

Received April 3, 2022, accepted April 17, 2022, date of publication April 25, 2022, date of current version May 5, 2022. *Digital Object Identifier* 10.1109/ACCESS.2022.3170483

Forearm Orientation and Muscle Force Invariant Feature Selection Method for Myoelectric Pattern Recognition

MD. JOHIRUL ISLAM^{(D1,2}, SHAMIM AHMAD³, (Member, IEEE), FAHMIDA HAQUE⁴, MAMUN BIN IBNE REAZ^{(D4}, (Senior Member, IEEE),

MOHAMMAD A. S. BHUIYAN¹⁰⁵, AND MD. REZAUL ISLAM¹

¹Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh

²Department of Physics, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh

³Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh

⁴Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

⁵Department of Electrical and Electronic Engineering, Xiamen University Malaysia, Bandar Sunsuria 43900, Malaysia

Corresponding authors: Mamun Bin Ibne Reaz (mamun@ukm.edu.my) and Mohammad A. S. Bhuiyan (arifsobhan.bhuiyan@xmu.edu.my)

This research was financially supported by Xiamen University Malaysia, Project number XMUMRF/2018-C2/IECE/0002, the Information and Communication Technology Division, Ministry of Posts, Telecommunications and Information Technology, Government of Bangladesh under reference number 56.00.0000.028.33.098.18-219 and Universiti Kebangsaan Malaysia under grant number GUP-2021-019, DPK-2021-019.

ABSTRACT Electromyogram (EMG) signal-based prosthetic hand can restore an amputee's missing functionalities, which requires a faithful electromyogram pattern recognition (EMG-PR) system. However, forearm orientation and muscle force variation make the EMG-PR system more complex, and the problem becomes more complicated when muscle force levels and forearm orientations arise simultaneously. The problems can be minimized using a more significant number of features or high-density surface EMG, but it increases design complexity and needs higher computational power. In this regard, we have proposed a feature selection method that selects both feature and channel simultaneously. The proposed feature selection method selects only 7 to 20 features among 162 features with comparable or better performance. In this study, these selected features achieve a significant improvement in the accuracy, sensitivity, specificity, precision, F1 score, and Matthew correlation coefficient (MCC) by 3.18% to 4.28%, 9.14% to 12.85%, 1.83% to 2.57%, 8.30% to 10.99%, 9.22% to 13.92%, and 0.11 to 0.15, respectively comparing with four existing feature selection methods. In this research, the proposed feature selection method achieves a forearm orientation and muscle force invariant F1 score of 91.46% for training the k- nearest neighbor (KNN) classifier with two orientations, wrist fully supinated (O1) and wrist fully pronated (O3), with a medium force level. We have also achieved an F1 score of 93.27% for training the KNN classifier with all orientations with a medium force level. So, the proposed feature selection method would be very much helpful for finding the least dimensional features and achieving improved EMG-PR performance with multiple limiting factors.

INDEX TERMS EMG pattern recognition, feature selection, forearm orientation, muscle force variation.

I. INTRODUCTION

Limb loss limits individuals from performing their daily activities, causing them to be considered a burden to society. A survey carried out in the United States in 2005 indicates that approximately 1.6 million people were suffering from limb loss, and the number of amputees may be increased to

The associate editor coordinating the review of this manuscript and approving it for publication was Zahid Akhtar¹⁰.

3.6 million by 2050 [1]. Another survey in England reveals that about 6000 people get amputees each year; roughly a fifth is upper limb amputee [2]. Researchers focus on this growing issue to develop a prosthetic arm with higher degrees of freedom. In the meantime, advanced prosthetic arms are commercially available, including COAPT [3], Open Bionics [4], and Ottobock [5]. The modern prosthetic arms utilize EMG signals collected from remaining hand muscles using a surface electrode or capacitive electrode [6]–[10].

IEEEAccess

FIGURE 1. Three forearm orientations for EMG data collection. Source: Electromyogram (EMG) repository (rami-khushaba.com) (accessed on 06 Feb 2022).

FIGURE 2. The EMG-PR performance using KNN classifier with the number of features and different feature selection methods.

Further, features are extracted, and the intended movements are predicted by a classifier [2], [11]. However, the available prosthetic arms are not commercially successful due to several limiting factors including electrode position shift [12], [13], variation of muscle contraction force [14]–[16], limb position [17], [18], forearm orientation [19], [20], mobility of subject [21], and multiday variation [22], [23]. These factors make significant alterations in EMG signal properties, i.e., time-domain and frequency-domain properties, and make changes in extracted features [14], [19], [23]. Consequently, the factors significantly degrade the EMG-PR performance [21]. In addition, the achievement of satisfactory EMG-PR performance becomes quite challenging when multiple factors arise simultaneously.

In an attempt to resolve multiple limiting factors simultaneously, a few pieces of research have been found over the last decades. Khushaba *et al.* [20] employed 39-dimensional feature space employing time-domain power spectral descriptors and showed that co-factors, forearm orientation, and muscle contraction force degrade the EMG-PR performance drastically. Finally, they recommended utilizing all orientations with a medium force level for training to achieve satisfactory performance of 91%. Further, Rajapriya *et al.* [19] proposed a wavelet bispectrum-based feature extraction method to resolve forearm orientation and muscle force variation. They achieved 90.35% EMG-PR performance using 96-dimensional feature space, all orientations, and a medium force level for training in this study. In addition,

105 Proposed Chi Square ■ ReliefF MRMR ■NCA 100 95 90 Score (%) 85 80 Ξ 75 70 65 60 KNN SVM LDA KNN SVM LDA KNN SVM LDA Tr Low, Ts All Tr Med, Ts All Tr High, Ts All

(c) Training and testing for O3

FIGURE 3. The F1 scores of different feature selection methods when the classifiers are trained for one orientation with one force level and tested for trained orientation with all force levels.

Asogbon *et al.* [21] also proposed a feature extraction method, invariant time-domain descriptor, to resolve muscle force variation and subject mobility. They employed a 40-dimensional feature space with a medium force level to achieve 84% to 93% EMG-PR performance. In addition

	Parameter	Classifier	Proposed	Chi-Square	ReliefF	MRMR	NCA
		KNN	98.45±0.91	93.35±2.73	92.95±2.87	90.67±3.41	89.78±5.28
	Accuracy	SVM	98.13±1.12	93.48±2.66	93.38±2.80	91.50±3.33	90.25±5.38
		LDA	97.09±1.92	93.02 ± 2.84	93.69±2.95	$92.56 {\pm} 3.03$	90.15±4.56
		KNN	95.36±2.72	80.05±8.18	78.84±8.62	72.02±10.24	69.33±15.85
	Sensitivity	SVM	94.39±3.36	80.44 ± 7.99	80.14±8.39	74.51±9.99	70.74±16.13
0		LDA	91.27±5.75	79.07±8.51	81.06±8.85	77.69 ± 9.10	70.44±13.69
orce		KNN	99.07±0.54	96.01±1.64	95.77±1.72	94.40±2.05	93.87±3.17
w f	Specificity	SVM	98.88±0.67	96.09±1.60	96.03±1.68	94.90±2.00	94.15±3.23
h lo		LDA	98.25±1.15	95.81±1.70	96.21±1.77	95.54±1.82	94.09±2.74
wit		KNN	95.61±2.54	82.63±7.67	81.83±8.09	74.26±9.07	72.25±16.06
ing	Precision	SVM	94.87±3.04	82.55±6.96	82.77±7.37	76.97 ± 8.60	73.52±16.28
ain.		LDA	92.12±5.30	81.05±8.41	83.38±8.42	80.02±7.54	73.5±13.31
Ţ		KNN	95.36±2.71	79.62±8.45	78.44±8.68	71.12±10.42	68.58±16.28
	F1 Score	SVM	94.35±3.37	79.88±8.50	79.59±8.66	73.37±10.19	69.61±16.79
	11.50010	LDA	91.11±5.96	78.63±9.03	80.60±8.94	76.61±9.60	69.38±13.89
		KNN	0.95+0.03	0.77±0.1	0.76+0.1	0.67+0.12	0.62+0.16
	MCC	SVM	0.93 ± 0.05 0.91+0.05	0 77+0 09	0.70 ± 0.1 0.77+0.1	0.07 ± 0.11	0.62 ± 0.10 0.63+0.17
	wiee		0.87+0.08	0.75+0.1	0.77 ± 0.1 0.78 ± 0.1	0.7 ± 0.11 0.74+0.1	0.63 ± 0.15
		KNN	0.07±0.00	94 87+2 57	95.45+1.61	02 75+3 52	90 80+4 14
	Acouroou	SVM	98.09±0.97	94.87±2.57	95.45 ± 1.01 95.54 ± 1.87	92.75 ± 3.52 93.62 ± 3.60	90.80 ± 4.14
	Accuracy		98.00±0.75	95.33±2.00	95.34±1.87	93.02 ± 3.00	91.21 ± 4.08
			97.19±1.34	94./3±2.40	93.29±2.24	94.39±3.07	91.55±5.98
	G	KNN	96.06±2.91	$84.61\pm /./1$	86.34±4.84	/8.24±10.55	72.40 ± 12.43
e	Sensitivity	SVM	95.81±2.25	85.98±7.8	86.61±5.62	80.86±10.8	73.63±12.23
orc		LDA	91.58±4.62	84.19±7.43	85.86±6.72	83.16±9.2	/3.99±11.95
Б		KNN	99.21±0.58	96.92±1.54	97.27±0.97	95.65±2.11	94.48±2.49
vib	Specificity	SVM	99.16±0.45	97.20±1.56	97.32±1.12	96.17±2.16	94.73±2.45
Ë		LDA	98.32±0.92	96.84±1.49	97.17±1.34	96.63±1.84	94.80±2.39
vith		KNN	96.36±2.53	86.18±6.58	87.51±4.76	79.53±10.12	74.42±11.67
1g /	Precision	SVM	96.15±1.99	87.26±6.92	87.91±5.30	81.77±10.89	75.66±11.48
inii		LDA	92.63±4.12	85.89±6.98	87.38±6.28	84.38±8.57	75.86±10.72
Tra		KNN	96.03 ± 2.97	84.28 ± 8.05	86.11±4.92	78.08 ± 10.57	$72.00{\pm}12.38$
	F1 Score	SVM	95.78 ± 2.28	85.61 ± 8.08	86.39±5.75	$80.59{\pm}10.83$	73.12±12.24
		LDA	91.49±4.66	83.84±7.88	85.66±6.72	$82.88 {\pm} 9.09$	73.54±12.06
		KNN	0.95 ± 0.03	0.82 ± 0.09	$0.84{\pm}0.06$	$0.74{\pm}0.12$	0.72 ± 0.17
	MCC	SVM	$0.94{\pm}0.03$	$0.84{\pm}0.09$	$0.84{\pm}0.07$	0.77 ± 0.13	$0.74{\pm}0.17$
		LDA	$0.88 {\pm} 0.07$	0.82 ± 0.09	$0.84{\pm}0.08$	$0.80{\pm}0.11$	0.74±0.13
		KNN	98.71±1.12	94.01±3.44	93.32±2.77	90.63±4.92	89.19±4.34
	Accuracy	SVM	98.22±1.21	93.87±3.27	93.31±3.07	91.22±4.49	89.69±4.36
		LDA	97.39±1.27	93.84±3.40	93.94±2.41	92.16±3.95	90.32±3.88
		KNN	96.12±3.36	82.02±10.32	79.97±8.32	71.88±14.76	67.57±13.03
ce	Sensitivity	SVM	94.66±3.62	81.60±9.81	79.93±9.22	73.67±13.47	69.06±13.07
l foi	2	LDA	92.16±3.82	81.53±10.21	81.82±7.23	76.47±11.85	70.96±11.63
nigh		KNN	99.22±0.67	96.40±2.06	95.99±1.66	94.38±2.95	93.51±2.61
thł	Specificity	SVM	98.93±0.72	96.32±1.96	95.99±1.84	94.73±2.69	93.81±2.61
Mi	-F	LDA	98.43±0.76	96.31±2.04	96.36±1.45	95.29±2.37	94.19±2.33
guit		KNN	96 52+2 91	84 28+8 80	82 77+7 34	74 61+14 27	72 41+12 64
raiı	Precision	SVM	95.14+3.21	84 25+8 30	82 84+7 89	75.98+13.5	73.05 ± 13.03
Г	Treeision		92 95+3 44	84 67+8 62	84 91+6 16	78 89+11 79	73.05±13.05
		KNN	06 00±2 11	81 50±10 54	70 77±0.10	71 76±14 05	67 16±12 24
	El Cases	INININ SAAM	90.09±3.41	01.39±10.34 81.11±10.02	/ 7. / /≖0.10 70 72±0 15	73.15 ± 14.93	07.10 ± 13.24
	F1 Score		07 06±2 07	81 00-10 82	17.12×7.13	75.15 ± 14.00 76.02±12.02	$70 42 \pm 11 40$
			92.00±3.83	0.70+0.12	01.4/±/.10	/0.02±12.03	/0.42±11.09
	Mag	KNN	0.95±0.04	0.79 ± 0.12	$0.7/\pm0.10$	$0.0/\pm0.18$	0.65±0.17
	MCC	SVM	0.92 ± 0.04	0.79 ± 0.11	$0.//\pm 0.11$	0.69±0.16	0.6/±0.1/
		LDA	0.88±0.05	0.79 ± 0.12	0.79 ± 0.08	0.73 ± 0.14	$0.6/\pm0.16$

TABLE 1. The EMG-PR performances of different feature selection methods when the classifiers are trained for O1 with one force level and tested for trained orientation with all force levels.

TABLE 1. (Continued.) The EMG-PR performances of different feature selection methods when the classifiers are trained for O2 with one force level and tested for trained orientation with all force levels.

	Daramatar	Classifiar	Droposod	Chi Squara	DoliofF	MDMD	NCA
	1 al ameter	KNN	08 05+1 30	04 28+2 73	93 08+2 44	91 54+4 12	89 28+4 96
	Accuracy	SVM	98.63+1.64	93.84+3.17	93.06±2.11	92 55+3 87	88 90+4 98
	Accuracy		97.82+2.38	93.04 ± 3.17 93.08 ± 3.12	93.00 ± 2.72 92.34 ± 2.65	92.93±3.87	80.78±4.35
		KNN	96 86+3 80	82 85+8 10	70 24+7 32	74.63+12.36	67.84+14.89
	Sonsitivity	SVM	90.80±3.89	81.51+0.52	79.24 ± 7.32	77.65 ± 11.61	66.70 ± 14.05
	Sensitivity		93.47+7.15	81.95+9.37	77.02+7.94	77.03 ± 11.01 78.82 ± 11.42	69.34 ± 13.06
orce		KNN	99.37±0.78	96 57+1 64	95 85+1 46	04 03+2 47	03 57+2 08
w fć	Specificity	SVM	99 18+0 98	96 30+1 90	95.85±1.40	95 53+2 32	93 34+2 99
lo l	specificity	LDA	98.69 ± 1.43	96 39±1 87	95 40+1 59	95.35 <u>+</u> 2.32	93.87+2.61
vitł		KNN	97 17+3 44	86 58+6 33	81 56+6 34	79.65+9.52	70 33+14 37
ng v	Precision	SVM	96.44 ± 4.02	85.78±7.37	80.95±8.96	81.62 ± 9.25	68.54±16.31
ini	1 iceision	LDA	94.61 ± 5.51	85.05±8.22	79.26±6.64	82.57±9.21	72.57 ± 12.44
Tra		KNN	96.87±3.85	82.33±8.36	78.86±7.48	74.65±11.91	67.01±14.87
	E1 Score	SVM	95.92 ± 4.83	80.74±9.89	78.34±9.24	77.45±11.17	65.08±15.92
	1150010	LDA	93.54±6.99	81.27±9.56	76.49±7.95	78.68±11.18	68.32±13.21
		KNN	0.96+0.04	0.81+0.09	0 76+0 08	0 71+0 14	0.64+0.17
	F1 Score	SVM	0.94 ± 0.06	0.79 ± 0.11	0.76 ± 0.10	0.75±0.13	0.63 ± 0.18
	1150010	LDA	0.90 ± 0.08	0.79 ± 0.11	0.73 ± 0.09	0.76 ± 0.13	0.66 ± 0.15
		KNN	99.34±0.73	96.16±2.09	93.66±2.93	93.68±2.15	91.31±5.12
	Accuracy	SVM	99.19 ± 0.78	95.97±2.32	93.45±3.61	94.17±1.99	91.51 ± 5.20
	1100011009	LDA	98.72±1.29	96.14±2.26	94.05±3.49	95.60±2.61	91.94±4.67
		KNN	98.01±2.18	88.49±6.27	80.99±8.78	81.04±6.46	73.92±15.36
	Sensitivity	SVM	97.57±2.35	87.91±6.95	80.34±10.82	82.52±5.98	74.53±15.6
rce		LDA	96.15±3.87	88.43±6.77	82.16 ± 10.48	86.79±7.84	75.82±14.0
n fo		KNN	99.60±0.44	97.70±1.25	96.20±1.76	96.21±1.29	94.78±3.07
iun	Specificity	SVM	99.51±0.47	97.58±1.39	96.07±2.16	96.50±1.20	94.91±3.12
ned	-F)	LDA	99.23±0.77	97.69±1.35	96.43±2.10	97.36±1.57	95.16±2.80
thr		KNN	98.14±1.99	89.84±5.40	82.35±8.84	82.16±6.20	74.92±16.38
, wi	Precision	SVM	97.78±2.04	89.41±5.95	81.96±10.58	83.55±5.88	75.46±17.28
ing		LDA	96.75±3.06	89.56±6.27	83.93±9.62	88.16±7.57	77.14±14.33
rair		KNN	98.02±2.16	88.31±6.25	80.56±8.89	80.91±6.42	73.26±15.92
H	F1 Score	SVM	97.58±2.33	87.66±6.98	79.46±12.05	82.07±6.11	73.38±16.92
		LDA	96.19±3.78	88.18±6.93	82.15±10.25	86.76±7.95	75.32±14.14
		KNN	0.98±0.03	$0.87{\pm}0.07$	0.78±0.11	$0.78{\pm}0.08$	0.67±0.21
	MCC	SVM	0.96±0.03	$0.86{\pm}0.08$	0.77±0.13	$0.79{\pm}0.07$	0.68±0.21
		LDA	$0.94{\pm}0.04$	$0.86{\pm}0.08$	0.79±0.12	0.85 ± 0.09	$0.70{\pm}0.18$
		KNN	99.23±0.96	96.27±2.55	93.44±2.87	91.02±4.44	89.06±6.11
	Accuracy	SVM	98.79±1.61	96.05±2.45	92.94±3.41	92.51±3.86	89.13±6.10
	-	LDA	98.36±1.78	96.12±2.69	92.57±2.79	93.90±3.77	89.87±5.73
		KNN	97.69±2.89	88.81±7.66	80.32±8.61	73.06±13.31	67.17±18.32
rce	Sensitivity	SVM	96.36±4.83	88.16±7.34	78.81±10.22	77.52±11.59	67.38±18.31
h fo		LDA	95.09±5.34	88.37±8.06	77.71±8.38	81.71±11.32	69.61±17.18
higl		KNN	99.54±0.58	97.76±1.53	96.06±1.72	94.61±2.66	93.43±3.66
ith	Specificity	SVM	99.27±0.97	97.63±1.47	95.76±2.04	95.50±2.32	93.48±3.66
s ⊗		LDA	99.02±1.07	97.67±1.61	95.54±1.68	96.34±2.26	93.92±3.44
nin		KNN	97.86±2.63	89.90±6.84	82.42±7.76	75.04±13.15	69.53±18.09
rai	Precision	SVM	96.78±4.22	89.57±6.63	81.02±9.60	78.23±12.47	70.30±18.13
—		LDA	95.73±4.52	89.71±7.35	80.26±7.69	83.01±10.71	72.20±17.21
		KNN	97.66±2.94	88.55±7.91	79.43±9.10	72.91±13.55	66.32±18.63
	F1 Score	SVM	96.26±4.99	87.92±7.55	77.88±10.5	76.06±13.07	65.96±19.0
		LDA	94.95±5.55	88.25±8.14	76.98 ± 8.62	81.39±11.55	68.72±17.77
		KNN	$0.97{\pm}0.03$	$0.87{\pm}0.09$	0.77 ± 0.10	0.68±0.16	$0.60{\pm}0.20$
	MCC	SVM	$0.95 {\pm} 0.06$	$0.86{\pm}0.09$	0.75±0.12	0.73±0.15	$0.60{\pm}0.20$
		LDA	0.93±0.07	$0.87{\pm}0.09$	0.74±0.10	0.78±0.13	0.62 ± 0.20

TABLE 1. (Continued.) The EMG-PR performances of different feature selection methods when the classifiers are trained for O3 with one force level ar
tested for trained orientation with all force levels.

	Parameter	Classifier	Proposed	Chi-Square	ReliefF	MRMR	NCA
		KNN	97.60±2.28	92.63±4.19	91.06±3.22	89.68±2.81	88.26±5.45
	Accuracy	SVM	97.49±2.36	92.79±3.92	91.06±2.99	90.77±3.43	87.87±5.63
	2	LDA	96.20±2.31	92.01±3.78	91.44±3.11	92.46±2.60	89.12±4.40
		KNN	92.81±6.83	77.88±12.58	73.17±9.65	69.04±8.42	64.78±16.36
	Sensitivity	SVM	92.46 ± 7.07	78.36±11.77	73.17±8.97	72.32±10.3	63.62±16.89
e	-	LDA	88.61±6.93	76.03±11.34	74.32±9.34	77.39 ± 7.80	67.36±13.21
for		KNN	98.56±1.37	95.58±2.52	94.63±1.93	93.81±1.68	92.96±3.27
MC	Specificity	SVM	98.49 ± 1.41	95.67±2.35	94.63±1.79	94.46 ± 2.06	92.72±3.38
th le		LDA	97.72±1.39	95.21±2.27	94.86 ± 1.87	95.48±1.56	93.47±2.64
wii		KNN	93.39±5.86	82.49±9.60	77.37±7.08	72.67±7.87	70.68±13.9
BG.	Precision	SVM	93.30±5.53	83.32±8.42	77.62±7.19	76.79±9.26	$69.02{\pm}15.03$
ain		LDA	90.03 ± 5.76	80.01±11.45	78.38 ± 8.12	81.11±7.71	72.17 ± 11.92
τ		KNN	92.62±7.19	77.47±12.52	72.64±9.44	68.41±8.42	64.07±16.34
	F1 Score	SVM	92.36±7.19	77.70±11.92	72.68 ± 8.82	71.6 ± 10.48	62.12±17.74
		LDA	88.23±7.22	75.12±11.88	73.99±9.29	76.86±7.96	66.13±13.76
		KNN	0.92 ± 0.08	0.75 ± 0.14	0.69 ± 0.11	$0.64{\pm}0.10$	0.63 ± 0.18
	MCC	SVM	0.90 ± 0.09	0.76 ± 0.13	0.69 ± 0.10	0.68 ± 0.12	0.61 ± 0.18
		LDA	0.85 ± 0.08	0.72 ± 0.14	0.71 ± 0.11	$0.74{\pm}0.09$	0.63 ± 0.17
		KNN	98.35±1.37	94.29±3.14	93.66±1.86	91.59±3.23	90.62±4.59
	Accuracy	SVM	98.27±1.41	94.35±3.14	94.07±1.91	92.86±2.93	90.70±4.61
		LDA	97.72 ± 1.80	94.28±3.75	93.64±2.12	93.52±3.03	91.88±3.73
		KNN	95.06±4.12	82.87±9.43	80.97±5.57	74.78±9.70	71.85±13.76
ee	Sensitivity	SVM	94.82±4.24	83.05±9.43	82.22±5.74	78.59±8.78	72.11±13.83
for		LDA	93.16±5.40	82.83±11.26	80.93±6.35	80.55±9.09	75.64±11.2
Ę		KNN	99.01±0.82	96.57±1.89	96.19±1.11	94.96±1.94	94.37±2.75
edin	Specificity	SVM	98.96±0.85	96.61±1.89	96.44±1.15	95.72±1.76	94.42±2.77
Ĕ		LDA	98.63±1.08	96.57±2.25	96.19±1.27	96.11±1.82	95.13±2.24
vith		KNN	95.48±3.54	84.44±8.49	83.08±5.14	75.53±10.13	74.6±13.71
b S	Precision	SVM	95.42±3.42	85.51±7.31	84.54±5.08	79.74±9.21	75.23±13.64
E		LDA	94.04±4.35	85.14±9.29	83.50±5.52	81.84±9.13	/8.08±10.56
Ira	71.0	KNN	95.05 ± 4.10	82.84±9.43	80.49±5.99	74.30±9.87	71.44±13.98
	F1 Score	SVM	94.81 ± 4.18	83.0/±9.30	81./4±0.03	//.32±9.40	71.40 ± 14.43
			93.15±3.28	82.75±11.22	80.40±0.08	80.15±9.47	/3.1/±11.39
	MCC	KNN	0.94 ± 0.05	0.80 ± 0.11	0.78 ± 0.07	0.70 ± 0.12	0.71 ± 0.15
	MCC		0.93 ± 0.03	0.81 ± 0.10 0.80±0.12	0.79 ± 0.07	0.74 ± 0.11 0.77 ±0.11	0.71 ± 0.14 0.72+0.14
		UNN UNN	0.91±0.00	02 48+2 60	0.78±0.07	0.7/±0.11	0.73±0.14
	Accuracy	SVM	98.40 ± 1.07 97 79+1 44	93.46 ± 2.09 93.64 ± 2.52	92.99 ± 1.90 92.99±1.90	91.40 ± 4.10 92.74+3.94	91.13 ± 4.09 91.10 ± 4.04
	Accuracy		96 66+1 94	93.97+2.52	93.01+2.74	93 26+3 34	91.09 ± 4.37
		KNN	95.37±3.22	80.44+8.06	78 97+5 69	74 39+12 3	73 44+14 08
	Sensitivity	SVM	93 37+4 33	80.92±7.56	78.77 ± 5.07	78 23+11 82	73.57 ± 14.00
e	Sensitivity		89.98±5.83	81.92 ± 7.51	79.02 ± 8.22	79.77 ± 10.02	75.96 ± 13.12
forc		KNN	99.07+0.64	96.09+1.61	95 79+1 14	94 88+2 46	94 69+2 82
gh	Specificity	SVM	98.67±0.87	96.18 ± 1.51	95.74±1.22	95.65 ± 2.36	94.71 ± 2.96
ihi	speemeny	LDA	98.00±1.17	96.38±1.50	95.80±1.64	95.95 ± 2.00	95.19±2.62
vitt		KNN	95.81±2.93	84.04±6.74	81.62±6.07	76.40±11.56	76.64±13.93
lg v	Precision	SVM	94.07±3.74	83.56±6.69	81.39±5.87	80.55±10.37	77.26±14.06
inir		LDA	91.55±4.79	84.60±6.57	82.14±7.62	81.91±9.42	79.24±12.41
Ira		KNN	95.33±3.24	80.48±8.04	78.49±5.80	74.37±12.1	73.13±14.3
-	F1 Score	SVM	93.28±4.41	80.78 ± 7.68	78.24±6.09	77.83±11.67	73.08±15.45
		LDA	89.90±5.85	$81.74{\pm}7.80$	78.69 ± 8.26	79.33±9.86	75.54±13.52
		KNN	0.95±0.04	0.78±0.09	0.76±0.07	0.70±0.14	0.71±0.18
	MCC	SVM	0.91±0.06	$0.78{\pm}0.09$	0.75±0.07	0.75±0.14	0.70±0.18
		LDA	$0.86{\pm}0.07$	$0.79{\pm}0.09$	0.76 ± 0.10	$0.76{\pm}0.12$	0.72±0.15

to addressing multiple challenging factors, several pieces of research are found on muscle force variation. Recently, Islam *et al.* [15] proposed a non-linear scaling-based feature extraction method to resolve the muscle force variation of transradial amputees employing 84-dimensional feature space. Again, Islam *et al.* [14] extended their previous work and introduced a novel signal normalization scheme to overlap the extracted features of different muscle force levels.

