins is to determine
the value proposition [63]. Digital twins bring value by mak-
ing it possible to share risks, skills, resources, and duties; cut
expenses; increase flexibility; and finally maximize customer
satisfaction [70]. The second is to analyze and define the
roles of the various actors. Because each contributor will
be making a unique contribution, is it important to under-
stand and coordinate their participation to avoid unproductive
misalignments between the actors and the process [63]. The
third step is to analyze the network effects to understand
how adding or removing contributors can affect the ecosys-
tem as a whole [71], [72]. The final step is to establish the
revenue model and determine how to best produce financial
benefit.
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FIGURE 3. Selling a data-based solution (i.e., digital twin) in B2B markets requiring different levels of customer and digital-twin
understanding as ecosystem complexity increases.

III. CASE STUDIES: MOBILE LOG CRANE AND ROTATING
STRUCTURE
To demonstrate the proposed methodology, two case exam-
ples were investigated. For the first example, a mobile
log crane was modeled with MBS-based methods and
UKF was applied to estimate the states of the system.
In the second case, a rotating machine was modeled using
FEM-based methods, and the parameters of the system were
estimated using the Kalman filter. In both examples, the
simulation models were well synchronized with the actual
products, which made it possible to emphasize virtual sensor
capabilities [73].

A. MOBILE LOG CRANE
To demonstrate the feasibility of physics-based digital twins
in the heavy equipment segment, the dynamics of a mobile
log crane was modelled in independent coordinates using
MBS formulations as a proof-of-concept system. MBS pro-
vides general formulations to build dynamic simulation mod-
els of industrial machines [10], [18], [28] which can be used
in divergent phases of product lifecycle ranging from product
development to maintenance. Using the MBS formulations
in the presented case example makes it possible to reduce the
number of sensors in the implementation of the digital twin.
A digital twin was developed that calculated crane dynamics
in real-time using position and pressure sensor data obtained
from the crane hydraulic cylinders.

Meta data describing parameters of the actual crane, the
sensors, the model, and software implementing the digital
twin were collected and stored in a cloud system for PLM

collaboration ShareAspace, which was provided by partner
company Eurostep Oy. Using the digital twin framework,
software was written to emulate a module within a fleet man-
agement system for heavy equipment. This module read the
meta data from the ShareAspace system and executed several
instances of the DT program in the Amazon web services
cloud. Each instancewas implemented as aDocker container7

providing scalability for running large numbers of digital
twins concurrently. The sensor data was gathered from a real
crane (PATU 655) operated in the Laboratory of Intelligent
Machines at LUT University. Although a single crane was
used in the experiments, its sensor data were replicated to
16 instances of the DT program running concurrently in the
cloud. This setup emulated digital twin execution for a fleet
of machines. The results of calculations were visualized in
16 web browser windows on desktop computers at LUT Uni-
versity, each presenting the motion of the crane in real-time
and showing the force vectors acting on the crane booms.
The goal was to develop a proof-of-concept system capable of
running physics-based DT programs for a fleet of machines
using the proposed framework. Of particular interest wast the
suitability of container technology for maintaining multiple
instances of computationally intensive DT programs in the
cloud and executing several DT programs on a single host.
The setup demonstrated an ability to run physics-based digital
twins for a heavy equipment fleet in real-time using commer-
cially available cloud systems. Figure 4 depicts the mobile

7A container is a standard unit of software that packages up code and
all its dependencies so the application runs quickly and reliably from one
computing environment to another.
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FIGURE 4. (a) PATU 655 mobile log crane and (b) fleet of virtual models.

log crane and the fleet of virtual models in the digital twin
framework.

Figure 5 illustrates the MBS model of the PATU
655 mobile log crane. The model is based on the crane’s
actual dimensions and parameters. It comprises the lift
boom, the outer boom, bracket 1, bracket 2, and the sys-
tem hydraulics. As Figure 5 shows, the crane is powered
by two hydraulic cylinders. To demonstrate the digital twin,
three MBS models were used. They were designated the real
model, the plant model, and the simulation model.

Measurement of the angles z1 and z4 and the cylinder pres-
sures p1 and p4 came from the real model. White Gaussian
noise was added in the measurement data so that it replicated
the actual sensor performance. The plant model differs from
the real model in terms of external forces, joint tolerances,
and initial conditions. The dynamics of plant model and
simulation model are the same. The Unscented Kalman Filter
was used to estimate the real model states. State-estimation
results are discussed in the following paragraphs where the
Kalman Filter was used to synchronize the plant model with
the real model based on sensor measurements. Note that in
this study the results of z4 and p3 estimation are presented.
Further details of the modelling, implementation, and results
of UKF in PATU 655 mobile log crane can be found in [74].
A period comprising 25 seconds of operation was considered.

1) STATE ESTIMATION USING UNSCENTED KALMAN FILTER
IN PATU 655 MOBILE LOG CRANE
Figure 6a depicts state estimation for angle z4, i.e., the outer
boom angular position with respect to the lift boom. The red
dashed line represents the faulty simulation model with the

FIGURE 5. Mobile log crane physics-based simulation model made with
MBS-z1, z4, ż1, and ż4 represent the angles and angular velocities of the
lift boom and outer boom, respectively. p1, p2, p3, and p4 are the
pressures of cylinders 1 and 2.

initial contact angle set to 277 degrees. The correct value was
292 degrees. The black dashed line represents the Kalman
filter corrected value, which is aligned with the actual system.
Figure 6b shows the error in the angle estimation. Simi-
larly, Figure 6c depicts state estimation for pressure p3 (the
second cylinder piston side pressure), where the incorrect
model reads 60 bar, and the Kalman filter correction pushes
it to 43 bar.

2) KALMAN FILTER IN ROTATING MACHINES
The torsional vibration demonstration example represents
a proof-of-concept demonstration for the rotating machin-
ery industry. The demo case demonstrates the feasibility of
using a physics-based digital twin to identify machine state
changes. For this example case, the Unscented Kalman filter
was used to estimate the state of the experimental torsional
vibration proof-of-concept device where an electric motor
drives the main rotor via a flexible coupling as shown in
Figure 7. The rotor is supported by four bearings and the
vibration at the bearing locations is measured by acceleration
sensors.

This study shows the contribution of the pedestal, i.e.
the table where the machine is standing, movement. Higher
order frequencies and support types affect recorded vibration
measurement, so using rawmeasurement data to study system
response is not the best approach. Additional signal process-
ing steps and model updating based on measurement data are
needed. The first order component of the signal is used here to
provide a clearer image of system behavior during the sweep.
As shown by Figure 8, vibration peaks at 7 Hz at the first
order component of the signal at the rigid body mode of the
pedestal. Here, pedestal movement has a significant effect on
the unbalanced response. The vibration peak appears mainly
at the horizontal and also slightly vertical directions. The
pedestal is heavy, and the system has high stiffness in the
vertical direction. Therefore, the amplitude of vibration is
small. The stiffness of the supports in the attachment of the
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FIGURE 6. Estimation of z4 and p3 in the mobile log crane using UKF.
Errors in the states in 95 % confidence interval during the estimation.

bearing to the pedestal also affects system response in the
simulation model.

FIGURE 7. Rotating machine proof-of-concept.

FIGURE 8. First order response, a) measurement, b) simulation.

