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ABSTRACT This paper investigates applying artificial intelligence (AI) algorithms to attitude control
system of satellites to optimally tune the controller using high performance computing. This methodology
is applied to the Virtual Telescope for X-ray Observation mission, which is a precise formation of two
separate spacecraft observing multiple objects in the space in the X-ray domain. The mission is divided
into phases based on the instrumentation and the mission goal. To reach an stable precise formation robust
to stochastic slew and slew rate (i.e., Euler angles and angular velocities) in a minimal constrained time T ,
consumed energy of the attitude control system, denoted as E , and root-mean-square state error of attitude
control system, denoted as e, are minimized. Monte-Carlo simulation is used for the sensitivity analysis
of optimization and designing a controller. Deep neural networks (DNN), Gaussian processes (GP), and
support vector regression (SVR) learn this optimization as a surrogatemodel, while their hyperparameters are
optimized in a novel approach. THETA supercomputer at Argonne Leadership Computing Facility (ALCF)
is used for optimizing the hyperparameters of DNN. The surrogate model meets the requirements of the
mission, and it shows a better performance over the optimization and Monte-Carlo. The optimal DNN can
satisfy the mission requirements e and T while reducing E for 90% compared to the other given methods.

INDEX TERMS Virtual telescope for X-ray observation (VTXO), space mission design, Monte-Carlo
simulation, optimal control, machine learning, optimization, satellites, real-time control, surrogate models,
high performance computing, hyperparameters optimization.

I. INTRODUCTION
Space missions require the spacecraft to be positioned
and oriented in a certain way. The guidance, navigation, and
control (GNC) oversee the attitude control system (ACS) and
relative position control systems [1]. GNC is used in space-
craft formation flying to synchronize two or more spacecraft
in an accurate alignment in space. Formation flying provides
advantages over a single spacecraft including robustness,
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redundancy, reconfiguration, and broader coverage. Forma-
tion flying, as a key factor in virtual spacecraft formation [2],
and rendezvous [3], is investigated in missions including vir-
tual telescope for X-ray observation (VTXO) [4], Proba 3 [5],
MASSIM X-ray virtual telescope [6], PRISMA [7], and
SIMBOL-X [8]. Making a formation of spacecraft for astro-
physics observation and optimizing the science mission
lifetime of VTXO by 50% is studied in [9]–[12]. Making a
formation of distributed telescope to observe exoplanet AEgir
and optimizing the energy consumption of the mission is
studied in [13]. Formation has been studied as leader-follower
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approach, behavior-based method, potential field approach,
and generalized coordinates [14]. In VTXO, leader-follower
approach is taken [12], [15], [16] where the leader holds
the lens, known as the optics spacecraft (OS), and the
follower holds the X-ray camera, known as the imaging
spacecraft (IS).

VTXO uses a lightweight Phased Fresnel Lens (PFL) to
obtain near diffraction-limited angular resolution in the X-ray
band [4], [10], [12], [15]–[18]. PFL provides the VTXO
missionwith nearly 55milli-arcsecond (mas) (FWHM) imag-
ing resolution of astrophysical sources in the X-ray band
for a 1 km focal length. 55 milli-arcsecond (mas) (FWHM)
imaging resolution provided by PFL requires VTXO to hold a
minimum 55 milli-arcsecond (mas) (FWHM) 1 km precision
formation of IS andOSwith a submillimeter transverse align-
ment accuracy. The imaging resolution of around 55 mas is
approximately 10 fold higher than the state-of-the-art Chan-
dra X-ray 0.5 arcsecond pointing resolution [12] and James
Webb space telescope 0.5 arcsecond pointing resolution [19].
With the VTXO’s high resolution, the search for exoplan-
ets [20] and high-energy environments around space objects
including black holes, neutron stars, and stellar systems at the
smallest spatial details is possible for the first time.

The Navy Interferometric Star Tracker Experiment II
(NISTEx-II) instrument [21] provides accurate formation
navigation for VTXO. Using NISTEx-II star tracker on the
optical bench of IS and laser beacons on OS, GNC keeps
the formation within millimeter level transverse alignment
and 55 milli-arcsecond attitude accuracy [9], [10], [12]. GNC
of VTXO uses thrusters, reaction wheels, inertial navigation
system sensor (IMU), GPS, NISTEx II precision star tracker
on the optical bench of IS, laser beacons on the OS, and
a radio ranging system that also serves as an inter-satellite
communication link. The instrumentation of VTXO [12]
imposes requirements on the ACS state error. Beside, con-
sumed energy of ACS and the time of the mission are desired
to be minimal as the requirements of the VTXO.

To meet the requirements of VTXO, the relative position
control system and ACS consist of 4 phases and 3 phases,
respectively. Trajectory optimization is used to determine the
optimal phases, the optimal orbits, and the optimal controllers
for the GNC [6], [10]–[12]. For the VTXO, 3 phases are
assigned to the ACS, and each phase is designed to opti-
mize the performance of the VTXO mission by increas-
ing the accuracy and reducing the energy consumption
[4], [15]–[18], [22]. The benefits of assigning phases to the
mission are
• Objective functions are defined for each phase based on
the goal of the mission and the instrumentation.

• The AI and the controller for each phase are designed to
satisfy the objective functions.

Based on the instrumentation constraints and the accu-
racy requirement for the science observation, 2 accuracy
requirements for e are assigned to the phase prior to science
observation phase. and an objective function is designed
to satisfy the mission requirements and keep E minimum.

The benefits of maintaining E minimum are longer mission
lifetime since one of the limitations of a mission lifetime is
depletion of energy resources, lower spacecraft weight since
less resources are needed to provide energy, and less cost for
a mission. The benefits of maintaining e and T minimum
are high pointing resolution, satisfying the e constraint of
the instrumentation, and satisfying the T requirement respec-
tively. In the objective function, a global asymptotic stable
Lyapunov controller function is applied as a constraint to the
optimization problem for VTXO to guarantee an ideal global
asymptotic stable response for all the initial conditions.

Sliding-mode control (SMC) can provide robustness and
asymptotic stability in the presence of noise, disturbances
with the disadvantages of chattering [1], [23]. Chattering
has to stay minimal in VTXO since NISTEx-II requires the
angular velocities to stay close to zero. Other approaches
including robust control [24], [25] including SMC, adaptive
control [23], [26], Deep neural networks (DNN) controllers
for nonlinear system [27] have shown asymptotic stability
in the presence of disturbances and noise. However, usu-
ally adaptive controllers, including model reference adaptive
control (MRAC), are developed for linear systems [27]–[29]
and they are relatively slow in convergence. The nonlinear
adaptive controller version developed by State Dependent
Riccati Equations (SDRE) doesn’t provide global asymptotic
stability [28], as it only provides local asymptotic stability.
DNN controllers, on the other hand, are stable globally and
they can estimate the nonlinear dynamics [27], but, still the
slow convergence is a concern, and the process of design-
ing the controller is complex [27]. In VTXO, the speed of
controller convergence is important as it defines T for the
transient phase, and the dynamics of the nonlinear system is
known. Multiplicative extended Kalman filter (MEKF) [1],
[3], [4], [16], [30] can provide the state estimation with noisy
sensor measurements and having disturbances and uncertain-
ties in the system. Extended state observer (ESO) [23] have
shown promising solutions to the disturbance and uncertainty
estimation and rejection while providing asymptotic stability.
ESO estimates the time varying differentiable uncertainties
and disturbances in the system, and the controller compen-
sates for them in a single spacecraft [23] and multiple space-
craft formation control [31].

In this paper, Monte-Carlo simulation is used for control
system robustness and stability demonstration, and it is used
to prove control system robustness against external distur-
bances and noise measurement. Monte-Carlo simulation is
used to show the control system robustness and stability for
flexible robot arm [32] and for the formation control robust-
ness of UAVs [33]. In the Monte-Carlo simulation, Quater-
nions are used for modeling the dynamics of spacecraft.

Quaternions are preferred for solving the equations of
motion since they do not face singularities, they are easy to
normalize, and they are computationally less expensive [1],
[34]. Quaternions exist in attitude dynamics of spacecraft,
fluid mechanics, and quantum mechanics [35]. Highly accu-
rate space missions including VTXO [4], Hubble telescope
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and James Webb telescope are usually long missions, and
the quaternion solution accuracy in the simulation decreases
while the quaternion norm decreases during the long intervals
of time. Classical approaches like third and fourth order
Runge-Kutta can solve ordinary differential equations (ODE)
including quaternion ODE of motion.More recent algorithms
including multiple order Crouch-Grossman Lie group meth-
ods [34], [36] and multiple Runge–Kutta–Munthe-Kaas [34]
have shown higher accuracy over the classical Runge-Kutta.
However, the effect of the noise and the effect of the controller
are not considered in these approaches. In this research, the
effect of the a nonlinear Lyapunov controller’s parameters is
considered on the accuracy of the quaternion, and an appro-
priate adaptive time step is taken based on the controller’s
parameters.

