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ABSTRACT IQ modulation enjoys great popularity in wireless communication. Its main advantage is the
symmetric convenience of combining independent signal components into a single composite signals in the
transmitter. And it splits the composite signal into its independent components in the receiver. However,
due to the limitations of communication facilities and imperfect channel environments, the symbols will
be distorted. In this paper, we propose several signal processing schemes based on deep learning (DL)
neural networks (i.e., long short-term memory (LSTM)) to process signal in an end-to-end manner, known
as DLA, EDLA and PDNet. These schemes combine with advanced DL architectures and data-driven
models for complex-valued signal processing. Enlightened by IQ demodulation ideas, we adopt LSTMs
to develop several schemes to implement different functions (i.e., signal detection and peak to average
power ratio (PAPR) reduction). The simulation results show that the schemes have significant performance
improvement in bit error rate (BER) while reducing the probability of high PAPR.

INDEX TERMS IQ modulation, deep learning, ensemble networks, OFDM system.

I. INTRODUCTION
What is IQ modulation? It is widely used in wireless commu-
nication systems for its high-speed data transmission rate and
manageable implementations [1]. Different from traditional
analog modulation, like AM, DSB, and FM, digital modu-
lation adopts novel the IQ modulation structure to modulate
initial 0/1 bitstreams. In general, digital modulation maps
the raw bitstreams to the IQ coordinate system in a certain
way. The modulated symbols can be represented by the sum
of two orthogonal branches that come from I-channel and
Q-channel, respectively.

Orthogonal frequency division multiplexing (OFDM)
is a remarkable and popular multi-carrier transmission
scheme [2]. The equalization of OFDM system is the critical
point of its practice. And it is mainly to eliminate or reduce
the inter-symbol interference caused by multipath time delay.
It contains linear and nonlinear methods.

Machine learning (ML) is a branch of artificial intel-
ligence (AI) and has developed various algorithms after
many years (e.g., support vector machine (SVM) and neural
network (NN)) [3]. DL is a splendid algorithm and derived
initially from the biological neural system schemes. For the
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DNN, the weighted sum of several inputs with bias is fed into
an activation function σ (·) (i.e., sigmoid, ReLU) to obtain
the outputs y, which is defined as the forward propagation
architecture. In the backpropagation process, the parameters
(i.e., weights, bias) are optimized after several epochs for the
expected outputs. We can enhance the computation perfor-
mance by adding more neurons and hidden layers.

It is demonstrated that DL can be applied to tackle
many wireless communication problems (i.e., modulation
recognition, channel decoding, detection) [3]. Modula-
tion recognition distinguishes modulation schemes from
the received noisy signal and contains several procedures
(e.g., processing, feature extraction, classification). The
modulation methods vary with the changes of distance
and surrounding environments. Studies were conducted
for many years and mainly divided into two categories
(i.e., decision theoretic, pattern recognition) [4]. The novel
architecture proposed in [4] has a powerful performance
in distinguishing noise-corrupted signal modulation method
from 13 types of modulated signals. It can be regarded as an
ensemble network and includes a four-layer network and two
two-layer networks. The input of the four-layer network con-
tains the amplitude, phase and frequency information of the
signal, which are obtained from traditional feature extraction
techniques. Due to the difficulties of disguising the similar
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modulation methods (i.e., MASK, MFSK), the two two-layer
networks were proposed to refine ASK2, ASK4, FSK2
and FSK4.

In the scheme proposed in [5], the input and output of the
networks are vectors of sizeN which presentsN -dimensional
log-likelihood ratios (LLRs) received from channels and
N -bits decoded codewords, respectively. However, the new
requirements of 5G and other communication systems
(e.g., massive MIMO, mmWave) enhance its computational
complexity. In [6], a novel signal detection scheme based on
an adaptive ensemble DL algorithm in SC-FDE systems was
proposed, and it adopted LSTMs to detect signals. In that
paper, the authors described the designs based on the SC-FDE
system combining DL algorithm and adaptive ensemble algo-
rithm. It demonstrates that LSTMs can achieve better perfor-
mance and reliability than the traditional schemes. Thereby,
the DL methods show a stable performance and the ability to
further improve conventional communication systems.