The capability of the Kalman filter to determine the cor-
rected state based on measurement data was tested. The
FEM model has 50 dofs. The states considered were displ-
acement, velocity, and acceleration in the different degrees of
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FIGURE 9. Kalman filter results for estimation of acceleration at bearing location (Acc.: acceleration).

freedom of the model. The 8 sensors provided measurements
of horizontal and vertical displacement at the bearing loca-
tion. Figure 9 gives the results of the acceleration predicted
by the Kalman filter. The figure shows the Kalman filter
correction to be good even though the simulation model has a
considerable difference with respect to the measurement data
and the full model was used.

IV. DISCUSSION
Digitalization is developing rapidly, especially in the more
innovative industrial companies that are seeking new solu-
tions and new ways of generating value. Figure 10 depicts
the concept for structuring information and making use of
physics-based simulation technologies to create value in
products and in decision making. In the conceptual approach,
the simulation models are designed so they can be operated in
parallel with actual product operation. This makes it possible
to use information gathered by the physics-based simulation
model to gain a deeper understanding of product behavior,
which can be used, for example, in decision making. This
is especially relevant in products that are highly customized
or unique, where substantial operational data is not available
prior to customer use. The depicted concept can be utilized
in several ways, and it considers both value creation and
technical aspects. Section 3 described two examples cases
based on this concept.

A. BUSINESS CASES RELATED TO PROOF OF CONCEPTS
A digital twin based on a real-time simulation model and a
Kalman filter offers several benefits. When the actual product
and the simulation model operate in synchronization, insights
gained from the physics-based simulation, e.g., forces and
inertias, can be used directly to assess loads and therefore
the damage to the system. In the product development phase,

the justification for using these types of models, instead of
building and testing actual prototypes, includes faster time to
market and other economic benefits. Redesigns and modifi-
cations can be made in hours instead of the weeks or even
months required to redesign and modify an actual prototype.
The Kalman filter based model makes it possible to explore
the applicability of different materials and components or
how best to optimize energy efficiency. Parameters such as
these are especially significant in supporting the transition
to digital twins, i.e., digitalization and green transformation,
because their effects can be quantified and compared prior
to introducing a new product to manufacturing. Marketing
and sales also benefits. The new modeling approach not
only saves time, but also provides competitive advantage.
The mobile log crane and rotating machine case examples
illustrated how simulation makes it possible for the user
(potential customer) to experience, engagingly and realisti-
cally, the performance of a new machine system. Users can
participate in development of the model, influence system
specifications, and ultimately experience the operation of
variousmachine options. The Kalman-filter-based simulation
models promise to provide new intelligent solutions such as
production optimization. Moreover, the simulation models
promise to provide new intelligent solutions such as produc-
tion optimization. For example, they can produce real-time
data and automatically control and adjust processes, therefore
improving energy efficiency and productivity. In operation,
the simulation models support decision making by enabling
more efficient working cycles and lower fuel consumption.
They can create value by enhancing employee safety and
improving the ergonomics of workplace operations. Auto-
mated and resource-savingmodelsmay lower costs and there-
fore enhance the effectiveness of operations, units, and entire
companies. The models help to prevent the breakdown of
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FIGURE 10. Advanced simulation tools and data processing techniques to create value in products.

machinery and ensure optimal operation. In addition, because
digitalization is demanding also from the supply network
perspective, the virtual product can act as a central node
connecting the different actors and operators within a com-
plex network and therefore be concrete and able to quantify
the value distribution along the network of suppliers, i.e.,
ecosystem participants. For an operator of, e.g., mobile heavy
machinery, the new digitalized environment enables heads-
up-display solutions, the real-time processing and analytics
of fused IoT and simulation data.

B. FUTURE TECHNICAL AND BUSINESS PERSPECTIVES
While the concept and solutions are promising, working
methods need to be developed further. In particular, tech-
nology adaptation and organizational structures are challeng-
ing issues that must be addressed when going forward with
digitalization. Education must also do its part to support
the methodologies behind digitalization and digitalization-
enabled opportunities. Further research and development are
needed to explore the methods for specific cases and increas-
ing robustness. Trust in the estimations given by the combi-
nation of actual product and physics-based simulation must
continue to be cultivated. The digital twin concept requires
cross-disciplinary collaboration and the formation of multi-
disciplinary teams to take full advantage of the potential of
digitalization. Currently, many organizations in the industrial
companies are not ready to fully provide this support. A digi-
tal twin should be built so that personnel changes do not affect
its effectiveness, e.g., similar concept as in IT and software
development, such as the agile working routines, could be
beneficial.

V. CONCLUSION
The research reported here explored technical aspects of
merging machinery with a physics-based digital twins based
on Kalman filter techniques and how a successful imple-
mentation can create value. Two industrial case examples

were exercised to demonstrate the proposed methodology.
The first, a mobile log crane, is applicable for the heavy
mobile machinery industry, where many leading companies
are pioneering digitalization and acting as innovators for
technology adaptation. The second case example considered
a rotating machine. In rotating machinery, unexpected fail-
ures are still causing problems. In the research, the broad
viewpoint was explored, including the identification of poten-
tial value creation from the interviews and then ability to
adapt technology based on the real needs in the industry. The
novelty of the research is with the conceptual methodology,
which can be applied to solve cross organizational challenges,
and by introducing new ways to approach digitalization and
capture the enabled opportunities. Further research is needed
to identify and capture similar value in more traditional and
less innovative industries.

ACKNOWLEDGMENT
The authors would like to thank the following par-
ticipating companies for sharing their knowledge and
viewpoints: Eurostep Oy–Leo Torvikoski, Process Genius
Oy–Jani Akkila, Janne Pekkala, Mevea Oy–Tero Koskipalo,
Novatron Oy–Juuso Mäkinen, Raute Oyj–Roope Eskola,
Sandvik Mining and Construction Oy-Arto Vento, Wärtsilä
Finland Oy–Tero Lokasaari, 3D Talo Finland Oy–Tatu Säisä,
and Kone Oyj–Henri Wenlin.

REFERENCES

[1] A. Sääksvuori and A. Immonen, Product Lifecycle Management, 3rd ed.
Berlin, Germany: Springer, 2008.

[2] I. Donoghue, L. Hannola, J. Papinniemi, and A. Mikkola, ‘‘The benefits
and impact of digital twins in product development phase of PLM,’’
in Proc. IFIP Int. Conf. Product Lifecycle Manage. Cham, Switzerland:
Springer, 2018, pp. 432–441, doi: 10.1007/978-3-030-01614-2_40.

[3] B. R. Barricelli, E. Casiraghi, and D. Fogli, ‘‘A survey on
digital twin: Definitions, characteristics, applications, and design
implications,’’ IEEE Access, vol. 7, pp. 167653–167671, 2019, doi:
10.1109/ACCESS.2019.2953499.

VOLUME 10, 2022 45973

http://dx.doi.org/10.1007/978-3-030-01614-2_40
http://dx.doi.org/10.1109/ACCESS.2019.2953499


E. Kurvinen et al.: Physics-Based Digital Twins Merging With Machines

[4] C. K. Lo, C. H. Chen, and R. Y. Zhong, ‘‘A review of digital twin in
product design and development,’’ Adv. Eng. Informat., vol. 48, Apr. 2021,
Art. no. 101297, doi: 10.1016/j.aei.2021.101297.