Reaching a single robust solution to a problem with multi-
ple objective functions requires two steps: Optimization and
decision-making [37]. In the single-objective optimization
algorithms, a prior preference is available, and the decision
making is performed first. Next, the objective functions are
accumulated, e.g. weighted-sum method, and optimized; or
one objective is optimized, and the rest of the objective func-
tions can be assigned as constraints to the problem. Having
prior considerations requires a deep understanding of the
problem. Besides, single-objective optimization algorithms
provides the solution with only one solution without show-
ing the trade-off between the other objective functions, i.e.,
Pareto front. Single-objective optimization algorithms and
priors are discussed in chemical processes [38], [39] and rela-
tive position of spacecraft [40]. Multi-objective optimization
algorithms, on the other hand, provide the solution with a
Pareto front when a prior is not available, and, consequently,
based on the posterior, the decision making is applied to the
problem after the optimization is performed. Multi-objective
optimization algorithms produce the Pareto front not based
on a desired distribution of solutions with numerous iter-
ations that take a long time, and some of these solutions
might not be desired. The decision making and the posterior
in multi-objective optimization algorithms are discussed in
ACS [41], ACS of VTXO [4], [17], optimal sizing and sitting
of power electronic interfaced [42], and water distribution
system [43]. Algorithms including weighted-sum method,
epsilon constraint method, and evolutionary algorithms [37]
provide a Pareto front solution to multi-objective optimiza-
tion problems considering the accuracy, diversity, spread
requirements for the Pareto front. In addition,ML algorithms,
including Gaussian process (GP) [44], [45], and DNN [46],
[47] can estimate the Pareto front solution during the opti-
mization and reduce the iterations. Due to the uncertainties
in space, including disturbances in space and using control
techniques to tackle them [48], [49], detumbling [47], [50],
and available energy uncertainties [51], defining a prior does
not provide an efficient and robust solution to the GNC
solution for every mission. Besides, the space objects to
observe and the mission keeps updating for VTXO. For the
VTXO ACS solution, the weights in weighted-sum method,

denoted as w, are produced with a desired distribution in the
single-objective optimization algorithm offline using Monte-
Carlo method, and laterw is incorporated intoML to estimate
Pareto front to find a single real-time solution in the space
when a posterior is available. This increases the adaptability
of VTXO. w is the prior in the optimization, and then w is
posterior in real-time when usingML.Weighted-summethod
is applicable to VTXO since the Pareto front in VTXO prob-
lem is convex [4]. Multi objective genetic algorithm, one
of the algorithms in multi-objective optimization algorithms,
is used to show the Pareto front for VTXO and its convexity,
and simulated annealing (SA) is used as a single-objective
optimization algorithm for the data production. Using ML
for a real-time estimation is applicable to other problems
including water distribution system [43] with convex Pareto
front [37].

To find a solution to an optimization problem with con-
straints, MPC can be used to reach a Pareto front for a
nonlinear dynamical system by finding the control inputs at
each time step. The disadvantage of MPC is its high com-
putation cost, lack of proof for converging to a Pareto front
for all the cases, and lack of proof for stability. To reduce
the problem of high computation cost, MPC can be first
trained offline, second learned by a ML algorithm and obtain
a surrogate model, and finally applied in real-time to the con-
trol problem. DNN and MPC are used for optimal real-time
control landing of spacecraft [46], Boolean spacecraft attitude
control [47], and surrogate modeling of MPC for optimal
control of low-level RF control system [52]. ML and opti-
mization have been implemented on the applications includ-
ing VTXO [4], [16], [17], proportional–integral–derivative
controller (PID) and MPC for particle accelerators [53]–[57],
MPC in smart grids [58] optimal tuning of the controller’s
parameters in the relative position of formation control [40],
trajectory optimization for VTXO [11], ML hyperparameter
tuning [59]. The technologies usingML and optimization can
be improved using the developed techniques in this research.
For example, the controllers including linear quadratic reg-
ulator (LQR) and MPC can reach a general optimum using
ML, and the performance of modelling complex systems
and complex ML algorithms can be improved using high
performance computing (HPC).

HPC can be used to tune theML algorithms andmake them
reach their optimum performance by parallelizing and dis-
tributing the ML. Distributed ML algorithms, including dis-
tributed DNN [60] and deep GP [61] have been implemented
on applications including sensor networks [62] and aerospace
systems [61]. On the HPC platforms, the optimization algo-
rithms including DeepHyper [63] and Hyperband [64], [65]
packages optimize the ML’s hyperparameters. The disadvan-
tage of Hyperband is that the algorithm is not adaptive in
learning [64], [65] to increase the speed of convergence.
In these packages, setting the optimization based on the data
is complex, and DeepHyper is a black-box optimization not
giving insight into the ML’s hyperparameters optimization
and not initially tuned based on the complexity of the ML
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and data. For this project we have access to the THETA at
Argonne Leadership Computing Facility (ALCF) for HPC.
Randomized search (RS) and grid search (GS) are used to
solve the distributed DNN’s hyperparameters optimization
problem. To reduce the cross-validation (CV) computation
time, CV can be parallelized in ML algorithms [66] and a
subset of data can be used for CV [67]. Hyperparameters opti-
mization problem is designed based on the data and the com-
putation resources so that the computation resources are more
efficiently used in a less amount of time. In this research,
hyperparameters optimization problem is a discrete Coarse-
to-fine optimization problem for DNN solved with GS first
and next Randomized search RS. Coarse-to-fine optimization
is used in applications including image processing [68] and
Speech Enhancement [69]. HPC is used in THETA for paral-
lelizing RS and parallelizing CV. The advantages of RS are it
is easy to implement, it can be easily parallelized onHPC, and
it converges with the probability one to the local optimum.
The disadvantage of RS is it takes long to converge. To make
the convergence faster, the iterations’ span of RS are adapted
to the speed of RS convergence. After theML is designed and
trained, the ML is implemented on the Field Programmable
Gate Arrays (FPGAs).

FPGAs are integrated circuit that are based around a
matrix of configurable logic blocks (CLBs) connected via
programmable interconnects. Embedded intelligence (EI) is
incorporating AI and decision making into embedded sys-
tems [70]. ML is embedded into FPGA the for EI. Compared
to central processing unit (CPU) and graphics processing
unit (GPU), FPGAs can provide robustness toward space
radiation [71], lower latency [71], connectivity for connect-
ing to any input with a high bandwidth [70], [72], energy
efficiency [70], [72], and parallelism [70]. These advantages
have resulted in using EI for spacecraft communication sys-
tems [73] and spacecraft GNC [74], [75]. To form a charged
particle counter in VTXO [12], Amptek A225 and A206
hybrid FPGA chips are used to provide the data to the
computer.

The unique contributions of this research provide the
VTXO mission with a simulation-based algorithms to
increase the performance of VTXO by satisfying the follow-
ing mission objectives

• Accuracy requirements imposed by the instrumentation
and the required science observation accuracy.

• Energy optimization of ACS.
• Constraining the time of the transient phase to a few
minutes to increase the performance of the mission.

The VTXO objectives are satisfied by the 6 unique contri-
butions as the following:

• Introducing ML-based optimal controller and ACS
phases to satisfy the designed constraints and objective
functions imposed to VTXO because of the instrumen-
tation and objectives of the VTXO mission.

• Robust Runge-Kutta solver for solving the quaternion
equations.

FIGURE 1. VTXO operation modes and VTXO relative position phases [10].

• Integration of the adaptive Runge-Kutta solver in the
data production and optimization process for a time
efficient data production to reduce the computation time
while maintaining high accuracy for the ACS solver.

• Obtaining the optimal ACS parameters by Monte-Carlo
simulation and comparing it with ML approach.

• Integration of thew in theMLwith a desired distribution
to provide an accurate, diverse, and spread Pareto front
for the posterior to find a single solution in the ML.

• ML hyperparameters optimization with a systematic
approach to the computation resources.

For the rest of paper, first VTXO mission is described.
Section II shows the elements of the simulation and the
equations of GNC. Afterwards, the AI structure is given.
Section IV shows the Monte Carlo simulation experiments
and the corresponding simulated data. Next, In the discussion
section, the results show that the objectives of the mission
are satisfied. In the conclusion, the mythology and the future
work are discussed.

The codes and the data in this paper are available at
https://github.com/Rpirayesh.

II. VTXO MISSION CONCEPT OF OPERATION
VTXO mission has three main sections as shown in Fig. 1:
commissioning, operation, and de-commissioning [10].
Commissioning is when the spacecraft perform maneuvers
to reach their desired orbits and correct the drifts initiated
from the release of the launch vehicle. The formation happens
in the operation section for observing the desired objects.
Commissioning introduces large slew and slew rate at the
beginning of the operation phase. In decommissioning, space-
craft deorbit. In the operation section of VTXO, each orbit in
the VTXOmission consists of three major phases for ACS [4]
and four major phases for the position formation between OS
and IS.