[7] proposed a signal processing scheme based on fully
connected DNN in OFDM system, and it exploited DL
to process OFDM symbols in an end-to-end manner. The
proposed DL approach estimated CSI implicitly and recov-
ered the transmitted symbols directly. However, a massive
amount of labeled data is needed for network training, and
the data-driven model will reach its performance limitation,
which will be illustrated in part A of Section III.

Recently, the authors in [8] considered channel coeffi-
cients with noise as the mumbling in the field of natural
language processing (NLP). This is a novel idea that migrates
the well-established NLP ideas into communication signal
processing. It first constructs an embedding layer network,
which can be regarded as a mapping network, avoiding the
computational complexity caused by complex numbers. Then
it proposed a channel predictor for block seq2seq model,
which can predict the posteriormoments based on the channel
coefficients of the previous moments, and it also verifies the
feasibility of the design through indoor and outdoor tests.
Its signal processing idea is completely different from this
paper, but at the same time, it provides new ideas for signal
processing methods. The authors of the reference [9] consid-
ered the channel estimation under a massive MIMO system
and used a data-driven model for signal processing, and the
simulation results verified the feasibility of the design. How-
ever, for the data-driven model, the results are reliable but
untrustworthy, which is due to the fact that we treat the signal
processing procedures as a black box in which the parameters
are not interpretable. The reference [10], on the other hand,
verified the feasibility of using deep convolutional networks
for channel estimation of sparse channels. And it was com-
pared with compressed sensing techniques with a 2% perfor-
mance improvement. In [11], a model-driven based channel
estimation and feedback design for millimeter-wave massive
MIMO was proposed, which has superior performance
for signal processing of complex communication sys-
tems. Recent studies have shown the advantages of the
DL approaches in communication fields.

The motivation of this paper is mainly to explore the fea-
sibility and validation of deep learning networks applied to
traditional communication architectures. For the widely used
IQ structure, the LSTMs are used to realize signal detection
during digital baseband signal processing at the demodula-
tion site, eliminating or reducing inter-symbol interference
caused by multipath and channel gain, and restoring the
original signal. The main contributions of the article are as
follows.
• We utilize thousands of trainable parameters for sig-
nal processing instead of existing signal detection and
recovery algorithms. Although most neural networks do
not support complex number operations, we still design
the network for imitation. These parameters represent
the filtering variables, and matrix operations can be
implemented to obtain the expected output.

• We propose three different schemes, all of which are
based on LSTM networks. It has a large number
of parameters, and is especially good at processing
sequence data and has superior fitting capabilities.

• This paper can be divided into two parts, one is for
baseband signal processing in OFDM systems, and the
other is for PAPR reduction based on deep learning
solutions.

• To verify the feasibility under different indicators,
we test the robustness and feasibility of the model
through simulations and existing classic algorithms
and peer designs. The simulation results demonstrate
that, by utilizing neural networks as an alternative for
processing large number of computational problems
involved in communication, the computational complex-
ity and accuracy are significantly improved compared to
traditional algorithms.

Notations: In this paper, scalar variables are presented as
normal-face letters. Vectors and matrix denote as boldface
lower and upper-case letters, respectively. ‖A‖F is the Frobe-
nius norm of matrix A. And

(
B̂
)
represents the estimation

of B.
The remainder of this paper is organized as follows.

Section II describes the structure of the OFDM system with
IQ modulation and the algorithms related to signal decoding.
Section III introduces the designs based on LSTM neural
networks, and the performance of BER and PAPR reduc-
tion based on the proposed scheme will be simulated and
discussed in this section. Finally, Section IV concludes this
paper.

II. OFDM SYSTEM MODEL WITH IQ MODULATION
AND LSTM
In this section, it contains two sub-sections that elaborate
the expert knowledge of IQ modulation and LSTM. In the
description of the formula and the structure diagram, the
details are explained clearly, paving the way for the next
step to combine them. It focuses on describing the combin-
able points and verifies the feasibility of the designs in this
article.
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A. OFDM SYSTEM MODEL WITH IQ MODULATION
The OFDM system with IQ modulation/demodulation model
is shown in FIGURE 1. Firstly, it is the equal-probability
unipolar non-return-to-zero codes for simulation and channel
coding, such as adding parity check codes to increase the
signal reception accuracy. And we convert the digital signals
into analog ones through a digital to analog converter (DAC),
and transform the source codes through serial to parallel to
obtain parallel data. Then it is divided into two branches
(i.e., I and Q channel) which process the data separately.
Finally, we transmit the modulated analog signal through a
radio frequency (RF) facility. The working principles of the
receiver are in reverse. Assuming that signal travel the fast
fading and additive white Gaussian noise (AWGN) channels,
the received signal can express as

r(n) = s(n) ∗ g(n)+ Ñ (n) (1)

where s(n) denotes the transmitted OFDM symbols, and
g(n) denotes the CSI. Also, Ñ (n) denotes the AWGN,
and ∗ denotes the linear convolution operation of discrete
sequences.