[5] H. Aydemir, U. Zengin, and U. Durak, ‘‘The digital twin paradigm for
aircraft review and outlook,’’ in Proc. AIAA Scitech Forum, 2020, p. 0553,
doi: 10.2514/6.2020-0553.

[6] J. Autiosalo, J. Vepsalainen, R. Viitala, and K. Tammi, ‘‘A feature-based
framework for structuring industrial digital twins,’’ IEEE Access, vol. 8,
pp. 1193–1208, 2020, doi: 10.1109/ACCESS.2019.2950507.

[7] W. Z. Bernstein, T. D. Hedberg, Jr., M. Helu, and A. B. Feeney, ‘‘Contextu-
alising manufacturing data for lifecycle decision-making,’’ Int. J. Product
Lifecycle Manage., vol. 10, no. 4, pp. 326–347, 2017.

[8] M. Saunila, J. Ukko, J. Heikkinen, R. S. Semken, and A. Mikkola, ‘‘Cre-
ating value with sustainable production based on real-time simulation,’’
in Real-Time Simulation for Sustainable Production. Evanston, IL, USA:
Routledge, 2021, pp. 1–9, doi: 10.4324/9781003054214-1.

[9] F. Lumineau, W. Wang, and O. Schilke, ‘‘Blockchain governance—A new
way of organizing collaborations?’’ Org. Sci., vol. 32, no. 2, pp. 500–521,
2021, doi: 10.1287/orsc.2020.1379.

[10] S. Jaiswal, P. Korkealaakso, R. Åman, J. Sopanen, and A. Mikkola,
‘‘Deformable terrain model for the real-time multibody simulation of a
tractor with a hydraulically driven front-loader,’’ IEEE Access, vol. 7,
pp. 172694–172708, 2019, doi: 10.1109/ACCESS.2019.2956164.

[11] L. Hannola, A. Richter, S. Richter, and A. Stocker, ‘‘Empowering produc-
tion workers with digitally facilitated knowledge processes—A conceptual
framework,’’ Int. J. Prod. Res., vol. 56, no. 14, pp. 4729–4743, 2018, doi:
10.1080/00207543.2018.1445877.

[12] M. Li, A. Milojević, and H. Handroos, ‘‘Robotics in manufacturing—
The past and the present,’’ in Technical, Economic and Societal Effects
of Manufacturing 4.0. Cham, Switzerland: Palgrave Macmillan, 2020,
pp. 85–95, doi: 10.1007/978-3-030-46103-4_4.

[13] I. Palomba, D. Richiedei, A. Trevisani, E. Sanjurjo, A. Luaces, and
J. Cuadrado, ‘‘Estimation of the digging and payload forces in excavators
by means of state observers,’’ Mech. Syst. Signal Process., vol. 134,
Dec. 2019, Art. no. 106356, doi: 10.1016/j.ymssp.2019.106356.

[14] S. Vorotnikov, K. Ermishin, A. Nazarova, and A. Yuschenko, ‘‘Multi-agent
robotic systems in collaborative robotics,’’ in Proc. Int. Conf. Interact.
Collaborative Robot. Cham, Switzerland: Springer, 2018, pp. 270–279,
doi: 10.1007/978-3-319-99582-3_28.

[15] A. Kostis and P. Ritala, ‘‘Digital artifacts in industrial co-creation: How
to use VR technology to bridge the provider-customer boundary,’’ Cal-
ifornia Manage. Rev., vol. 62, no. 4, pp. 125–147, Aug. 2020, doi:
10.1177/0008125620931859.

[16] M. C. Becker, P. Salvatore, and F. Zirpoli, ‘‘The impact of virtual sim-
ulation tools on problem-solving and new product development orga-
nization,’’ Res. Policy, vol. 34, no. 9, pp. 1305–1321, Nov. 2005, doi:
10.1016/j.respol.2005.03.016.

[17] D. Bobylev, T. Choudhury, J. O. Miettinen, R. Viitala, E. Kurvinen,
and J. Sopanen, ‘‘Simulation-based transfer learning for support stiff-
ness identification,’’ IEEE Access, vol. 9, pp. 120652–120664, 2021, doi:
10.1109/ACCESS.2021.3108414.

[18] N. Alaei, E. Kurvinen, and A.Mikkola, ‘‘Amethodology for product devel-
opment in mobile machinery: Case example of an excavator,’’ Machines,
vol. 7, no. 4, p. 70, Nov. 2019, doi: 10.3390/machines7040070.

[19] Y. Lu, C. Liu, K. I.-K. Wang, H. Huang, and X. Xu, ‘‘Digital twin-
driven smart manufacturing: Connotation, reference model, applications
and research issues,’’ Robot. Comput.-Integr. Manuf., vol. 61, Feb. 2020,
Art. no. 101837, doi: 10.1016/j.rcim.2019.101837.

[20] Q. Qi, F. Tao, T. Hu, N. Anwer, A. Liu, Y. Wei, L. Wang, and A. Y. C. Nee,
‘‘Enabling technologies and tools for digital twin,’’ J. Manuf. Syst., vol. 58,
pp. 3–21, Jan. 2021, doi: 10.1016/j.jmsy.2019.10.001.

[21] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui, ‘‘Digital twin-
driven product design, manufacturing and service with big data,’’ Int.
J. Adv. Manuf. Technol., vol. 94, nos. 9–12, pp. 3563–3576, Feb. 2018, doi:
10.1007/s00170-017-0233-1.

[22] R. Söderberg, K. Wärmefjord, J. S. Carlson, and L. Lindkvist, ‘‘Toward
a digital twin for real-time geometry assurance in individualized
production,’’ CIRP Ann., vol. 66, no. 1, pp. 137–140, 2017, doi:
10.1016/j.cirp.2017.04.038.

[23] Y. Lu and X. Xu, ‘‘Cloud-based manufacturing equipment and
big data analytics to enable on-demand manufacturing services,’’
Robot. Comput.-Integr. Manuf., vol. 57, pp. 92–102, Jun. 2019, doi:
10.1016/j.rcim.2018.11.006.

[24] S. Aheleroff, X. Xu, R. Y. Zhong, and Y. Lu, ‘‘Digital twin as a service
(DTaaS) in industry 4.0: An architecture referencemodel,’’Adv. Eng. Infor-
mat., vol. 47, Jan. 2021, Art. no. 101225, doi: 10.1016/j.aei.2020.101225.

[25] J. G. de Jalon and E. Bayo, Kinematic and Dynamic Simulation of Multi-
body Systems: The Real-Time Challenge (Mechanical Engineering Series),
1st ed. New York, NY, USA: Springer-Verlag, 1994, p. XVI and 440, doi:
10.1007/978-1-4612-2600-0.

[26] J. Cuadrado, D. Dopico, M. Gonzalez, and M. A. Naya, ‘‘A combined
penalty and recursive real-time formulation for multibody dynamics,’’
J. Mech. Des., vol. 126, no. 4, pp. 602–608, 2004, doi: 10.1115/1.1758257.