A. PHASES OF ACS
ACS has 3 phases as the following.
• The formation stabilization phase.
• The transient phase.
• The science observation phase.
In the formation stabilization phase, the spacecraft are

stabilized while they pass the perigee to come into the next
orbit phase. The Global Positioning System (GPS) navigation
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is used in this phase for orbit determination since the OS and
IS reach the perigee and GPS provides higher accuracy closer
to earth. During this phase, different techniques such as using
gravity gradient torque [22], feed forward controller [48],
[49], [76] detumbling [50] and attitude orientation for the
solar panels [77] can be used before initiating the transient
phase. As a result, maintaining this phase longer can help
with the energy systems like obtaining energy through solar
panels [77]. The controller is a feedforward controller com-
pensating for the gravity gradient external torque.

In the transient phase, there are large-angle maneuver, and
the E is desired to be minimized. A Lyapunov controller is
used to have the states of the system converge to the equi-
librium point, denoted as xxxe, given any initial condition [1].
Plus, the controller guarantees a minimal path between the
initial quaternion and final quaternion to consume the least
action [1]. In the transient phase, the large angle maneuver
control is applied to provide enough attitude accuracy for
beginning the science observation phase. OS and IS in this
phase are controlled independent of each other, and the ACS
does the formation in the science observation phase. Inertial
measurement unit (IMU) and star trackers are used for the
navigation. To increase the time of science observation phase
and maintain the formation stabilization phase longer, a few
minutes is considered for the transient phase as a requirement
since reducing the time of the large angle maneuvers in
the transient phase will increase the time of the formation
stabilization phase. Due to the large-angle maneuvers and the
possible chattering cause by SMC, SMC is not used in this
phase since the chattering will increase e, E , and T in the
transient phase.

After the spacecraft passes the transient state while being
stabilized, the science observation phase begins the precise
formation with the following specifications

• 55 mas (FWHM) attitude accuracy between the forma-
tion of OS and IS.

• Sub millimeter transverse alignment accuracy between
OS and IS.

• A few arcminute pointing accuracy for each spacecraft.
• The distance between OS and IS should remain 1 km
with a meter accuracy.

A few arcminute pointing accuracy for OS and IS is already
achieved in VTXO [4], [16], [17]. Science observation takes
place at the apogee since the disturbances are minimum at the
apogee. Half of the observation takes place before the apogee,
and half after the apogee. For the navigation, IMU on both IS
and OS, star trackers on both IS and OS, laser beacons on
the IS, radio ranging on the IS are used for navigation. GPS
doesn’t provide high accuracy resolution at the high altitudes
in the apogee.MEKF and SMC are already chosen for science
observation phase in VTXO [4] since robustness to external
disturbances and model uncertainties is required. In addition,
the SMC is optimized to minimize E and e, and SMC is
developed to guarantee a minimal path and least action is
taken between the initial quaternion and final quaternion

FIGURE 2. Orbits and ACS phases in the formation are shown. The pseudo
orbit of IS keeps the formation for |rrr rel | = 1km with 1 meter accuracy.
rrr rel = rrr IS − rrrOS . rrrOS and rrr IS show the distance vectors of the spacecraft.

to reduce E [4]. A saturation function is embedded in the
controller to reduce the chattering.

B. PHASES OF POSITION FORMATION
Position formation has 4 phases as the following
• The de-formation phase.
• The tracking phase.
• The formation phase.
• The science observation phase.

After the science observation phase, the 1 km forma-
tion breaks and the spacecraft formation drifts during the
de-formation phase. Near the perigee, the tracking phase
occurs and the formation is held for 20 m (for minimal energy
consumption [10]). During this phase, GPS provides the orbit
determination and radio ranging determine the relative dis-
tance between the OS and IS. In this phase, the data from
the spacecraft including the images from the observation is
sent to the earth by the communication system. During the
formation phase, the relative distance between the OS and
IS reaches 1 km with a few meter accuracy to begin the
science observation phase. Meter accuracy in focal length
can be tolerated during the science observation phase since
this distance error in focal length corresponds to the energy
error in the imaging observations of the space objects [12].
In this phase, the relative transverse alignment accuracy is
sub millimeters.

During the formation, OS can stay in its natural orbit while
IS changes its distance with the OS to hold the formation.
Fig. 2 illustrates formation of OS and IS and the phases on
each orbit.

C. ACCURACY REQUIREMENTS
NISTEx-II star tracker sensor enables the precise formation
for the science observation phase. The field of view (FoV) of
the NISTEx-II star tracker sensor is 5 deg [10]. Instrument
alignment inaccuracies together with 41 mas (1-σ ) of the
NISTEx-II star tracker while knowing the location of the laser
beacons on the OS lead to the 55 mas (FWHM) formation
accuracy. The slew rate should stay near zero for 41 mas

VOLUME 10, 2022 45647



R. Pirayeshshirazinezhad et al.: Designing Monte Carlo Simulation and Optimal Machine Learning

(1-σ ) accuracy, with 206 mas accuracy when the slew rate
is 1 deg/sec. FoV of VTXO is obtained by the division of the
size of the X-ray camera and the focal length. ACS of OS and
IS satisfy the accuracy requirements imposed by the FoV of
VTXO equal to 0.18 deg [12]. The accuracy requirements at
the end of the transient phase are imposed by
• R1: NISTEx-II star tracker
• R2: FoV of VTXO
Satisfying the R2 accuracy requirement satisfies the few

arcminute pointing accuracy requirement for the OS and IS
in the science observation phase.

Since the noise and disturbances are minimally bounded,
and since the nonlinear Lyapunov controller provides the
ideal global asymptotic stable response, when the slew con-
verges to zero the slew rate stays bounded close to zero. As a
result, satisfying the accuracy requirements will lead to near
zero slew rate required by the NISTEx-II star tracker.
R1: Accuracy requirements due to the formation of

NISTEx-II instrument on IS and laser beacons on OS
• Final slew error of OS < 5 deg
• Final slew error of IS < 5 deg
• Final slew error of OS + Final slew error of IS < 5 deg
This requirement dictates that the NISTEx-II star tracker

can’t provide 44 mas with sub millimeter transverse align-
ment formation accuracy before reaching the given accuracy
requirements.
R2: Accuracy requirements due to the FoV of VTXO
• Final slew error of OS < 0.18 deg
• Final slew error of IS < 0.18 deg
• Final slew error of OS + Final slew error of IS <

0.18 deg
Satisfying this requirement enables the IS to begin imaging

the space objects.

III. VTXO SIMULATION
A high- fidelity, six-degree-of-freedom, nonlinear Monte
Carlo simulation has been created using MATLAB to model
the VTXO transient phase. The elements included in the
simulation are orbital dynamics of VTXO, uncertainties in
the model (variation in the inertial momentum), external
disturbances (gravity-gradient torques, random accelerations,
J2 gravity model, and torques to account for drag, solar
pressure, higher-order-gravity terms, etc.), reaction wheels,
the misalignment, noise, and bias associated with the reaction
wheels, and GNC.

The following simplifications are applied to the model to
reduce the computation and the simulation time TQ
• To reduce the computation, measurement noise and state
estimation observer are not included in the simulation as
the sensors’ accuracy are high. As a result, the true states
xxx are equivalent to x̂xx.

• ACS and relative position control are decoupled from
eachother as the states of relative position and attitude
system can be controlled independently in the transient
phase. However, for the precision formation during the

science observation, ACS and relative precision control
are coupled [6].

• In the transient phase, each spacecraft is controlled indi-
vidually.

• Since theOS and IS are close to each other (max distance
is 1km) compared to their altitude, and since OS and IS
have the same GNC and characteristics, the rest of the
paper is based on one spacecraft.

The inclusion of noise in the dynamics is regularizing the
ML, which reduces the chance of over fitting for the ML.

Not including these simplifications require higher compu-
tation resources which can be achieved by using HPC, which
is left as the future work.

A. ACCURACY REQUIREMENT FORMULATION
Percentile is used to characterize the accuracy requirements.
P99(e) is used to characterize the accuracy requirements for
the slew error. Using P99, 99 percent of times the mission
meets the accuracy requirements.
R1: Accuracy requirements due to the formation of

NISTEx-II instrument on IS and laser beacons on OS
• R1A: P99(e) < 5 deg
• R1B: P99(e) < 2.5 deg
R2: Accuracy requirements due to the FoV of VTXO
• R2A: P99(e) < 0.18 deg
• R2B: P99(e) < 0.09 deg

B. ATTITUDE REPRESENTATION AND NOTATION
The estimated value or the value in the flight computer for the
true variable x is denoted as x̂, and the measured value for x
is denoted as x̃. diag(xxx) represents the diagonal matrix with
elements of vector xxx in the diagonal.
The Earth coordinate frame is the Earth-centered iner-

tia (ECI) frame and the frames used for the satellites body
frame Fb are the Local-Vertical-Local-Horizontal (LVLH)
frames shown in Fig. 3.