Assuming that the baseband signal s(t) is a cosine signal
with low-frequency (e.g.,10KHZ), modulation is that signal
multiplies a cosine signal with a high frequency to obtain the
transmitted radio frequency signal A cos(wt)·cos(wct), where
A denotes the amplitude of the signal and is a real number,
and w represents the frequency of the baseband signal, and
cos(wct) denotes the carrier with high frequency.

The radio frequency signal is transmitted and received by
the transmitting and receiving antennas. In the demodulator,
a carrier signal cos(wct) is again multiplied by the received
signal to obtain

sRe(t) =
A
2
· cos(wt)+

A
2
· cos(wt) cos(2wct) (2)

where sRe(t) includes the low-frequency signal cos(wt) and a
high-frequency component cos(wt) cos(2wct), and a low-pass
filter is used to filter out the high-frequency component, and
the transmitted baseband signal can be obtained.

The IQ demodulation scheme in the receiver is shown
in FIGURE 2. Digital modulation maps the original data
bitstreams to the IQ coordinate system according to spe-
cific mapping rules, and two branches symbols are converted
into analog I and Q signals by DAC and shaping filters,
respectively. It usually contains four ports, namely, ana-
log I output, analog Q output, local oscillator (LO) port and
RF input port. Many IQ modulators also support differential
analog IQ inputs. The IQ demodulator includes two sym-
metrical branches, and each branch contains a mixer (down-
conversion), and the LOs of the two mixers are homologous
and orthogonal, that is, there is a 90◦ phase difference. After
IQ demodulation, the signal processed by the low-pass filter
and sampling will undergo baseband signal processing, and
then the signal will be recovered.

The IQ modulator has three key performance indi-
cators: (1) the frequency response within the entire

bandwidth. (2) the symmetry of the amplitude-frequency
response between the two branches. (3) the orthogonality
of the two LO signals that directly affects the quality of
signal modulation. The frequency response of an IQ mod-
ulator includes an amplitude-frequency response and a
phase-frequency response. For an ideal linear time-invariant
system, the amplitude-frequency response is flat, and the
phase-frequency response is linear, respectively. And the
signal can be transmitted without distortion. Therefore, the
better the amplitude-frequency response and the phase-
frequency response, the higher the modulation quality, and
the lower the BER.

The analog IQmodulator includesmixers, which are bound
to produce image frequency during the up-conversion pro-
cess. Especially for the signal without frequency deviation,
the center frequency of the signal is the same as the LO signal
frequency of the modulator, and the image frequency product
is inseparable from the signal. And it cannot be removed even
if it passes through filters. Fortunately, the original IQ signal
can still be adequately recovered when we adopt IQ modula-
tors and demodulators. Due to the quadrature architecture, the
IQ modulator itself has a specific image frequency rejection
capability.

B. LSTM
The LSTM cell structure is shown in FIGURE 3. It turns out
that they are not much different from other neural networks.
LSTM has four parts, namely, forget gate layer (FGL), input
gate layer (IGL), cell state and output layer, respectively, and
they interact in a special way. Related equations are expressed

ft = σ (Wf · [ht−1, xt ]+bf ) (3)

it = σ (Wi · [ht−1, xt ]+ bi) (4)

C̃t = tanh(WC · [ht−1, xt ]+ bC ) (5)

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

Ot = σ (Wo · [ht−1, xt ]+ bo) (7)

ht = Ot ∗ tanh(Ct ) (8)

where σ denotes the sigmoid function, and it maps a real
number to the interval (0,1) and can be used for dichotomy.
In (3), FGL outputs a vector composed of 0 and 1. Ct is our
cell state in current state and decides what we are going to
output. The next is to decide what new information we are
going to store in the cell state. (4) decides which values we
will update, and a tanh layer creates a vector of new candidate
values C̃t , which will be added to the state in (5). Then,
we need to update the old cell stateCt−1 into the new stateCt .
We multiply Ct−1 by ft to forget the things we decided to
forget earlier. (6) scales each state value according to the
regulations, and the output Ct is the current cell state output
but will be a filtered version. (7) (8) decide what we are
going to output. xt and ht are current input and output vectors,
respectively.