[27] S. Jaiswal, R. Aman, J. Sopanen, and A. Mikkola, ‘‘Real-time multibody
model-based heads-up display unit of a tractor,’’ IEEE Access, vol. 9,
pp. 57645–57657, 2021, doi: 10.1109/ACCESS.2021.3072452.

[28] Q. Khadim, E.-P. Kaikko, E. Puolatie, and A. Mikkola, ‘‘Targeting the
user experience in the development of mobile machinery using real-
time multibody simulation,’’ Adv. Mech. Eng., vol. 12, no. 6, 2020,
Art. no. 1687814020923176.

[29] G. Genta and M. Silvagni, ‘‘On centrifugal softening in finite element
method rotordynamics,’’ J. Appl. Mech., vol. 81, no. 1, Jan. 2014, doi:
10.1115/1.4024073.

[30] L. Hu and A. Palazzolo, ‘‘An enhanced axisymmetric solid element for
rotor dynamic model improvement,’’ J. Vibrat. Acoust., vol. 141, no. 5,
Oct. 2019, Art. no. 051002, doi: 10.1115/1.4043411.

[31] J. Oh, B. J. Kim, and A. Palazzolo, ‘‘Three-dimensional solid finite ele-
ment contact model for rotordynamic analysis: Experiment and simula-
tion,’’ J. Vib. Acoust., vol. 143, no. 3, Jun. 2021, Art. no. 031007, doi:
10.1115/1.4048556.

[32] E. Sikanen, J. E. Heikkinen, and J. Sopanen, ‘‘Shrink-fitted joint behav-
ior using three-dimensional solid finite elements in rotor dynamics with
inclusion of stress-stiffening effect,’’ Adv. Mech. Eng., vol. 10, no. 6, 2018,
Art. no. 1687814018780054, doi: 10.1177/1687814018780054.

[33] T. Choudhury, E. Kurvinen, R. Viitala, and J. Sopanen, ‘‘Develop-
ment and verification of frequency domain solution methods for rotor-
bearing system responses caused by rolling element bearing waviness,’’
Mech. Syst. Signal Process., vol. 163, Jan. 2022, Art. no. 108117, doi:
10.1016/j.ymssp.2021.108117.

[34] P. Koutsovasilis and M. Beitelschmidt, ‘‘Model order reduction of finite
element models: Improved component mode synthesis,’’ Math. Com-
put. Model. Dyn. Syst., vol. 16, no. 1, pp. 57–73, Mar. 2010, doi:
10.1080/13873951003590214.

[35] S. G. Mohinder and P. A. Angus, ‘‘Applications of Kalman fil-
tering in aerospace 1960 to the present [historical perspectives],’’
IEEE Control Syst. Mag., vol. 30, no. 3, pp. 69–78, Jun. 2010, doi:
10.1109/MCS.2010.936465.

[36] Y. Zhang and Q. Xu, ‘‘Adaptive sliding mode control with parameter
estimation and Kalman filter for precision motion control of a piezo-
driven microgripper,’’ IEEE Trans. Control Syst. Technol., vol. 25, no. 2,
pp. 728–735, Mar. 2017, doi: 10.1109/TCST.2016.2569567.

[37] M. Soltani, M. Bozorg, and M. R. Zakerzadeh, ‘‘Parameter estimation of
an SMA actuator model using an extended Kalman filter,’’ Mechatronics,
vol. 50, pp. 148–159, Apr. 2018, doi: 10.1016/j.mechatronics.2018.02.001.

[38] Y. Oka and M. Ohno, ‘‘Parameter estimation for heat transfer anal-
ysis during casting processes based on ensemble Kalman filter,’’ Int.
J. Heat Mass Transf., vol. 149, Mar. 2020, Art. no. 119232, doi:
10.1016/j.ijheatmasstransfer.2019.119232.

[39] J. Cuadrado, D. Dopico, A. Barreiro, and E. Delgado, ‘‘Real-time state
observers based on multibody models and the extended Kalman filter,’’
J. Mech. Sci. Technol., vol. 23, no. 4, pp. 894–900, Apr. 2009, doi:
10.1007/s12206-009-0308-5.

[40] E. Sanjurjo, M. Á. Naya, J. L. Blanco-Claraco, J. L. Torres-Moreno, and
A. Giménez-Fernández, ‘‘Accuracy and efficiency comparison of various
nonlinear Kalman filters applied to multibody models,’’ Nonlinear Dyn.,
vol. 88, no. 3, pp. 1935–1951, May 2017, doi: 10.1007/s11071-017-3354-
z.

[41] S. Jaiswal, E. Sanjurjo, J. Sopanen, J. Cuadrado, and A. Mikkola, ‘‘State
estimator based on an indirect Kalman filter for a hydraulically actuated
multibody system,’’Multibody Syst. Dyn., vol. 54, pp. 373–398, Feb. 2022.

[42] Q. Khadim, M. Kiani-Oshtorjani, S. Jaiswal, M. K. Matikainen, and
A. Mikkola, ‘‘Estimating the characteristic curve of a directional con-
trol valve in a combined multibody and hydraulic system using an aug-
mented discrete extended Kalman filter,’’ Sensors, vol. 21, no. 15, p. 5029,
Jul. 2021, doi: 10.3390/s21155029.

[43] E. A. Wan and R. Van Der Merwe, ‘‘The unscented Kalman fil-
ter for nonlinear estimation,’’ in Proc. IEEE Adapt. Syst. Signal
Process., Commun., Control Symp., Oct. 2000, pp. 153–158, doi:
10.1109/ASSPCC.2000.882463.

45974 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.aei.2021.101297
http://dx.doi.org/10.2514/6.2020-0553
http://dx.doi.org/10.1109/ACCESS.2019.2950507
http://dx.doi.org/10.4324/9781003054214-1
http://dx.doi.org/10.1287/orsc.2020.1379
http://dx.doi.org/10.1109/ACCESS.2019.2956164
http://dx.doi.org/10.1080/00207543.2018.1445877
http://dx.doi.org/10.1007/978-3-030-46103-4_4
http://dx.doi.org/10.1016/j.ymssp.2019.106356
http://dx.doi.org/10.1007/978-3-319-99582-3_28
http://dx.doi.org/10.1177/0008125620931859
http://dx.doi.org/10.1016/j.respol.2005.03.016
http://dx.doi.org/10.1109/ACCESS.2021.3108414
http://dx.doi.org/10.3390/machines7040070
http://dx.doi.org/10.1016/j.rcim.2019.101837
http://dx.doi.org/10.1016/j.jmsy.2019.10.001
http://dx.doi.org/10.1007/s00170-017-0233-1
http://dx.doi.org/10.1016/j.cirp.2017.04.038
http://dx.doi.org/10.1016/j.rcim.2018.11.006
http://dx.doi.org/10.1016/j.aei.2020.101225
http://dx.doi.org/10.1007/978-1-4612-2600-0
http://dx.doi.org/10.1115/1.1758257
http://dx.doi.org/10.1109/ACCESS.2021.3072452
http://dx.doi.org/10.1115/1.4024073
http://dx.doi.org/10.1115/1.4043411
http://dx.doi.org/10.1115/1.4048556
http://dx.doi.org/10.1177/1687814018780054
http://dx.doi.org/10.1016/j.ymssp.2021.108117
http://dx.doi.org/10.1080/13873951003590214
http://dx.doi.org/10.1109/MCS.2010.936465
http://dx.doi.org/10.1109/TCST.2016.2569567
http://dx.doi.org/10.1016/j.mechatronics.2018.02.001
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.119232
http://dx.doi.org/10.1007/s12206-009-0308-5
http://dx.doi.org/10.1007/s11071-017-3354-z
http://dx.doi.org/10.1007/s11071-017-3354-z
http://dx.doi.org/10.3390/s21155029
http://dx.doi.org/10.1109/ASSPCC.2000.882463


E. Kurvinen et al.: Physics-Based Digital Twins Merging With Machines

[44] A. R. Ghiasi, A. A. Ghavifekr, Y. S. Hagh, andH. SeyedGholami, ‘‘Design-
ing adaptive robust extended Kalman filter based on Lyapunov-based con-
troller for robotics manipulators,’’ in Proc. 6th Int. Conf. Modeling, Sim-
ulation, Appl. Optim. (ICMSAO), May 2015, pp. 1–6, doi: 10.1109/ICM-
SAO.2015.7152248.