The spacecraft position in the body frame is denoted as
rrr as shown in Fig. 2 and Fig. 3. Quaternions are used to
model the attitude dynamics of equations [1]. Quaternion qqq
is a four-element vector with a three-element vector qqq1:3 and
a scalar part q4. The quaternion unity constraint is

q24 = 1− ∂q∂q∂qT1:3∂q∂q∂q1:3 (1)

The orientation of frame Fa to frame Fb through Euler
angle θ and Euler axis υυυ is expressed through quaternion as

qqqba =
[
υυυsin(θ/2)
cos(θ/2)

]
(2)

The associated attitude matrix corresponding to the quater-
nion qqqba is shown as RRRba. ⊗ is quaternion multiplication
operator defined by (3).

qqq⊗ q̄qq =


q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3



q̄1
q̄2
q̄3
q̄4

 (3)
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FIGURE 3. Local-vertical/local-horizontal (LVLH) frame and its axes. The z
axis o3 is in the opposite direction of position vector rrr of spacecraft
along the nadir vector nnn toward the center of earth. The y axis o2 is in the
negative direction of orbit normal. The x axis o1 completes the
right-handed triad. vvv shows the velocity of spacecraft.

Quaternion multiplication between reference frames are

qqqac = qqqbc ⊗ qqqab (4)

Equation (4) corresponds to the multiplication of attitude
matrices as

RRRac = RRRbcRRRab (5)

Small rotations θ can be written in terms of attitude matrix
RRR as

∂RRR = III3×3 − [θθθ×] (6)

Small rotations θ can also be written in terms of quaternion
qqq as

∂qqq ≈
[
θθθ/2
1

]
(7)

where θθθ = θυυυ, and III is an identity matrix. The cross product
matrix [xxx×] of the variable xxx is defined as

[xxx×] =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (8)

The identity quaternion is

qqq =


0
0
0
1

 (9)

TABLE 1. Time of observation for the objects VTXO observe in the
observation phase [12].

C. ORBITS AND THE DESIRED TRAJECTORIES
The baseline flight dynamics of VTXO uses highly-elliptical
supersynchronous geostationary transfer orbit with a
32.5-hour period for providing a 10-hour observation in the
apogee. The 5 Keplerian elements are the same for OS and IS
except the eccentricity γ . The eccentricity of OS and IS are
designed to include a few minutes of buffer between the time
the OS and the IS pass the point where the orbits intersect,
avoiding a collision between satellites. A larger difference
between the eccentricities results in a lower risk of collision,
since the satellites would have longer relative distances.
However, this results in a higher energy consumption that is
needed to keep the desired 1 km relative distance between the
satellites.

The list of objects to be observed by VTXO are given
in Table 1. This table of desired objects for VTXO can be
updated in the future.

The desired attitude trajectory to observe the desired
objects given in Table 1 is denoted as qqqf . qqqf doesn’t vary
by time, and it just switches from one space object to the
next one when the science observation satisfies the time of
observation.

D. DYNAMICS
qqqbi represents the orientation of the spacecraft body frame
with respect to the earth Earth-centered inertial (ECI) frame,
and ωωωbib corresponds to slew rate of the spacecraft body
frame with respect to the inertial frame. For the rest of the
paper, qqqbi and ωωωbib are shown as qqq and ωωω respectively for
simplicity. The states xxx defined for ACS are quaternion and
angular velocities.

xxx =
[
qqqT ωωωT

]T (10)

qqq =
[
q1 q2 q3 q4

]T
ωωω =

[
ω1 ω2 ω3

]T
xxx at the beginning of the transient phase are the initial slew

and initial slew rate for the transient phase denoted as x0x0x0, and
xxx at the end of the transient phase is denoted as xfxfxf .

A time variant modeling error δJJJ is considered in the
nominal inertial momentum J̄JJ to model the changes in the
true value of inertial momentum JJJ as the following

JJJ−1 = J̄JJ
−1
+ δJJJ−1 (11)
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The total applied torque to the spacecraft due to control
input, noise, and disturbances is denoted as τττ . The equations
of motion for the attitude dynamics of spacecraft are

q̇qq =
1
2
ωωω ⊗ qqq (12)

ω̇ωω = JJJ−1(τττ −ωωω × JJJωωω) (13)

where τττ is

τττ = τττ in + τττ g +wwwω̇ωω (14)

τττ in corresponds to the control input,wwwω̇ωω corresponds to exter-
nal disturbances from the space environment modeled as
Gaussian white noise, and τττ g corresponds to the time variant
gravity gradient torque.
τττ in derives the quaternion qqq to the desired quaternion qqqf

and ωωω to zero, which is equal to reaching xxxe.
The state space equations is defined as (15) using

equations (10), (12), and (13).

ẋxx = f (xxx(t), τττ (t)) (15)

E. EXTERNAL DISTURBANCES AND GRAVITY GRADIENT
TORQUE
Gravity gradient torque τττ g is derived from point mass gravity
models [1], [78] as the following

τττ g =
3µ
|rrr|3

nnn× (JJJnnn) (16)

where nnn is the nadir vector in the body frame Fb, and |rrr| is
the radial distance of spacecraft from earth.
wwwω̇ωω corresponds to the random torques, J2 gravity model,

and torques to account for drag, solar pressure, higher-order-
gravity terms, etc. wwwω̇ωω is modeled as zero-mean Gaussian
white noise process where the power of the noise is captured
in the variance as σ 2

ω̇ωω [79].

E[wwwω̇ωω(t)wwwω̇ωω(t ′)T ] = σ 2
ω̇ωωIII3×3δ(t − t

′) (17)

δ(t − t ′) is the Dirac delta function defined as

δ(t − t ′) = 0 if t 6= t ′ (18)∫
∞

−∞

δ(t − t ′) dt ′ = 1 (19)

σ 2
ω̇ωω are chosen based on the orbit and the size of spacecraft.

If the spacecraft are bigger or closer to earth, σ 2
ω̇ωω is chosen

larger due to higher drag forces and other torques. Choosing
the external disturbances on the spacecraft is shown by Lear
[3], [79], where the estimated disturbance corresponds to the
expected downrange and attitude error after one orbit.

F. ACTUATOR MODEL
In VTXO, reaction wheels are used for ACS and thrusters
are used for relative position control as the primary actuators
in GNC for both IS and OS. The torque generated by the
reaction wheels τττ in uses the commanded torque τ̂ττ in given by

the control law. In τττ in, Gaussian white noisewwwτ , biasbbbτ , scale
factor fff τ , and misalignment εεετ are included as the following

τττ in = ∂RRR(εεετ )[{III3×3 + diag(fff τ )}τ̂ττ in + bbbτ +wwwτ ] (20)

The variance σ 2
wwwτ captures the power of the noise in the

random noise wwwτ as

E[wwwτ (t)wwwτ (t ′)T ] = σ 2
wwwτ III3×3δ(t − t

′) (21)

G. CONTROL LAW
A nonlinear global asymptotic stability Lyapunov con-
troller [1], [80] is defined as the control law.

Lyapunov stability theorem is given in the following
Definition:Global Asymptotic Stability
A point is considered to be an equilibrium point xxxe for the

system if ẋxx(t) = 0 for all t . xxxe for the system (15) is global
asymptotic stable if the positive scalar function V (xxx) satisfies
the following conditions

• V (xxxe) = 0
• V (xxx) > 0 for xxx 6= xxxe
• V̇ (xxx) ≤ 0

When the given conditions are satisfied, V (xxx) is a Lyapunov
function. If V̇ (xxx) < 0 for xxx 6= xxxe, xxxe is asymptotically stable.
If V̇ (xxx) ≤ 0, V (xxx) is a Lyapunov function and the system is
stable. LaSalle’s theorem can prove the asymptotic stability.