For all DL networks and its integrated structures, they
require offline training before online deployment, and it
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FIGURE 1. OFDM system with IQ modulation/demodulation.

FIGURE 2. IQ demodulation.

contains forward and backward propagation process. The for-
ward propagation process is to determine the network struc-
ture and output, and the general design adopts multi-layer
LSTMs for the fitting accuracy. The back propagation process
is the key to the network training, which is to determine the
network parameters by comparing the forward propagation
results with the real values. And the most important thing
is that a large amount of labelled data is needed. In this
paper, a large amount of discrete received IQ signals and the
original values are selected from simulation data and labeled
manually.

Algorithm 1 The Proposed DL Schemes Training Process

Input: input IQ signal in one or two braches x ∈ RN×1,
Initial parameters of NNs Sint

Output: estimated original IQ signal y
for each v ∈ [1,V ] do

ŷv = Svxv

rv = yv − ŷv

loss = 1
n

∑n
j=1 (r

v)2

for each t ∈ [1,T ] do
St = St−1−lr ∗ ∂loss

∂St−1
end for
b̃v = SvT x

v

end for
y = b̃V
return y

The network training pseudocode is shown in Algorithm 1,
the input data is one or two branches of N sized signal x
and the initial parameter of lstms Sint , and the output is the

FIGURE 3. LSTM cell structure.

estimated original data y with n dimensions. And V is the
training iterations that is carefully selected for the expected
output. Taking the v-th iteration as an example, the output
estimated value ŷ is the operation result of the neural network
parameters and the input data, that is, the forward propagation
process. Then, it exploits the MSE loss function to reversely
update the parameter Sv after T operations based on the
difference between the estimated value and the true value.
Finally, we can get the esimated original signals y.

III. IQ SYMBOLS PROCESSING SCHEMES BASED
ON LSTM
In this section, the proposed DL schemes (i.e., deep learn-
ing algorithm (DLA), ensemble deep learning algorithm
(EDLA), PAPR detection net (PDNet)) for signal processing
are explained with simulation results, and this section is
divided into three subsections. Section A is our initial design
based on LSTMs. We evaluate the performance compared to
the DNet proposed in [7]. By adopting LSTM networks that
experts in processing sequence data, the problems and defi-
ciencies in [7] are effectively avoided. In section B, we design
a novel architecture based on digital IQ demodulation, and the
design ideas derive from [12]. In that literature, the authors
proposed several sub-networks for each path and then com-
bines sub-networks together to form the ensemble algorithm.
In this paper, what we process is not the received symbols
of each path but the IQ demodulated symbols. Combining
with LSTMs, the design constitutes the ensemble algorithm
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of subsection B in this paper. Based on the scheme of subsec-
tion B, we have fully considered the peak-to-average power
ratio (PAPR) problem that occurs in OFDM system [13] in
subsection C. By applying the LSTMs for clipping and signal
recovery to the transmitter and receiver, PAPR reduction can
be effectively implemented.

A. DEEP LEARNING ALGORITHM
In [7], the authors adopted several fully connected (FC) layers
to decode the received noisy signal directly. The input nodes
correspond to the number of real parts and imaginary parts of
two OFDM symbols. In that OFDM scheme, 64 sub-carriers
and the CP length of 16 are considered, and QPSK is used as
themodulationmethod. In this subsection, LSTMs are used to
decode IQ symbols, and the structure is shown in FIGURE 4.