[45] Y. S. Hagh, R. M. Asl, A. Fekih, H. Wu, and H. Handroos, ‘‘Active
fault-tolerant control design for actuator fault mitigation in robotic
manipulators,’’ IEEE Access, vol. 9, pp. 47912–47929, 2021, doi:
10.1109/ACCESS.2021.3068448.

[46] E. Sanjurjo, D. Dopico, A. Luaces, and M. Á. Naya, ‘‘State and force
observers based on multibody models and the indirect Kalman filter,’’
Mech. Syst. Signal Process., vol. 106, pp. 210–228, Jun. 2018, doi:
10.1016/j.ymssp.2017.12.041.

[47] H. Bonyan Khamseh, S. Ghorbani, and F. Janabi-Sharifi, ‘‘Unscented
Kalman filter state estimation for manipulating unmanned aerial vehi-
cles,’’ Aerosp. Sci. Technol., vol. 92, pp. 446–463, Sep. 2019, doi:
10.1016/j.ast.2019.06.009.

[48] S. Razvarz, R. Jafari, and A. Gegov, ‘‘Leakage detection in pipeline based
on second order extended Kalman filter observer,’’ in Flow Modelling
and Control in Pipeline Systems. Cham, Switzerland: Springer, 2021,
pp. 161–174, doi: 10.1007/978-3-030-59246-2_8.

[49] Y. S. Hagh, R. M. Asl, and V. Cocquempot, ‘‘A hybrid robust fault tolerant
control based on adaptive joint unscented Kalman filter,’’ ISA Trans.,
vol. 66, pp. 262–274, Jan. 2017, doi: 10.1016/j.isatra.2016.09.009.

[50] M. Grieves and J. Vickers, ‘‘Digital twin: Mitigating unpredictable, unde-
sirable emergent behavior in complex systems,’’ in Transdisciplinary
Perspectives on Complex Systems. Cham, Switzerland: Springer, 2017,
pp. 85–113, doi: 10.1007/978-3-319-38756-7_4.

[51] S. D. Urban, J. J. Shah, and M. Rogers, ‘‘An overview of the ASU engi-
neering database project: Interoperability in engineering design,’’ in Proc.
3rd Int. Workshop Res. Issues Data Eng.: Interoperability Multidatabase
Syst. (RIDE-IMS), Apr. 1993, pp. 73–76, doi: 10.1109/RIDE.1993.281942.

[52] J. Fowler. (1995). Step for Data Management, Exchange and
Sharing. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.107.2051&rep=rep1&type=pd

[53] M. González, F. González, A. Luaces, and J. Cuadrado, ‘‘Interoperability
and neutral data formats in multibody system simulation,’’Multibody Syst.
Dyn., vol. 18, no. 1, pp. 59–72, Jun. 2007, doi: 10.1007/s11044-007-9060-
8.

[54] M.W. Grieves, ‘‘Virtually intelligent product systems: Digital and physical
twins,’’ inComplex Systems Engineering: Theory and Practice. Amer. Inst.
Aeronaut. Astronaut., 2019, doi: 10.2514/4.105654.

[55] I. Donoghue, L. Hannola, and A. Sääksvuori, ‘‘Implementing digital twins
to enhance digitally extended product-service systems,’’ in Real-Time Sim-
ulation for Sustainable Production. Evanston, IL, USA: Routledge, 2021,
pp. 121–131, doi: 10.4324/9781003054214-13.

[56] V. Zhidchenko, E. Startcev, and H. Handroos, ‘‘Reference architecture for
running computationally intensive physics-based digital twins of heavy
equipment in a heterogeneous execution environment,’’ IEEE Access, to
be published.

[57] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, An Introduction to
Feature Extraction, vol. 207. Berlin, Germany: Springer, 2008.

[58] S. Hoell and P. Omenzetter, ‘‘Sequential projection pursuit for optimal
transformation of autoregressive coefficients for damage detection in an
experimental wind turbine blade,’’ Proc. Eng., vol. 199, pp. 2226–2231,
Jan. 2017, doi: 10.1016/j.proeng.2017.09.188.

[59] K. K. Nair, A. S. Kiremidjian, and K. H. Law, ‘‘Time series-based damage
detection and localization algorithm with application to the ASCE bench-
mark structure,’’ J. Sound Vib., vol. 291, nos. 1–2, pp. 349–368, Mar. 2006,
doi: 10.1016/j.jsv.2005.06.016.

[60] W. Caesarendra and T. Tjahjowidodo, ‘‘A review of feature extraction
methods in vibration-based condition monitoring and its application for
degradation trend estimation of low-speed slew bearing,’’Machines, vol. 5,
no. 4, p. 21, Sep. 2017, doi: 10.3390/machines5040021.

[61] P. Potočnik and E. Govekar, ‘‘Semi-supervised vibration-based classi-
fication and condition monitoring of compressors,’’ Mech. Syst. Signal
Process., vol. 93, pp. 51–65, Sep. 2017, doi: 10.1016/j.ymssp.2017.01.048.

[62] J. Junttila, ‘‘Operational state recognition of a rotating machine based on
measuredmechanical vibration data,’’M.S. thesis, ArcadaUniv. Appl. Sci.,
Helsinki, Finland, 2021.

[63] J. Meierhofer, S. West, M. Rapaccini, and C. Barbieri, ‘‘The digital twin as
a service enabler: From the service ecosystem to the simulation model,’’
in Proc. Int. Conf. Exploring Services Sci. Cham, Switzerland: Springer,
2020, pp. 347–359, doi: 10.1007/978-3-030-38724-2_25.

[64] K. Kokkonen, L. Hannola, T. Rantala, J. Ukko, M. Saunila, and T. Rantala,
‘‘Digital twin business ecosystems: Preconditions and benefits for service
business,’’ in 21st CINet Conf., Practicing Continuous Innov. Digital
Ecosyst., 2020.

[65] E. Autio and L. D. Thomas, ‘‘Tilting the playing field: Towards an endoge-
nous strategic action theory of ecosystem creation,’’ in World Scientific
Reference on Innovation: Open Innovation, Ecosystems and Entrepreneur-
ship: Issues and Perspectives, vol. 3. Singapore: World Scientific, 2018,
pp. 111–140, doi: 10.1142/9789813149083_0005.