The controller is defined as the following

τ̂ττ in = −k1sign(∂q4)∂q∂q∂q1:3 − k2(1− ∂q∂q∂qT1:3∂q∂q∂q1:3)ωωω (22)

The error quaternion is given by

∂q∂q∂q ≡
[
∂q∂q∂q1:3
∂q4

]
= qqq⊗ qqqf −1 (23)

∂q∂q∂q1:3 = EEE(qqqf )Tqqq (24)

where EEE(qqq) is the 4× 3 matrix

EEE(qqq) =


q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3

 (25)

∂q4 = qqqTqqqf (26)

Taking the time derivative of (23) leads to

∂ q̇∂ q̇∂ q̇ = q̇̇q̇q⊗ qqqf −1 (27)

Using (23) and substituting (12) into (27) gives

∂ q̇∂ q̇∂ q̇1:3 =
1
2
[∂q∂q∂q1:3×]ωωω +

1
2
∂q4ωωω (28)

∂ q̇4 = −
1
2
∂q∂q∂qT1:3ωωω (29)

When ∂q4 < 0, the controller provides a positive feedback
which corresponds to the shorter path for reaching the xxxe to
reduce E [1]. Reaching exactly ∂q4 = 0 is not a concern for
practical applications [1].
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The control law τ̂ττ in is proved to be global asymptotic
stable using Lyapunov stability theory when the following
simplification assumptions hold

τττ in = τ̂ττ in (30)

JJJ = ĴJJ (31)

Which corresponds to the system (13) with no noise, distur-
bance, and uncertainty considered in the system. In the sim-
ulation, noise, disturbances, and uncertainty are considered
and the stability for the closed loop system is shown using
Monte Carlo simulation.

substituting (22) into (13) and using the simplifications
(30) and (31), the closed loop system is obtained by (27) and
the following

ω̇ωω = −JJJ−1(k1sign(∂q4)∂q∂q∂q1:3
+ k2(1− ∂q∂q∂qT1:3∂q∂q∂q1:3)ωωω +ωωω × JJJωωω) (32)

where k1 and k2 are positive scalars.
The following function is chosen as the candidate Lya-

punov function

V (xxx) =
1
4
ωωωTJJJωωω +

1
2
k1∂q∂q∂qT1:3∂q∂q∂q1:3 +

1
2
k2(1− ∂q4)2 (33)

At the xxxe, V (xxxe) = 0, which satisfies the first condition.
Since k1 and k2 are positive scalars, the function (33) is a
positive scalar function V (xxx) > 0, which satisfies the second
condition. The derivative of V (xxx) is obtained as

V̇ (xxx) =
1
2
ω̇̇ω̇ωTJJJωωω + k1∂q∂q∂qT1:3∂ q̇∂ q̇∂ q̇1:3 −

1
2
k2(1− ∂q4)∂ q̇4 (34)

Substituting (28), (29), and (32) into (34) and substituting
(1) into (32), the time derivative of the Lyapunov function is
obtained as

V̇ (xxx) = −
1
2
k2ωωωTJJJωωω∂q24 (35)

Since V̇ (xxx) <= 0, V (xxx) is a Lyapunov function and the
system is stable. Asymptotic stability is be proven using
LaSalle’s theorem. V̇ (xxx) = 0 at ∂q4 = 0 and ωωω = 0.
At ∂q4 = 0, V (xxx) is maximum with a 180 deg rotation
(θ = π ) (2). ∂q4 = 0, is not an equilibrium point and
∂q4 = 0 corresponds to ∂q∂q∂q1:3 = 111 because of quaternion
unity constraint (1). xxxe is an invariant set since it is the
equilibrium point, and using LaSalle’s theorem [1], the limit
for ωωω is obtained as

lim
t→∞

ωωω = 0 (36)

Using (36) in the closed loop dynamic equation (32), the
following asymptotic condition for xxxe as an equilibrium point
is obtained as

lim
t→∞

∂q∂q∂q1:3 = 0 (37)

As a result, the control law (22) is globally asymptotic
stable without the consideration of external disturbances and
uncertainties. In the stability section,Monte-Carlo simulation
is used to show the stability of system.

FIGURE 4. AI phases. In the optimization and data production phase, x0x0x0,
w , and xfxfxf are given to the SA optimization with the optimization
variable zzz , and SA minimizes e and E given the objective function χ . The
data produced in this phase is used for training the ML, and the trained
ML can estimate the optimal ŷ̂ŷy .

IV. ARTIFICIAL INTELLIGENCE FRAMEWORK
The goal of AI is to provide ACSwith optimal adaptive values
for k1, k2, and T based on x0x0x0, xfxfxf , and w to satisfy the mission
requirements and maintain E , e, and T minimal.
k1, k2, and T are optimization variables denoted as zzz. The

optimal estimated value for zzz is denoted as ẑzz. Fig. 4 illustrates
the stages involved in the AI.

The AI has 3 phases:

• Optimization and data production phase
• ML phase
• Implementation phase

In the optimization and data production phase, 7893 data
are produced. For each data, the objective function χ , which
is the weighted sum of E and e given by (38), is optimized
with the optimization variables zzz for each set of x0x0x0, w, and xfxfxf .
In the ML phase, the inputs to ML are w and x0x0x0, and

the outputs of the ML are the E , e, and zzz defined as
yyy = [E, e, zzz].

The optimization and data production phase and ML phase
are implemented offline, whereas the implantation phase is
implemented in the real-time in space using FPGAs. In the
implantation phase, the values of x0x0x0 obtained from attitude
estimation algorithms [1], [4], denoted by x̃̃x̃x0, and the value
of w gives the estimated optimal optimization variable zzz
denoted by ẑ̂ẑz. The ML estimates E and e, denoted by Ê and
ê respectively. The estimated yyy used in the implementation
phase is denoted by ŷ̂ŷy. It is shown later that DNN is chosen to
estimate ŷ̂ŷy. The DNN is incoprated into FPGA, and the input
to the FPGA is x̃̃x̃x0, w and the output of FPGA is ŷ̂ŷy.

A. PROBLEM FORMULATION AND OPTIMIZATION
The objective function χ for the optimization is (38)

χ = E + we (38)

where w weights e over E . e is obtained in the last D = 4
seconds (39) to minimize the steady state tracking error in
the transient phase. The value for D is chosen to be low to
reduce the computation cost and represent the steady state
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error. Variable e is defined as

e =
1
D

∫ Tend

Tend−D

√
eee(t)>eee(t) dt (39)

where eee(t) is the absolute difference between the desired
attitude and the actual attitude. Tend is the end of the transient
phase when the science observation phase begins.

Variable E is defined as

E =
∫ Tend

T0
τττ>in(t)ωωω(t) dt (40)

T0 represents the time the transient phase begins. It is
shown later that it takes maximum 129.26 s for the ML
to perform the transient phase. After the transient phase,
which takes place for the estimated T by the ML, the science
observation begins. SA defines the constrained variable T ,
and Tend is defined as

Tend = T0 + T (41)

The constraints in SA are the constraints related to the
dynamics of the system, the unity norm of the q0q0q0, and the
range of the variables. The optimization structure for SA is
formulated as

min
zzz
χ (x0x0x0,w,xfxfxf , zzz)

s.t : ẋxx = f (xxx(t), τττ )

s.t : τ̂ττ = G(k1, k2,xxx(t))

s.t : qqqT0 qqq0 = 1

s.t : zzz ∈ R3
: zzzl < zzz < zzzu

s.t : xxx f ∈ R7
: xxx lf < xxx f < xxxuf

s.t : xxx0 ∈ R7
: xxx l0 < xxx0 < x0x0x0u

x0j ∼ U (j = 1, 2, 3, 4)

x0j ∼ N (µ1, σ1) (j = 5, 6, 7)

xfj ∼ U (j = 1, 2, 3, 4)

xfj ∼ N (µ2, σ2) (j = 5, 6, 7)

w ∼ [N (µ3, σ3),U (cl1, c
u
1),U (cl2, c

u
2)] (42)

The upper and lower values for the optimization variables
zzz and x0x0x0 are

zzzl =

0.010.01
7.2s

 , zzzu =

 1
1
72s

 (43)

x0x0x0l =



−1
−1
−1
0
−2
−2
−2


, x0x0x0u =



1
1
1
1
2
2
2


(44)

xfxfxf l =



−1
−1
−1
0
0
0
0


, xfxfxf u =



1
1
1
1
0
0
0


(45)

The lower values for k1 and k2 are greater than zero since
in the Lyapunov function they are positive scalar for global
asymptotic stabilty. N and U represent a Gaussian and a uni-
form distribution, respectively. The distribution parameters cccl

and cccu represent the upper and lower values for the uniform
distribution, and µµµ, σσσ are the mean and standard deviation
given in

cccl =
[
0
1

]
, cccu =

[
5
1

]
, µµµ =

00
5

 , σσσ =
0.60
0.3

 (46)

In [4], it is shown for a 22.5-hour formation stabilization
phase, ω3 reaches 0.59 rad/sec. As a result, 0.6 is chosen as
the 1-sigma ofωωω with zero mean distribution (46) for the data
production in the transient phase. In the formation stabiliza-
tion phase, qi, (i = 1, 2, 3, 4) varies between -1 and 1. As a
result, the transient phase initial quaternions qqq0 distribution is
a uniform distribution between -1 and 1 (44).
w is considered to be more centered over 1 and 5 with

700 data points equal to 1, and the rest of data is produced by
50% probability with Gaussian distribution and 50% prob-
ability with uniform distribution. zzz upper and lower values
depend on the ACS, and they are chosen to provide the ACS
with with a minimal e and E for a less number of iterations
in SA optimization. SA with the optimization variables zzz is
used to produce the data shown in Algorithm 1.