TABLE 2. The EMG-PR performances of different feature selection methods when the classifiers are trained for one orientation with a medium force level and tested for all orientations with all force levels.

	Parameter	Classifier	Proposed	Chi-Square	ReliefF	MRMR	NCA
		KNN	92.58±2.73	87.82±3.15	80.09±2.40	82.40±3.73	85.15±4.05
	Accuracy	SVM	92.05±2.80	87.84±3.09	78.51±1.37	82.47±3.71	84.81±4.21
	Trecaracy	LDA	91 46+2 93	88 34+3 03	79 96+1 99	81 87+3 52	85 08+3 69
		KNN	77 73+8 19	63 47+9 45	40 27+7 21	47 20+11 19	55 45+12 14
	Sensitivity	SVM	76 15+8 41	63 52+9 28	35 52+4 11	47.20 ± 11.19 47.40 ± 11.14	54 42+12 62
	Sensitivity		70.13±8.41	65.01 ± 9.10	30 87+5 08	45.61 ± 10.56	57.72 ± 12.02
		VNN	05 55+1 64	02.60+1.80	99.05±1.44	45.01±10.50	01.00+2.42
01	Specificity	SVM	95.33 ± 1.04 95.23 \pm 1.68	92.09 ± 1.89 92.70+1.86	87.10±0.82	89.44±2.24	91.09 ± 2.43 90.88 ± 2.52
/ith	specificity		94.88+1.76	93.00 ± 1.80	87.10±0.02 87.07+1.20	89.12+2.11	91.05+2.22
ng N		KNN	70 76+8 10	68 54+8 82	55 00+8 63	61 35+10 24	60.86±12.22
inii	Precision	SVM	79.70±8.19 78.47+8.58	69 39+8 37	69.01±10.56	63 26+9 56	61.9 ± 12.2
Tra	Trecision		76.54+8.19	69.76±9.03	55 83+8 56	63 20±7 73	61 65+9 15
		KNN	77.43+8.58	62 56+9 61	39.92+6.68	47.12+11.46	54 53+12 18
	El Saora	SVM	75 47+0 11	62.50±9.01	35.52 ± 0.08	47.12 ± 11.40 46.71+11.77	53.33 ± 12.18
	11 Score		74 15+8 63	64 33+9 24	30 78+5 74	45.29 ± 11.01	54 50+11 47
		LDA VNN	0.74+0.00	04.33±9.24	0.24+0.08	43.29±11.01	0.47+0.15
	MCC	SVM	0.74 ± 0.09 0.70±0.11	0.38 ± 0.11	0.34 ± 0.08	0.4 ± 0.12	0.47 ± 0.13
	MCC		0.70 ± 0.11	0.38 ± 0.11	0.34 ± 0.05	0.42 ± 0.12	0.47 ± 0.13
		UNN UNN	02 84+2 66	0.39±0.11	70.55+2.11	81 51+4 14	86 54+4 15
	A	SVM	92.64 ± 2.00	88.30 ± 2.78	79.33 ± 2.11	81.31 ± 4.14 81.04 ±4.77	80.34±4.13 85 78±4 27
	Accuracy		92.37 ± 2.34	88 80±2 26	70.00 ± 1.86	81.04 ± 4.77 82.76 ± 4.00	86 50+4 34
		LDA VNN	79.52+7.07	65.67+9.24	28.66+6.22	82.70±4.99	50.62+12.46
	Consitivity	SVM	78.32±7.97	$65.0/\pm 8.54$	38.00 ± 0.33	44.53 ± 12.42 43.12 \pm 14.30	59.02 ± 12.40 57.22 \pm 12.10
	Sensitivity		77.12 ± 7.01	66 67 1 6 77	33.95 ± 3.50	43.12±14.30	57.53 ± 13.10
			/4./J±0.10	00.07±0.77	37.01±3.38	48.28±14.98	39.31±13.02
02	G	KNN	95./±1.59	93.13 ± 1.67	8/./3±1.2/	88.91±2.48	91.92±2.49
ith	Specificity	SVM	95.42 ± 1.52	93.07±1.69	80./9±0./	88.02±2.80	$91.4/\pm 2.62$
50 ≷			94.95±1.04	93.33±1.33	87.4±1.12	89.00±3.00	91.90±2.00
inin	р · ·	KININ	80.35 ± 7.72	69.36±9.77	77.00±0.39	08.4/±8.50	66.45 ± 12.00
Tra	Precision		78.72±7.20	69.00 ± 9.19	79.00 ± 11.08	76.20±0.02	63.13 ± 13.13
			79.44+9.02	69.92±8.43	/3.00±10./1	/0.39±9.93	58.0+12.00
	F1 0	KININ	/8.44±8.03	64.52±9.00	37.28 ± 4.72	42.94±12.65	58.9 ± 13.06
	F1 Score	SVM	/0.84±/./0	64.03 ± 9.21	33.80 ± 3.41	42.02±13.93	50.49±13.30
			/4.01±8.33	03.80±7.00	36.03±3.03	4/.13±14.89	39.28±13.4
	MCC	KININ	0.75 ± 0.10	0.60 ± 0.10	0.39 ± 0.04	0.39 ± 0.09	0.51 ± 0.14
	MCC		0.72 ± 0.09	0.39 ± 0.11	0.30 ± 0.00	0.40 ± 0.10	0.51 ± 0.13
			0.08±0.10	0.6±0.08	0.3/±0.0/	0.44±0.11	0.53±0.14
		KININ	91.90 ± 2.50	86.93±2.90	80.83 ± 2.54	82.04±2.96	84.08±5.00
	Accuracy		91.01 ± 2.03	80.38 ± 2.08	/9.30±1.01	81./1±2.84	84.21±4.93
			90.39±3.44	87.32±3.11	80.00±3.40	82.33±2.27	84.82±3.34
	o	KININ	/5./1±/.49	60.80 ± 8.71	42.48 ± 7.61	4/.93±8.8/	52.25 ± 15.01
	Sensitivity		73.04±7.90	59.15±0.05	37.91 ± 4.83	43.13±8.31	52.04 ± 14.00
			/1.18±10.33	01.95±9.32	39.99±10.19	47.03±0.80	34.4/±16.01
03	C	SVM	95.14 ± 1.50	92.16 ± 1.74	88.50±1.52	89.39±1.77	90.45 ± 3.00
lith	specificity		94.01 ± 1.39	91.03 ± 1.01	87.38±0.97	89.03±1.70	90.33±2.97
50 ≷			94.24±2.07	92.39±1.86	88.00±2.04	89.41±1.30	90.89±3.20
inin	Duration	SVM	79.03±4.98	63.00 ± 8.70	01.33 ± 11.41	59.73 ± 8.04	58.82 ± 14.03
Tra	Precision	SVIVI LDA	76 02 + 6 49	03./3±0.33	/1.23±9.28	02.12±9.01	00.13 ± 14.91
			/6.03±6.48	65.66±8.56	65.28±6.74	63.45±9.69	60.43±14.53
	E1 0	KNN	/3.23±8.13	59.23±9.45	42.45±7.29	4/.59±8.89	51.18 ± 14.08
	F1 Score	SVM	/2.5/±8.32	57.40 ± 8.80	$3/.3/\pm 3.0/$	44.22±8.44	51.01±14.59
		LDA	/0.80±10.12	00.01±9.62	39.98±9.43	40.//±0.91	0.41+0.17
	MCC	KINN CADA	0.71 ± 0.08	0.53 ± 0.11	$0.3/\pm0.0/$	0.40 ± 0.07	0.41 ± 0.17
	MCC	SVM	0.68±0.08	0.52 ± 0.10	0.36±0.05	0.39±0.06	0.40 ± 0.17
		LDA	0.64±0.11	0.56±0.10	0.36±0.10	0.41±0.05	0.42±0.18

TABLE 3. The EMG-PR performances of different feature selection methods when the classifiers are trained for two orientations with a medium force level and tested with all orientations with all force levels.

	Parameter	Classifier	Proposed	Chi-Square	ReliefF	MRMR	NCA
		KNN	95.56±2.51	91.59±2.05	88.82±2.31	88.34±4.12	89.74±3.31
	Accuracy	SVM	95.13±2.60	91.43±2.15	88.72±2.62	89.23±4.05	89.80±3.49
		LDA	$93.60{\pm}2.63$	$91.49{\pm}2.60$	86.35 ± 2.76	89.12±4.52	89.92±4.71
		KNN	86.68±7.52	74.78±6.16	66.47±6.94	65.01±12.35	69.23±9.92
	Sensitivity	SVM	85.38 ± 7.81	74.27±6.44	66.15 ± 7.86	67.69±12.14	69.41±10.47
02		LDA	80.79 ± 7.89	74.46 ± 7.79	59.06 ± 8.27	67.36±13.57	69.77±14.14
) pr		KNN	97.34±1.50	94.96±1.23	93.29±1.39	93.00±2.47	93.85±1.98
1 aı	Specificity	SVM	97.08 ± 1.56	94.85±1.29	93.23±1.57	93.54±2.43	93.88±2.09
h O		LDA	96.16±1.58	94.89±1.56	91.81±1.65	93.47±2.71	93.95 ± 2.83
witl		KNN	88.5±5.76	78.83±6.81	73.54±6.64	67.2±12.33	72.79±11.31
BG	Precision	SVM	$87.34{\pm}6.32$	78.7±7.73	76.07 ± 7.93	$70.4{\pm}11.85$	73.97±12.21
aini		LDA	83.62±6.31	77.91 ± 8.81	72.88 ± 7.52	$70.24{\pm}14.34$	$72.04{\pm}15.08$
Tra		KNN	86.61±7.46	74.88 ± 5.96	66.91±6.63	64.77±12.58	69.22±9.88
	F1 Score	SVM	85.21±7.92	74.37 ± 6.38	67.06 ± 7.48	66.71±12.73	$69.28{\pm}10.66$
		LDA	80.86 ± 7.69	74.43 ± 7.96	60.26 ± 8.30	67.16 ± 13.90	69.35 ± 14.45
		KNN	$0.85{\pm}0.08$	0.71 ± 0.07	0.62 ± 0.08	$0.59{\pm}0.15$	$0.68 {\pm} 0.06$
	MCC	SVM	0.82 ± 0.09	0.71 ± 0.08	$0.63 {\pm} 0.08$	0.62 ± 0.15	0.69 ± 0.08
		LDA	0.75 ± 0.11	0.71 ± 0.1	0.56 ± 0.09	0.62 ± 0.17	$0.66 {\pm} 0.10$
		KNN	97.19±2.34	93.37±2.09	88.34±2.58	91.36±4.09	90.69±6.13
	Accuracy	SVM	96.90 ± 2.68	93.34±2.11	87.22±1.91	92.57±3.56	90.98±6.11
		LDA	95.29±2.50	93.63±2.73	87.70±2.45	91.13±4.46	90.79±5.46
		KNN	91.57 ± 7.01	80.12 ± 6.26	65.02 ± 7.74	74.07 ± 12.26	$72.07{\pm}18.38$
	Sensitivity	SVM	90.70 ± 8.05	80.02 ± 6.32	61.66±5.73	77.7 ± 10.68	72.95 ± 18.32
03		LDA	85.86±7.51	80.90 ± 8.18	63.09±7.36	73.4±13.39	72.37±16.37
pu o		KNN	98.31 ± 1.40	96.02±1.25	93.00±1.55	94.81±2.45	94.41±3.68
-1 a	Specificity	SVM	$98.14{\pm}1.61$	96.00 ± 1.26	92.33±1.15	95.54±2.14	94.59±3.66
hО		LDA	97.17±1.50	96.18±1.64	92.62±1.47	94.68 ± 2.68	94.48±3.27
wit		KNN	92.14±6.40	82.28 ± 5.87	80.89 ± 5.70	75.50±11.37	73.40±18.78
ng	Precision	SVM	$92.34{\pm}5.82$	82.46 ± 5.68	85.38 ± 3.82	79.05 ± 10.21	74.50±18.67
aini		LDA	86.64±6.90	82.08 ± 7.76	77.87±6.23	74.92±13.28	73.39±16.84
Ť		KNN	91.46±7.16	80.03 ± 6.22	66.64 ± 6.04	73.97±12.29	71.87±18.45
	F1 Score	SVM	90.71±7.92	79.96±6.21	64.84±3.96	77.45±10.91	72.65±18.64
		LDA	85.71±7.55	80.82 ± 8.02	64.42 ± 6.40	73.11±13.75	72.08±16.66
		KNN	$0.90{\pm}0.08$	0.77 ± 0.07	0.64 ± 0.07	0.69 ± 0.14	0.64 ± 0.23
	MCC	SVM	0.89 ± 0.09	0.77 ± 0.07	0.64 ± 0.04	0.74 ± 0.13	0.65 ± 0.22
		LDA	0.81 ± 0.10	0.77 ± 0.10	0.62 ± 0.07	0.69 ± 0.16	0.65 ± 0.20
		KNN	95.73 ± 2.50	92.75±2.23	89.51±2.86	88.02 ± 3.60	91.50±3.19
	Accuracy	SVM	95.49±2.63	92.73±2.64	89.18±3.35	89.00 ± 3.62	91.34±3.54
		LDA	94.13±2.90	91.75±3.36	86.97±2.94	88.11±3.88	90.80±3.79
ŝ		KNN	87.18 ± 7.50	78.26±6.69	68.52 ± 8.57	64.05 ± 10.79	74.50 ± 9.58
ОР	Sensitivity	SVM	86.48 ± 7.88	78.20 ± 7.91	67.55 ± 10.06	66.99 ± 10.85	74.02 ± 10.61
an		LDA	82.40±8.69	75.25±10.08	60.91±8.82	64.32±11.64	72.4±11.38
02		KNN	97.44±1.50	95.65±1.34	93.70±1.71	92.81±2.16	94.90±1.92
/ith	Specificity	SVM	97.29±1.58	95.64±1.58	93.51±2.01	93.40±2.17	94.80±2.12
50 50		LDA	96.48±1.74	95.05±2.02	92.18±1.76	92.86±2.33	94.48±2.28
		KNN	89.47±4.41	80.92 ± 5.83	73.87 ± 6.80	66.4±10.32	77.39 ± 8.72
Ira	Precision	SVM	88.76±4.97	81.33±6.32	73.92±7.80	69.78 ± 9.91	76.80±9.70
L ·		LDA	84.94±5.62	77.68±8.23	72.13±11.8	66.74±11.54	73.52±11.25
		KNN	87.15±7.37	78.09 ± 6.42	68.66 ± 8.28	64.09 ± 10.60	74.23±9.55
	F1 Score	SVM	86.35±7.85	78.11±7.45	68.01±9.61	66.52±11.01	73.62±10.49
		LDA	82.16±8.96	74.99±9.91	61.42±9.39	63.87±11.86	71.88±11.82
		KNN	$0.85 {\pm} 0.08$	0.75 ± 0.08	$0.64{\pm}0.09$	0.58 ± 0.13	0.69 ± 0.10
	MCC	SVM	$0.83 {\pm} 0.09$	0.75 ± 0.09	$0.64{\pm}0.11$	0.61 ± 0.13	$0.68 {\pm} 0.09$
		LDA	0.75±0.13	0.71±0.11	0.57±0.11	0.58 ± 0.14	0.64±0.12

FIGURE 4. The F1 scores of different feature selection methods when the classifiers are trained for one orientation with a medium force level and tested for all orientations with all force levels.

FIGURE 5. The F1 scores of different feature selection methods when the classifiers are trained for two orientations with a medium force level and tested with all orientations with all force levels.

FIGURE 6. The F1 scores of different feature selection methods when the classifiers are trained for all orientations with a medium force level and tested with all orientations with all force levels.

In addition to these, Al-Timemy *et al.* [24] proposed a feature extraction method based on orientation between a set of spectral moments descriptors. This work utilized 48-dimensional

Algorithm 1 The Proposed Feature Selection Method

- 1: Initialize $K = I \times J$, total number of features, I number of features from J number of channels
- 2: Temporary feature array $F = [F_1, F_2, \dots, F_K]$
- 3: Proposed Set $S = \{\}$
- 4: Initialize maximum performance $P_{High} = 0$
- 5: Initialize counter i = 1
- 6: $S = S \cup F[i]$, set union operation
- 7: P[i] = F1 Score _{KNN}(S)
- 8: S = S F[i], set difference operation
- 9: i = i + 1
- 10: if i $\leq K$ GO TO step 6
- 11: $P_{Max} = P[1], j=2$
- 12: IF P[j] > P_{Max} THEN BEGIN $P_{Max} = P[j]$ MaxID = j END
- 13: i = i + 1
- 14: IF j \leq K GO TO step 12
- 15: IF $P_{Max} < P_{High}$
 - THEN GO TO step 21
- 16: $S = S \cup F[MaxID]$, set union operation
- 17: $P_{High} = P_{Max}$
- 18: F[MaxID] = F[k]
- 19: IF k > 1

THEN
$$k = k - 1$$

ELSE GO TO step 21

20: GO TO step 5

21: END

feature space to resolve muscle force variation. So, most of the recent works propose a unique feature extraction method that can resolve a limiting factor. Also, these works utilize a high dimensional feature space, multiple orientations, and sometimes multiple force levels for training the classifiers. These multiple factors increase training time of classifier, data dimensionality of feature space, design complexity, and computational power of the hardware as well [19]. Finally, it can be mentioned here that, we didn't find any literature studying in identifying important feature to resolve multiple limiting factors.

There are mainly two methods in EMG feature selection, including filter-based and wrapper-based methods. The filter-based method includes chi-square [25], ReliefF [26], minimum redundancy maximum relevance (MRMR) [27], and neighborhood component analysis (NCA) [26] which are relatively faster, scalable, and independent of the classification algorithm. However, their performance is not high compared to the wrapper-based method [28]. Popular wrapper-based method includes sequential forward selection [29], [30], genetic algorithms [31], ant colony optimization [31] and particle swarm optimization [32]. Among these, the sequential forward selection is a classical and reliable method used widely for EMG channel selection [33]–[35] or EMG feature

Parameter	Classifier	Proposed	Chi-Square	ReliefF	MRMR	NCA
	KNN	97.77 ± 0.89	93.97±2.52	94.72±1.36	90.61±4.03	93.93±2.15
Accuracy	SVM	97.59 ± 1.11	94.07 ± 2.48	94.59 ± 2.08	91.48 ± 3.85	94.01±2.33
	LDA	95.56±2.10	93.27±2.94	92.20±2.40	90.30±4.81	92.88±2.64
	KNN	93.31±2.66	81.91±7.56	84.17±4.08	71.84±12.10	81.80±6.45
Sensitivity	SVM	92.76±3.33	82.21±7.43	83.76 ± 6.24	74.44±11.56	82.02 ± 6.98
	LDA	86.67±6.30	$79.80{\pm}8.81$	76.60 ± 7.19	$70.90{\pm}14.43$	78.64 ± 7.91
	KNN	98.66±0.53	96.38±1.51	96.83±0.82	94.37±2.42	96.36±1.29
Specificity	SVM	98.55 ± 0.67	$96.44{\pm}1.49$	96.75±1.25	94.89±2.31	$96.40{\pm}1.40$
	LDA	97.33±1.26	95.96±1.76	95.32±1.44	$94.18 {\pm} 2.89$	95.73±1.58
	KNN	93.53±2.60	83.02±7.54	84.86±4.15	72.79±11.53	82.80±6.50
Precision	SVM	93.00 ± 3.18	83.26 ± 7.46	84.38 ± 6.17	74.53±11.86	$82.94{\pm}7.04$
	LDA	$87.40{\pm}5.83$	80.53±9.00	76.91±7.22	71.42±15.14	79.09 ± 8.24
	KNN	93.27±2.71	81.91±7.63	84.05±4.13	71.90±11.94	81.79±6.40
F1 Score	SVM	92.69 ± 3.38	82.15±7.51	83.61±6.32	73.94±12.03	81.85±7.12
	LDA	$86.70 {\pm} 6.28$	79.58±9.14	76.44±7.25	70.64±15.12	78.47±8.21
	KNN	$0.92{\pm}0.03$	$0.79{\pm}0.09$	0.81±0.05	0.67±0.14	$0.79{\pm}0.08$
MCC	SVM	0.91 ± 0.04	$0.79{\pm}0.09$	0.81 ± 0.07	$0.69{\pm}0.14$	$0.79{\pm}0.08$
	LDA	0.81 ± 0.09	$0.76{\pm}0.11$	0.72 ± 0.09	0.65 ± 0.18	$0.74{\pm}0.10$

TABLE 4. The EMG-PR performances of different feature selection methods when the classifiers are trained for all orientations with a medium force level and tested with all orientations and all force levels.

selection [36], [37]. Nevertheless, the method increases the dimension of feature space by the total number of features or the number of channels.

This study has proposed a feature selection method to resolve forearm orientation and muscle force variation simultaneously. In this proposed method, we considered 162-dimensional feature space generated by employing [14], [30] as described in Section II-B. In this proposed algorithm, the feature extracted from each EMG channel was considered a unique feature rather than computing a feature across all channels as done in a traditional sequential forward selection algorithm. So, the proposed method considered $K = I \times J$ number of unique features for an I number of features extracted from J number of EMG channels. Finally, the proposed feature selection method selected those features only which contributed to the EMG-PR performance. Thus, the proposed feature selection method selects a specific feature from a specific channel rather than selecting either feature [36], [37] or channel [33]–[35]. In addition, our proposed algorithm increases the dimension of features by one, whereas the sequential forward selection algorithm increases the dimension by its total number of channels. Thus, the dimension of selected features through the proposed feature selection algorithm is always less than the dimension of features obtained by the sequential forward selection algorithm.