[66] K. Lenkenhoff, U. Wilkens, M. Zheng, T. Süße, B. Kuhlenkötter, and
X. Ming, ‘‘Key challenges of digital business ecosystem development and
how to cope with them,’’ Proc. CIRP, vol. 73, pp. 167–172, Jan. 2018, doi:
10.1016/j.procir.2018.04.082.

[67] H. Terho, A. Haas, A. Eggert, and W. Ulaga, ‘‘‘It’s almost like taking the
sales out of selling’—Towards a conceptualization of value-based selling
in business market,’’ Ind. Marketing Manage., vol. 41, no. 1, pp. 174–185,
2012, doi: 10.1016/j.indmarman.2011.11.011.

[68] T. Rantala, T. Valjakka, K. Kokkonen, L. Hannola, M. Timperi, and
L. Torvikoski, ‘‘Selling the value of complex data-based solution for
industrial customers,’’ in Proc. Work. Conf. Virtual Enterprises. Cham,
Switzerland: Springer, 2021, pp. 345–353, doi: 10.1007/978-3-030-85969-
5_31.

[69] R. F. Lusch and S. Nambisan, ‘‘Service innovation: A service-dominant
logic perspective,’’ MIS Quart., vol. 39, no. 1, pp. 155–176, Mar. 2015,
doi: 10.25300/MISQ/2015/39.1.07.

[70] T. Chekfoung, D. Sunil, and G. Binita, ‘‘Conceptualising capabilities and
value co-creation in a digital business ecosystem (DBE): A systematic
literature review,’’ J. Inf. Syst. Eng. Manage., vol. 5, no. 1, 2020, doi:
10.29333/jisem/7826.

[71] A. Asvanund, K. Clay, R. Krishnan, and M. D. Smith, ‘‘An empiri-
cal analysis of network externalities in peer-to-peer music-sharing net-
works,’’ Inf. Syst. Res., vol. 15, no. 2, pp. 155–174, Jun. 2004, doi:
10.1287/isre.1040.0020.

[72] A. Hein, M. Schreieck, T. Riasanow, D. S. Setzke, M. Wiesche, M. Böhm,
and H. Krcmar, ‘‘Digital platform ecosystems,’’ Electron. Markets, vol. 30,
pp. 87–98, Nov. 2019, doi: 10.1007/s12525-019-00377-4.

[73] J. Heikkinen, E. Kurvinen, and J. Sopanen, ‘‘Added value from virtual
sensors,’’ in Real-Time Simulation for Sustainable Production. Evanston,
IL, USA: Routledge, 2021, pp. 90–101, doi: 10.4324/9781003054214-10.

[74] Q. Khadim, Y. Shabbouei Hagh, L. Pyrhönen, S. Jaiswal, Z. Victor,
K. Emil, J. Sopanen, A. Mikkola, and H. Handroos, ‘‘State estimation in
a hydraulically actuated log crane using unscented Kalman filter,’’ IEEE
Access, to be published.

EMIL KURVINEN was born in 1988. He received
the M.Sc. (Tech.) and D.Sc. (Tech.) degrees in
mechanical engineering from the Lappeenranta
University of Technology (LUT), in 2012 and
2016, respectively. In 2014 and 2015, he visited
the University of Virginia as a Fulbright Visit-
ing Scholar researching active magnetic bearings.
From 2016 to 2017, he has served as an Engineer
in structural dynamics at FS Dynamics Finland
Ltd. In 2017 and 2021, he was as a Postdoctoral

Researcher at LUT. He is currently a Machine Design Professor at the
University of Oulu. He has a solid background in machine design, especially
in the design, simulation, and analyzing of rotating machines. His research
interests include rotating machines, especially high-speed machines, dig-
ital twins and integration of industrial engineering, and management to
technology.

ANTERO KUTVONEN received theM.Sc. (Tech.) and D.Sc. (Tech.) degrees
from the Lappeenranta University of Technology, in 2007 and 2012, respec-
tively. He is currently working half time as a Grant Coach and a Half
Associate Professor at the School of Engineering Science, LUT Univer-
sity, Lappeenranta, Finland. He is working with project preparations and
research on topics: innovation management, sustainable-oriented innovation,
and open innovation. His research interests include digital twins and sustain-
ability related topics, where technology and business joint efforts generates
additional value.

VOLUME 10, 2022 45975

http://dx.doi.org/10.1109/ICMSAO.2015.7152248
http://dx.doi.org/10.1109/ICMSAO.2015.7152248
http://dx.doi.org/10.1109/ACCESS.2021.3068448
http://dx.doi.org/10.1016/j.ymssp.2017.12.041
http://dx.doi.org/10.1016/j.ast.2019.06.009
http://dx.doi.org/10.1007/978-3-030-59246-2_8
http://dx.doi.org/10.1016/j.isatra.2016.09.009
http://dx.doi.org/10.1007/978-3-319-38756-7_4
http://dx.doi.org/10.1109/RIDE.1993.281942
http://dx.doi.org/10.1007/s11044-007-9060-8
http://dx.doi.org/10.1007/s11044-007-9060-8
http://dx.doi.org/10.2514/4.105654
http://dx.doi.org/10.4324/9781003054214-13
http://dx.doi.org/10.1016/j.proeng.2017.09.188
http://dx.doi.org/10.1016/j.jsv.2005.06.016
http://dx.doi.org/10.3390/machines5040021
http://dx.doi.org/10.1016/j.ymssp.2017.01.048
http://dx.doi.org/10.1007/978-3-030-38724-2_25
http://dx.doi.org/10.1142/9789813149083_0005
http://dx.doi.org/10.1016/j.procir.2018.04.082
http://dx.doi.org/10.1016/j.indmarman.2011.11.011
http://dx.doi.org/10.1007/978-3-030-85969-5_31
http://dx.doi.org/10.1007/978-3-030-85969-5_31
http://dx.doi.org/10.25300/MISQ/2015/39.1.07
http://dx.doi.org/10.29333/jisem/7826
http://dx.doi.org/10.1287/isre.1040.0020
http://dx.doi.org/10.1007/s12525-019-00377-4
http://dx.doi.org/10.4324/9781003054214-10


E. Kurvinen et al.: Physics-Based Digital Twins Merging With Machines

JUHANI UKKO received the D.Sc. (Tech.) degree from LUT University, in
2009. He is currently a Professor at the Department of Industrial Engineering
andManagement, School of Engineering Science, LUTUniversity. He is also
an Adjunct Professor at Tampere University. In recent years, he has managed
and participated in research projects related to digital transformation in
companies and society. His work has been published in journals, such as
Information Systems Frontiers, Computers in Industry, the International
Journal of Operations and Production Management, and the International
Journal of Production Economics. His current research interests include
performance measurement, operations management, digital transformation,
digital services, and corporate sustainability performance.

QASIM KHADIM was born in Pakistan. He received the B.Sc. degree
in industrial and manufacturing engineering from the University of Engi-
neering and Technology, Lahore, and the M.Sc. (Tech.) degree from the
Department of Mechanical Engineering, Lappeenranta University of Tech-
nology, Finland, and the Ph.D. degree in mechanical engineering from
the Lappeenranta University of Technology. He is currently working as a
Postdoctoral Researcher at the Lappeenranta University of Technology. His
current research interests include multibody system dynamics, hydraulics,
state estimation, parameter estimation, user experiences, non-linear Kalman
filters, optimization methods, real-time simulation, and vehicle dynamics.