As is shown in the picture, the scheme in this section
combines IQ demodulation with LSTMs. The former part of
the design is the digital controller (DDC). For the OFDM
symbols with IQ modulation and demodulation, there are
N channels of parallel data, which means that there are 2N
real symbols. xI [i] and xQ[i] denote the I and Q channel of
i-th sub-carrier, where i = 1, 2, . . . ,N . The nodes of hidden
layers are 1 and M

2 , respectively, where M is the order of
the modulation method. For different modulation methods,
the number of bits carried by a real symbol is different.
Taking 16-QAM as an example, a single branch symbol
modulated by IQ carries two bits. For LSTMm

n (m = 1, 2.
n = 1, 2, . . . , 2N ) cells, it contains two layers of LSTMs and
2N time steps. Performing parallel-to-serial conversion of the
bits generated from the DLA scheme at all steps, we obtain
the original bitstreams.

The activation function of output in LSTM is tanh and
defined as follows,

tanh(x) =
ex − e−x

ex + e−x
(9)

where

−∞ < x < +∞,−1 < tanh(x) < +1 (10)

The shape of the tanh function is similar to the sigmoid
function and can be seen from the expressions and graphs.
The difference lies that the peak value of the derivative
function of the tanh function is 1, which is more helpful
to solve the problem of vanishing gradient. Another reason
for choosing the activation function of tanh is that it is
necessary to find the scale factor to normalize the energy
for the signal. The number of constellation points are the
same in the each quadrant, and the average energy can be
calculated in one quadrant. Taking the 16-QAM modulation
method as an example, four points are used to calculate
the average power instead of sixteen points. The normaliza-
tion constants of different modulation methods are shown in
the TABLE 1 [12].
In the DLA scheme, three digital modulation methods

(i.e., QPSK, 16QAM, 64QAM) widely used are adopted. The
discrete signal after digital IQ demodulation will be used as

TABLE 1. Normalization constants of modulation methods.

the training data of the DLA scheme, and the original bits
as the labels. The loss function is mean square error (MSE),
and the optimizer is Adam. The optimization of parameters
(i.e., weights, biases) are conducted by backpropagation
algorithm.

TABLE 2. Training parameters.

The network parameters are shown in TABLE 2. By com-
paring the performance of different modulation methods,
it verifies the robustness and stability of the design. This
paper adopts representative digital modulation methods
(i.e., QPSK, 16QAM, 64QAM), which are widely used today.

The BER performances of DNet [7] and DLA under
different modulation methods in this section are shown
in FIGURE 5. Under the QPSK modulation method, the
BER drops faster than DLA, and the performance gap is up
to 2dB when the SNR is less than 20dB. However, due to
the limitations of DNN learning ability and the vanishing
gradient problem, the BER performance of DNet will not be
improved further at high SNR because the short-term nature
of training samples confuses the network. In addition, the
fixed SNR training process limits the performance, named as
leveling effect. LSTM is an excellent variant model of RNN,
which inherits the characteristics of most of the RNNs, while
solving the vanishing gradient problem caused by the gradual
reduction of the gradient backpropagation process. LSTM is
designed to deal with problems that are highly related to time
series, such as encoding, decoding, etc. For the DLA model
proposed in this section, the network shows a good perfor-
mance whether it adopts low-order modulation (e.g., QPSK)
or high-order modulation (e.g., 16QAM, 64QAM). And for
the traditional MMSE detection algorithm, taking QPSK
as an example, there is a performance improvement of
nearly 3dB.

B. ENSEMBLE DEEP LEARNING ALGORITHM
FIGURE 6 shows the structure diagram of IQ symbols
processing based on the EDLA scheme. Enlightened by
DDC ideas, we adopt two networks similar to those pro-
posed in Section A to form an ensemble neural network
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FIGURE 4. DLA scheme contains two parts: 1. The former part is the DDC technology. 2. The latter part is the signal processing with LSTMs.

FIGURE 5. BER performance of DNet and DLA proposed in this section
under different modulation methods (i.e., QPSK, 16QAM and 64QAM).

FIGURE 6. Discrete signal processing in two branches with LSTMs in EDLA
scheme.

to process discrete IQ symbols. Then the symbols undergo
the parallel-serial and demapping to obtain the original
bitstreams.

Data-driven DL approaches heavily depends on a huge
amount of labeled data nevertheless [14]. And fifth gener-
ation (5G) not only brings improvements in hardware and

software [15], but also puts forward new requirements for
various indicators (e.g., transmission rate, stability and packet
loss rate). Combining DL with specific communication tech-
nology, the intelligence of DL helps to solve communication
problems, and it also conforms to the development trend of
intelligent communication. DL makes the design explainable
and predictable [16], and it is constructed based on expert
knowledge that developed over several decades of intense
researches.