Consequently, the proposed feature selection method could reduce the training time of the classifier, data dimensionality of feature space, design complexity, and computational power of the hardware. In addition to a reduced number of features, the selected features indicate the importance of a channel and a feature to resolve the limiting factors. In this research, we also considered four existing feature selection

tal data showed that the proposed feature selection method significantly improved the accuracy, sensitivity, specificity, precision, F1 score, and MCC by 3.18% to 4.28%, 9.14% to 12.85%, 1.83% to 2.57%, 8.30% to 10.99%, 9.22% to 13.92%, and 0.11 to 0.15, respectively when the proposed method was compared second-best performing feature selection method (Section III). In this study, the proposed feature selection method achieved a forearm orientation and muscle force invariant F1 score of 91.46% for training KNN classifier with orientations O1 and O3 with a medium force level. The achieved performance was much higher than the existing two works that employed three orientations for training. Also, we trained the KNN classifier for all orientations with medium force level, and then we achieved an F1 score of 93.27%, which was improved by 2.27% to 2.92% (Table 5). In addition to improved EMG-PR performances, the proposed feature selection method selected the least number of features of 7 to 20 (Table 28 and Table 30), which was less than the feature space used in the existing works. So, the proposed feature selection method would be a promising method to resolve both forearm orientation and muscle force variation by employing efficient features only. However, in this work, we have employed three classifiers, i.e., KNNs, support vector machines (SVMs), and linear discriminant analysis (LDAs), to estimate and validate the EMG-PR performance. These classifiers are utilized as they require a low computational cost and achieve a reasonable EMG-PR performance [14]. Also, the achieved EMG-PR performances for each feature selection method were validated statistically by utilizing a two-way analysis of variance (ANOVA),

methods to compare and validate the EMG-PR performance

of the proposed feature selection method. The experimen-

TABLE 5. The comparison of EMG-PR performance with existing works.

Reference Factor Subject Channel Movement Feature set Dimension Condition Classifier (%) He et al. [16] 3 muscle force levels 9-healthy 8 9 Global normalized six frequency band Training for level 10A 91 Al-Timeny et al. [24] 3 muscle force levels 9-amputees 8 6 Six-time domain Training for power spectral 48 60% force LDA 92 Islam et al. 3 muscle force levels 9-amputees 8 6 Generation power spectral 48 all force LDA 92 Islam et al. 3 muscle force levels 9-amputees 8 6 Features with ecertation 84 all force SVM 92 Khushaba et al. [20] 3 forearm orientations and 3 10-healthy muscle 6 Six-time domain power spectral descriptors and accelerom eter 39 with a medium force level SVM 91 Training for al. [19] 3 forearm orientations 10-healthy muscle 6 Signal normalized descriptors and accelerom 710 19 with a medium force level SVM 90.35 This work and 3		Dynamic]	EMG Datas	et	Method				Performance
He et al. [166] 3 muscle force levels 9-healthy 8 9 frequency band frequency band 48 50% force LDA 91 Al-Timeny et al. [24] 3 muscle force levels 9-amputes 8 6 force more power spectral 48 50% force levels LDA 91 Islam et al. [14] 3 muscle force levels 9-amputes 8 6 forcerrwith features with correlation coefficients 8 6 forcerwith features with accelerom coefficients 84 all force seven non-linear LDA 92 Musbaba et al. [20] 3 forcarm orientations force levels 9-amputes 8 6 Six-time domain power spectral accelerom eter Training for accelerometer features 10-balthy muscle SVM 92 3 forcarm orientations force levels 6 Six-time domain power spectral accelerometer features 39 orientations with a medium force level SVM 91 8 10-healthy accelerom eter 6 Signal normalized power spectral accelerometer features 39 orientations with a medium force level SVM 90.35 7 19 and 3 10-healthy accelerometer 6 Signal normalized medium 7 to 19 with a m	Reference	Factor	Subject	Channel	Movement	Feature set	Dimension	Condition	Classifier	(%)
He <i>et al.</i> [16] Force levels of force levels of the level of the leve		3 muscle				Global normalized six		Training for		
Al-Timemy et 3 muscle force levels 9-amputees 8 6 Six-time domain power spectral descriptors Training for levels LDA 92 Islam et al. [14] 3 muscle force levels 9-amputees 8 6 Signal normalized seven non-linear Training for levels LDA 92 Islam et al. [14] 3 muscle force levels 9-amputees 8 6 Signal normalized seven non-linear Training for levels LDA 92 Khushaba et al. [20] 3 forearm orientations and 3 6 Six-time domain power spectral descriptors and accelerometer features 39 With a with a SVM 91 Rajapriya et al. [19] 3 forearm orientations and 3 10-healthy muscle force levels 6 Wavelet bispectrum based 16 features 96 Training for all orientations muscle force level SVM 90.35 This work and 3 10-healthy accelerom force levels 6 Signal normalized proce level 7 to 19 With a medium force level SVM 93.27 This work and 3 10-healthy accelerom force levels 6 Signal normalized proce level 7 to 19 With a medium force level KNN 93.27	He et al. [16]	force levels	9-healthy	8	9	frequency band	48	50% force	LDA	91
Al-Timeny <i>et al.</i> [24] force levels <i>al.</i> [24] force levels <i>al.</i> [24] force levels <i>based of constraining for any and the server non-linear and any and the server non-linear and the server the se</i>		loree levels				energy		level		
All functions of all [24] Force levels 9-amputees 8 6 power spectral descriptors 48 all force LDA 92 Islam et al. [14] 3 muscle force levels 9-amputees 8 6 Signal normalized seven non-linear Training for LDA all force SVM 92 Islam et al. [14] 3 muscle force levels 9-amputees 8 6 Signal normalized seven non-linear Training for LDA all force SVM 92 Khushaba et al. [20] ard 3 10-healthy accelerom eter 6 Six-time domain all orientations with a medium force level SVM 91 accelerometer features ard 3 10-healthy accelerom eter 6 Wavelet bispectrum based 16 features 96 With a medium force level SVM 90.35 This work and 3 10-healthy accelerom eter 6 and 3-D accelerom eter Signal normalized force level SVM 93.27 This work and 3 10-healthy accelerom miscle force levels 6 and 3-D accelerom eter Signal normalized force level 7 to 19 with a medium force level SVM 93.27 This work and 3 10-healthy	Al-Timemy et	3 muscle				Six-time domain		Training for		
In [P] loce levels descriptors levels Islam et al. [14] 3 muscle force levels 9-amputees 8 6 Signal normalized seven non-linear Training for LDA [14] force levels 9-amputees 8 6 features with correlation coefficients Training for LDA Khushaba et al. [20] 3 forearm orientations force levels 6 Six-time domain accelerom eter all orientations with a SVM 91 Rajapriya et al. [19] 3 forearm orientations 6 Six-time domain accelerom eter 39 with a SVM 91 Rajapriya et al. [19] 3 forearm orientations 6 Wavelet bispectrum based 16 features 96 With a medium force level SVM 90.35 This work and 3 10-healthy accelerom eter 6 Signal normalized muscle 7 to 19 with a medium force level SVM 93.27 This work and 3 10-healthy accelerom eter 6 Signal normalized features, correlation accelerometer features 7 to 19 with a medium force level KNN 93.27	al [24]	force levels	9-amputees	8	6	power spectral	48	all force	LDA	92
Islam et al. 3 muscle force levels 9-amputees 8 6 Signal normalized seven non-linear Training for correlation LDA [14] force levels 9-amputees 8 6 features with correlation 84 all force SVM 92 Khushaba et al. [20] 3 forearm muscle force levels 6 Six-time domain and 3-D accelerom eter all orientations muscle force levels SVM 91 Rajapriya et al. [19] 3 forearm orientations muscle force levels 6 Six-time domain and 3-D muscle 3 SVM 91 Rajapriya et al. [19] 3 forearm orientations muscle force levels 10-healthy and 3-D muscle 6 Wavelet bispectrum based 16 features 96 Training for all orientations SVM 90.35 This work and 3 and 3-D muscle 10-healthy accelerom eter 6 Signal normalized nine non-linear 7 to 19 with a medium force level SVM 93.27 This work and 3 and 3-D accelerom force levels 6 Genome eter Signal normalized nine non-linear 7 to 19 With a medium force level KNN 93.27	un [21]					descriptors		levels		
Islam et al. [14] 3 muscle force levels 9-amputes 8 6 features with features with correlation coefficients 84 all force levels SVM 92 Khushaba et al. [20] 3 forearm orientations and 3 (10-healthy force levels 0-healthy accelerom eter 6 Six-time domain power spectral descriptors and accelerometer features all orientations with a medium force level SVM 91 Rajapriya et al. [19] 3 forearm orientations and 3 10-healthy accelerom muscle force levels 6 Wavelet bispectrum based 16 features 96 SVM 90.35 Khushaba et al. [19] 3 forearm orientations and 3 10-healthy muscle 6 6 Wavelet bispectrum based 16 features 96 SVM with a medium force level 90.35 This work and 3 10-healthy accelerom muscle 6 Signal normalized force level 7 to 19 with a medium force level SVM 93.27 This work and 3 10-healthy accelerom muscle 6 Signal normalized force level 7 to 19 with a medium force level KNN 93.27 Muscle force levels 6 6 Signal normalized force level 7 to 19 with a medium force level KNN 93.27						Signal normalized				
Similar and 2 9-amputes 8 6 features with correlation coefficients 84 all force SVM 92 [14] force levels 3 forearm orientations and 3	Islam <i>et al</i>	3 muscle				seven non-linear		Training for	LDA	
[14] loce levels correlation coefficients levels Khushaba er and 3 10-healthy and 3-D accelerom eter 6 Six-time domain power spectral descriptors and accelerometer features 39 orientations with a medium force level SVM 91 Rajapriya er and 3 10-healthy 6 6 Wavelet bispectrum based 16 features 96 Training for all orientations with a medium force level SVM 90.35 Rajapriya er and 3 10-healthy 6 6 Wavelet bispectrum based 16 features 96 With a medium force level SVM 90.35 Image: and 3 10-healthy and 3-D force levels 6 and 3-10-healthy force level SVM 91.35 91 This work 3 forearm orientations and 3 10-healthy and 3-D force levels 6 Signal normalized features 7 to 19 with a medium force level SVM 93.27 This work and 3 10-healthy and 3-D force levels 6 Signal normalized features features, correlation force level 7 to 19 with a KNN 93.27 Training for all orientations accelerom force levels 7 to 19 with a KNN 91.46	[14]	force levels	9-amputees	8	6	features with	84	all force	SVM	92
coefficients Training for all orientations and 3 10-healthy and 3-D muscle 6 and 3-D accelerom eter 5ix-time domain power spectral descriptors and accelerometer features 39 medium force level 30 medium force level 91 Rajapriya et al. [19] 3 forearm orientations and 3 10-healthy muscle force levels 6 based 16 features Wavelet bispectrum based 16 features 96 medium force level SVM with a medium force level 90.35 Training for all orientations Style 3 forearm orientations force levels 6 and 3-D muscle This work 3 forearm orientations and 3 10-healthy accelerom eter 6 and 3-D accelerom eter 6 based 16 features 7 to 19 with a medium force level SVM 93.27 Training for all orientations Signal normalized force levels 7 to 19 with a medium force level KNN 93.27 A coefficients, and accelerom force levels and 3-D accelerom eter 6 based foreation coefficients, 15 order 7 to 20 with a coefficients, and accelerom ter features 7 to 20 With a coefficients, and accelerom ter features	ניין	loree levels				correlation		levels		
3 forearm 6 Six-time domain all with a l [20] and 3 10-healthy accelerom eter and 3-D accelerom eter and 3-D accelerom eter 39 with a solution 91 Rajapriya et al. [19] 3 forearm orientations and 3 10-healthy accelerom eter 3 forearm orientations and 3 10-healthy 6 6 Wavelet bispectrum based 16 features 96 with a medium force level Rajapriya et al. [19] 3 forearm orientations and 3 10-healthy 6 6 Wavelet bispectrum based 16 features 96 with a medium force level Training for all orientations orientations and 3 10-healthy accelerom eter 6 and 3-D accelerom eter all orientations Signal normalized force levels 6 and 3-D accelerom eter 6 Signal normalized 7 to 19 with a kNN 93.27 This work 3 forearm orientations eter 6 and 3-D accelerom eter 6 Accelerom eter 7 to 19 with a kNN 93.27 This work 3 forearm orientations eter 6 and 3-D accelerom eter 6 Accelerom eter 7 to 19 with a kNN 91.46 This work and 3 10-healthy eter 6 accelerom eter 7 to 20 with a kNN 91.46						coefficients				
Khushaba et al. [20] 6 Six-time domain power spectral descriptors and accelerometer features all power spectral descriptors and accelerometer features 39 orientations with a medium force level SVM 91 Rajapriya et al. [19] 3 forearm orientations and 3 10-healthy eter 6 Wavelet bispectrum based 16 features 39 orientations with a medium force level SVM 90.35 Rajapriya et al. [19] 3 forearm orientations 10-healthy muscle 6 Wavelet bispectrum based 16 features 96 Orientations with a medium force level SVM 90.35 This work 3 forearm orientations 6 and 3-D accelerom 6 Signal normalized force levels 7 to 19 with a medium force level SVM 93.27 This work and 3 10-healthy muscle force levels 6 Signal normalized eter 7 to 19 with a medium force level KNN 93.27 This work and 3 10-healthy muscle force levels 6 AR coefficients, and accelerometer features Training for coefficients, and accelerometer features 01 and 03 This work N 91.46 M M NN 91.46		3 forearm						Training for		
Khushaba er and 3 10-healthy and 3-D 6 power spectral 39 orientations SVM 91 al. [20] muscle force levels accelerom 6 descriptors and 39 with a SVM 91 Rajapriya er 3 forearm orientations and 3 10-healthy 6 6 Wavelet bispectrum 96 orientations sVM 90.35 al. [19] and 3 10-healthy 6 6 Wavelet bispectrum 96 orientations SVM 90.35 and J 10-healthy 6 6 Signal normalized 7 to 19 with a SVM 90.35 This work and 3 10-healthy and 3-D 6 Signal normalized 7 to 19 with a KNN 93.27 This work and 3 10-healthy and 3-D 6 accelerom correlations features, correlation force level orientations This work and 3 10-healthy accelerom eter AR coefficients, and Training for accelerom AR coefficients, and		orientations		6		Six-time domain		all		
al. [20] and 3 forhaming accelerom of descriptors and accelerometer features with a medium force level Training for all orientations orientations and 3 10-healthy 6 6 6 Wavelet bispectrum based 16 features 96 with a medium force level Training for all orientations with a medium force level Training for all orientations with a medium force level Training for all orientations SVM 90.35 with a medium force level Training for all orientations SVM 90.35 with a medium force level Training for all orientations Signal normalized 7 to 19 with a KNN 93.27 medium force level This work and 3 10-healthy and 3-D accelerom force level eter force levels eter and 3 10-healthy accelerom force level or accelerom forc	Khushaba <i>et</i>	and 3	10-healthy	and 3-D	6	power spectral	30	orientations	SVM	91
Indece eter accelerometer features medium force level Rajapriya et al. [19] 3 forearm orientations and 3 10-healthy 6 6 muscle force levels 6 Wavelet bispectrum based 16 features 96 Training for all orientations X 90.35 with a medium force level SVM 90.35 This work 3 forearm orientations and 3 10-healthy area 6 Signal normalized nine non-linear 7 to 19 with a medium force level KNN 93.27 This work and 3 10-healthy accelerom force levels 6 Signal normalized nine non-linear 7 to 19 with a medium force level KNN 93.27 AR coefficients, 15 order force levels AR coefficients, and accelerometer features Training for coefficients, and accelerometer features O1 and O3 7 to 20 with a KNN KNN 91.46	al. [20]	muscle	10-meaniny	accelerom	0	descriptors and	55	with a	5,111	71
Index revels force level Rajapriya et al. [19] 3 forearm orientations and 3 10-healthy 6 6 muscle force levels 4 Wavelet bispectrum based 16 features 96 and 3 0-healthy 8 0.35 SVM 90.35 This work 3 forearm orientations and 3 10-healthy and 3-D accelerom force levels 6 Signal normalized 7 to 19 Training for all orientations 93.27 This work and 3 10-healthy accelerom force levels 6 Signal normalized 7 to 19 with a KNN 93.27 Arraining for eter and 3 10-healthy accelerom force levels 6 Signal normalized 7 to 19 with a KNN 93.27 This work and 3 10-healthy accelerom force levels 6 Signal normalized 7 to 19 With a KNN 93.27 This work and 3 10-healthy accelerom force levels 6 Signal normalized 7 7 to 19 With a KNN 91.46 Maccelerometer features 01 and 03 7 to 20 With a KNN 91.46 7 to 20 With a KNN 91.46		force levels		eter		accelerometer features		medium		
3 forearm orientations and 3 10-healthy 6 Wavelet bispectrum 96 orientations sVM 90.35 ad. [19] and 3 10-healthy 6 based 16 features 96 with a medium force levels force levels force level Training for all orientations 3 forearm orientations 6 nine non-linear medium force level This work and 3 10-healthy 6 features, correlation force level This work and 3 10-healthy add 3-D accelerom features, correlation force level force levels eter AR coefficients, and Training for accelerom ter features O1 and O3 7 to 20 with a KNN 91.46 medium force level force level force level		loree levels						force level		
Rajapriya et al. [19] orientations and 3 10-healthy 6 6 Wavelet bispectrum based 16 features 96 orientations with a medium force level SVM 90.35 Free levels force levels force levels Training for all orientations medium force level 96 orientations with a medium force level SVM 90.35 This work 3 forearm orientations and 3 6 nuscle force levels 6 and 3-D accelerom muscle force levels 6 eter Signal normalized nine non-linear features, correlation coefficients, and accelerometer features 7 to 19 with a Medium force level KNN 93.27 AR coefficients, and accelerometer features Training for accelerometer features 01 and 03 7 to 20 with a KNN KNN 91.46		3 forearm						Training for		
Rajapriya et al. [19] and 3 muscle force levels 10-healthy muscle 6 6 and 3-D force levels Wavelet bispectrum based 16 features 96 96 orientations with a medium force level SVM 90.35 90.35 This work 3 forearm orientations This work 6 and 3 10-healthy and 3 6 and 3-D accelerom tore level 5 Signal normalized nine non-linear 7 to 19 with a medium force level SNM 90.35 90.35 This work and 3 10-healthy muscle force levels 6 eter Signal normalized nine non-linear 7 to 19 with a Medium KNN 93.27 AR coefficients, and accelerometer features 01 and 03 7 to 20 7 to 20 With a KNN KNN 91.46		orientations						all		
al. [19] and 5 To healthy to to to based 16 features based 16 features with a medium force level force levels force levels force level Training for all orientations This work and 3 10-healthy and 3-D a features, correlation force level This work and 3 10-healthy accelerom force levels eter force levels force levels force levels force level This work and 3 10-healthy accelerom force level This work a	Rajapriya et	and 3	10-healthy	6	6	Wavelet bispectrum	96	orientations	SVM	00.35
industrie medium force levels medium force levels Training for 3 forearm 6 all orientations orientations and 3-D 6 signal normalized 7 to 19 with a KNN 93.27 This work and 3 10-healthy and 3-D 6 features, correlation force level This work and 3 10-healthy accelerom 6 coefficients, 15 order This work and 3 10-healthy accelerom 6 coefficients, and Training for accelerometer features 01 and 03 7 7 to 20 with a KNN 91.46 medium force level force level force level force level force level	al. [19]	muscle	10-neartify	0	0	based 16 features	<i>)</i> 0	with a	5 1 11	<i>J</i> 0. <i>33</i>
force level force level Training for all orientations This work and 3 10-healthy muscle force levels Training for and 3-D accelerom features, correlation features, correlation features, correlation force level Coefficients, 15 order AR coefficients, and Training for accelerometer features O1 and O3 7 to 20 with a KNN 91.46 medium force level		force levels						medium		
Training for all orientations 3 forearm orientations This work and 3 10-healthy muscle force levels accelerom force levels This work and 3 10-healthy accelerom force level accelerom force level force level accelerom force level force level		loree levels						force level		
3 forearm 6 Signal normalized 7 to 19 with a KNN 93.27 7 to 19 and 3 10-healthy and 3-D nine non-linear medium 7 to 19 muscle features, correlation force level force level 8 muscle eter AR coefficients, 15 order raining for 6 eter AR coefficients, and Training for 7 to 20 with a KNN 91.46 medium force level medium								Training for		
3 forearm 6 Signal normalized 7 to 19 with a KNN 93.27 This work and 3 10-healthy and 3-D 6 features, correlation force level muscle eter eter AR coefficients, and Training for force levels eter AR coefficients etatures O1 and O3 7 to 20 with a KNN 91.46 medium force level force level force level								all		
3 forearm 6 Signal normalized 7 to 19 with a KNN 93.27 nine non-linear medium force level force level force level medium force level force level <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>orientations</td><td></td><td></td></t<>								orientations		
3 forearm 6 nine non-linear medium orientations and 3-D features, correlation force level This work and 3 10-healthy accelerom features, correlation force level muscle eter AR coefficients, 15 order raining for force levels eter AR coefficients, and Training for 7 to 20 with a KNN 91.46 medium force level force level		2.6				Signal normalized	7 to 19	with a	KNN	93.27
This work and 3 10-healthy and 3-D 6 features, correlation force level This work and 3 10-healthy accelerom 6 coefficients, 15 order muscle eter AR coefficients, and Training for force levels 01 and O3 7 to 20 with a KNN 91.46 medium force level		5 forearm		6		nine non-linear		medium		
This work and 3 To-healthy 6 coefficients, 15 order muscle eter AR coefficients, and Training for force levels 01 and O3 7 to 20 with a KNN 91.46 medium force level	TTI	orientations	10.114	and 3-D	r	features, correlation		force level		
muscle eter AR coefficients, and Training for force levels 7 to 20 with a KNN 91.46 medium force level	I his work	and 3	10-healthy	accelerom	6	coefficients, 15 order				
accelerometer features O1 and O3 7 to 20 with a KNN 91.46 medium force level		muscle		eter		AR coefficients, and		Training for		
7 to 20 with a KNN 91.46 medium force level		force levels				accelerometer features		O1 and O3		
medium force level							7 to 20	with a	KNN	91.46
force level								medium		
								force level		

considering the classifier and feature selection method as independent parameters.

The remaining paper is arranged as follows. Section II describes the proposed feature selection method, the EMG datasets for three orientations with three force levels, feature extraction, and classification. Section III presents the impact of the number of features and the feature selection methods

on the EMG-PR performance, the EMG-PR performances for different training and testing cases, and the comparison of the achieved performances with existing works. Section IV investigates the details behind the improved forearm orientation and muscle force invariant EMG-PR performance, and finally, Section V concludes with the overall experimental results.
 TABLE 6.
 Summary of two-way ANOVA when classifiers are trained with

 O2 with one force level and tested with trained orientation with all force levels.

Independent variable	p-value
Classifier	0.680
Feature selection	p<<0.001
Classifier*Feature selection	0.570

TABLE 7. Comparison between the feature selection methods when
classifiers are trained with O2 with one force level and tested with
trained orientation with all force levels.

Feature sele	ction method	p-value
	MRMR	p<<0.001
Ch: Comment	NCA	p<<0.001
Cin-Square	Proposed	p<<0.001
	ReliefF	p<<0.001
	Chi-Square	p<<0.001
MDMD	NCA	p<<0.001
WIKIWIK	Proposed	p<<0.001
	ReliefF	1.000
	Chi-Square	p<<0.001
NCA	MRMR	p<<0.001
NCA	Proposed	p<<0.001
	ReliefF	p<<0.001
	Chi-Square	p<<0.001
Proposed	MRMR	p<<0.001
rioposed	NCA	p<<0.001
	ReliefF	p<<0.001
	Chi-Square	p<<0.001
PoliofE	MRMR	1.000
Kenelf	NCA	p<<0.001
	Proposed	p<<0.001

TABLE 8. Summary of two-way ANOVA when classifiers are trained with one orientation with a medium force level and tested with all orientations with all force levels.

Independent variable	p-value
Classifier	0.260
Feature selection	p<<0.001
Classifier*Feature selection	0.800

TABLE 9. Comparison between the feature selection methods when classifiers are trained with one orientation with a medium force level and tested with all orientations with all force levels.