YASHAR SHABBOUEI HAGH received the M.Sc. degree in control engi-
neering from the University of Tabriz, Iran, in 2016. He is currently a
Junior Researcher with the Laboratory of Intelligent Machine, Department
of Mechanical Engineering, LUT University, Finland. He is working on
synergetic control theory, state and parameter estimation of servo-hydraulic
systems, multibody dynamic systems, and digital twin concepts. His research
interests include fault detection and diagnosis systems, fault tolerant controls,
sliding mode controller, synergetic control, nonlinear Kalman filtering, and
robotic manipulators.

SURAJ JAISWAL was born in Kolkata, India, in July 1991. He received the
B.E. degree in production engineering from Jadavpur University, Kolkata, in
2013, and the M.S. and D.Sc. degrees in mechanical engineering from the
Lappeenranta-Lahti University of Technology LUT, Lappeenranta, Finland,
in 2017 and 2021, respectively. From 2013 to 2015, he worked as a Design
Engineer with Tata Consultancy Services Ltd., Kolkata. Since 2016, he
has been working as a Researcher at the Lappeenranta-Lahti University of
Technology LUT.He is currently a Postdoctoral Researcher at the Laboratory
of Machine Design, Lappeenranta-Lahti University of Technology LUT. His
research interests include multibody dynamics, hydraulic actuators, Kalman
filters, friction modeling, and real-time simulation.

NEDA NEISI received the D.Sc. (Tech.) degree in mechanical engineering
from the Lappeenranta University of Technology, Finland, in 2020. After-
ward, she started to work as a Postdoctoral Researcher at the Laboratory of
Machine Dynamic, LUT University. Her research interests include the bear-
ing modeling, analyzing vibration measurement, and state-space observer.

VICTOR ZHIDCHENKO received the Candidate of Sciences degree from
Samara National Research University, Russia, in 2008, and the D.Sc. (Tech.)
degree from LUTUniversity, Lappeenranta, Finland, in 2019. He is currently
working as a Postdoctoral Researcher with LUT University. His research
interests include computer simulation, cyber-physical systems, digital twins
for heavy equipment, big data, cloud computing, and the Internet of Things.

JUHA KORTELAINEN received the M.Sc. (Tech.) degree from the Helsinki
University of Technology, in 1995, and the D.Sc. (Tech.) degree in virtual
design on the subject of semantic data model for multibody system model-
ing from the Lappeenranta University of Technology, in 2011. He was an
Engineering Analyst with a private consulting company. From 1998 to 2001,
he was a Researcher with the Helsinki University of Technology, focusing on
computational research of internal combustion engines. Since 2002, he has
beenwith VTTTechnical Research Centre of Finland as a Research Scientist,
a Senior Scientist, the Research Team Leader, and a Principal Scientist.
Since 2014, his research work has been focused on the process industry
domain. He is also responsible for guiding the research in engineering design
at VTT Technical Research Centre of Finland. He is currently a Principal
Scientist and a Principal Investigator with VTT Technical Research Centre
of Finland, focusing on systems engineering and simulation research and
digital engineering design. His background is in mechanical engineering and
computational product development.

MIRA TIMPERI received the M.Sc. (Tech.) degree from LUT University, in
2021, where she is currently pursuing the Ph.D. degree with the Department
of Industrial Engineering and Management. Her research interests include
digital twins, sustainable and competitive business, industrial service devel-
opment, and service-related business models.

KIRSI KOKKONEN received the M.Sc. (Tech.) and D.Sc. (Tech.) degrees
from LUT University, in 2007 and 2014, respectively. She is currently work-
ing as a Postdoctoral Researcher at the Department of Industrial Engineering
and Management, LUT University. She is working as a Project Researcher
and as a Teacher on topics: innovation management, strategic management,
and engineering ethics. Her research interests include industrial service
development and service business models, value networks and business
ecosystems, and entrepreneurship.

JUHA VIRTANEN received the M.Sc. degree from the Helsinki University
of Technology (currently Aalto University), in 1997. He is currently working
as the Research Team Leader of the Dynamic Components and Systems
Team, VTT Technical Research Centre of Finland. The team he is leading
is working with different research activities in field of machine dynamics,
especially focusing on computational analyses integrating experimental data.
He is responsible for customer activities, research project planning, and
research team scientific road-map planning. His research interests include
multiphysical fluid-structure interactionwith transient shock scenarios, espe-
cially relating to the underwater explosion phenomenon.

AKHTAR ZEB is currently a Research Scientist at VTT Technical Research
Centre of Finland Ltd., Finland. His current research interests include engi-
neering knowledge management, semantic data modeling, data harmoniza-
tion, data management of digital twins, and applications of AI and machine
learning in engineering design.

VILLE LÄMSÄ received the M.Sc. degree from the University of Kuopio,
Finland, in 2005. He is currently pursuing the Ph.D. degree in combined use
of digital twins andmachine learning in industrial applications. From 2006 to
2011, he worked as a Researcher with the Department of AppliedMechanics,
Aalto University, Espoo, where he studiedmachine learning and probabilistic
modeling solutions for structural analyses and condition monitoring. He is
a Research Scientist at VTT Technical Research Centre of Finland Ltd. He
is experienced in physics-based simulations and data analyses for ships and
propulsion systems. He has published 14 scientific papers, nine written as
the lead author. In addition, his current research interests include simulation-
based static and dynamic analyses for engineering applications, feature
engineering, and data analyses for engineering-based big data applications.

45976 VOLUME 10, 2022



E. Kurvinen et al.: Physics-Based Digital Twins Merging With Machines

VESA NIEMINEN received the M.Sc. (Tech.) degree in applied mechanics
from the Helsinki University of Technology, in 2009. He is currently working
as a Senior Scientist at the Dynamic Components and Systems Team, VTT.
He is working on numerical and experimental structural analyses, model vali-
dation and updating, structural optimization, and fatigue analysis. During his
career, he has worked in a number of consulting and development projects for
industry as well as research projects, where his responsibilities have included
mainly structural dynamic analyses of complex structures, including also
multiphysics simulations. His main research interests and expertises include
integration of experimental and numerical analyses, such as virtual sensing
techniques.

JUKKA JUNTTILA received the M.S.E. and M.S.E. degrees. He currently
works as a Research Scientist at VTT Technical Research Centre of Finland
Ltd. He has over ten years of experience in structural analyses of rotating
machines and other dynamic mechanical structures using finite element
method. He has also come across research topics, such as internal combustion
engine technology, experimental structural analytics, topology optimization,
additive manufacturing, and laser scanning during his studies and his career
at VTT. In addition, he has worked as a volunteer with homeless and orphan
children in La Paz, Bolivia, during a sabbatical year in the early 2010s.
During the last few years, he has broadened his expertise into the fields of
big data analytics, machine learning, and systems simulation.

MIKKO SAVOLAINEN received the M.Sc. degree from LUT Univer-
sity. He is currently working with the Dynamic Components and Systems
Team, VTT. He is working on dynamic analysis. His research interests
include vibrations and fatigue.