Algorithm 1: Simulated Annealing Optimization for the
Data Production
Result: Data matrix:[x0x0x0, w, xfxfxf , yyy]
Initialize data matrix:[x0x0x0, w, xfxfxf , yyy];
for i = 1, . . . ,NData do

1) Produce x0x0x0, xfxfxf and w with the distribution in (42);
2)Initialize zzz;
3)SA minimises χ and obtain yyy given the ACS
equations and the constraints ;
4) Add [x0x0x0, w, xfxfxf , yyy] to the data matrix;

end

SA (Algorithm 1) is used to produce optimal k1, k2, and
T for each data. 7983 data are produced when the desired
trajectory is the Crab Pulsar in Table 1, and the rest of the
paper is based on that. 1000 data are produced for all the other
desired trajectories, and they show similar results.

B. ML PHASE
DNN, GP, and support vector regression (SVR) ML algo-
rithms are trained on 7893 data produced in the data pro-
duction phase. Both mean absolute percentage error (MAPE)
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and mean absolute error (MSE) are used for showing the
estimation accuracy of DNN, GP, and SVR. k-fold cross
validation with k = 4 is used to measure MAPE and MSE.
As a result, 25% of the data is used as the test data.

1) DEEP NEURAL NETWORK
DNN is composed of connected neurons in multiple layers.
The inputs of the DNN belong to R8, and they are qqq0, ωωω0,
and w. The outputs of the DNN belong to R5, and they are E ,
e, T , k1, and k2. The layers can vary between 1 to 4 layers,
and the neurons can vary between 10 to 2560 with a uniform
distribution and with logarithmic spacing as the following

ni = 10× 2i (47)

where ni shows number of neurons at the spacing i which
varies between 0 and 8. The activation function for the hidden
layers are chosen between rectified linear units (ReLU) and
sigmoid. This choice is also made through cross validation.
ReLU activation functions outputs the positive part of its
argument as

f (x) = max(0, x) (48)

And the nonlinear sigmoid function sig(x) is given by

sig(x) =
1

1+ exp(−x)
(49)

where x is the input to a neuron.
Since all the outputs are positive, the ReLU is cho-

sen as the activation function for the output neurons. The
hyperparameter of the DNN’s structure are number of
layers, number of neurons at each layer, and activation
function. The parameters weight and bias of the DNN
are optimized through the Adaptive Moment Estimation
(Adam) [81] and Nesterov-accelerated Adaptive Moment
Estimation (Nadam) [82] optimizer algorithms.

The optimization criterion consists of minimizing the
MAPE through the Adam andNadam algorithms. Adam opti-
mization is a stochastic gradient descent based method that
uses an adaptive estimation of first-order moment (the mean)
and second-order moments (the uncentered variance). The
parameters of ADAM are learning rate µ = 0.001, ε = 10−7

for numerical stability, and β1 = 0.9 and β2 = 0.999 are the
exponential decay rate for the 1st and 2nd moment estimates
respectively.

The parameters of Nadam are learning rate µ = 0.001,
ε = 10−7 for numerical stability, β1 = 0.9 and β2 = 0.999.
While training the DNN, 20% of the training data is used

as a validation data set for the early stopping.
The parameter of the algorithm to be defined is patience,

which is the number of epochs with no improvement in
MAPE after which training will be stopped. Number of
batches, number of epochs, l1 regularization, kernel con-
straint should be cross validated. For kernel constraint,
MaxNorm(x) function is used which limits the maximum
norm of the weight vector for the layer with x. As a result,
the DNN’s weights are bounded.

The initial values for the parameters weight and bias of
DNN are chosen randomly using a Gaussian distribution of
zero mean and variance 0.02.

DNN multi-output and single-output structure are trained
on the data. Single-output DNN provides the minimum
MAPE compared to DNN multi-output. The hyperparameter
optimization problem obtains the minimum MAPE during
the validation phase. The hyperparameters of the DNN’s
structure and algorithm parameters are: number of layers,
number of neurons at each layer, epochs, batches, weight
initialization, l1 regularization, kernel constraint, activation
function for the hidden layers, and patience. Adding other
regularization methods including batch normalization and
dropout doesn’t reduce MAPE.

GS is used to find the optimal number of layers, num-
ber of neurons at each layer, epochs, batches, patience, and
weight initialization. RS is used to find the optimal dropout
value, l1 regularization, kernel constraint, number of layers,
number of neurons and activation method. The coarse-to-fine
optimization approach is to solve the hyperparameter opti-
mization problem first with GS. Next, the optimal solution
from GS is used to solve the hyperparameter optimization
problemwith RS on the 20 cores, and finally the RS’s solution
is validated on ALCF.

The permutation of the DNN’s structure and algorithm
parameters values are given in the list P as the search-space
for RS with the index of the list i as the optimization variable.
As a result, RS finds the optimal configuration Popt , which
solves the hyperparameter optimization problem.

RS selects i at random with a uniform distribution. The
termination criterion is when the number of iterates k reaches
the value of the variable TIter . At each iteration performed in
the RS, DNN is trained and the value of MAPE is obtained.

When the difference in the reduction between the current
MAPE and the previous MAPE is more than a threshold
TDrop, TIter increases with a constant and a variable denoted
as kIter and span respectively.

The value for kIter , the initial value for TIter , the initial value
for MAPE, the initial value for span, and TDrop are defined so
that convergence with a low number of iterations is obtained.

The advantage of this termination criterion is increasing
the maximum number of search iterations as long as MAPE
is decreasingmore than TDrop. As a result, for each output inyyy,
whenMAPE converges to the optimalMAPE,MAPE doesn’t
decrease more than TDrop and the termination criterion is met.
Algorithm 2 shows the RS.

2) HIGH PERFORMANCE COMPUTING FOR DEEP NEURAL
NETWORK
Using HPC, RS and k-fold cross validation are both paral-
lelized on THETA cores for DNN. The search-space P, which
is the permutation of the DNN’s structure and algorithm
parameters values, is split into b groups equally. Each combi-
nation of these parameters values is a configuration. N ranks
are assigned to solve hyperparameters optimization problem.
N is divided into b groups, where each group has k-fold ranks.
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Algorithm 2: Randomized Search
1) Initialize the optimization parameters and iteration
index k = 0;
2) Randomly choose the initial value i0 and define
MAPE(Pi0 );
3) Generate the integer Vk+1 ∈ [1, |P|] randomly with a
uniform distribution ;
4) If MAPE(PVk+1 ) <MAPE(Pik )
ik+1 = Vk+1
Otherwise ik+1 = ik

End;
5) If MAPE(Pik )−MAPE(PVk+1 ) > TDrop
Increment Span
TIter = kIter × Span+ TIter
End;

6) If k reaches TIter , stop. Otherwise, increment k and
return to Step 3.

For each group, the cross validated MAPE is obtained when
all the ranks assigned to that configuration return MAPE.
RS solves hyperparameters optimization problem for each
group, and the minimum MAPE is chosen. As a result, the
time of computation is decreased when b increases with the
cost of more computation resources. When b reaches the size
ofP, RS turns into a GS on ALCF.

3) GAUSSIAN PROCESS
The kernel function is chosen among the linear dot prod-
uct (LDP), the exponential sine square (ESS), the Matérn,
the radial basis function (RBF), and the rational quadratic
(RQ) [83]. The GP covariance function includes a linear
combination of a kernel function, a constant term and a white
noise term. The kernel function is chosen so that minimum
MAPE is obtained.

4) SUPPORT VECTOR REGRESSION
The hyperparameter to be optimized for the SVR are kernel,
gamma, epsilon, and C. Each hyperparameter is defined in
the following
• Kernel function: The function to map the data into a
higher dimension data.

• γ : Kernel coefficient.
• ε: The margin where no penalty is applied to the error in
the loss function.

• C : Regularization coefficient. Lower C corresponds to
higher regularization.

The polynomial kernel with degrees more than 3 and using
the polynomial kernel for estimating k1 take more than 3 days
to train for the GP. Thus the polynomial kernel is removed
from the kernel search space.

V. MONTE CARLO SIMULATION EXPERIMENTS
The goal of the Monte Carlo simulation experiments for the
VTXO transient phase are three folds as the following

TABLE 2. Keplerian elements for OS and IS.

TABLE 3. Reaction wheel and external disturbances parameters.

TABLE 4. Randomized search parameters.

• The Monte Carlo simulation is used to analyse the per-
formance and stability of the closed loop system.

• Monte Carlo simulation produces the data required for
the ML.

• Monte Carlo simulation is used to design controller
gains and T using the mode of data set.

For the simulation, the Keplerian elements are eccentricity
γ , semi-major axis a, inclination i, right ascension of the
ascending node �, and argument of periapsis ω. The Kep-
lerian elements are given in Table 2.