Feature sele	ction method	p-value
	MRMR	p<<0.001
Chi Causana	NCA	p<<0.001
Cm-Square	Proposed	p<<0.001
	ReliefF	p<<0.001
	Chi-Square	p<<0.001
MDMD	NCA	p<<0.001
MKMK	Proposed	p<<0.001
	ReliefF	p<<0.001
	Chi-Square	p<<0.001
NCA	MRMR	p<<0.001
NCA	tion method MRMR NCA Proposed ReliefF Chi-Square NCA Proposed ReliefF Chi-Square MRMR Proposed ReliefF Chi-Square MRMR NCA ReliefF Chi-Square MRMR NCA ReliefF Chi-Square MRMR NCA ReliefF	p<<0.001
	ReliefF	p<<0.001
	Chi-Square	p<<0.001
Duonogod	MRMR	p<<0.001
Floposed	NCA	p<<0.001
	ReliefF	p<<0.001
	Chi-Square	p<<0.001
PaliafE	MRMR	p<<0.001
Kenelf	NCA	p<<0.001
	Proposed	p<<0.001

II. METHODOLOGY

A. THE PROPOSED FEATURE SELECTION METHOD

In particular, in EMG-PR, a large number of features have been proposed over the decades, and these features are

46452

 TABLE 10.
 Summary of two-way ANOVA when classifiers are trained with two orientations with a medium force level and tested with all orientations with all force levels.

Independent variable	p-value
Classifier	0.051
Feature selection	p<<0.001
Classifier*Feature selection	0.723

TABLE 11. Comparison between the feature selection methods when classifiers are trained with two orientations with a medium force level and tested with all orientations with all force levels.

Feature sele	ction method	p-value
	MRMR	p<<0.001
Chi Carran	NCA	0.002
Cni-Square	Proposed	p<<0.001
	ReliefF	p<<0.001
	Chi-Square	p<<0.001
MDMD	NCA	0.516
MKMK	Proposed	p<<0.001
	ReliefF	0.311
	Chi-Square	0.002
NCA	MRMŔ	0.516
	Proposed	p<<0.001
	ReliefF	p<<0.001
	Chi-Square	p<<0.001
Duonaaad	MRMR	p<<0.001
rioposed	NCA	p<<0.001
	ReliefF	p<<0.001
	Chi-Square	p<<0.001
PaliafE	MRMR	0.311
Kenelf	NCA	p<<0.001
	Proposed	p<<0.001

TABLE 12. Summary of two-way ANOVA when classifiers are trained with all orientations with a medium force level and tested with all orientations with all force levels.

Independent variable	p-value
Classifier	0.012
Feature selection	p<<0.001
Classifier*Feature selection	0.960

TABLE 13. Comparison between the classifiers when classifiers are trained with all orientations with a medium force level and tested with all orientations with all force levels.

	Classifier	p-value
KNN	LDA	0.037
	SVM	1.000
LDA	KNN	0.037
	SVM	0.024
SVM	KNN	1.000
	LDA	0.024

problem-specific [14], [24], [38], [39]. Therefore, to resolve any EMG-PR problem, an efficient feature selection method is necessary to find the least number of features and achieve the highest pattern recognition performance with low computational power [27].

As shown in Algorithm 1, we evaluated the I number of features from the J number of EMG channels in this proposed method. Thus, the total number of features K is equal to $I \times J$. We considered each of the K features as

 TABLE 14. Comparison between the feature selection methods when classifiers are trained with all orientations with a medium force level and tested with all orientations with all force levels.

Feature sele	ction method	p-value
	MRMR	p<<0.001
Chi Squara	NCA	1.000
Cili-Square	Proposed	p<<0.001
	ReliefF	1.000
	Chi-Square	p<<0.001
MDMD	NCA	0.001
MKMK	Proposed	p<<0.001
	ReliefF	p<<0.001
	Chi-Square	1.000
NCA	MRMR	0.001
NCA	Proposed	p<<0.001
	ReliefF	1.000
	Chi-Square	p<<0.001
Dropogod	MRMR	p<<0.001
Floposed	NCA	p<<0.001
	ReliefF	p<<0.001
	Chi-Square	1.000
DaliafE	MRMR	p<<0.001
Keneif	NCA	1.000
	Proposed	p<<0.001

a unique feature. The reason is that each feature increases the total number of features by the total number of channels since each feature is evaluated across all EMG channels. Also, the extracted features from all EMG channels do not contribute to enhancing the EMG-PR performance [40]. However, the proposed feature selection method selects those features only, which contributes to the F1 score. In this method, the performance was evaluated for each feature, and the best-performing feature was selected. Then, the selected feature was grouped with each of the remaining features, and the group of two features that provided the highest performance was selected. The procedure was continued until the addition of a new feature contributed to the performance.

This study considered the KNN classifier to evaluate the F1 score since the KNN classifier performed better than SVM and LDA (Section III). For performance evaluation with various training and testing datasets, we employed widely used 5-fold cross-validation as described in Section III-D. Therefore, the proposed feature selection method would be able to find the least number of features without compromising the EMG-PR performance.

TABLE 15. Selected features for training classifiers with O1 with a low force level and testing with O1 with all force levels.

Subiasta	No. of			Selected Features		
Subjects	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA
S1	17	C1F2, C1AcF, C5F3, C2AcF, C1F3, C3F9, CC2, CC13, C1AR11, C6AR14, C1AR15, C1F8, C1F5, CC8, C1AR13, C1F7, C3F7	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C1F3, C2F3, C3F3, C4F3, C5F3, C1F4, C2F4	C1AcF, C2AcF, C3AcF, C1F1, C1F2, CC2, C1F3, C1F7, CC6, C5F1, C5F7, C1F4, C5F3, C5F4, C5F8, C1F8, C4F6	C1AcF, C3F2, CC7, CC3, C6AR15, C1AR15, C2AR15, CC14, CC1, C5AR15, C3AR15, C1F6, C4AR11, CC9, C2F4, C1F1, CC5	C4F2, C4F3, C1F2, C4F4, C1F3, C4F5, C4F6, C1F4, C1F5, C1F6, C2F6, C4F7, C4F8, C2F5, C4F9, C4F1, C2F4
S2	7	C5F3, C1AcF, C1F2, C3F2, C6F6, C5F2, C2F9	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2	C1AcF, C2AcF, C3AcF, C2F1, CC15, C2F7, C6F2	C1AcF, C5F3, C2AR13, 2 CC7, C6AR15, C1AR14, C5AR15	C4AR7, C2AR6, C5AR7, C3AR10, C3AR9, C5AR6, C3AR5
S3	10	C4F7, C1F2, C3F2, CC15, C2F8, C1F1, CC7, C5AR5, CC10, CC14	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2	C1AcF, C3AcF, C2AcF, C1F1, C1F2, C1F3, C1F7, C4F3, C1F4, C4F4	C4F3, C2AcF, C2AR8, C3AR14, C5AR15, CC11, CC12, CC15, C4AR15, CC2	C1F3, C1F4, C1F2, C1F5, C1F6, C4F2, C4F3, C4F4, C4F5, C3F2
S4	8	C1AcF, C3F1, C1F1, C2AcF, C5F3, C1F3, C3F3, CC10	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2	C1AcF, C2AcF, C3AcF, C5F2, C5F1, C5F3, C5F7, C3F1	C1AcF, C4F2, C5AR15, C3AR14, C2AR14, CC8, C4AR15, C5F7	C4F3, C5F3, C4F4, C3F2, C3F3, C5F2, C3F4, C4F5
S5	10	C1F5, C5F7, C6F1, C3F6, C1AcF, C5F9, C1F4, C5F1, C5F2, C5F8	C1F1, C3F1, C5F1, C1F2, C3F2, C5F2, C1F3, C3F3, C5F3, C1F4	C1AcF, C2AcF, C3AcF, C2F1, C2F2, CC6, C2F7, C3F9, C3F8, C5F4	C5F3, C2AcF, C6AR1, C1AR14, C2AR14, C5AR15, CC4, C4AR15, CC14, CC2	C3F6, C3F5, C3F4, C3F3, C3F2, C5F3, C5F4, C1F5, C1F6, C5F5
S6	8	C4F7, C3F8, C2F2, C5F9, C4F3, C2AcF, C1F1, C3F2	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2	C3AcF, C2AcF, C1AcF, C4F1, C6F2, C4F2, C6F1, C3F2	C4F7, C1AcF, C2AR2, C6AR15, C1AR13, C2AR14, C5AR15, C4AR15	C3AR8, C3AR7, C5AR7, C1AR8, C3AR9, C4AR8, C5AR8, C4AR7
S7	6	C4F3, C5F2, CC5, C4F1, C3F6, C4F2	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1	C2AcF, C3AcF, C4F1, C6F1, C6F2, C4F2	C4F1, C5AR6, C4AR10, C3AR14, C1AR14, C6AR15	C3F3, C3F2, C3F4, C4F6, C4F5, C4F4
S8	16	C4F7, C3F3, C1F5, C3AcF, CC1, C4AR10, C3F8, C1AcF, C1F1, C2AcF, C3F1, C1F9, C3F2, C3F4, C4F1, C5AR15	C1F1, C2F1, C3F1, C4F1, C1F2, C2F2, C3F2, C4F2, C1F3, C2F3, C3F3, C4F3, C5F3, C1F4, C2F4, C3F4	C1AcF, C2AcF, C3AcF, CC11, C3F1, C3F7, C3F2, C3F3, C3F8, C3F4, CC2, C3F9, C3F5, C3F6, CC3, CC1	C1F2, C4AR5, C1AR13, C3AR13, C2AR14, C6AR15, CC12, CC11, C4AR15, C2AcF, CC15, C3F2, CC1, C1F6, C2AR3, C4F8	C4F3, C4F4, C3F3, C4F5, C3F4, C3F2, C3F6, C1F4, C1F5, C3F5, C1F6, C1F3, C2F5, C4F6, C2F6, C4F2
S9	9	C5F3, C2F6, C1F6, C1AcF, C4AR10, C4F3, C5AR9, C3AR15, C5AR2	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2	C1AcF, C4F4, C4F5, C4F3, C4F6, C1F1, C1F2, C4F8, C4F9	C5F9, C1F1, C4AR15, C6AR13, C2AR14, C3AR14, C5AR14, CC12, C4F3	C5F5, C5F4, C5F6, C1F2, C5F3, C1F3, C5F2, C3F4, C3F5
S10	11	C3AcF, C1AcF, C3F4, C4F5, C5F9, C1F1, C3F6, C2AcF, C3F9, C5F6, C1AR2	C1F1, C3F1, C5F1, C1F2, C3F2, C5F2, C1F3, C3F3, C4F3, C5F3, C1F4	C3AcF, C1AcF, C2AcF, C2F1, C1F6, C2F2, C1F5, C2F3, C2F7, C4F5, C2F4	C1AcF, C2F8, C3AR13, CC2, C1AR15, C2AR10, CC15, CC11, C4F4, C3AcF, C6F5	C5AR6, C5AR7, C1F4, C1F3, C1F5, C4F5, C1F6, C4F6, C4F4, C1F2, C4F3

Ch.	No. of	. of Selected Features				
Subjects	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA
S1	17	C5F3, C1AcF, C1F3, CC9, C3AR11, C1AR1, CC5, CC1, C1F5, C4F9, CC2, C6AR7, C6AR9, C2AR3, C1F1, C1AR7, C1F7	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C1F3, C2F3, C3F3, C4F3, C5F3, C1F4, C2F4	C1AcF, C2AcF, C3AcF, C1F1, C1F2, CC2, C1F3, C1F7, CC6, C5F1, C5F7, C1F4, C5F3, C5F4, C5F8, C1F8, C4F6	, C1AcF, C3F2, CC7, CC3, C6AR15, C1AR15, C2AR15, CC14, CC1, C5AR15, C3AR15, C1F6, C4AR11, CC9, C2F4, C1F1, CC5	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2, C1F3, C2F3, C3F3, C4F3, C5F3
S2	10	C5F3, C1AcF, C2F8, C3AcF, CC8, C2F6, C4F7, C5F2, C4F1, C2F5	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2	C1AcF, C2AcF, C3AcF, C2F1, CC15, C2F7, C6F2, C6F1, CC14, C2F2	, C1AcF, C5F3, C2AR13, CC7, C6AR15, C1AR14, C5AR15, C3AR14, C3F2, C1F7	C6AR6, C4AR9, C2AR9, C1AR6, C4AR8, C1AR7, C6AR7, C5AR6, C5AR7, C2AR8
S3	8	C4F7, C1F1, C6F7, C4F1, C1AR6, C2F1, C3F1, C1F3	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2	C1AcF, C3AcF, C2AcF, C1F1, C1F2, C1F3, C1F7, C4F3	C4F3, C2AcF, C2AR8, C3AR14, C5AR15, CC11, CC12, CC15	C1F2, C1F3, C1F4, C4F2, C4F3, C1F5, C4F4, C1F6
S4	9	C1AcF, C2AcF, C1F2, C5F2, CC1, C1AR12, C3F1, C3AcF, C4AR14	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2	C1AcF, C2AcF, C3AcF, C5F2, C5F1, C5F3, C5F7, C3F1, C3F7	, C1AcF, C4F2, C5AR15, C3AR14, C2AR14, CC8, C4AR15, C5F7, C3F1	C5AR8, C6AR9, C5AR9, C6AR10, C3AR8, C5AR10, C2AR6, C2AR9, C4AR9
S5	13	C1F5, C5F1, C3F5, C1AcF, C6F1, C5F8, CC15, C3AcF, CC10, C1F4, C5F3, C3AR14, C3F9	C1F1, C3F1, C5F1, C1F2, C3F2, C5F2, C1F3, C3F3, C5F3, C1F4, C3F4, C5F4, C1F5	C1AcF, C2AcF, C3AcF, C2F1, C2F2, CC6, C2F7, C3F9, C3F8, C5F4, C3F5, C3F6, C5F8	, C5F3, C2AcF, C6AR1, C1AR14, C2AR14, C5AR15, CC4, C4AR15, CC14, CC2, CC9, C3F1, C1AcF	C2AR10, C2AR9, C1F5, C1F4, C3F5, C1F6, C3F6, C3F4, C1F3, C3F3, C2AR11, C1F2, C3F2
S6	11	C4F7, C1F2, C1AcF, C2AcF, C6F1, C3F3, C5F5, C6F9, C5F6, C4F5, C6F3	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2	C3AcF, C2AcF, C1AcF, C4F1, C6F2, C4F2, C6F1, C3F2, C3F3, C3F1, C3F4	, C4F7, C1AcF, C2AR2, C6AR15, C1AR13, C2AR14, C5AR15, C4AR15, C3AR13, CC2, CC5	C2F3, C2F2, C2F4, C3F3, C3F4, C3F6, C3F5, C2F5, C3F2, C2F6, C5F3
S7	11	C4F3, C3F3, C5AR4, C4F1, C5F1, C4F2, C6F1, C4F7, C4F4, C3F5, C4F5	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C3F2, C4F2, C5F2, C6F2	C2AcF, C3AcF, C4F1, C6F1, C6F2, C4F2, C2F1, C4F3, C4F7, C2F7, C1AcF	C4F1, C5AR6, C4AR10, C3AR14, C1AR14, C6AR15, C2AR15, CC7, C3AR1, C3AcF, CC5	C4F5, C4F4, C4F6, C4F3, C4F2, C3F3, C3F4, C3F2, C3F5, C3F6, C1F3
S 8	7	C4F7, C3F3, C1AcF, C4F2, C4F3, C4F4, C4F5	C1F1, C2F1, C3F1, C4F1, C1F2, C2F2, C3F2	C1AcF, C2AcF, C3AcF, CC11, C3F1, C3F7, C3F2	, C1F2, C4AR5, C1AR13, C3AR13, C2AR14, C6AR15, CC12	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2
S9	11	C5F3, C4F7, C1F9, CC1, C3F3, C1F1, CC10, C2F9, C4F8, C5AR8, C3F4	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2	C1AcF, C4F4, C4F5, C4F3, C4F6, C1F1, C1F2, C4F8, C4F9, C4F7, C1F3	C5F9, C1F1, C4AR15, C6AR13, C2AR14, C3AR14, C5AR14, CC12, C4F3, CC4, C2F5	C1F3, C1F2, C1F4, C4F4, C4F5, C4F6, C4F3, C1F5, C1AR6, C1AR5, C1F6
S10	9	C1AcF, C2AcF, C4F5, C4F4, C2F4, C3AcF, C3F6, CC13, C1F2	C1F1, C3F1, C5F1, C1F2, C3F2, C5F2, C1F3, C3F3, C4F3	C3AcF, C1AcF, C2AcF, C2F1, C1F6, C2F2, C1F5, C2F3, C2F7	, C1AcF, C2F8, C3AR13, CC2, C1AR15, C2AR10, CC15, CC11, C4F4	C6AR6, C6AR7, C6AR5, C6AR8, C1F4, C1F3, C1F5, C4F5, C4F4

TABLE 16. Selected features for training classifiers with 01 with a medium force level and testing with 01 with all force levels.

B. DESCRIPTION OF EMG DATASET

In this research, the EMG dataset was collected from Khushaba *et al.* [20] using an online respiratory (https:// www.rami-khushaba.com/electromyogram-emg-repository. html, accessed on Oct. 12, 2021). The dataset includes ten intact limbed subjects (S1 to S10) aged between 20 and 33 years. The EMG signal was recorded using the Bagnoli desktop EMG system (Delsys Inc., USA). In this data recording, six equally spaced EMG signal electrodes were attached across the forearm circumference, where their common reference electrode was placed near the wrist. In addition, the EMG signal was digitalized at a 4000 Hz sampling rate using National Instruments, BNC-2090, with 12 bits resolution. During data recording, each subject performed six movements: hand close, hand open, wrist extension, wrist flexion, wrist ulnar deviation, and wrist radial deviation. Each movement was repeated three times (known as trials). In addition to performing complex movements, three forearm orientations (O1, wrist at rest (O2), and O3) as shown in Fig. 1 and three muscle contraction force levels (low, medium, and high) were considered in this recording. Therefore, each subject performed 162 trials (6 movements \times 3 orientations \times 3 muscle force levels \times 3 trials). In this data recording, each trial was performed for 5 s duration with a 10 s rest between any successive trials to minimize the effect of muscle fatigue. In this dataset, an additional 3-D accelerometer (MPU-6050 from InvenSense) was also attached to the wrist of the subject to observe wrist acceleration. The accelerometer data was sampled at 26.6 \pm 0.30 Hz.

Subjects	No. of	Selected Features				
Subjects	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA
S 1	12	C1AcF, C2F2, C5AR4, C2AcF, C5F3, C1F8, C1F5, C1F1, C3F5, C2F1, C2F2, C2F7	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C1F2, C2F2	C1AcF, C2AcF, C3AcF, C1F1, C1F2, CC2, C1F3, C1F7, CC6, C5E1, C5E7, C1E4	, C1AcF, C3F2, CC7, CC3, C6AR15, C1AR15, C2AR15, CC14, CC1, C5AR15, C24R15, C14	C5AR9, C4F3, C4F4, C4AR10, C4F5, C4F6, C4F2, C4AR9, C5AR10, C1F2
		C2F1, C3F8, C2F7	C5F2, C1F5, C2F5	C5F1, C5F7, C1F4	CSARIS, CSARIS, CIFO	C5AR8, C1F2,
S2	3	C1AcF, C3F7, C5F3	C1F1, C2F1, C3F1	C1AcF, C2AcF, C3AcF	C1AcF, C5F3, C2AR13	C2F3, C2F4, C2F5
S3	19	C1F2, C2F2, C4F7, CC1, C1F1, C3F1, C6F8, CC7, C2F7, CC9 C1AcF, C1F7, C1AR5, C4F9, C2F1, CC14, CC2, C1F3, C1F5	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C1F3, C2F3, C3F3, C4F3, C5F3, C6F3, C1F4, C2F4, C3F4	C1AcF, C3AcF, C2AcF, C1F1, C1F2, C1F3, C1F7, C4F3, C1F4, C4F4, C4F2, C4F1, C1F8, C4F7, CC2, C4F5, C3F1, C3F2, C4F6	, C4F3, C2AcF, C2AR8, C3AR14, C5AR15, CC11, CC12, CC15, C4AR15, CC2, C6AR15, C2F1, C3F1, C1AR14, C1F5, C4AR8, CC1, C3F6, CC7	C1F3, C1F2, C1F4, C1F5, C1F6, C4F2, C3F2, C3F3, C2F2, C4F3, C3F4, C1F1, C4F6, C2F6, C4F5, C2F3, C1F7, C4F4, C2F4
S4	9	C5F3, C1AcF, C1F1, C3F1, C2AcF, C5AR1, C3F4, CC8, C3F7	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2	C1AcF, C2AcF, C3AcF, C5F2, C5F1, C5F3, C5F7, C3F1, C3F7	, C1AcF, C4F2, C5AR15, C3AR14, C2AR14, CC8, C4AR15, C5F7, C3F1	C5F3, C5F2, C4AR10, C5F4, C5F5, C5F6, C4F3, C4F4, C3F3
S5	11	C1F9, C5F3, C3F6, CC6, C2AcF, C1F5, C1AcF, C1F3, C1F4, C1F6, C5F7	C1F1, C3F1, C5F1, C1F2, C3F2, C5F2, C1F3, C3F3, C5F3, C1F4, C3F4	C1AcF, C2AcF, C3AcF, C2F1, C2F2, CC6, C2F7, C3F9, C3F8, C5F4, C3F5	, C5F3, C2AcF, C6AR1, C1AR14, C2AR14, C5AR15, CC4, C4AR15, CC14, CC2, CC9	C3F5, C3F4, C3F6, C3F3, C5F4, C5F5, C3F2, C5F6, C1F4, C1F5, C5F3
S6	10	C4F8, C4F1, C1F1, C3F1, C2AcF, C1F2, C4F4, C1AcF, C6F3, C4F7	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2	C3AcF, C2AcF, C1AcF, C4F1, C6F2, C4F2, C6F1, C3F2, C3F3, C3F1	, C4F7, C1AcF, C2AR2, C6AR15, C1AR13, C2AR14, C5AR15, C4AR15, C3AR13, CC2	C3AR6, C3AR5, C3F4, C3F3, C3F5, C4F2, C3F6, C4F3, C4F4, C4F5
S7	19	C4F3, C3F4, C5AR2, C6F2, C1F9, C4F1, C3F3, CC5, C4F6, C4F8, C5AR9, C5F1, C1AR4, CC15, CC4, C3F2, CC14, C5F2, C6AR13	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C3F2, C4F2, C5F2, C6F2, C1F3, C3F3, C4F3, C5F3, C6F3, C1F4, C3F4, C4F4	C2AcF, C3AcF, C4F1, C6F1, C6F2, C4F2, C2F1, C4F3, C4F7, C2F7, C1AcF, C4F4, CC1, C4F8, C4F5, C4F9, C2F8, C4F6, C1F1	C4F1, C5AR6, C4AR10, C3AR14, C1AR14, C6AR15, C2AR15, CC7, C3AR1, C3AcF, CC5, C2F8, CC14, C3F5, C6F1, C1AR1, CC11, C5F5, C6AR4	C6AR7, C1AR7, C2AR8, C5AR7, C3AR7, C1AR8, C5AR6, C6AR8, C3AR6, C2AR7, C5AR8, C4F5, C4F4, C4F6, C4F3, C1AR9, C3AR8, C4F2, C2AR6
S8	8	C4F3, C3F3, C2F3, C3F2, C3F1, C3F7, C4F1, C1F9	C1F1, C2F1, C3F1, C4F1, C1F2, C2F2, C3F2, C4F2	C1AcF, C2AcF, C3AcF, CC11, C3F1, C3F7, C3F2, C3F3	, C1F2, C4AR5, C1AR13, C3AR13, C2AR14, C6AR15, CC12, CC11	C2AR7, C1AR8, C4AR7, C4AR8, C1AR9, C5AR9, C1AR7, C3AR7
S9	10	C5F2, C1F8, C1AcF, CC1, C3F6, C4F4, C2AcF, C2F1, CC10, C5F4	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2	C1AcF, C4F4, C4F5, C4F3, C4F6, C1F1, C1F2, C4F8, C4F9, C4F7	C5F9, C1F1, C4AR15, C6AR13, C2AR14, C3AR14, C5AR14, CC12, C4F3, CC4	C6AR8, C5AR8, C1AR5, C6AR9, C2AR6, C5AR7, C3AR7, C4AR6, C2AR7, C1F2
S10	7	C1AcF, C3AcF, C4F5, C3F6, C1F3, C5F6, C2AcF	C1F1, C3F1, C5F1, C1F2, C3F2, C5F2, C1F3	C3AcF, C1AcF, C2AcF C2F1, C1F6, C2F2, C1F5	, C1AcF, C2F8, C3AR13, CC2, C1AR15, C2AR10, CC15	C2F2, C2F3, C1F4, C4F5, C1F5, C4F6, C4F4

TABLE 17. Selected features for training classifiers with O1 with a high force level and testing with O1 with all force level

C. FEATURE EXTRACTION

In this research, we extracted nine features (F1 to F9) and correlation coefficients (CCs) according to Islam *et al.* [14]. In this feature extraction method, the multichannel EMG signals were normalized by the root mean square (RMS) value of the current window since the signal normalization scheme is very much helpful to overlap muscle activation patterns of different muscle contraction forces [14]. Then, the features were extracted as follows:

$$FI = \log(\frac{1}{N} \sum_{i=0}^{N-1} |x[i]|)$$
(1)

where x[i] is the discrete EMG signal of window size N.