TUIJA RANTALA received the B.Sc. degree from the Tampere University of
Applied Sciences, in 1999, and the M.Sc. degree in industrial engineering
and management from the Tampere University of Technology, in 2005. She
currently works as the Research Team Leader of the Data-Based Asset Man-
agement and Business Models Team, VTT, on cognitive production industry
research area. Lately, she has studied digital twins, service robotics, big data,
the Internet of Things (IoT), digitalization, mergers and acquisitions (M&A)
as enablers for new business, and related challenges for B2B companies. She
has over 15 years of experience as a Project Manager and a Researcher in
company assignment and research projects on diverse topics related to new
B2B business creation. Her main research interests include new business
creation and business-to-business (B2B) sales.

TIINA VALJAKKA received theM.Sc. degree in industrial management from
the Lappeenranta University of Technology and the M.Sc. degree in opera-
tions and production management from Michigan Technological University.
She currently works as an Operations Support Manager in foresight and data
economy research area at VTT. She has carried out several research and com-
mercial projects developing inter-organizational collaboration and published
articles in the research areas of business networks and collaboration. Her
expertises cover network integration and value co-creation in business-to-
business relationships.

ILKKA DONOGHUE is currently a Postdoctoral Researcher at the School of
Engineering Science, LUTUniversity, Finland. His research interests include
intelligent product-service systems and the role they play in developing
sustainable business ecosystems.

KALLE ELFVENGREN is currently an Associate Professor with the School
of Engineering Science, LUT University, Finland. His research interests
include process development in the health-care sector, management of tech-
nology, and risk management.

MINA NASIRI received the D.Sc. degree in industrial engineering and
management from LUT University, in February 2021. From 2016 to 2021,
she was a Researcher at LUT University. Her works have been published
in different journals, such as Technovation, Information Systems Frontiers,
Technology Analysis and Strategic Management, Sustainable Development,
Computers in Industry, and Journal of Cleaner Production. Her research
interests include digitalization, digital supply chain, digital transformation,
digital innovation, corporate sustainability, smart technologies, performance
measurement and management, operations management, and sustainable
strategies.

TERO RANTALA received the D.Sc.Tech. degree. He is currently a Post-
doctoral Researcher at the School of Engineering Science, LUT Univer-
sity. He has previously published in journals, such as European Journal
of Operational Research, Technovation, Journal of Cleaner Production,
Information Technology and People, and Education and Work. His current
research interests include performance management and measurement in
digital business environments and sustainable business contexts.

ILYA KURINOV received the B.S. degree inmechanical engineering from the
Saimaa University of Applied Sciences and the M.S. degree in mechatronics
from the Lappeenranta University of Technology. He is currently pursuing
the Ph.D. degree with the Machine Design Laboratory, LUT University. His
research interests include application of multibody system dynamics and
machine learning algorithms in automation of mechatronic machines.

EERIK SIKANEN received the M.Sc. degree in mechanical engineering and
the D.Sc. (technology) degree from LUT University, Lappeenranta, Finland,
in 2014 and 2018, respectively. He is currently working as a Postdoctoral
Researcher with the Laboratory of Machine Dynamics, LUT University. He
is mainly concentrating on three-dimensional solid finite element modeling
of high-speed machinery and systems, including contact and thermomechan-
ical effects. His research interests include high-speed rotor dynamics analysis
and general vibration dynamics of rotating machinery.

LAURI PYRHÖNEN received the B.Sc. and M.Sc. degrees in mechanical
engineering from Aalto University, Finland, in 2017 and 2020, respectively.
From 2019 to 2021, he was working on analysis and verification of power
electronics in various positions at Danfoss Editron. He is currently work-
ing as a Junior Researcher with the Laboratory of Machine Design, LUT
University, Finland. His main research interests include state and parameter
estimation and multibody system dynamics.

LEA HANNOLA is currently an Associate Professor with the Department
of Industrial Engineering and Management, Lappeenranta University of
Technology, Finland. Her research interests include innovation management,
especially product, service, technology, and systems design methods, and
sociotechnical aspects in manufacturing and smart factories.

HEIKKI HANDROOS (Member, IEEE) received the D.Sc. (Tech.) degree
from the Tampere University of Technology. He has been a Professor of
machine automation with the Lappeenranta-Lahti University of Technol-
ogy, since 1992. He has been a Visiting Professor with the University of
Minnesota, Peter the Great St. Petersburg Polytechnic University, and the
National Defense Academy, Japan. He has published about 250 international
scientific papers and supervised around 20 D.Sc. theses. He has held several
positions of trust in the American Society of Mechanical Engineers. He
has led several important domestic and international research projects. His
research interests include modeling, design, and control of mechatronic
transmissions to robotics, and virtual engineering.

VOLUME 10, 2022 45977



E. Kurvinen et al.: Physics-Based Digital Twins Merging With Machines

HANNU RANTANEN is currently a Professor of industrial engineering and
management at the Lappeenranta University of Technology. He has pub-
lished more than 100 scientific papers. His research group, The Performance
Management Team has extensive knowledge and experience of performance
measurement, analysis, and construction of measurement systems for a
variety of purposes. His team specialize in measurement and management
of multifold aspects and dimensions of performance in many contexts. His
research provides in addition to scientific contribution practical tools and
methods for companies and other organizations. His current research inter-
ests include performance measurement and management, both in private and
public sector, for example latest survey deals with the obstacles restraining
productivity improvement.

MINNA SAUNILA received theD.Sc.Tech. degree. Since 2018, she has been
a Docent of the School of Business and Economics, University of Jyväskylä.
She is currently an Associate Professor at the Department of Industrial Engi-
neering and Management, School of Engineering Science, LUT University.
Recently, her research projects have been related to digitization of services
and production. She has previously published her works in Technovation,
Computers in Industry, Journal of Engineering and Technology Manage-
ment, and Technology Analysis and Strategic Management. Her research
interests include performance management, innovation, service operations,
and sustainable value creation.

JUSSI SOPANEN (Member, IEEE) was born in Enonkoski, Finland, in
1974. He received the M.Sc. degree in mechanical engineering and the
D.Sc. (technology) degree from LUT University, Lappeenranta, Finland,
in 1999 and 2004, respectively. He was a Researcher with the Department
of Mechanical Engineering, LUT University, from 1999 to 2006. He was
a Product Development Engineer of electric machine manufacturing with
Rotatek Finland Ltd., from 2004 to 2005. From 2006 to 2012, he was a
Principal Lecturer in mechanical engineering and the Research Manager of
the Faculty of Technology, Saimaa University of Applied Sciences, Lappeen-
ranta. He is currently working as a Professor with the Machine Dynamics
Laboratory, LUT University. His research interests include rotor dynamics,
multibody dynamics, and the mechanical design of electrical machines.

AKI MIKKOLA received the Ph.D. degree in machine design, in 1997. Since
2002, he has been working as a Professor with the Department of Mechan-
ical Engineering, Lappeenranta University of Technology, Lappeenranta,
Finland, where he is currently leading the research team of the Laboratory
of Machine Design. He has been awarded five patents and has contributed to
more than 90 peer-reviewed journal articles. His research interests include
machine dynamics and vibration, multibody system dynamics, and bio-
mechanics.

45978 VOLUME 10, 2022