The IS and OS are 6U CubeSat with inertial mass 10.2kg
and nominal inertial momentum matrix J̄JJ as

J̄JJ =

0.1383 0 0
0 0.1577 0
0 0 0.1039

 kg · m2 (50)

The time variant modeling error δJJJ in JJJ (11) for both OS
and IS is modeled as

δJJJ =

0.0038 sin(t) 0 0
0 0.005 cos(t) 0
0 0 0.0011

 kg · m2

(51)

The variance of external disturbances and reaction wheels
modeling parameters for both OS and IS are given in Table 3.
The initial values in RS Algorithm 2 are given in Table 4.

A. ACS SOLVER
The solver plays a critical role in producing the data since
it defines the accuracy of the data and the time it takes to
produce the 7983 data. Compared to the other solvers such
as ODE 45 or ODE 23s in MATLAB software, fourth-order
Runge–Kutta method (RK4) with a fixed time step provides
the ACS equations with more accurate solutions in less time.
The time step in the RK4 solver is tuned so that the ACS
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FIGURE 5. Pareto front of multi objective genetic algorithm shows the
inverse relationship between the objective functions where Objective 1 =
e (deg) and Objective 2 = E (J).

solution is obtained in a short time while maintaining the
quaternion unity norm constraint(1) (qqqTqqq = 1) for each k1
and k2. The bigger the time step is, the less time it takes
to solve the ACS ODE equations while making the solution
unstable. As an example, the solution to the ACS equations
are not stable for the controller gains with k1 = 2, k2 = 6with
the time step dt = 0.05. Reducing the dt = 0.05 to dt =
0.01 or setting K1 = 1 makes the solution stable.
dt is chosen so that 97% of data is stable in a reasonable

time. Decreasing the value dt leads to all the data have stable
solutions with the cost of high computation. The 300 itera-
tions in SA solve the problem of 3% of unstable solutions.
The reason is that when the ACS solution is not stable in a
specific iteration of SA, that iteration produces large values
for χ , which is not chosen as a minimum solution for the
optimization.

The time to produce data is denoted as TQ. TQ of the data
production phase is dependant on the 300 iterations of SA and
dt of ACS solver. TQ of the data production phase is 0.51 h
on average.

The goal in the data production is to maintain high accu-
racy in the data while reducing the computational expense.
300 iterations, which lead to the average and the variance of
the data converge to its minimum, is chosen as a stopping
iteration. 0.8% of the data with the highest values for χ are
removed from the dataset since they corresponds to the data
that are not optimized well and removing them increases
the accuracy of ML significantly. ML estimates the removed
data.

B. DATA ANALYSIS
The Pareto front obtained from multi objective genetic algo-
rithm for minimizing E and e is given in Fig. 5 for a
random xxx0. Fig. 5 illustrates the inverse relationship between
e and E since spacecraft requires higher energy to reach lower
error in a specific time.

FIGURE 6. e vs E for all the data shows an inverse relationship. The data
is more accumulated around zero since SA minimizes the positive e and E .

FIGURE 7. Distribution of k1, k2, e, E , T for the data obtained in the data
production phase. k1, k2, e, and E show a similar Gamma distribution.

TABLE 5. Data statistics obtained in the data production phase.

Fig. 6 shows the inverse relationship between e and E for
all the data. Fig. 6 inherits similarity to to Fig. 5 since both
optimization lead to the minimum inversely related e and E .
Fig. 7 shows that the data are positive and bounded. The

mode of the data set is between the maximum and minimum
close to average except for T , which has its mode equal
to its maximum. This data distribution shows that the T is
constrained and not minimized as its mode is close to its
maximum.

Table 5 shows the statistics of the data. Max, min, and
abs corresponds to maximum, minimum, and absolute value
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FIGURE 8. ωf distribution. The histogram shows ωf is centered around
zero with a small variance.

respectively. Pk is the percentile of a variable such that k
represents the percentage in the percentile. In Pk (x) = Tr ,
k% of cases from the distribution of variable x are less than
or equal to the value Tr .
Table 5 shows that the maximum of e and E are not close

to their P99, and it is caused by ACS solver, noise in the
dynamical system, SA optimization Algorithm 1, and the
characteristic of the data distribution.

When e converges to zero, ωf converges to zero with the
distribution shown in Fig. 8. Table 5 shows that the upper P99
and lower values P1 for the ωf are less than 1 deg/sec close
to zero.
P99(e) of the data shows the requirement of the mission is

met by the optimization data, where P99(e) = 0.067 deg <
0.09 deg. P99(E) = 0.37 J, which is the energy consumption
for one orbit, shows the energy consumption is maintained
low for the mission. With the current technology, this energy
can be provided for numerous number of orbits. Similar to
MPC, the optimization can be actively applied to the mission
with the advantage of meeting the mission requirements. The
disadvantage is the that it takes on average 30 mins to do the
optimization.

VI. DISCUSSION
In this section the results of the given methods are shown and
the bench marking section compares the results.

A. DEEP NEURAL NETWORK
Table 6 and Table 7 show the global optimal solution to
the hyperparameters optimization problem for GS and RS,
respectively, when the cross validation is running in series
in RS and GS. Table 6 and Table 7 show MAPE and MSE
for the testing dataset. As Table 6 and Table 7 show, GS can
not satisfy the accuracy requirement R2B since for the GS
P99(e) = 0.0932 deg > 0.0900 deg, while RS satisfy the
accuracy requirements. Comparing Table 6 and Table 7 shows

TABLE 6. Optimal MAPE using grid search.

TABLE 7. Optimal MAPE using randomized search.

the effectiveness of the coarse-to-fine hyperparameter opti-
mization for the VTXO mission.
TIter in Table 7 shows that the controller parameters con-

verge to the optimum solution the fastest, and T converges to
the optimum solution the latest due to the distribution of data.

B. HIGH PERFORMANCE COMPUTING FOR DEEP
NEURAL NETWORK
Using HPC in ALCF for solving hyperparameters optimiza-
tion problem for E with different values for b, MAPE =
15.007 is obtained as the minimum, which is close to
MAPE = 15.07 given in Table 7. As a result, Table 7 is
verified to provide the mission with relatively the lowest
MAPE for DNN with the given search-space P. When b
reaches the size of P, TQ reduces 25 times to solve the
hyperparameters optimization problem for E with the cost of
more computation resources.

C. GAUSSIAN PROCESS RESULTS
Fig. 9 illustrates the optimal MAPE with respect to each one
of the kernel functions, and it shows the MAPE for each one
of the estimators in yyy.
The optimal MAPE and MSE for each kernel is given in

Table 8.
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FIGURE 9. Optimal MAPE vs Kernel functions for each output of GP.

TABLE 8. Optimal MAPE using gaussian process.

TABLE 9. optimal MAPE using SVR.

Fig. 9 and Table 8 show that RQ and Matérn provides
the least MAPE for the estimation of the outputs in yyy with
a similar gamma distribution, which are e,E, k1, k2. T is
estimated by LDP kernel. RBF kernel shows the least spread
of MAPE for yyy among using other kernels.

D. SUPPORT VECTOR REGRESSION RESULTS
Table 9 shows the optimal SVR hyperparameters, minimum
MAPE, and the optimization parameters for each output in yyy.
Table 9 shows SVR provides the least MAPE using RBF

kernel. Table 9 shows that the optimal value of the regular-
ization parameter C in SVR is small 0 < C ≤ 1 for the esti-
mation of the outputs in yyy with a similar gamma distribution,
which are e,E, k1, k2. The optimal value of the regularization
parameter C for estimating T is obtained as 1000.
Similar to GP, the accuracy requirements are closely

reached for e but not satisfied using SVR.

E. MACHINE LEARNING RESULTS COMPARISON
As Fig. 10 and Table 10 compares MAPE for different ML
methods, DNN provides the lowest MAPE and GP relatively

FIGURE 10. MAPE of DNN, SVR, GP for each output of ML. DNN shows
relatively the lowest MAPE for yyy

TABLE 10. Comparing MAPE for DNN, GP, and SVR.

FIGURE 11. MAPE vs portion of data for each output of DNN. The MAPE
plateaus at 63144 number of data.

the highest MAPE for yyy estimation. As a result, DNN is
chosen to find the optimal quantity of data.

F. OPTIMAL DATA QUANTITY
For each portion of 7893 pieces of data, the optimal DNN
models given in Table 7 are used to obtain MAPE. Fig. 11
shows the convergence of MAPE with respect to each portion
of data, which shows that 7893 pieces of data are enough for
training the ML. The MAPE plateaus when it reaches 0.8 of
the whole data.
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TABLE 11. Comparing 99 percentile of the yyy ’s values for ML.

TABLE 12. Data statistics for Ai .

Table 11 comparesP99 of theyyy’s values for DNN, SVR, and
GP. Table 11 shows that only DNN can provide e < 0.09, and
so the accuracy requirement R2B is not satisfied with SVR
and GP. As a result, DNN is chosen for the VTXO mission.
P99 of yyy for DNN, GP, and SVR are close to each other.
It shows that the 3 ML algorithms provide similar results for
yyy estimation since the amount of data is not high.