$$F2 = \log(\sum_{i=0}^{N-1} [x[i]]^2) = \log(\frac{1}{N} \sum_{k=0}^{N-1} [X[k]X^*[k]])$$

$$= log(\sum_{k=0}^{N-1} P[k])$$
⁽²⁾

where P[k] is the power spectrum, and $X^*[k]$ is the complex conjugate of X[k] with a frequency index of k.

$$F3 = log(\sum_{k=0}^{N-1} k^2 P[k]) = log(\frac{1}{N} \sum_{k=0}^{N-1} [kX[k]]^2)$$

= log($\sum_{i=0}^{N-1} [\Delta x[i]]^2$) (3)
$$F4 = log(\sum_{k=0}^{N-1} k^4 P[k]) = log(\frac{1}{N} \sum_{k=0}^{N-1} [k^2 X[k]]^2)$$

= log($\sum_{i=0}^{N-1} [\Delta^2 x[i]]^2$) (4)

Subjects	No. of			Selected Features		
	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA
\$1	4	C1AcF, C2F8, C3AcF,	C1F1, C2F1, C3F1,	C1AcF, C3AcF, C2AcF	, C2AcF, C3AR1, C2AR4,	C2AR6, C2AR7,
51	-	C3F1	C4F1	C1F1	C1AR15	C2AR5, C1F2
		C4F7, C3F1, C2AR1,	C1F1, C3F1, C4F1,	C3AcF, C2AcF, C2F1,	C4F7, C2AR6, C3AR13,	C3AR8, C3AR7,
		C1AcF, C3AR1,	C5F1, C1F2, C3F2,	C6F6, C6F9, C6F5,	C6AR14, C1AR15,	C3AR9, C2AR8,
		C3AcF, C5F7, C2F2,	C4F2, C5F2, C1F3,	C1F6, C3F1, C6F8,	C4AR15, C6F9, C3F6,	C2AR7, C3AR10,
S2	13	C1F6, C4F3, C2AcF,	C3F3, C4F3, C5F3,	C6F4, C1F5, C2F2,	C5AR3, C5AR15, CC2,	C2AR9, C3AR6,
		C4AR14, CC10	C6F3	C1F9	C4AR2, C1AR2	C1AR7, C1AR6,
						C2AR10, C2AR6,
						C1AR5
		C1F8, C2F8, C3AcF,	C1F1, C2F1, C3F1,	C3AcF, C2AcF, C2F2,	C1F7, C2AcF, C2F7,	C1F5, C1F6, C1F4,
S3	7	C5F2, C3F1, C5F3,	C4F1, C5F1, C1F2,	C2F1, C5F4, C5F5,	C3AR14, C2AR15,	C1F3, C1F2, C5F4,
		C1F1	C2F2	C5F6	C5AR14, CC3	C5F5
		C3F1, C2F1, C3AcF,	C1F1, C2F1, C3F1,	C1AcF, C3AcF, C2AcF,	, C3F1, C5F3, C6AR14,	C1F3, C1F4, C2F2,
S1	11	C1AcF, C1F5, C5F6,	C4F1, C5F1, C6F1,	C1F7, C1F1, C1F2,	C4AR15, C1AR15,	C4F3, C2F3, C1F5,
54	11	C3F9, C6F3, C5F1,	C1F2, C2F2, C3F2,	C1F3, C2F2, C2F1,	C2AR14, CC10, C1F8,	C4F4, C1F6, C4F5,
		C1F7, C1AR8	C4F2, C5F2	C3F1, C3F2	CC8, C2AcF, C1AR4	C5F3, C4F6
		C1AcF, C1F8, C2F1,	C1F1, C2F1, C3F1,	C3AcF, C1AcF, C2AcF	, C1F7, C3AcF, C1AR4,	C1F6, C1F5, C1F3,
		C2AcF, C5F5, C6F9,	C1F2, C2F2, C3F2,	C3F2, C3F1, C3F3,	CC13, C5AR13,	C1F4, C3F2, C3F3,
S5	12	C3AcF, C3F8, C3F7,	C5F2, C1F3, C2F3,	C2F1, C3F7, C5F4,	C3AR15, CC7, C2AR13,	C4F5, C4F4, C3F4,
		C3AR13, C1F3, C6AR7	′ C3F3, C5F3, C1F4	C5F8, C3F4, C5F5	C3F6, C5F7, C3AR4,	C3F6, C3F5, C2F2
					C4AR6	
		C4F8, C2F1, C1AcF,	C1F1, C2F1, C3F1,	C1AcF, C3AcF, C2AcF	, C4F8, CC3, C6AR1,	C3AR6, C2F3, C2F4,
S6	7	C1F5, C3F6, C6F1,	C4F1, C5F1, C6F1,	C4F1, C4F2, C4F8,	C3AR14, C2AR15,	C2F2, C2F5, C2F6,
		C2F7	C1F2	C4F7	C4AR15, C5AR15	C3AR5
		C1F8, C3F9, C3AcF,	C1F1, C2F1, C3F1,	C3AcF, C1AcF, C2AcF	, C1F3, C6F5, C5AR14,	C4F2, C3F4, C3F3,
S7	6	C5F2, C4F3, C3F1	C4F1, C5F1, C1F2	C2F7, C2F1, C3F7	C3AR14, C4AR13,	C4F3, C3F5, C3F6
					C2AR14	
CO	5	C3F8, C1AcF, C1F5,	C1F1, C2F1, C3F1,	C1F3, C1F7, C1F4,	C3F6, C6F3, C4AR5,	C3F4, C3F5, C3F6,
30	5	C4F9, C1F3	C4F1, C5F1	C1F8, C1F5	C2AR15, C1AR14	C3F3, C3F2
		C1F1, C5F4, CC3,	C1F1, C2F1, C3F1,	C3AcF, C1AcF, C2F8,	C5F4, C1F3, C6F4,	C5F6, C5F5, C5F4,
S9	8	C5F2, C2F2, C1F6,	C5F1, C1F2, C2F2,	C2F9, C2F7, C2F4,	C3AR12, C6AR15,	C5F3, C1F2, C5F2,
		C3AR5, C2F7	C3F2, C5F2	C1F7, C2F3	C1AR15, C2AR14, CC10	C1F3, C1F4
\$10	4	C1AcF, C1F3, C2AcF,	C1F1, C3F1, C5F1,	C3AcF, C1AcF, C2AcF	, C1AcF, C1AR1, C6F7,	C3F4, C3F5, C3F6,
510	4	C1AR2	C1F2	C5F2	CC3	C3F3

$$F5 = log(\sum_{k=0}^{N-1} k^{6} P[k]) = log(\frac{1}{N} \sum_{k=0}^{N-1} [k^{3} X[k]]^{2})$$
$$= log(\sum_{i=0}^{N-1} [\Delta^{3} x[i]]^{2})$$
(5)

$$F6 = log(\sum_{k=0}^{N-1} k^{8} P[k]) = log(\frac{1}{N} \sum_{k=0}^{N-1} [k^{4} X[k]]^{2})$$
$$= log(\sum_{i=0}^{N-1} [\Delta^{4} x[i]]^{2})$$
(6)

$$F7 = \log(\frac{1}{N-1} \sum_{i=0}^{N-1} |\Delta x|)$$
(7)

$$F8 = \log(\frac{1}{N-2} \sum_{i=0}^{N-1} |\Delta^2 x|)$$
(8)

$$F9 = \log(\frac{1}{N-3} \sum_{i=0}^{N-1} |\Delta^3 x|)$$
(9)

In our proposed feature selection method, the feature calculated for each EMG channel was considered a unique feature denoted as CJFI. Where C, J, F, and I indicate the channel, channel number (J = 1, 2, 3, ...6), feature name, and the feature number (I = 1, 2, 3, ...9), respectively.

The CC p(x,y) between any two channels, *x*, and *y*, was evaluated as follows:

$$\rho(x, y) = \frac{Cov(x, y)}{\sigma_x \sigma_y} = \frac{\sum_{i=0}^{N-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{N-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{N-1} (y_i - \bar{y})^2}}$$
(10)

where \overline{x} and \overline{y} present the mean of channels x and y for a window size of N, respectively. Here, CCs are presented as CC1, CC2, CC3,CC15.

The autoregressive (AR) coefficients are a promising feature extraction method for EMG-PR [41], [42]. So, we also considered 15 order AR coefficients to find their importance in resolving forearm orientation and muscle force variation. In the AR model, each sample of the EMG signal x_i is т

Subjects	No. of			Selected Features		
	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA
		C2AcF, C2F6, C1AcF,	C1F1, C2F1, C3F1,	C1AcF, C3AcF, C2AcF	, C2AcF, C3AR1, C2AR4,	C5AR8, C2AR7,
S1	6	CC9, C3AcF, C2F1	C4F1, C5F1, C1F2	C1F1, C1F2, C6F2	C1AR15, CC12, CC5	C4AR8, C3AR7,
						C4AR7, C2AR6
		C3AcF, C4F1, C3F1,	C1F1, C3F1, C4F1,	C3AcF, C2AcF, C2F1,	C4F7, C2AR6, C3AR13,	C3AR8, C3AR7,
\$2	8	C2F1, C4F6, C3F2,	C5F1, C1F2, C3F2,	C6F6, C6F9, C6F5,	C6AR14, C1AR15,	C3AR9, C2AR8,
52	0	CC12, C2F2	C4F2, C5F2	C1F6, C3F1	C4AR15, C6F9, C3F6	C2AR7, C3AR10,
						C2AR9, C3AR6
		C5F4, C1F9, C3F1,	C1F1, C2F1, C3F1,	C3AcF, C2AcF, C2F2,	C1F7, C2AcF, C2F7,	C6AR7, C2AR8,
S3	6	C2F4, C2AcF, C5F1	C4F1, C5F1, C1F2	C2F1, C5F4, C5F5	C3AR14, C2AR15,	C1AR7, C6AR9,
					C5AR14	C3AR9, C5AR7
		C3F1, C2F2, C3AcF,	C1F1, C2F1, C3F1,	C1AcF, C3AcF, C2AcF	, C3F1, C5F3, C6AR14,	C2F3, C4F3, C4F2,
		C1AcF, CC7, C5AR11,	C4F1, C5F1, C6F1,	C1F7, C1F1, C1F2,	C4AR15, C1AR15,	C1F3, C2F4, C2F2,
<u>84</u>	15	C3F2, C2F1, C3AR10,	C1F2, C2F2, C3F2,	C1F3, C2F2, C2F1,	C2AR14, CC10, C1F8,	C4F4, C2F5, C2F6,
51	15	C2F7, C1F3, C4F6,	C4F2, C5F2, C6F2,	C3F1, C3F2, C1F8,	CC8, C2AcF, C1AR4,	C1F4, C4F5, C1F5,
		C2AR15, C3F3, CC15	C1F3, C2F3, C3F3	C2F7, C1F4, C3F3	CC11, C3AcF, C1AcF,	C4F6, C1F6, C3F2
					CC1	
		ClAcF, ClF7, C3AcF,	C1F1, C2F1, C3F1,	C3AcF, C1AcF, C2AcF	, C1F7, C3AcF, C1AR4,	C3F2, C3F3, C3F4,
S 5	11	C2F1, C5F7, C3F9,	C1F2, C2F2, C3F2,	C3F2, C3F1, C3F3,	CC13, C5AR13,	C3F6, C3F5, C1F4,
		C1F8, C1F9, CC10,	C5F2, C1F3, C2F3,	C2F1, C3F7, C5F4,	C3AR15, CC7, C2AR13,	C1F5, C1F6, C1F3,
		C3F6, C3F5	C3F3, C5F3	C5F8, C3F4	C3F6, C5F7, C3AR4	C2F2, C2F3
		C4F9, C2F2, CIAcF,	CIF1, C2F1, C3F1,	CIACF, C3AcF, C2AcF	, C4F8, CC3, C6AR1,	C2F3, C2F2, C2F4,
0.6	10	C3F2, C6F7, C1F5,	C4F1, C5F1, C6F1,	C4F1, C4F2, C4F8,	C3AR14, C2AR15,	C2F5, C2F6, C4F4,
86	13	C2F1, C3F6, C2F7,	C1F2, C2F2, C3F2, C4F2, C4F2	C4F7, C4F3, C4F4,	C4ARI5, C5ARI5, CC4,	C4F3, C4F5, C4F6,
		CIF3, C3F5, CIF8,	C4F2, C5F2, C6F2, C1F2	C4F9, C3F4, C3F3,	CZACF, CIACF, C6F9,	C4F2, C1F3, C1F4,
		CIF0	CIF3		C1F2 C(F5 C5AD14	
87	7	C1F3, C4F5, C3AcF,	CIFI, C2FI, C3FI,	C3ACF, C1ACF, C2ACF	C1F3, C0F5, C5AK14, C2AD14, C4AD12	C4F4, C4F5, C4F3, C4F4, C4F4, C4F2, C4F4, C4F2, C4F2, C4F2, C4F2, C4F2, C4F2, C4F2, C4F2, C4F4, C4F4
5/	/	$C_{4}E_{1}$	C4F1, C3F1, C1F2, C2F2	C2F7, C2F1, C3F7, C2F8	$C_{2AR14}, C_{4AR15},$	$C_{4}\Gamma_{0}, C_{4}\Gamma_{2}, C_{1}\Gamma_{3}, C_{2}\Gamma_{2}$
		CIE2 CIASE C2E7	C1F1 C2F1 C2F1	C1F2 C1F7 C1F4	C2E6 C6E2 C4AD5	C3F3 C3E4 C2E5 C2E2
S 8	5	C1F2, C1ACF, C3F7,	C1F1, C2F1, C3F1, C4F1, C5F1	C1F3, C1F7, C1F4,	C_{2AP15} C_{1AP14}	C3F4, C3F3, C3F3, C3F5, C3F6, C4F3
		C5F4 C2F1 C1F7	C1F1 C2F1 C2F1	C140E C140E C2E8	C5E4 C1E3 C6E4	C5F3 $C5F4$ $C5F5$
		C5F7, C2F1, C1F7, C5AP1	C1F1, C2F1, C3F1, C5F1, C1F2, C2F2	C_{2F0} C_{2F7} C_{2F4}	$C_{3AP12} C_{6AP15}$	C5F3, C5F4, C3F3, C5F2, C5F6, C3AP8
		CC10 $C5F3$ $C3AcF$	C3F2, C5F2, C1F3	$C_{2}\Gamma_{7}, C_{2}\Gamma_{7}, C_{2$	C1AR15, C0AR15, C1AR15, C1AR15, C1AR15, C1AR15, C1AR15, C1AR14, C1AR15, C1AR14, C1AR	C1F3 $C1F2$ $C3AR7$
S9	14	C1AcF $C2F5$ $C5AR9$	C2F3 $C3F3$ $C5F3$	$C1F_{1}^{2}, C2F_{2}^{2}, C2F_{3}^{2}, C1F_{3}^{2}$	CC10 $CC1$ $CC4$	C1F4 $C2AR8$ $C2AR7$
		C5F1 C5F2	C1F4 C2F4	C2F2 $C2F1$	C4AR14 CC5 C3AcF	C1F5 C3AR9
		0511,0512	011 1, 021 1	0212, 0211	C5AR14	0115,05/110
		C1AcF, C3F6, C5F5	C1F1, C3F1, C5F1	C3AcF, C1AcF, C2AcF	. C1AcF. C1AR1. C6F7	C3F4, C3F5, C3F3
S10	7	C1F4, C3AcF, C6AR1.	C1F2, C2F2, C3F2.	C5F2, C5F3, C5F5.	CC3. C5AR14. C2AR13.	C3F6, C3F2, C2F3.
~ ~ ~		C1F3	C5F2	C5F4	C6AR15	C2F4
				-		

ABLE	19.	Selected	features	for training o	lassifiers w	ith O2	with a mee	dium force	level and	testing with	02 with a	I force le	evels.
------	-----	----------	----------	----------------	--------------	--------	------------	------------	-----------	--------------	-----------	------------	--------

presented as a linear combination of the previous samples x_{i-p} and a white noise error w_i as follows:

$$x_i = \sum_{p=1}^{p} a_p x_{i-p} + w_i \tag{11}$$

where *P* is the order of AR coefficients, fifteen order AR coefficients for multichannel EMG signals are presented as CJARP where $P = 1, 2, 3, \dots 15$.

In addition to these features, we also calculated the RMS feature for 3-D accelerometer data, which are presented as C1AcF, C2AcF, and C3AcF. Finally, total number of features became 162 (6 channels \times (9 features + 15 AR coefficients) + 15 correlation coefficients + 3 accelerometer features).

D. CLASSIFICATION

In this study, we utilized MATLAB 2020a (MathWorks, USA) for evaluating the EMG-PR performance. First, the EMG signal was segmented using disjoint rectangular

VOLUME 10, 2022

windowing for 150 ms [15], [43]. Thus, three trials of 15 s duration provided 100 samples, and each subject provided 600 samples per forearm orientation and muscle force level (6 movements \times 100 samples). Then, we extracted 162-dimensional features for each sample as described in Section II-C. The high dimensional features were fed to the proposed feature selection method (Section II-A), which only identifies the efficient features. In this research, selected features were lied between 3 to 20 without compromising the EMG-PR performance (Table 15 to Table 30). However, to evaluate the EMG-PR performance, we considered three well-recognized classifiers, namely KNN with Euclidean distance and ten neighbors, SVM with a Gaussian radial basis function, and kernel scale=3, and LDA [14], [24], [43]. In this optimization, we employed the 'Classification Learner' app of MATLAB 2020a and the selected feature space of S1 from the proposed feature selection method considering the best training orientation, O2, with the best training force level, medium (Section III). We employed one orientation and one

Subjects	No. of			Selected Features		
	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA
S 1	6	C5F1, C2AcF, C1AcF, CC13, C2F4, C3F6	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2	C1AcF, C3AcF, C2AcF, C1F1, C1F2, C6F2	, C2AcF, C3AR1, C2AR4, C1AR15, CC12, CC5	C1F2, C6F2, C1F3, C4F3, C4F4, C1F4
S2	7	C4F7, C3F1, C1F6, C3F3, C3AcF, C5F7, C3AR7	C1F1, C3F1, C4F1, C5F1, C1F2, C3F2, C4F2	C3AcF, C2AcF, C2F1, C6F6, C6F9, C6F5, C1F6	C4F7, C2AR6, C3AR13, C6AR14, C1AR15, C4AR15, C6F9	C4AR7, C3AR7, C6AR7, C3AR8, C6AR8, C2AR9, C5AR7
S3	8	C1F8, C5F3, C4F9, C3F1, C2F5, C3AcF, C4F1, C5F1	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2	C3AcF, C2AcF, C2F2, C2F1, C5F4, C5F5, C5F6, C5F3	C1F7, C2AcF, C2F7, C3AR14, C2AR15, C5AR14, CC3, C3F1	C2AR8, C3AR6, C5AR7, C2AR7, C4AR7, C1AR7, C1AR8, C2AR10
S4	8	C4F2, C2F1, C2AcF, C3F3, C3AcF, C1F7, C5AR12, C3F7	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2	C1AcF, C3AcF, C2AcF, C1F7, C1F1, C1F2, C1F3, C2F2	, C3F1, C5F3, C6AR14, C4AR15, C1AR15, C2AR14, CC10, C1F8	C4F3, C3F2, C1F3, C3F3, C4F2, C4F4, C2F2, C1F4
S5	10	C1AcF, C1F3, C2AcF, C2F1, C6F5, C3F3, C3AcF, C5F8, C1AR15, C5AR15	C1F1, C2F1, C3F1, C1F2, C2F2, C3F2, , C5F2, C1F3, C2F3, C3F3	C3AcF, C1AcF, C2AcF, C3F2, C3F1, C3F3, C2F1, C3F7, C5F4, C5F8	, C1F7, C3AcF, C1AR4, CC13, C5AR13, C3AR15, CC7, C2AR13, C3F6, C5F7	C3F5, C3F4, C3F3, C3F6, C3F2, C2F2, C1F2, C4F3, C2F3, C5F4
S6	7	C4F8, C2F1, C1AcF, C3F8, C1F9, C1F6, C1F5	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2	C1AcF, C3AcF, C2AcF, C4F1, C4F2, C4F8, C4F7	, C4F8, CC3, C6AR1, C3AR14, C2AR15, C4AR15, C5AR15	C4F3, C4F4, C4F2, C4F5, C2F2, C4F6, C2F3
S7	6	C1F3, C4F8, C3AcF, C3F8, C4F1, C3F1	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2	C3AcF, C1AcF, C2AcF, C2F7, C2F1, C3F7	, C1F3, C6F5, C5AR14, C3AR14, C4AR13, C2AR14	C4F6, C4F5, C4F4, C4F3, C3F3, C4F2
S 8	8	C1F2, C1AcF, C3F9, C4F3, CC9, C6F5, C5F3, C1F5	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2	C1F3, C1F7, C1F4, C1F8, C1F5, C1F9, C1F2, C1F6	C3F6, C6F3, C4AR5, C2AR15, C1AR14, C2F9, C1AR1, CC4	C3F5, C3F4, C3F6, C3F3, C4F4, C4F3, C4F5, C4F6
S9	11	C5F4, C2F2, C5AR3, C2F4, C1F9, C3F3, C5F1, C1F7, C5F3, C5AR4, C5AR2	C1F1, C2F1, C3F1, C5F1, C1F2, C2F2, C3F2, C5F2, C1F3, C2F3, C3F3	C3AcF, C1AcF, C2F8, C2F9, C2F7, C2F4, C1F7, C2F3, C2F5, C2F6, C1F8	C5F4, C1F3, C6F4, C3AR12, C6AR15, C1AR15, C2AR14, CC10, CC1, CC4, C4AR14	C2AR6, C4AR6, C1AR8, C3AR7, C3AR8, C2AR9, C6AR8, C2AR8, C4AR7, C5AR8, C4AR8
S10	6	C1F7, C1AcF, C2AcF, C3F6, C5F2, C1AR11	C1F1, C3F1, C5F1, C1F2, C2F2, C3F2	C3AcF, C1AcF, C2AcF, C5F2, C5F3, C5F5	, C1AcF, C1AR1, C6F7, CC3, C5AR14, C2AR13	C5AR10, C5AR9, C3AR9, C3AR10, C6AR7, C3AR8

force level to achieve forearm orientation and force invariant EMG-PR. Also, we employed 5-fold cross-validation to evaluate EMG-PR performance and avoid data overfitting problems. This 5-fold cross-validation considering forearm orientation and/or muscle force invariant properties confirmed that unknown testing samples never mixed with the training samples. To carry out this special 5-fold crossvalidation, known samples were conventionally divided into training and testing samples. Unknown testing samples were also divided using 5-fold cross-validation, with the only unknown testing fold added to the known testing samples. To compare and validate the proposed feature selection method, we considered four existing feature selection methods, chi-square [25], ReliefF [26], MRMR [27], and NCA [26]. In these existing feature selection methods, the least number of features defined by the proposed feature selection method was also selected for chi-square, ReliefF, MRMR, and NCA. Depending upon the feature ranking considering $K = I \times J$ number of unique features for a *I* number of features extracted from J number of EMG channels and all samples as employed in the proposed feature selection method. Thus, we selected the same number of features for the existing four feature selection methods. In addition, to analyze the EMG-PR performance in different aspects, we considered six statistical parameters, accuracy, sensitivity, specificity, precision, F1 score, and MCC [14], [31]. These parameters are defined as follows:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
(12)

$$Sensitivity = \frac{TP}{TP + FN}$$
(13)

$$Specificity = \frac{IN}{TN + FP}$$
(14)

$$Precision = \frac{IP}{TP + FP}$$
(15)

$$F1 Score = \frac{2 \times Precision \times Sensitivity}{Precision + Sensitivity}$$
(16)

$$MCC = \frac{TN \times TP - FN \times FP}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$
(17)

where *TP*, *TN*, *FP*, and *FN* define the number of the true positive movements, the true negative movements, the false