The difference between the structures shown in FIGURE 6
and FIGURE 4 lies in the way of IQ symbols processing
and the form of output data. However, the performance of
the scheme will be affected by the facilities, such as the
orthogonality between LOs. If the orthogonality is in absence,
it will bring modulation and demodulation errors (e.g., EVM
and BER deterioration) when the signal without frequency
deviation is generated. And the image rejection characteristic
will deteriorate.

Assuming that the IQ symbols are cosine signals and
orthogonal, the LO port signal is not orthogonal, and the
phase difference is ϕ. The equations are expressed as

i(t) = cos(wt); q(t) = sin(wt) (11)

iL(t) = cos(wct + ϕ); qL(t) = sin(wct) (12)

s(t) =

√
2
2
·
√
1+ cosϕ · cos[(wc + w)t + θ ]

+

√
2
2
·
√
1− cosϕ · cos[(wc − w)t − θ̄ ] (13)

In formula (11)-(13), w represents the baseband signal fre-
quency, and wc is the frequency of the LO ports, and ϕ is
the phase difference of the LO ports. And the two branches
of the LO port are no longer orthogonal, and the attenuation
factor

√
1+ cosϕ and

√
1− cosϕ appears in the transmitting

signal. θ and θ̄ satisfies

cos θ =
b

√
a2 + b2

; cos θ̄ =
c

√
c2 + b2

(14)
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where

a =
1+ cosϕ

2
; b =

sinϕ
2

(15)

c =
1− cosϕ

2
; b =

sinϕ
2

(16)

From the formulas (11)-(16), it can be seen that the dis-
tortion of the signal and the deterioration of the system
image frequency suppression performance are caused by the
IQ imbalance.

FIGURE 7. BER performance under different modulation methods.

The BER performances under different modulation meth-
ods are shown in FIGURE 7. The horizontal axis parameter is
SNR, which is the ratio of the power of the output signal to the
noise power output at the same time. And it is often expressed
in dB. The training process adopts fixed SNR in the QPSK
modulation scheme, so it declines at the fastest speed when
SNR is 20dB. Moreover, QPSK only modulates the phase,
and the IQ signal is easy to process, so the performance is
the best. For high-order modulation (i.e., 16QAM, 64QAM),
the decline is relatively slow. Compared to the DLA perfor-
mance shown in FIGURE 5, there is over 2 dB performance
improvement. FIGURE 7 mainly compares the BER perfor-
mance between the proposed EDLA method and the MMSE
detection algorithm. It can be seen that the performance is
nearly 2dB better than the traditional algorithm. Therefore,
we can improve the design performance by adjusting the
network structure and depth.

Error vector magnitude (EVM) is the amplitude and phase
vector difference between the ideal error-free reference signal
and the actual transmitted signal at a given time. And it can
comprehensively measure the amplitude and phase error of
the modulated signal [17]. The formula is followed as

EVM =

√
Perror
Preference

· 100% (17)

where Perror and Preference are the average power of the error
and reference signal, respectively. According to the require-
ments of 5.7.1 in 3GPP TS 34.122, EVM is defined as the
square root of the average power ratio of the error vector to

FIGURE 8. EVM performance under different modulation methods.

TABLE 3. Computational complexity of several schemes.

the reference signal, and expressed as percentage. The error
vector amplitude of the test UE is not more than 17.5% to
avoid exceeding the target EVM requirements and increasing
the transmission error of the uplinks of the channel.

The computational complexity of different schemes is
shown in Table 3. It denotes that the LS, DLA and EDLA
have linear order, and the computational complexity increases
linearly as input data increases. The MMSE method has
the greatest complexity since it involves large-scale matrix
inversion. After online deployment, the proposed schemes
(i.e., DLA and EDLA) has relatively low computational
complexity.

FIGURE 8 shows the EVM performance under different
modulation methods. QPSK is a simple modulation method
and has the lowest EVM error. For different modulation
methods, its EVM under low SNR is relatively large, which
shows that the scheme is greatly affected by noise. As the
SNR increases, the EVM drops rapidly and approaches zero
quickly at around 25dB. Due to the poor fitting performance
of EDLA in low SNR, SNR is 2dB, 7dB and 13dBwhen EVM
reach the standard of 17.5% as shown in FIGURE 8, respec-
tively. Compared with the MMSE algorithm, the proposed
method is slightly better than the traditional algorithm under
different modulation methods. It shows the superiority of the
design from another aspect.