G. BENCH MARKING AND ACCURACY REQUIREMENT
CHECKLIST
5 approaches to the mission and designing the control system,
denoted as Ai, are compared in Table 12.
• A1: There is no optimization and ML implemented. k1,
k2, and T are chosen randomly with a uniform distribu-
tion. The upper and lower value for k1, k2, and T are
the same range given in (43). Monte-Carlo simulation is
used to produce 10000 data for defining P99(e), P99(E),
and TQ.

• A2: k1 and k2 are chosen randomly with a uniform dis-
tribution, and T = 72s. The upper and lower values for
zzz are given in (52)

zzzl =

0.010.01
72s

 , zzzu =

 1
1
72s

 (52)

Monte-Carlo simulation is used to produce 10000 data
for defining P99(e), P99(E), and TQ.

• A3: In this approach, SA optimization is applied directly
to the mission to obtain the optimal ẑzz.

• A4: Based on the histogram of the data given in Table 5,
the optimal value for Monte-Carlo based controller and
optimal T are estimated to be the mode of the data set in
the histogram (53) to keep e and E minimal.

ẑzz ≡

 k̂1
k̂2
T̂ (s)

 =
0.0850.25

72

 (53)

FIGURE 12. e and E histograms when k1 = 0.085, k2 = 0.025, and
T = 72s. P99(e) = 0.15 deg and P99(E) = 1.95 J

Using Monte-Carlo simulation and producing
10000 data for the value ẑzz given in (53) provides the
mission with P99(e) = 0.15 deg and P99(E) = 1.95 J.
P99(e) = 0.15 deg satisfies R1 and R2A, but doesn’t sat-
isfy R2B. As a result, the camera is not stabilized enough
for starting the observation phase. Fig. 12 illustrates the
histograms of e and E when k1 = 0.085, k2 = 0.25,
T = 72s. P99(E) = 1.95 J is 5 times higher than doing
the optimization on board for each spacecraft. Fig. 12
shows that the average of gamma distribution e is higher
than the accuracy requirement.

• A5: In this approach, the data from the Monte-Carlo
simulation using SA optimization is used to train the
ML, and ML does the estimation of ẑzz.

For each Ai, Table 12 compares and benchmarks the P99 of
E , e, T , and TQ.
The accuracy requirements are
R1:Accuracy requirements due to the formation of

NISTEx-II instrument on IS and laser beacons on OS
• R1A: P99(e) < 5 deg
• R1B: P99(e) < 2.5 deg
R2:Accuracy requirements due to the FoV of VTXO
• R2A: P99(e) < 0.18 deg
• R2B: P99(e) < 0.09 deg
In Table 12, no represents the accuracy requirement is

not satisfied, and yes represents the accuracy requirement
is satisfied. Table 12 shows that the mission approaches A3
and A5 satisfy the accuracy requirement. e, E , T , and TQ in
Table 12 are more discussed in the following

1) e ANALYSIS
A1:2 show that choosing k1 and k2 and T with a uniform dis-
tribution or constant as T = 72 s with a uniform distribution
leads to P99(e) that don’t satisfy the accuracy requirement.
However, P99(e) of A2 compared to A1 is marginally lower
since T is marginally higher for A2 with the cost of higher
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FIGURE 13. P99(E) of each orbit. ML and optimization approaches provide
similar E for each orbit, and A2 provides the mission with the highest E .

TABLE 13. Comparing Li /L2 for each Ai .

P99(E) for A2. Increasing T reduces e and increases E since
more E is used in a longer T to reduce e. Using DNN,
the summation of each spacecraft’s P99(e) corresponds to
0.1734 deg, which satisfies the requirements of the mission.
As a result, ML meets the requirement of the VTXOmission.
A5 provides the mission with the lowest e.

2) E ANALYSIS FOR THE VTXO MISSION
A1:2 shows that choosing k1 and k2 and T with a uniform
distribution or constant as T = 72 s leads to a higher P99(E)
compared to A3:5. P99(E) of A2 is marginally higher than
A1 since P99(T ) is marginally higher for A2. A5 provides
the mission with the lowest E . In the scientific phase, slid-
ing mode controller (SMC) provides the mission with E =
0.0066 J/hr while maintaining the desired e [4], [16], [17].
In the formation stabilization phase, E is negligible [4], [15],
[16] compared to the other two phases as it is in the order of
e−5 J. Since For each orbit a 10-hour formation is maintained
in the scientific phase, E is roughly 0.066 J for the science
observation phase. Li is P99(E) for each orbit defined as

Li = P99(E)ofAi + 0.066, (i = 1, 2, 3, 4, 5) (54)

Fig. 13 compares the P99(E) of each orbit for each Ai. This
comparison show that for each orbit, theML and optimization
approaches use similar E , and theML approach use relatively
90% less E .

To show the ratio of Li to the maximum Li of all Ais,
Table 13 compares Li/L2 for each Ai.
Table 13 shows that the ML approach L5 uses relatively

P99(E) 90% less than A2 for the orbit. This shows using
real-time optimization A3 only provides roughly 2% less L
compared to using ML A5. Using Monte-Carlo simulation

approach A4, L4 is relatively 64% of L2. A1 and A2 shows
similar values for L. As a result, choosing ML approach
A5 increases the lifetime of ACS for 90% compared to
using A2.

3) T ANALYSIS
ML meets the requirement of the VTXO mission transient
phase with P99(E) = 0.47 J in a constrained T , where
P99(T ) = 129.26 s. Since P99(T ) = 129.26 s, the transient
phase is set to begin 130 s before the observation phase.
ML approach satisfies the requirement of a few minutes for
T in the transient phase.

4) TQ ANALYSIS AND THE TIME OF OBTAINING z
It takes P99(TQ) = 22.02s for the A1 and A2 to provide the
mission with the estimation of e and E . However, it takes
only a fraction of second to define ẑzz. A3 provides the mission
with P99(TQ) = 1.04h using real-time optimization, which
makes it impractical for the mission to define ẑzz. For A4,
it takes only a fraction of second to estimate the optimal ŷyy
using the Monte-Carlo method. For the implementation of
ML approach A5, FPGA is used which has the latency in the
order of microseconds [70], which is acceptable since T is in
the range of seconds.

Comparing A5 and A4, ML approach provides the mis-
sion with lower P99(e) and P99(E) which meets the mission
requirements. However, A5 requires offline computation for
training ML and requires implementing ML on the hardware
of spacecraft. A5 provides the mission with the lowest e, E ,
and T with P99(TQ) = 1.04h which makes it impractical for
the mission. As a result, A5 is chosen for the mission which
satisfies the mission requirements.

H. TRANSIENT PHASE ACS STABILITY ANALYSIS
In the ML approach, Using ReLU as the activation func-
tion for the output layer forces the controller gains k1 and
k2 to be positive scalars(48). Since ML defines the positive
Lyapunov controller gains at the beginning of the transient
phase, the controller is globally asymptotic stable without
considering the noise, disturbances, and model uncertain-
ties. However, the closed loop system is shown to be stable
using Monte-Carlo simulation for all the approaches A1:4
since P99(e) and P99(E) are bounded. Using A3, A4, and
A5 approaches, the closed loop system is stable and P99(e)
< 0.2 deg and P99(E) < 2 J. Having the kernel constraint
enforces the weights to be bounded so the DNN outputs are
bounded when the inputs are bounded. Besides, the ML gives
P99(ê) < 0.09 deg and P99(Ê) < 0.5 J using Monte Carlo
simulation for all the data, which shows the stability of closed
loop system using DNN.

VII. CONCLUSION
VTXOmission is divided into different phases for the relative
transverse alignment position control and ACS. Instrumenta-
tion requirements of VTXO are satisfied with a ML-based
ACS. SA optimization provides the mission with a minimal
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E and e in a minimal constrained T to increase the lifetime of
the mission and the duration of observing the space objects.
Monte-Carlo simulation is used to design a controller and do
sensitivity analysis. Since it takes on average 0.51 h to run the
optimization, ML is used to learn the optimum behaviour of
the optimization as a surrogate model. The hyperparameters
of ML are optimized, and DNN shows the highest accuracy
for the estimation. However, there is a confidence interval
in the measured performance of GP and SVR that must be
estimated in order to be more precise regarding the validity of
the systems. Noise and disturbances in the control system is
used as regularization in the ML. To reduce e and chattering,
ESO can be used in the implementation phase to estimate
and compensate for the disturbances and model uncertain-
ties. For a smooth transition between the phases of VTXO
and to ensure reliability and stability, an intelligent hybrid
dynamic control system will be implemented on the VTXO
mission in the future. In the future design of VTXO with the
same methodology, the mass and inertial momentum will be
upgraded to the design of the mission and the propellant each
spacecraft will be carrying.
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