Subjects	No. of			Selected Features		
-	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA
		C1AcF, C1F1, C2F9,	C1F1, C2F1, C3F1,	C1AcF, C3AcF, C2AcF	, C1AcF, C5F2, C1AR3,	C1F3, C1F2, C1F4,
S 1	8	C2AcF, CC6, C3AcF,	C4F1, C5F1, C1F2,	C1F1, C1F2, C1F4,	CC5, C3AR15, C2AR15,	C5F2, C5F3, C1F5,
		C2F1, C1F3	C2F2, C3F2	C1F8, C1F7	C6AR10, CC14	C1F6, C5F4
52	6	C2AcF, C3F1, C2F1,	C1F1, C2F1, C3F1,	C2AcF, C1AcF, C3AcF	, C1AcF, C1F4, C6F7,	C3F3, C3F2, C3F4,
- 32	0	C6F5, C4F6, C1AcF	C4F1, C5F1, C1F2	C3F1, C3F7, C3F2	C4AR2, C2AR15, CC4	C3F5, C4F2, C3F6
\$3	4	C2AcF, C3F1, C5F6,	C1F1, C2F1, C3F1,	C2AcF, C1AcF, C1F4,	C2AcF, C1F3, C3F3,	C3AR6, C3AR7,
	4	C3AcF	C4F1	C1F8	C6AR14	C3AR5, C4F3
		C4F2, C2F2, C3F7,	C1F1, C2F1, C3F1,	C2AcF, C3AcF, C2F2,	C3F7, C2F3, C3AR1,	C2F2, C1F3, C2F3,
S4	9	C3AcF, C2F1, C4F8,	C4F1, C5F1, C1F2,	C2F1, C2F3, C2F7,	C2AR14, CC9, CC7,	C3F3, C3F4, C3F2,
		C1F2, C1AR15, C3F6	C2F2, C3F2, C4F2	CC10, C1AcF, C2F4	C2AcF, C6AR15, CC4	C3F5, C2F4, C1F2
		C1F7, C3F2, C6F1,	C1F1, C3F1, C1F2,	C2AcF, C1AcF, C3F2,	C1F3, C1AcF, C3AR1,	C3F6, C3F3, C3F5,
		C1F6, C2F1, C1F8,	C3F2, C1F3, C3F3,	C3F3, C3F1, C1F2,	C2AR11, CC7, C6AR15,	C3F4, C3F2, C1F6,
\$5	18	C3F4, C2AcF, CC9,	C5F3, C1F4, C3F4,	C3F4, C3F5, C3F6,	C4AR15, CC6, C3AcF,	C1F5, C1F4, C1F3,
35	10	C3F5, C6F2, C1AcF,	C5F4, C1F5, C3F5,	C1F1, C3F7, C5F2,	CC1, C1AR14, C3F2,	C1F2, C3F7, C3F9,
		C5F1, C3F9, C3F6,	C5F5, C1F6, C3F6,	C5F3, C5F1, C3F8,	C6F9, C4F4, C2F1,	C3F8, C3F1, C1F9,
		C1F9, C3F1, C1F5	C5F6, C1F7, C3F7	C2F1, C1F3, C3F9	C2AcF, CC11, CC8	C5F4, C1F8, C2F2
		C4F2, C2F1, C3F9,	C1F1, C2F1, C3F1,	C2AcF, C4F1, C4F2,	C4F3, C2AcF, CC11,	C4F2, C4F3, C6F6,
\$6	0	C6F7, C2AcF, C4AR6,	C4F1, C6F1, C1F2,	C4F7, CC6, C3F2,	C3AR12, CC4, C5AR15,	C6F5, C6F4, C6F3,
30	9	C1F4, C1F2, C1F1	C2F2, C3F2, C4F2	C4F3, C3F3, C4F8	C1AR14, C4AR15,	C3F3, C6F2, C4F4
					C2AR13	
		C4F9, C3F9, C3AcF,	C1F1, C2F1, C3F1,	C2AcF, C3AcF, C1AcF	, C4F4, C2F1, C2AR1,	C4F2, C4F6, C4F3,
		C5F4, C1F2, C4AR1,	C4F1, C5F1, C1F2,	C3F1, C3F7, C3F8,	C3AR14, C1AR14,	C4F4, C4F5, C3F6,
S 7	12	C2F4, C3F1, C4F1,	C2F2, C3F2, C4F2,	C3F2, C3F3, C3F4,	C4AR15, C6AR15,	C3F5, C5F3, C3F4,
		C1F8, C4F2, CC13	C5F2, C1F3, C2F3	C3F9, C3F5, C3F6	C3AR1, C5AR15, CC12,	C3F3, C5F4, C5F2
					CC2, C5AR4	
		C1F2, C5F2, C3F9,	C1F1, C2F1, C3F1,	C2AcF, C1AcF, C2F1,	C3F7, C4F3, CC2,	C3AR7, C6AR8,
S 8	9	C6F1, C2F1, C5F9,	C4F1, C5F1, C6F1,	C2F2, C6F5, C6F4,	C3AR14, C6AR15,	C1AR9, C3F4, C6AR7,
50	,	C1F9, C3F1, C2F7	C1F2, C2F2, C3F2	C6F6, C6F9, C6F8	C1AR15, C2AR15,	C3F3, C3F5, C6AR9,
					C4AR15, C6F3	C3F6
		C3AcF, C2F3, C1AcF,	C1F1, C2F1, C5F1,	C1AcF, C2AcF, C2F7,	C2F3, C2AcF, C6F6,	C1F3, C1F4, C1F2,
		C2AcF, C2AR4, C3F1,	C6F1, C1F2, C2F2,	C2F8, C2F1, C2F2,	C2AR14, C3AR14,	C1F5, C1F6, C2F6,
		C5F6, C3AR1, C1F1,	C3F2, C5F2, C6F2,	C2F9, C2F3, C2F4,	CC12, C4AR15,	C2F5, C2F4, C2F3,
S9	16	C3F2, C6AR3, C5F8,	C1F3, C2F3, C4F3,	C2F5, C3AcF, C2F6,	C6AR15, C5AR15,	C2F2, C4F3, C4F6,
		C1AR15, C6F1, C1F7,	C5F3, C6F3, C1F4,	C1F1, C1F7, C1F6,	CC10, C1AR14, CC1,	C4F4, C4F5, C4F2,
		C6AR15	C2F4	C1F5	CC2, C1AR3, CC14,	C6F2
					C2AR6	
		C2AcF, C4F6, C1F7,	C1F1, C3F1, C4F1,	C2AcF, C1F4, C1F5,	C1F7, C4AR1, C2AR10,	C1AR7, C4AR7,
		C4AR1, C5AR10,	C5F1, C1F2, C3F2,	C1F7, C1F8, C1F3,	CC12, C6AR15,	C3AR7, C5AR9,
S10	10	C1F3, C3AcF, C1F1,	C4F2, C5F2, C1F3,	C1F6, C1F9, C1F1,	C5AR15, CC2, C6F8,	C6AR8, C2AR10,
		C1F8, C4AR8	C3F3	C1F2	CC14, C3F5	C2AR9, C6AR7,
						C3AR8, C5AR7

TABLE 21. Selected features for training classifiers with O3 with a low force level and testing with O3 with all force levels.

positive movements, and the false negative movements, respectively. This research considered four cases of training the classifiers to evaluate forearm orientation and muscle force invariant EMG-PR performance. These are as follows:

Case 1: Training for one orientation with one force level.

Case 2: Training for one orientation with a medium force level.

Case 3: Training for two orientations with a medium force level.

Case 4: Training for all orientations with a medium force level.

E. STATISTICAL TEST

To find the significant difference between any pairs of feature selection methods, we employed two-way ANOVA. The independent variables were classifiers and feature selection methods, and the dependent variable was the F1 score. In this statistical test, we included Bonferroni correction with a threshold level of 5%. The obtained p-values below 0.05 imply that the performance is significant. In this research, the subject-wise F1 score under three training and testing cases (training and testing cases in each table, Table 1 to Table 3) was concatenated to form a 30-dimensional vector (10 subjects \times 3 training and testing cases), and two-way ANOVA was performed.

III. RESULTS

A. IMPACT OF THE NUMBER OF FEATURES AND FEATURE SELECTION METHODS ON EMG-PR PERFORMANCE

To show the impact of the number of features and different feature selection methods on the F1 score, we considered the KNN, SVM, and LDA classifiers. However, these impacts using KNN are shown in Fig. 2. In this study, we employed S1, where the classifiers were trained

Subjects	No. of			Selected Features		
	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA
S1	7	C1AcF, C1F1, C2F7, C3F9, C4F9, C3AR1, C4F6	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2	C1AcF, C3AcF, C2AcF C1F1, C1F2, C1F4, C1F8	, C1AcF, C5F2, C1AR3, CC5, C3AR15, C2AR15, C6AR10	C1F3, C1F2, C1F4, C5F3, C1F5, C5F4, C5F2
S2	9	C2AcF, C2F2, C5F4, C4F2, C1AcF, C2F9, C4F1, CC10, C2F6	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2	C2AcF, C1AcF, C3AcF, C3F1, C3F7, C3F2, C3F3, C3F8, C4F2	, C1AcF, C1F4, C6F7, C4AR2, C2AR15, CC4, C1AR15, CC1, CC15	C4F3, C4F4, C3F3, C4F5, C4F2, C3F6, C3F5, C3F4, C4F6
S3	10	C2AcF, C1F2, C3F1, C5F2, CC6, C5AR1, CC9, C5F6, C3AcF, C4F4	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2	C2AcF, C1AcF, C1F4, C1F8, C1F3, C1F7, C1F5, C1F9, C1F6, C1F1	C2AcF, C1F3, C3F3, C6AR14, C4AR14, C2AR14, C5AR15, C1AR15, C3AR15, C3AR3	C4F3, C1F3, C4F4, C4F5, C1F4, C1F2, C4F6, C4F2, C1F5, C1F6
S4	7	C4F2, C2F1, C2AcF, C3F2, C1F2, C2F2, C4F4	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2	C2AcF, C3AcF, C2F2, C2F1, C2F3, C2F7, CC10	C3F7, C2F3, C3AR1, C2AR14, CC9, CC7, C2AcF	C2F2, C2F3, C2F4, C4F2, C4F4, C4F3, C2F5
S5	11	C1F6, C3F6, C5F9, C2AcF, C6F1, C6F5, C1F8, C3F5, C1F1, C1F9, C5F4	C1F1, C3F1, C1F2, C3F2, C1F3, C3F3, C5F3, C1F4, C3F4, C5F4, C1F5	C2AcF, C1AcF, C3F2, C3F3, C3F1, C1F2, C3F4, C3F5, C3F6, C1F1, C3F7	C1F3, C1AcF, C3AR1, C2AR11, CC7, C6AR15, C4AR15, CC6, C3AcF, CC1, C1AR14	C3F6, C3F5, C3F4, C3F2, C3F3, C1F4, C1F5, C1F3, C1F6, C5F3, C5F2
\$6	13	C4F2, C3F8, C6F6, C2F8, C1AR9, C2F9, C1F3, C6F1, C2AR1, CC3, C1F8, C1F7, CC1	C1F1, C2F1, C3F1, C4F1, C6F1, C1F2, C2F2, C3F2, C4F2, C6F2, C1F3, C2F3, C3F3	C2AcF, C4F1, C4F2, C4F7, CC6, C3F2, C4F3, C3F3, C4F8, C4F4, C3F1, C4F9, C4F5	C4F3, C2AcF, CC11, C3AR12, CC4, C5AR15, C1AR14, C4AR15, C2AR13, CC13, CC6, C6AR14, CC7	C3F3, C6F6, C6F5, C3F4, C6F4, C3F2, C6F3, C3F5, C3F6, C6F2, C4F2, C4F3, C1F6
S7	9	C4F9, C3F9, C5F2, C4F1, C2F4, C1F4, C3F1, C4F4, C2F5	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2	C2AcF, C3AcF, C1AcF C3F1, C3F7, C3F8, C3F2, C3F3, C3F4	, C4F4, C2F1, C2AR1, C3AR14, C1AR14, C4AR15, C6AR15, C3AR1, C5AR15	C4F3, C3F6, C4F4, C3F5, C4F5, C4F2, C4F6, C3F4, C3F3
S8	10	C1F2, C3F1, C5F1, C2F1, C6F8, C2AR1, C1F7, C2F2, C1F3, C1F4	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2	C2AcF, C1AcF, C2F1, C2F2, C6F5, C6F4, C6F6, C6F9, C6F8, C6F7	C3F7, C4F3, CC2, C3AR14, C6AR15, C1AR15, C2AR15, C4AR15, C6F3, C2AR6	C2AR7, C6AR6, C4AR7, C3AR9, C4AR6, C4AR8, C3AR7, C6AR7, C2AR8, C3AR8
S9	7	C2AcF, C1AcF, C5F9, C6F7, C1F3, C3AR10, CC6	C1F1, C2F1, C5F1, C6F1, C1F2, C2F2, C3F2	C1AcF, C2AcF, C2F7, C2F8, C2F1, C2F2, C2F9	C2F3, C2AcF, C6F6, C2AR14, C3AR14, CC12, C4AR15	C1F3, C1F2, C1F4, C2F6, C2F5, C2F4, C1F5
S10	12	C2AcF, C3F3, C1AcF, C5F9, C1F6, C3AR2, C4F1, C3F2, C1F5, C4F7, C2F6, C3AcF	C1F1, C3F1, C4F1, C5F1, C1F2, C3F2, C4F2, C5F2, C1F3, C3F3, C4F3, C5F3	C2AcF, C1F4, C1F5, C1F7, C1F8, C1F3, C1F6, C1F9, C1F1, C1F2, C5F6, C5F5	C1F7, C4AR1, C2AR10, CC12, C6AR15, C5AR15, CC2, C6F8, CC14, C3F5, C4AR14, CC5	C1AR8, C4F4, C4F3, C4AR8, C4F5, C1AR7, C4F6, C4AR7, C5AR5, C4F2, C6AR8, C2AR8

with O2 with a medium force level and tested with O2 with all force levels. The figure indicated that the F1 score of the existing feature selection methods fluctuated with the number of features. These fluctuating characteristics implied that all features did not contribute to enhancing the F1 score; instead, some of the features played a negative role in the EMG-PR performance. Again, it was clear from Fig. 2 that the proposed feature selection method achieved 100% F1 score using only 6 efficient features. It was about 4% to 5% higher F1 scores than the existing methods, where chi-square, ReliefF, MRMR, and NCA achieved the highest F1 score of 95.11%, 95.59%, 95.87%, and 94.96% using 157, 4, 56, and 136 features, respectively. It could be noted here that the other two classifiers, SVM and LDA, also followed KNN. So, the proposed feature selection method would be able to select the least number of features with improved EMG-PR performance for forearm orientation and muscle force invariant EMG-PR.

B. TRAINING FOR ONE ORIENTATION WITH ONE FORCE LEVEL (CASE 1)

To find the force invariant properties of the proposed feature selection method, we trained the classifiers for one orientation with one force level and tested the classifiers for trained orientation with all force levels. The force invariant EMG-PR performances for each orientation, O1, O2, and O3, are shown in Table 1. The summary of the tables is shown in Fig. 3a, Fig. 3b, and Fig. 3c, where only F1 scores with standard deviation across the subjects are plotted. The experimental results indicated that the proposed feature selection method overperformed existing methods considered in terms of performance and standard deviation. The force invariant EMG-PR performance was highest when the KNN classifier was trained with O2 with a medium force level. In this best training arrangement, the proposed feature selection method achieved the highest accuracy, sensitivity, specificity, precision, F1 score, and MCC of 99.34%, 98.01%,

Subjects	No. of			Selected Features		
	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA
S1	11	C1AcF, C1F1, C2F8, C4F4, C1AR1, C3AR3, C3F6, CC6, C1F8, C2F9, C4AR3	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C1F3	C1AcF, C3AcF, C2AcF C1F1, C1F2, C1F4, C1F8, C1F7, C1F3, C1F9, C1F5	, C1AcF, C5F2, C1AR3, CC5, C3AR15, C2AR15, C6AR10, CC14, C4F1, CC7, C1AR15	C1F3, C1F2, C1F4, C1F5, C1F6, C5F4, C5F3, C5F5, C5F6, C5F2, C1F7
S2	17	C2AcF, C2F7, C3F4, C4F8, C6F6, C1F6, C2F1, C4AR1, C3AcF, C1AcF, C4AR4, C4AR3, C6F9, CC3, C4AR14, CC1, C4AR5	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2, C1F3, C2F3, C3F3, C4F3, C5F3, C6F3	C2AcF, C1AcF, C3AcF C3F1, C3F7, C3F2, C3F3, C3F8, C4F2, C4F1, C4F3, C3F4, C4F7, C3F9, C3F5, C3F6, C4F4	, C1AcF, C1F4, C6F7, C4AR2, C2AR15, CC4, C1AR15, CC1, CC15, C3AR14, C2AR7, C4AR15, CC3, C5F5, C4F9, CC7, C3AcF	C6AR9, C3AR7, C4AR8, C4AR9, C6AR8, C1AR7, C3AR8, C3AR6, C2AR7, C2AR8, C6AR7, C1AR6, C2AR6, C5AR8, C4AR7, C1AR9, C5AR7
S3	19	C4F7, C2F8, C1F6, C5F7, C2AcF, C1F7, C3F1, C1F2, C3AR8, C3F2, C5F3, CC2, C4AR14, C5F8, C3AR13, C1AcF, C6F7 CC6, C6F8	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2, C1F3, C2F3, C3F3, C4F3, C5F3, C6F3, C1F4	C2AcF, C1AcF, C1F4, C1F8, C1F3, C1F7, C1F5, C1F9, C1F6, C1F1, C1F2, C2F1, C3F1, C2F2, C3F7, C3F8, C3F2, C3F5, C3F9	C2AcF, C1F3, C3F3, C6AR14, C4AR14, C2AR14, C5AR15, C1AR15, C3AR15, C3AR3, C6F5, CC3, CC4, CC1, C2AR3, C1F9, C3AcF, CC2, CC6	C4AR8, C4AR9, C5AR7, C5AR8, C4F3, C4AR7, C4F4, C4F5, C4F6, C4F2, C5AR9, C4AR10, C5F5, C5F4, C1F6, C5F6, C1F5, C1F4, C5F3
S4	8	C2F2, C3F7, C2AcF, C1AR9, CC1, C4F1, C4F9, C2F7	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2	C2AcF, C3AcF, C2F2, C2F1, C2F3, C2F7, CC10, C1AcF	C3F7, C2F3, C3AR1, C2AR14, CC9, CC7, C2AcF, C6AR15	C2F2, C2F3, C1F3, C2F4, C1F2, C2F5, C2F6, C1F4
S5	11	C1F5, C3F3, C6F1, C2AcF, C1AcF, C2F7, C4F6, C3F2, C2F9, CC6, C3F4	C1F1, C3F1, C1F2, C3F2, C1F3, C3F3, C5F3, C1F4, C3F4, C5F4, C1F5	C2AcF, C1AcF, C3F2, C3F3, C3F1, C1F2, C3F4, C3F5, C3F6, C1F1, C3F7	C1F3, C1AcF, C3AR1, C2AR11, CC7, C6AR15, C4AR15, CC6, C3AcF, CC1, C1AR14	C1F3, C1F4, C3F6, C1F5, C3F5, C1F6, C3F4, C3F3, C3F2, C1F2, C5AR11
S6	10	C4F2, C3F2, C6F6, C3F4, C3F1, C2F1, C6F1, C2AcF, C1F7, C3F6	C1F1, C2F1, C3F1, C4F1, C6F1, C1F2, C2F2, C3F2, C4F2, C6F2	C2AcF, C4F1, C4F2, C4F7, CC6, C3F2, C4F3, C3F3, C4F8, C4F4	C4F3, C2AcF, CC11, C3AR12, CC4, C5AR15, C1AR14, C4AR15, C2AR13, CC13	C3F3, C3F2, C3F4, C3F5, C3F6, C4F2, C4F3, C6F3, C4F4, C6F4
S7	8	C4F4, C3F9, C2F3, C4F1, C5F2, C4AR1, C4F6, C4F9	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2	C2AcF, C3AcF, C1AcF C3F1, C3F7, C3F8, C3F2, C3F3	, C4F4, C2F1, C2AR1, C3AR14, C1AR14, C4AR15, C6AR15, C3AR1	C4F2, C4F3, C4F5, C4F6, C4F4, C5F2, C3F6, C3F5
S8	9	C1F7, C3F2, C4F3, C5F7, C4F8, C2F3, C2F1, C2F9, C4F4	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2	C2AcF, C1AcF, C2F1, C2F2, C6F5, C6F4, C6F6, C6F9, C6F8	C3F7, C4F3, CC2, C3AR14, C6AR15, C1AR15, C2AR15, C4AR15, C6F3	C2F2, C6F4, C2F3, C6F5, C6F3, C6F6, C3F5, C3F4, C3F6
S9	17	C3AcF, C2F9, C6F2, C3F2, C1F3, C6AR10, C2AcF, C2AR1, C5F6, C1F7, C1F4, C4F9, C1AcF, C3AR11, C2AR14, C1F1, C6AR9	C1F1, C2F1, C5F1, C6F1, C1F2, C2F2, C3F2, C5F2, C6F2, C1F3, C2F3, C4F3, C5F3, C6F3, C1F4, C2F4, C4F4	C1AcF, C2AcF, C2F7, C2F8, C2F1, C2F2, C2F9, C2F3, C2F4, C2F5, C3AcF, C2F6, C1F1, C1F7, C1F6, C1F5, C1F4	C2F3, C2AcF, C6F6, C2AR14, C3AR14, CC12, C4AR15, C6AR15, C5AR15, CC10, C1AR14, CC1, CC2, C1AR3, CC14, C2AR6, C6AR2	C6AR7, C6AR6, C6AR8, C6AR5, C3AR10, C6AR4, C3AR9, C3AR11, C4AR8, C4AR9, C6AR9, C4AR7, C4AR10, C3AR8, C3AR12, C4F2, C4AR6
S10	10	C1F7, C4F6, C3F1, C5F6, C4AR7, C5AR4, C1AcF, C3F7, C2AcF, C5AR1	C1F1, C3F1, C4F1, C5F1, C1F2, C3F2, C4F2, C5F2, C1F3, C3F3	C2AcF, C1F4, C1F5, C1F7, C1F8, C1F3, C1F6, C1F9, C1F1, C1F2	C1F7, C4AR1, C2AR10, CC12, C6AR15, C5AR15, CC2, C6F8, CC14, C3F5	C1F6, C1F5, C4F4, C4F3, C4F5, C1F4, C1F3, C4F6, C1F2, C4F2

TABLE 23. Selected features for training classifiers with O3 with a high force level and testing with O3 with all force levels.

99.60%, 98.14%, 98.02%, and 0.98, respectively, employing only 5 to 15 features (Table 19). Also, the proposed feature selection method improved the performances, accuracy, sensitivity, specificity, precision, F1 score, and MCC by 3.18%, 9.52%, 1.90%, 8.30%, 9.71%, and 0.11, respectively, when the performances were compared with the second-best performing method among the existing, i.e., chi-square. For the best-performing orientation, O2, we also evaluated *p*-values considering classifiers and feature selection methods (Table 6 and Table 7). The obtained *p*-values indicated that the F1 score significantly depended on the feature selection methods ($p \ll 0.001$) rather than the classifiers (p=0.68). In addition, the proposed feature selection method provided a significantly improved F1 score considering the existing four feature selection methods ($p \ll 0.001$). However, the experimental results indicated that the SVM classifier follows the KNN classifier, but another classifier, LDA, reported in various literature, provided relatively poor EMG-PR performance. Table 19 shows subject-wise selected features in this best training strategy for different feature selection methods.