C. ADAPTIVE PAPR REDUCTION NETWORK
In OFDM system, all sub-carriers after ifft processed will add
together, so the transmitted signal has a high peak value in the
time domain. Compared to single-carrier system, PAPR not
only reduces the efficiency of the transmitter power amplifier,
but also decreases the signal to quantization noise ratio of the
analog-to-digital converter (ADC) and DAC [18]. Clipping
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FIGURE 9. PDNet structure.

technology is the simplest method, which reduces PAPR by
using limit or nonlinear saturation. It’s simple to implement
but may cause in-band and out-of-band interference, while
also breaking the orthogonality between sub-carriers. The
formula follows as

xpc [m] =

 xp[m], |xp[m]| < A
xp[m]
|xp[m]|

· A, other
(18)

where A denotes the standard clipping level, and xp[m] rep-
resents the amplitude of the time-domain discrete signal, and
xpc [m] denotes the signal amplitude after clipping technology,
respectively.

In [19], the authors proposed a PAPR reduction scheme
in OFDM system based on deep autoencoder architecture,
namely PRNet. It adopted DNN that is usually used for
denoising corrupted symbols, and five FC layers were used
for signal encoding and decoding. The PRNet reduces the
probability of high PAPR by encoding the discrete frequency
domain signal. In this paper, we propose a novel PAPR reduc-
tion scheme in OFDM system to clip and recover signal in
the transmitter and receiver, which compromises the LSTMs
based on the design of section A.

Similar to FIGURE 4, the PDNet is to clip and recover
symbols in an end-to-end manner as shown in FIGURE 9.
For the input data of t step, it contains t LSTM cell A and first
initializes the LSTM parameters, and then propagate the data
forward in order. Herein, it takes the receiver signal as input
and outputs the original unclipped signal. The parameters of
PDNet are shown in TABLE 4.

In TABLE 4, the number of sub-carriers N is 64, 128, 256,
512, 1024, respectively, because it is closely related to the
clipping ratio (CR). CR has significant impacts on CCDF,
and the expression follows as

CR =
A
σ

(19)

where A denotes the expected magnitude and σ equals
√
N/2

when it is bandpass signal, and simulations are conducted to
illustrate the performance of the PDNet.

CCDF defines the probability that the PAPR exceeds a
certain threshold PAPR0 in multi-carrier transmission sys-
tem. FIGURE 10 shows the CCDF performance after the
PDNet clips the signal under different CRs. It can be seen
from the figure that as CR decreases, that is, the number
of system sub-carriers increases, and the performance of
CCDF decreases accordingly. The increase in N causes the

TABLE 4. Parameters of PDNet.

FIGURE 10. Distribution of PAPR under different CR and the performance
of non-clipped.

FIGURE 11. BER performance of non-clipping and clipping under
different CR.

decrease in probability of high PAPR. Meantime, the high
PAPR appearance probability of the signal is significantly
reduced after PDNet processing compared to the one without
clipping. It has least 9dB performance improvement in the
probability of 10−2.
FIGURE 11 shows the BER performance of non-clipping

and clipping under different CR that is related to PAPR.
Taking CR of 1.6 as an example, the signal after clipping
has a 2dB performance loss versus the signal without clip-
ping, which further proves that clipping operation will cause
signal distortion and leads to the decrease in BER perfor-
mance. It can be seen that the distortion of the signal and
the deterioration of the system image frequency suppression
performance are caused by the ϕ.

IV. CONCLUSION
In this paper, we propose three schemes (DLA, EDLA
and PDNet) that implement signal processing (i.e., symbols
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decoding and detection). These schemes adopt LSTMs and
combine expert knowledge of digital communication with
DL. The corresponding simulations are conducted to ver-
ify the effectiveness and accuracy improvements. Compared
with the papers that combine DL and wireless communica-
tion currently, LSTM experts in processing sequence data
and has strong adaptability. Compared with [8], though we
adopt novel designs with LSTMs in time-invariant channel
situation, the feasibility in the real environment needs further
verification. And testing the feasibility in different channels
will be our future work.
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