Subjects	No. of			Selected Features		
	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA
S1	10	C3F2, CC9, C1AR3, C5F2, CC13, C3F1, C3F3, C3F7, CC6, C6AR12	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2	C1AcF, C3AcF, C1F1, C1F2, C2AcF, C1F7, C1F3, C1F4, C1F8, C1F5	C2F3, C3AcF, C1F7, CC4, C3AR15, C2AR15, C5AR15, C1AR15, CC9, C6AR14	C1F2, C1F3, C1F4, C4F2, C1F5, C5F2, C1F6, C5F3, C1AcF, C4F3
S2	13	C4F3, C5AR2, C1F2, C4F6, C5F2, C3AR10, C4F7, C3AR1, C2F9, C4F5, C4F8, C3AR4, C5AR9	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2, C1F3, C2F3	C2AcF, C1AcF, C3AcF, C3F1, C3F2, C3F7, C3F3, C3F4, C3F8, C3F5, C3F9, C3F6, C4F2	, C2AcF, C3F5, C4AR1, C3AR13, C2AR14, CC4, C5AR15, C1AR15, C4AR15, CC1, C6AR14, C5F1, C2F1	C5F3, C3F2, C3F3, C5F4, C4F4, C4F3, C4F5, C4F6, C5F5, C5F2, C3F4, C2F5, C2F4
S3	12	C1F1, C3F3, C5F6, C2AR1, C4F1, C1F3, CC5, C3F1, C4AR12, C1F4, CC2, C1F9	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2	C2AcF, C3AcF, C1AcF, C1F3, C1F1, C1F2, C2F2, C1F7, C1F4, C1F8, C4F2, C3F1	, C1F3, C2F3, C6AR5, C5AR15, C4AR15, C1AR15, CC1, C3F2, C2AR15, CC7, C3AR14, CC8	C1F3, C1F4, C1F5, C1F2, C1F6, C4F2, C4F3, C4F4, C4F6, C4F5, C5F3, C5F4
S4	15	C4F2, C1F6, C2F6, C1F2, C5F3, C1F7, C1F1, C2F3, C1F3, C4F6, CC5, CC10, C3AR15, C3F6, CC13	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C1F3, C2F3, C3F3, C4F3, C5F3	C1AcF, C3AcF, C2AcF, C2F2, C2F1, C2F3, C2F7, C1F3, C1F2, C3F1, C1F7, C1F1, C3F2, C2F8, CC10	, C1F2, C3AcF, C5AR12, C2AR14, C3AR15, C6AR15, CC8, C2F1, C4F6, CC3, C5F2, C4AR14, C1F9, CC10, C4F3	C1F3, C1F4, C1F5, C1F6, C2F2, C2F3, C4F3, C4F4, C2F4, C4F2, C4F5, C2F5, C5F3, C2F6, C1F2
S5	7	C1F5, C3F4, C5F3, C6F5, C4F2, CC10, CC15	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2	C2AcF, C3AcF, C1AcF, C3F2, C3F3, C3F1, C2F1	, C1F5, C2AcF, CC6, C2AR9, CC2, C3AR15, C4AR15	C1F3, C1F5, C1F6, C1F4, C2AcF, C1F2, C3F6
S6	6	C4F5, C2F1, C3F2, C1F1, C2F2, C1F7	C1F1, C2F1, C3F1, C4F1, C6F1, C1F2	C2AcF, C3AcF, C1AcF, C2F1, C4F2, C4F1	, C4F3, C2AcF, C6AR1, CC3, C1AR13, C4AR15	C4F2, C4F3, C4F4, C4F5, C4F6, C3F3
S 7	5	C1F2, C4F8, C3F7, C6F6, C3F6	C1F1, C2F1, C3F1, C4F1, C5F1	C2AcF, C1AcF, C3AcF, C3F1, C3F7	, C4F6, C3AR1, C6AR8, C1AR15, C4AR15	C4F3, C4F4, C4F5, C4F2, C4F6
S8	13	C3F3, C2F6, C6F9, C3F9, CC8, C2AR5, C4F2, C1AR3, C2F7, C3F6, C2F8, CC3, C2AR14	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2, C1F3	C2AcF, C3AcF, C1F2, C1F3, C6F2, C6F1, C1F7, C1F4, C1F5, C1F1, C1F8, C2F1, C1F6	C3F9, C6F1, C1AcF, C3AR14, C2AR15, C4AR15, C2AR1, CC7, CC8, C4AR4, C1F6, C2F7, CC9	C3AR7, C5AR7, C4AR6, C3AR9, C2AR6, C4AR10, C1AR9, C3AR10, C1AR8, C2AR8, C6AR8, C3F4, C3F3
S9	16	C5F4, C2F2, C2F9, C3F3, C1F3, C2AR6, C6AR13, CC10, C2F8, C2AR15, C2F5, CC13, C1F7, C3F2, CC3, C3F6	C1F1, C2F1, C3F1, C5F1, C6F1, C1F2, C2F2, C3F2, C5F2, C6F2, C1F3, C2F3, C3F3, C4F3, C5F3, C6F3	C2AcF, C3AcF, C1AcF, C2F8, C2F9, C2F7, C2F3, C2F1, C2F4, C2F2, C2F5, C2F6, C1F1, C1F7, C1F2, C1F3	, C5F7, C1F7, C3AR13, C6AR15, C2AR14, CC10, CC5, C6AR5, C2AR2, C1AR12, C1AcF, C2F9, CC1, CC13, CC11, C5AR1	C2AR10, C2AR9, C4AR7, C4AR8, C4AR6, C4AR9, C2AR11, C2AR8, C4AR5, C4AR10, C2AR12, C4AR4, C3AR8, C3AR7, C4AR11, C5AR8
S10	12	C4F3, C1F7, C4AR2, C1F2, C5F1, C4F6, CC11, C4AR1, C1F3, C4F5, C1F1, CC6	C1F1, C3F1, C4F1, C5F1, C1F2, C3F2, C4F2, C5F2, C1F3, C3F3, C4F3, C5F3	C3AcF, C1AcF, C2AcF, C5F3, C5F4, C5F7, C5F1, C5F2, C5F5, C5F8, C4F6, C5F6	, C1F3, C2AcF, C1AcF, C4AR14, C3AR14, C1AR15, C6AR15, CC8, CC2, C6F7, CC14, C1AR9	C5F3, C5F4, C5F2, C5F5, C5F6, C4F2, C1F3, C3F3, C4F6, C4F5, C1F2, C3F2

TABLE 24. Selected features for training classifiers with O1 with a medium force level and testing with all orientations with all force levels.

The proposed feature selection method selected AcF, F1, F2, F3, F4, F5, F6, F7, F8, CC, and AR in most subjects, which implied that these features were significant for force invariant EMG-PR.

C. TRAINING FOR ONE ORIENTATION WITH A MEDIUM FORCE LEVEL (CASE 2)

To find the performance of the proposed feature selection method for forearm orientation and force invariant EMG-PR, we trained the classifiers for one orientation with a medium force level and tested the classifier for all orientations with all force levels. The orientation and force invariant performances in terms of accuracy, sensitivity, specificity, precision, F1 score, and MCC with standard deviation are shown in Table 2. The summary of results is shown in Fig. 4, where the F1 score is used only for simplicity. In this orientation and force invariant scheme, O2 with a medium force level performed well for training the classifiers. The proposed feature selection method overperformed existing methods in this training arrangement. The proposed feature selection method improved accuracy, sensitivity, specificity, precision, F1 score, and MCC by 4.28%, 12.85%, 2.57%, 10.99%, 13.92%, and 0.15, respectively, when the proposed method was compared with the second-best performing method, chi-square. In this performance evaluation, the proposed feature selection method with the KNN classifier achieved accuracy, sensitivity, specificity, precision, F1 score, and MCC of 92.84%,

Subiasta	No. of			Selected Features			
Subjects	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA	
S1	14	C2F4, C3F4, C1F1, C5F9, CC13, C3F1, CC2, CC10, C3F9, C3F2, C1AR4, C2F6, C3F5, C3F7	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C1F3, C2F3, C3F3, C4F3	C1AcF, C1F2, C1F1, C2AcF, C3AcF, C1F3, CC2, C1F7, C1F4, C1F8, C1F5, CC6, C1F9, CC15	C2F3, C3AcF, C2AcF, C1AR14, CC8, C5AR15, C6AR13, C4AR15, CC2, CC9, C3AR14, C2AR13, C3F9, C5F6	C6AR6, C3AR8, C1AR8, C1AR7, C4AR8, C1AR9, C6AR5, C3AR9, C5AR8, C3AR10, C6AR7, C1AR10, C1AR6, C4AR7	
S2	17	C3F8, C5F2, C2AR1, C4F6, C6F7, C4AR2, C6AR1, C4F4, C3AR4, C4F3, CC10, C2AR7, C4F7, C2AR13, C3AR15, C2AR15, C2AR10	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C3F2, C4F2, C5F2, C1F3, C3F3, C4F3, C5F3, C6F3, C1F4, C3F4, C4F4	C2AcF, C1AcF, C3AcF C3F1, C3F2, C2F1, C3F7, C3F3, C2F2, C4F3, C4F2, C2F3, C2F7, C4F1, C2F5, C4F7, C2F6	, C2AcF, C2F1, CC11, C3AR12, C4AR15, C5AR15, CC14, C6F3, C1AR15, C6AR14, C4AR2, CC15, C1F6, C4F6, C1AcF, C5AR8, CC6	C2F6, C5F2, C2F5, C3F3, C2F4, C3F4, C4F2, C3F5, C2F3, C4F3, C3F2, C5F3, C3F6, C6F3, C4F4, C2F2, C6F6	
S3	16	C1F2, C3F6, C6F5, C3F7, C1F1, C3F2, CC6, C4F5, C1F7, CC1, C1F3, C3F1, C5F9, C4AR5, C2F6, C1AR12	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, , C1F2, C2F2, C3F2, C4F2, C5F2, C6F2, 2 C1F3, C2F3, C3F3, C4F3	C2AcF, C1AcF, C3AcF C1F3, C1F7, C1F1, C1F4, C1F2, C4F2, C2F2, C1F8, C4F1, C1F5, C2F1, C1F9, C4F3	, C1F1, C2F3, C6AR13, C4AR15, C3AR14, CC8, CC7, C2AR13, C3F6, C4AR2, C5AR15, C1AcF, C1AR15, CC1, C3AR1, CC2	C1F2, C5F3, C1F3, C5F2, C1F4, C1F5, C5F4, C1F6, C5F5, C5F6, C3F2, C4F6, C4F5, C4F4, C4F3, C2F5	
S4	13	C4F1, C1F3, C3F6, C4AR1, C5F7, C1F1, C2F6, C3AR6, C1F6, C4F8, C2F5, C5F2, C1F7	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C1F3, C2F3, C3F3	C2AcF, C3AcF, C1AcF C2F1, C2F2, C2F7, C2F3, C1F2, C1F3, C1F1, C1F7, C3F1, C3F2	, C1F2, C3AcF, C2F4, C5AR14, C2AR14, C3AR15, C1AR15, CC7, C4AR15, C3F5, CC5, CC8, C3AR4	C1F3, C1F4, C1F5, C2F2, C1F6, C2F3, C2F4, C3F2, C2F5, C5F3, C2F6, C1F2, C5F2	
S5	9	C1F5, C5F2, C2F9, C3F9, C5F4, CC8, C1F6, C5F1, C1F8	C1F1, C3F1, C5F1, C1F2, C3F2, C5F2, C1F3, C3F3, C5F3	C2AcF, C3AcF, C1AcF C3F2, C3F3, C2F1, C3F1, C5F3, C3F4	, C1F4, C2AcF, CC10, CC7, C2AR13, C3AR14, C4AR15, C5AR15, C1AR15	C6AR8, C6AR7, C6AR9, C6AR6, C3AR7, C3AR6, C6AR5, C3F3, C3F6	
S6	13	C4F7, C2F2, C1F3, C2F1, C4F9, C1F5, CC3, C4F5, C2F7, C6F1, C4F1, C1F6, C1F2	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C1F3, C2F3, C3F3	C2AcF, C1AcF, C3AcF C4F1, C4F2, C4F7, C4F8, C4F3, C2F1, C4F4, C3F1, C3F2, C4F9	, C4F3, C6AR3, C3AR11, C6AR15, C1AR15, C3AR15, C2AR12, CC4, C1F8, C5AR15, CC3, C4AR14, C2F1	C4F3, C4F2, C3F2, C2F3, C4F4, C2F4, C3F3, C2F2, C2F5, C2F6, C4F5, C3F4, C1F6	
S7	11	C4F4, C3F2, C3AR9, C4F1, C4AR3, C1F2, C5AR7, C3F1, C3F3, C4AR7, C4AR13	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C1F3	C2AcF, C1AcF, C3F1, C3F7, C3F2, C3F8, C4F1, C3F9, C4F2, C3F3, C3F4	C4F4, C3AcF, C4AR12, C2AR11, CC4, C6AR15, C5AR15, C1AR15, C3F2, C3AR12, C5F6	C3F3, C3F4, C3F6, C3F5, C3F2, C4F6, C4F5, C4F4, C4F3, C5F3, C5F4	
S8	7	C1F2, C3F2, C4F2, C2F2, C2AR7, C4F1, C3F3	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2	C2AcF, C1AcF, C1F2, C2F1, C3AcF, C2F2, C1F1	C1F2, C3AcF, C6AR14, C3AR15, C4AR15, C1AR15, C2AR10	C3F3, C1F3, C1F4, C1F5, C3F4, C1F6, C1F2	
S9	6	C5F9, C3F3, C1F2, C2F3, C3AR3, C1AR1	C1F1, C2F1, C3F1, C5F1, C6F1, C1F2	C2AcF, C1AcF, C2F9, C2F8, C2F7, C3AcF	C5F4, C1F3, C1AcF, C6AR9, C4AR15, C2AR15	C1F3, C1F2, C1F4, C2F6, C5F4, C5F2	
S10	5	C1F7, C1AcF, C3F8, C1F4, C1F2	C1F1, C2F1, C3F1, C4F1, C5F1	C3AcF, C1AcF, C2AcF C2F3, C2F2	, C1F3, C2AcF, C2F7, C3AR14, C1AR15	C1F4, C1F5, C1F3, C1F6, C2F2	

TABLE 25. Selected features for training classifiers with O2 with a medium force level and testing with all orientations with all force levels.

78.52%, 95.70%, 80.35%, 78.44%, and 0.75, respectively employing 5 to 17 features only (Table 25). The proposed feature selection method selected F1, F2, F3, F4, F5, F6, F7, F8, CC, and AR in most subjects. In addition, we performed two-way ANOVA considering independent variables, classifiers, and feature selection methods (Table 8 and Table 9). The obtained *p*-values indicated that the F1 score significantly depended on the feature selection methods ($p \ll 0.001$) rather than the classifiers (p=0.26). Also, we obtained much smaller *p*-values ($p \ll 0.001$) when the proposed feature selection method was compared with each of the existing feature selection methods, which confirmed the significant performance improvement of the proposed feature selection method.

D. TRAINING FOR TWO ORIENTATIONS WITH A MEDIUM FORCE LEVEL (CASE 3)

To achieve satisfactory EMG-PR performance for forearm orientation and force invariant EMG-PR, we trained the classifiers for two orientations with a medium force level and tested the classifiers for all orientations with all force levels. The detailed EMG-PR performances with standard deviation are shown in Table 3. The performances are also shown in Fig. 5 using F1 scores only. In this training scheme, the proposed feature selection method achieved the highest performance training KNN classifier for both O1 and O3 with a medium force level. The obtained F1 score was satisfactory and about 13% higher than case 2. In this study, the proposed feature selection method improved accuracy,

Subjects	No. of			Selected Features		
Subjects	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA
S1	20	C3F7, C2F7, CC2, C3F5, C1AR10, CC13, C5F1, C4F8, C3F2, C5F9, C4AR12, C3F1, C1F3, CC11, C2F1, C1AR15, C3F6, C3AR12, C2F2, C3F9	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C1F3, C2F3, C3F3, C4F3, C5F3, C1F4, C2F4, C3F4, C4F4, C5F4	C1AcF, C3AcF, C2AcF, C1F1, C1F2, C1F3, C1F7, CC2, C1F4, C5F8, C5F1, C5F7, CC13, C5F4, C1F8, C5F3, C5F2, C6F2, C5F9, C6F1	, C2F7, C3AcF, C1AR14, CC4, C4AR15, CC8, C3AR15, C5AR15, C6AR14, CC14, CC9, CC1, C3AR4, C2AR15, C4AR4, C1F8, CC3, C5AR2, CC13, C1AR4	C6AR9, C5AR7, C5AR8, C6AR10, C5AR6, C6AR8, C4AR9, C5AR9, C6AR11, C5AR5, C4AR8, C1AR10, C6AR7, C4AR10, C5AR10, C6AR12, C1AR11, C5AR4, C1AR9, C3AR11
S2	13	C4F4, C4F3, C4F7, C4F6, C3F1, C4F5, CC15, C2AcF, C1F5, C4F9, CC11, C5F6, C4F8	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C1F3, C2F3, C3F3	C1AcF, C2AcF, C3AcF, C2F1, C2F2, CC14, C2F7, C6F2, C2F8, C6F1, C2F3, C2F9, C4F1	C4F4, C2AcF, C1AR2, CC7, C1AR15, C6AR15, C2AR14, C2F8, C5AR14, C4AR15, CC6, C6F4, C6AR2	C3F2, C3F3, C3F6, C3F4, C3F5, C4F4, C4F3, C4F5, C2F5, C2F6, C4F6, C6F6, C2F4
S3	10	C1F2, C6F6, C1AR5, C4F1, C4AR1, CC4, C4F8, C2AR1, C1AR1, CC6	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2	C2AcF, C3AcF, C1F4, C1F3, C1F7, C1F8, C1AcF, C1F5, C1F9, C1F6	C1F1, C2F3, C6AR1, C6AR15, C4AR15, C2AR15, C3F8, C4AR2, CC7, CC8	C1F3, C1F2, C1F4, C1F5, C1F6, C2F6, C2F5, C4F3, C2F4, C4F2
S4	16	C4F2, C1F2, C3F4, C5F2, C1F8, C4AR4, CC3, C3F6, C1F7, C3F9, C1F3, C5F1, C1F4, C1F1, C5F7, C1F9	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2, C1F3, C2F3, C3F3, C4F3	C1AcF, C3AcF, C2AcF, C3F1, C2F2, C1F3, C3F2, C2F1, C1F7, C1F1, C1F2, C3F3, CC10, C3F7, C3F4, C5F3	C3F1, CC9, C3AR15, C5AR15, C4AR15, C1AR15, C2F2, C6F4, CC5, C1AcF, C2AR3, C1F1, CC8, C3AcF, C4F3, C5F2	C1F3, C5F3, C4F2, C1F4, C5F4, C2F2, C4F3, C1F2, C5F5, C3F2, C1F5, C3F3, C2F3, C5F6, C3F4, C5F2
S5	6	C1F5, C3F5, C5F2, C6F7, C2F8, C1F8	C1F1, C3F1, C5F1, C1F2, C3F2, C5F2	C3AcF, C2AcF, C1AcF, C2F1, C2F2, C5F3	, C1F3, CC3, C4AR7, CC7, C2AR14, C3AR14	C5AR6, C6AR9, C1F4, C1F5, C1F6, C5AR5
S6	7	C4F8, C2F1, C1F6, C3F8, C1F4, CC10, C2AR1	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2	C2AcF, C3AcF, C1AcF, C4F2, C4F1, C3F5, C3F4	, C4F8, C3F2, C2AR2, C1AR11, C6AR15, C4AR15, C5AR15	C1AR8, C1AR7, C1AR9, C1AR6, C1AR10, C5AR10, C1AR5
S7	8	C4F6, C3F1, C6F9, C6F8, C6F6, C4F5, C6F7, C4AR13	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2	C2AcF, C3AcF, C1AcF, C4F1, C4F2, C4F3, C4F7, C4F4	, C4F9, C3AcF, C3AR1, CC4, C4AR14, C2AR14, C6AR15, C5AR15	C4F4, C4F5, C4F3, C4F6, C4F2, C3F3, C3F4, C3F5
S8	10	C4F1, C3F2, C2F5, C1F2, C6F6, C2F3, C2F1, C3F1, CC14, C2F6	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2	C1AcF, C1F7, C1F8, C2AcF, C1F9, C3AcF, CC11, C1F5, C1F4, C1F3	C1F2, C2AcF, C5AR9, C3AR14, C2AR14, CC14, C2F7, CC9, CC11, C6F5	C4F3, C4F4, C4F5, C4F6, C4F2, C3F4, C3F3, C3F5, C3F6, C3F2
S9	9	C2F4, C5F7, C2F1, CC9, C3F2, C1F9, C5F8, CC4, C2F2	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2	C2AcF, C3AcF, C1AcF, C1F1, C1F2, C1F7, C1F8, C4F1, C1F3	, C5F4, C1F3, C3AcF, C4AR14, C6AR15, CC5, C2AR14, C4F7, C3AR13	C4F2, C4F3, C4F4, C4F5, C4F6, C1F2, C2F4, C2F5, C2F3
S10	9	C4F6, C3F1, C6F4, C1F7, C3F2, C4F5, C2F1, C4F9, C4AR15	C1F1, C3F1, C4F1, C5F1, C1F2, C3F2, C4F2, C5F2, C1F3	C3AcF, C1AcF, C2AcF, C1F7, C1F6, C1F8, C1F5, C1F4, C1F9	C1F2, C2AcF, CC11, C2AR10, C6AR15, C2F6, CC15, C3F9, C1AR14	C1F2, C1F3, C3AcF, C5F2, C5F6, C2F2, C3F2, C5F5, C3F3

TABLE 26. Selected features for training classifiers with O3 with a medium force level and testing with all orientations with all force levels.

sensitivity, specificity, precision, F1 score, and MCC by 3.82%, 11.45%, 2.29%, 9.86%, 11.43%, and 0.13, respectively, when the proposed method was compared with chisquare. The proposed feature selection method with the KNN classifier achieved accuracy, sensitivity, specificity, precision, F1 score, and MCC of 97.19%, 91.57%, 98.31%, 92.14%, 91.46%, and 0.90, respectively, employing 7 to 20 features only (Table 28). The proposed feature selection method selected F1, F2, F3, F4, F5, F6, F7, F8, CC, and AR in most subjects. Again, we evaluated *p*-values considering independent parameters, classifiers, and feature selection methods (Table 10 and Table 11). The obtained *p*-values indicated that the F1 score significantly depended on the feature selection methods ($p \ll 0.001$) rather than the classifiers (p=0.051). Also, the F1 score obtained by the proposed feature selection method and each of the existing feature selection methods were significantly different since *p*-values were much smaller than 0.001.

E. TRAINING FOR ALL ORIENTATIONS WITH A MEDIUM FORCE LEVEL (CASE 4)

In this study, we trained the classifiers for all orientations with a medium force level and tested the classifiers for all orientations with all force levels. The detailed EMG-PR performances with standard deviation are shown in Table 4. The summary of the performances is also shown in Fig. 6 using F1 scores only. The proposed feature selection method achieved the highest performance with the KNN classifier in this

Subjects	No. of			Selected Features		
Subjects	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA
		C5F2, C1AcF, C3F6, C1F5, C3AcF, CC13,	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2,	C1AcF, C3AcF, C1F1, C1F2, C1F7, C1F4,	C1AcF, C2F7, C1AR12, CC5, C3AR15, C2AR15,	C1F3, C1F4, C1F2, C1F5, C1F6, C5F3,
		CC2, C5F1, C3F9,	C2F2, C3F2, C4F2,	C1F3, C1F8, C1F5,	C5AR14, C6F3,	C5F4, C5F5, C5F6,
S 1	19	C3F5, C5F8, C2AR3,	C5F2, C1F3, C2F3,	C1F9, C1F6, C2AcF,	C6AR14, C4AR15, CC2,	C5F2, C4F3, C4F4,
		C1AR6, C6AR15,	C3F3, C4F3, C5F3,	CC2, C5F2, CC6,	C5AR1, C3AR2, CC9,	C4F2, C4F5, C4F6,
		C5AR10, C3F3, C5F7,	C1F4, C2F4, C3F4,	CC14, CC15, C5F1,	C3AcF, C1AR1, CC11,	C1F7, C1F1, C1F8,
		C3F8, C3F4	C4F4	CC13	CC10, CC13	C1F9
		C3AcF, C4F9, C1F2,	C2F1, C3F1, C4F1,	C2AcF, C1AcF, C3AcF,	, C3AcF, C1F7, C1AR2,	C2AR7, C1AR7,
S2	5	C6F9, C1F7	C5F1, C6F1	C3F1, C3F2	CC11, C5AR15	C5AR7, C4AR7, C1AR5
		C1F2, C3F2, C6F7,	C1F1, C2F1, C3F1,	C2AcF, C1AcF, C3AcF,	, C1F1, C2F3, C6AR13,	C5AR8, C5AR7, C1F4,
		C4F4, C1F4, CC2,	C4F1, C5F1, C1F2,	C1F3, C1F1, C1F2,	C3AR14, C5AR15, CC8,	C1F3, C4F3, C4F4,
S3	13	C1F3, C3F7, C5F9,	C2F2, C3F2, C4F2,	C1F4, C1F7, C4F2,	CC11, C4AR14,	C1F5, C4F5, C4F6,
		C3AR10, CC3, C3F3,	C5F2, C1F3, C2F3,	C1F8, C4F1, C1F5,	C2AR13, C3F7, CC1,	C1F6, C4F2, C3F4,
		CC6	C3F3	CIF9	CIF4, CC/	C3F3
64	7	C4F2, C3AcF, C1F3, C2F7, C1F1, C2F4	CIF1, C2F1, C3F1, C4F1, C5F1, C1F2	C2AcF, C3AcF, C1AcF,	, CIF2, C2F3, CC9,	C1F3, C2F2, C2F3,
54	/	C2F7, C1F1, C2F4,	C4F1, C5F1, C1F2,	C2F2, C2F1, C2F3, C2F7	COAR15, CZAR14,	C1F4, C2F4, C2F5, C2F6
		C1E5_C5E2_C3E5	C1F1 C3F1 C5F1	C2F/	CIF4 CIAcE CC5	C5F2 C1F3 C5F3
\$5	8	C1P5, C3P2, C3P5,	C1F1, C3F1, C3F1, C3F1, C3F1, C1F2, C3F2, C5F2	C3E2 $C3E3$ $C3E1$	$CC7 C4\Delta R15 C5\Delta R15$	C1F2, C1F3, C3F3, C1F2, C5F4, C3F2
55	0	C4F1 C1F4	C1F3, C3F3	C3F1, C3F4	C6AR14 $C1AR15$	C3F3, C1F4
		C4F5, C2F1, C1F9.	C1F1, C2F1, C3F1.	C3AcF, C2AcF, C1AcF.	C4F4, C3AR3, CC14,	C4AR6. C4AR5.
S 6	7	C3F2, C3AcF, C4F4,	C4F1, C6F1, C1F2,	C4F1, C4F2, C4F7.	C2AR12, C3AR14,	C6AR7, C3AR9,
		C1F6	C2F2	C4F3	C4AR15, C1AR15	C4AR7, C4AR10, C4F2
		C1F3, C3F2, C4AR5,	C1F1, C2F1, C3F1,	C1AcF, C2AcF, C3F1,	C4F9, C3AR1, C4AR14,	C4F4, C4F3, C4F5,
		C4F5, C3F8, C1AR9,	C4F1, C5F1, C1F2,	C3F7, C3F2, C3F8,	C2AR13, CC4, C1AR15,	C4F6, C4F2, C3F6,
S 7	14	C3F1, C4F4, C3F7,	C2F2, C3F2, C4F2,	C3F3, C3F9, C3F4,	C6AR15, C3F1, C1AR4,	C3F3, C3F5, C3F4,
		C4AR1, C4AR3,	C5F2, C1F3, C2F3,	C5F4, C5F3, C3F5,	C5AR14, C5F8, CC2,	C3F2, C1F2, C1F3,
		C3AR12, C3F9, C4F1	C3F3, C4F3	C3F6, C5F7	C4AR3, CC7	C1F4, C1F5
		C3F9, C2F6, C6F8,	C1F1, C2F1, C3F1,	C2AcF, C3AcF, C2F1,	C1F2, C2AcF, C6AR1,	C3F4, C3F5, C3F3,
		C4F1, C5AR1, C2AR7,	C4F1, C5F1, C6F1,	C2F2, C6F8, C6F4,	C1AR14, C4AR14,	C3F6, C2F2, C2F4,
S 8	14	C1F6, C2F7, C6F1,	C1F2, C2F2, C3F2,	C6F2, C6F1, C6F5,	C2AR15, C3AR15,	C2F3, C2F5, C2F6,
		$C_{2}ARI, C_{4}F_{2}, C_{3}F/,$	C4F2, C5F2, C6F2, C4F2, C4F2	C6F9, C6F6, C6F7, C6F2, C1F2	CC14, C2AR4, CC4,	C3F2, C4F3, C4F4, C4F2, C4F5
		CIARIZ, C3F6	CIF3, C2F3	C6F3, C1F2	C2F/, C0F2, CC8, C1AP2	C4F2, C4F5
		C5E5 C2E7 C1E1	CIEL C2EL C3EL	C2AcE C1AcE C2E9	C5F4 C1F1 C1AcF	C5AP6 C3AP7
		$C_{2}AR_{1}C_{3}F_{2}C_{2}F_{2}$	C5F1, C6F1, C1F2	$C_{2ACF}, C_{1ACF}, C_{2F5}, C_{3AcF}, C_{2F8}, C_{2F7}$	C6AR14 C4AR14	C2AR7 $C3AR6$
		C1F8 CC10 C1F3	C2F2, C3F2, C5F2	C2F1 C2F3 C2F4	C3AR14 $C2AR14$ $CC5$	C5AR5 $C2AR10$
S 9	16	C1AR7 C2F6 C1F7	C6F2, $C1F3$, $C2F3$	C2F5 $C2F6$ $C2F2$	CC11 C4F1 C1AR14	C2AR9 C5AR7
~		C2F4, C6AR9, C2F3,	C3F3, C5F3, C6F3,	C6F2, C6F1, C4F2,	CC1. C2F6. C1AR1.	C1AR6, C1AR7,
		C2F9	C1F4	C1F1	C5F2, C1F9	C2AR6, C3AR5, C5F2,
						C3AR8, C1F2, C5F3
		C1F7, C1AcF, C4F6,	C1F1, C3F1, C4F1,	C1AcF, C3AcF, C2AcF,	, C1F7, C1AcF, C6AR13,	C4F6, C4F5, C5F3,
		C6F8, C2F5, C1F8,	C5F1, C1F2, C3F2,	C4F6, C4F5, C4F9,	C1AR15, CC8, C5AR15,	C5F4, C4F4, C5F5,
S10	12	C3F2, C1F4, C4F9,	C4F2, C5F2, C1F3,	C4F4, C5F4, C5F3,	C2AR14, C3AR15,	C5F2, C5F6, C3F3,
		C2F1, C1F9, C5AR1	C2F3, C3F3, C4F3	C5F5, C3F1, C4F8	C4AR14, C6F6, CC5,	C3F4, C4F3, C1F3
					CC11	

training scheme. The obtained F1 score was 1.81% higher than in case 3. However, the proposed feature selection method improved accuracy, sensitivity, specificity, precision, F1 score, and MCC by 3.35%, 9.14%, 1.83%, 8.67%, 9.22%, and 0.11 respectively, when the proposed method was compared with ReliefF. In this training scheme, the proposed feature selection method with the KNN classifier achieved accuracy, sensitivity, specificity, precision, F1 score, and MCC of 97.77%, 93.31%, 98.66%, 93.53%, 93.27%, and 0.92, respectively employing 7 to 19 features only (Table 30). The proposed feature selection method selected AcF, F1, F2, F3, F4, F5, F6, F7, F8, CC, and AR in most of the subjects. Again, we evaluated *p*-values considering independent parameters, classifiers, and feature selection methods (Table 12, Table 13, and Table 14). The obtained *p*-values indicated that the F1 score significantly depended on both the feature selection methods ($p \ll 0.001$) and the classifiers (p=0.012). Also, the F1 score obtained by the proposed feature selection method and each of the existing feature selection methods were significantly different since *p*-values were much smaller than 0.001. Besides, the KNN classifier provided significantly improved performance than LDA (p=0.037), but the SVM classifier provided an almost equal F1 score to the KNN classifier (p=1).

Subtrat	No. of			Selected Features		
Subjects	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA
S1	19	C3F2, C5F2, CC13, C6F2, C1F4, CC10, C3F4, C3F3, C2F9, C3F7, C3F1, C5AR9, C3F6, C3F8, CC2, C2F2, C1F5, C2F7, C3F5	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C1F3, C2F3, C3F3, C4F3, C5F3, C1F4, C2F4, C3F4, C4F4	C1AcF, C3AcF, C2AcF, C1F1, C1F2, C1F7, C1F3, C1F8, C1F4, C1F9, C1F5, C6F2, C1F6, CC13, C4F2, C6F1, C4F1, C5F1, C5F2	, C2F9, C1AcF, C1AR13, CC4, C4AR15, C2AR15, C3AR15, C5AR15, C6AR14, C5AR6, C6F2, CC3, CC9, C3AR7, CC6, CC7, CC1, CC10, C1AR1	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2, C1F3, C2F3, C3F3, C4F3, C5F3, C6F3, C1F4
S2	7	C2AcF, C4F9, C6F9, C2F9, C3F1, C3AR1, C3AR2	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2	C3AcF, C2AcF, C1AcF, C4F2, C4F1, C2F1, C4F3	, C4F4, C1AcF, CC11, C6AR14, C2AR14, C5AR14, C1AR14	C5F5, C5F4, C5F6, C5F3, C5F2, C4F3, C4F2
S3	11	C1F4, C3F8, C2AcF, C5F6, C1F1, C3F1, C2F1, C2AR3, C4AR5, C1F2, CC5	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C1F3	C2AcF, C3AcF, C1F4, C1F7, C1F3, C1F8, C1F5, C1F9, C1F6, C1F1, C1F2	C1F1, C2F2, C3AR13, C2AR15, C6AR15, C1AR15, C4AR1, C2AR4, CC8, C3F7, CC7	C1F4, C1F5, C1F3, C1F6, C1F2, C4F5, C4F6, C4F4, C3F2, C4F3, C3F3
S4	9	C4F2, C2F2, C3F6, C1F3, C5F3, C4F4, C4F9, C5F7, C4F6	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2	C1AcF, C3AcF, C2AcF, C2F2, CC10, C2F1, C2F3, C1F3, C1F7	, C3F1, C5F2, C6AR15, C3AR15, C4AR15, C2F8, C2AR14, CC5, CC15	C6AR7, C1AR7, C3AR6, C6AR8, C4AR9, C2AR4, C4AR11, C2F6, C2F5
S5	8	C5F4, C3F5, C1F9, C2AcF, C4F4, C6F6, C5F8, C5F5	C1F1, C3F1, C5F1, C1F2, C3F2, C5F2, C1F3, C3F3	C3AcF, C2AcF, C1AcF, C1F2, C1F7, C1F1, C1F3, C2F1	, C1F3, C1AR1, CC7, C3AR15, C4AR15, C4AR1, C3AR7, C1AcF	C1AR7, C1AR8, C1AR6, C1AR9, C1AR5, C1AR10, C1AR4, C5AR6
S6	17	C4F3, C2F1, C1F3, C3F5, CC3, C2AR1, C1F5, C4F9, C1F9, CC10, C5F2, C4F6, C6F3, C4F5, C4F8, C2AR7, C1F6	C1F1, C2F1, C3F1, C4F1, C6F1, C1F2, C2F2, C3F2, C4F2, C6F2, C1F3, C2F3, C3F3, C4F3, C5F3, C6F3, C1F4	C2AcF, C3AcF, C1AcF, C3F5, C3F6, C3F4, C3F8, C3F9, C4F2, C3F3, C2F1, C3F7, C4F1, C2F7, C4F3, C4F7, C4F4	, C4F4, C3F1, C2AR11, C1AR13, C5AR15, C4AR15, C3AR15, C1AcF, CC4, CC9, C6AR14, C1F7, CC14, C3AR11, CC5, C2F1, C6AR1	C3F3, C3F4, C3F5, C3F2, C3F6, C2F2, C4F2, C2F3, C4F3, C1F4, C4F4, C2F4, C1F5, C1F6, C2F6, C2F5, C4F5
S7	15	C4F4, C3F9, C6F6, C1AR3, C1F2, C4F1, C5F3, C2AR8, C4AR6, C6AR10, C1F7, CC15, C2AR5, C1F1, C5AR15	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2, C1F3, C3F3, C4F3, C5F3	C2AcF, C1AcF, C3AcF, C4F2, C4F1, C3F7, C4F3, C3F8, C3F1, C3F9, C4F7, C3F4, C3F3, C3F5, C3F6	, C4F6, C3AR2, C6AR13, CC4, C2AR14, C5AR15, C4AR14, C1AR14, C3F1, C5F2, C4AR3, C2AR9, CC2, C6F6, CC7	C1AR8, C4AR6, C3AR8, C6AR11, C4AR5, C6AR7, C6AR8, C1AR6, C4F4, C4F5, C1AR7, C4F3, C3F5, C3F6, C4F6
S8	20	C3F3, C2F6, C1F6, CC14, C2F1, C2F9, C3F8, CC10, C2AR3, CC8, C3F2, C6F9, C4F2, C4AR10, CC2, CC9, C3F1, C3AR15, C4AR14, C3F9	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2, C1F3, C2F3, C3F3, C4F3, C5F3, C6F3, C1F4, C2F4	C3AcF, C2AcF, C1F8, C1F7, C1F9, C1F4, C1F5, C1F3, C1F6, CC11, C6F2, C6F1, C1F2, C1F1, CC14, CC4, C6F3, C1AcF, C6F7, C4F3	C3F8, C1AcF, C5AR11, C2AR14, C3AR14, CC12, C1AR13, C6F6, CC1, CC10, C2AR1, C3AR1, C2F8, CC3, C1F1, C4AR13, CC9, C4F2, C6F7, C2F1	C2F4, C2F6, C2F5, C2F3, C2F2, C3F3, C4F5, C4F6, C4F4, C6F5, C6F6, C6F2, C6F4, C6F3, C3F2, C3F4, C4F3, C3F5, C3F6, C1F5
S9	14	C5F4, C2F2, C6F2, C5F6, C1F6, C2F9, C4F4, C2F6, C5F5, C4AR12, C2F8, C5F9, C2F1, C2AR12	C1F1, C2F1, C3F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2, C1F3, C2F3, C3F3	C3AcF, C2AcF, C1AcF, C1F1, C1F7, C2F9, C2F8, C1F2, C1F8, C2F7, C1F9, C1F3, C2F3, C2F4	, C5F4, C1F3, C4AR14, C6AR14, CC5, C2AR14, C4F4, CC1, C2F6, C3AR13, C5F1, CC4, C1AR14, CC3	C1AR8, C4AR10, C5AR9, C3AR8, C4AR8, C5AR8, C5AR7, C3AR7, C2AR7, C2AR9, C4AR6, C1AR6, C3AR6, C5AR6
S10	15	C4F6, C5F3, C1F4, C2F1, C4F9, C3F4, CC1, C2F9, C6F1, C1F6, C1F5, C5F4, C4F4, C2F2, C1F8	C1F1, C3F1, C4F1, C5F1, C1F2, C3F2, C4F2, C5F2, C1F3, C3F3, C4F3, C5F3, C1F4, C3F4, C4F4	C1AcF, C3AcF, C2AcF, C5F3, C5F2, C5F1, C5F7, C1F5, C1F4, C5F4, C1F6, C4F6, C1F3, C4F5, C5F5	, C1F3, C1AcF, C4AR3, C2AR12, C6AR15, CC4, C6F4, CC1, C3F9, C1AR15, C5AR14, C1AR3, CC15, C4F9, CC8	C4F6, C4F5, C4F4, C4F3, C1F3, C3F4, C3F3, C3F5, C1F4, C3F6, C5F3, C1F5, C5F4, C5F6, C5F5

TABLE 28. Selected features for training classifiers with 01 and 03 with a medium force level and testing with all orientations with all force levels.

F. PERFORMANCE COMPARISON

To compare and validate the proposed feature selection method for resolving forearm orientation and muscle force variation, we considered most related existing works shown in Table 5. In this table, some additional works that deal with muscle force variation were included since only two related works were found to the best of our knowledge. The table shows that the proposed feature selection method achieved 2.92% and 2.27% improved F1 scores compared to Rajapriya *et al.* [19] and Khushaba *et al.* [20], respectively, where three orientations were employed for training. In addition to training with all orientations, the proposed feature selection method achieved an improved F1 score of 91.46% training with O1 and O3 only. This study also noted that

Subjects	No. of	Selected Features					
Subjects	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA	
S1		C2F3, C3F7, CC15,	C1F1, C2F1, C3F1,	C1AcF, C2AcF, C1F2,	C2F3, C4F2, C6AR1,	C5F2, C5F3, C5F4,	
	15	C1F3, C5F8, C6AR6,	C4F1, C5F1, C1F2,	C1F1, C3AcF, CC2,	C6AR14, C1AR15, CC5,	C4F6, C4F5, C4F2,	
		C2F1, C2F7, CC2,	C2F2, C3F2, C4F2,	C1F3, C1F7, C5F7,	C5AR15, CC8, CC2,	C4F4, C1F3, C4F3,	
		C2F2, C3F1, C2F5,	C5F2, C1F3, C2F3,	C5F8, C5F3, C5F1,	C3AR15, C1AR5,	C1F2, C5F5, C1F4,	
		C3F3, C5F3, C1AR10	C3F3, C4F3, C5F3	C5F4, CC15, CC6	C3AR6, CC13, CC10,	C5F6, C1F5, C1F6	
					C4AR15		
S2	6	C3AcF, C6F8, C1F5,	C1F1, C3F1, C4F1,	C1AcF, C2AcF, C3AcF,	C4F3, C3AcF, CC11,	C4F6, C4F5, C4F4,	
		C1F2, C1F1, C1F3	C5F1, C1F2, C3F2	C2F1, C2F2, C2F7	C6AR15, C1AR14,	C3F2, C4F3, C6F3	
					C5AR15		
		C1F2, C3F8, C2AcF,	C1F1, C3F1, C4F1,	C2AcF, C3AcF, C1AcF,	C1F1, C2F3, C6AR7,	C1F3, C1F2, C1F4,	
\$2	10	C6F5, C3F1, C1F1,	C5F1, C6F1, C1F2,	C1F4, C1F5, C1F8,	C1AR15, C4AR14, CC5,	C5F2, C5F3, C5F4,	
33	10	C4AR4, C2F1, C1F3,	C3F2, C4F2, C5F2,	C1F9, C1F3, C1F7,	C2AR13, CC4, C3F5,	C5F6, C5F5, C1F5,	
		CC8	C1F3	C1F6	C4AR1	C3F2	
		C4F3, C1F2, C5F7,	C1F1, C2F1, C3F1,	C3AcF, C1AcF, C2AcF	C1F2, C6F7, C5AR5,	C5F3, C5F4, C3F3,	
	11	C3F6, C1F7, C6F1,	C4F1, C5F1, C6F1,	CC10, C1F3, C5F3,	C3AR15, C4AR15,	C3F4, C1F3, C1F2,	
S4		C5F6, C3AR7, C4F2,	C1F2, C2F2, C3F2,	C1F7, C1F1, C1F2,	C5AR15, C1AR15,	C3F2, C5F5, C3F5,	
		C4F8, C1F3	C4F2, C5F2	C3F2, C3F1	CC10, CC11, C2AcF,	C3F6, C5F2	
					C1AcF		
		C1F6, C3F4, C5F7,	C1F1, C3F1, C5F1,	C3AcF, C2AcF, C1AcF,	C1F4, C3F5, C3AR8,	C3F5, C3F4, C3F6,	
65	0	C2F7, C6F1, C1F9,	C1F2, C3F2, C5F2,	C5F3, C5F4, C2F1,	CC14, CC7, C2AR13,	C3F3, C3F2, C1F3,	
35	9	C5F1, C5F3, C3F8	C1F3, C3F3, C5F3	C5F7, C5F8, C2F2	C1AR15, C5AR14,	C1F4, C1F5, C1F6	
					C1AR3		
S6	9	C4F7, C3F9, C1F5,	C1F1, C2F1, C3F1,	C2AcF, C3AcF, C1AcF,	C4F8, C3F3, C2AR3,	C3F3, C3F2, C3F4,	
		C2F1, C6F6, C4F1,	C4F1, C5F1, C6F1,	C4F1, C4F2, C3F1,	C1AR13, C6AR15,	C3F5, C3F6, C4F3,	
		C4F2, C3F1, C4F9	C1F2, C2F2, C3F2	C3F2, C3F3, C3F7	C4AR15, C3AR15,	C4F2, C4F4, C4F5	
					C4AR3, C3AR10		
S7	9	C4F3, C3F2, C5F9,	C1F1, C2F1, C3F1,	C1AcF, C2AcF, C3AcF,	C4F8, C3AcF, C2F9,	C3F3, C3F2, C3F4,	
		C4F1, C6F8, C4F4,	C4F1, C5F1, C1F2,	C4F1, C4F2, C5F3,	C3AR14, CC4, C6AR15,	C3F5, C3F6, C4F2,	
		C5F8, C4F2, C4F5	C2F2, C3F2, C4F2	C5F7, C4F3, C4F7	C1AR15, C5AR15,	C4F3, C5F3, C4F4	
					C4AR12		
S8	8	C1F2, C4F2, C2F1,	C1F1, C2F1, C3F1,	C1AcF, C2AcF, CC11,	C1F2, C2AcF, C6AR12,	C4F5, C4F4, C4F6,	
		C3F4, C2F5, CC8,	C4F1, C5F1, C1F2,	C3F1, C3F2, C6F4,	C4AR14, C3AR15,	C4F3, C2F5, C2F6,	
		C3F1, C1F9	C2F2, C3F2	C6F5, C6F3	C2AR14, C3AR6, CC6	C2F4, C3F2	
S9	7	C5F6, C2F1, C3F4,	C1F1, C2F1, C3F1,	C2AcF, C1AcF, C3AcF	C5F8, C1F3, C1AcF,	C5F4, C5F5, C5F3,	
		C1AR1, C5F9, C3F3,	C4F1, C5F1, C6F1,	C4F3, C4F4, C4F1,	C6AR13, CC5, C4AR14,	C5F6, C5F2, C1F3,	
		C1AR5	C1F2	C4F7	C2AR14	C1F2	
S10		C4F4, C3F9, C5F3,	C1F1, C3F1, C4F1,	C3AcF, C1AcF, C2AcF	C2AcF, C1F7, C6F6,	C1F3, C1F4, C1F5,	
	7	C6F1, C4F6, C3F5,	C5F1, C1F2, C3F2,	C1F5, C1F6, C1F4,	C5AR14, C1AR15,	C5F3, C1F6, C5F4,	
		C2F3	C4F2	C1F8	C2AR15, CC1	C5F5	
					,		

TABLE 29. Selected features for training classifiers with O2 and O3 with a medium force level and testing with all orientations with all force level
--

the proposed work achieved these improved performances using the least number of features of 7 to 20 (Table 28 and Table 30). Thus, the proposed work showed its robustness to reduce data dimensionality of feature space, design complexity, and computational power of the hardware as defined in [19]. Again, the performances achieved in this work were higher than the other works shown in this table, where only muscle force variation was resolved. So, the proposed feature selection method would be an option to resolve both the forearm orientation and muscle force variation problems of EMG-PR.

IV. DISCUSSION

Myoelectric pattern recognition is an efficient method to decode the intended movements and restore the missing functionalities of an amputee [42], [44]. Nevertheless, several factors affect the EMG-PR performance [45], [46]. These factors change the time-domain and frequency-domain characteristics of the EMG signal and alter the values of existing

In addition to high dimensionality, the EMG features are problem-specific, i.e., a feature extraction method or a group of features proposed to resolve any particular problem may not be effective for other problems [21], [47]. So, to resolve any single or multiple limiting factors of EMG-PR, an efficient feature selection method is required to find out the least number of features.
 We have proposed an efficient feature extraction method to resolve forearm orientation and muscle force variation simultaneously. The proposed feature selection method considered a feature extracted from each channel as a distinct feature.

features extracted from the EMG signal. Consequently, the

factors degrade the EMG-PR performance [14], [19], [23].

Researchers have proposed different feature extraction meth-

ods to resolve these factors, including multiple numbers of

features. The feature space becomes very high when extract-

ing these features from a multichannel EMG signal [47].

Thus, the proposed feature selection method selected the

features and the channels. In addition, the proposed feature

Subjects	No. of			Selected Features		
Subjects	Features	Proposed	Chi-Square	ReliefF	MRMR	NCA
S1	14	C3F2, C5F2, C1F3, C3AcF, C1AcF, C3F5, C2F8, C2AcF, CC2, C3F9, C3F7, C2F9,	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2,	C1AcF, C2AcF, C3AcF, C1F1, C1F2, C1F3, C1F7, C1F4, C1F8, CC2, C1F9, C1F5, CC6,	, C2F3, C1AcF, C1AR14, CC8, CC4, C6AR15, C4AR15, CC9, C3AR15, C1AR2, C5AR15, CC2,	C1F2, C1F3, C5F2, C1AcF, C1F4, C5F3, C4F2, C1F5, C4F3, C4F6, C5F4, C1F1,
		CC13, C3F1	C1F3, C2F3	C1F6	C3AR6, C5AR1	C1F6, C3AcF
S2	8	C2AcF, C4F3, C1AcF, C1F6, C3F1, C3AcF, C2F9, CC8	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2	C2AcF, C1AcF, C3AcF, C3F1, C3F2, C2F1, C4F2, C4F1	, C2AcF, C3F3, C5AR14, CC4, C1AR15, C4AR15, CC1, C6F1	C3F2, C2F2, C2AcF, C4F4, C4F3, C4F5, C3F3, C2F3
S3	10	C2AcF, C1F1, C3F7, C2F8, C4F7, C5F1, C1F3, C5F6, CC2, C3AcF	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2	C2AcF, C3AcF, C1AcF, C1F3, C1F7, C1F1, C1F4, C1F2, C1F8, C1F5	, C1F1, C2F3, C6AR7, C5AR15, C4AR15, C1AR15, C2AR13, C3AR10, C3F4, CC7	C1F2, C1F3, C2AcF, C1F4, C3AcF, C4F2, C1F5, C6F6, C1F6, C6F5
S4	10	C4F2, C3AcF, C2F2, C1F1, C3F9, C1AcF, C2AcF, C5F3, C4F5, C4F3	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2	C3AcF, C1AcF, C2AcF, C2F2, C2F1, CC10, C1F2, C1F1, C3F1, C2F3	, C1F2, C3AcF, C2AR14, C5AR14, CC8, C3AR15, C4F9, C4AR15, CC10, C4AR1	C3AcF, C1F3, C2F2, C5F3, C1F2, C2AcF, C4F2, C5F2, C3F2, C2F3
S5	13	C1F4, C3F3, C5F7, C2AcF, C2F1, C3AcF, C1F2, C6F1, C1F9, C1AcF, C3F5, C1F8, C3F2	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2, C1F3	C2AcF, C3AcF, C1AcF, C2F1, C3F2, C3F3, C3F1, C2F2, C1F2, C3F4, C5F3, C3F5, C5F7	, C1F4, C1AR1, C4AR13, CC7, C2AR13, C3AR14, C2F7, C5F1, C3F4, C1AcF, CC10, C4F8, CC4	C2AcF, C3AcF, C1F2, C1F3, C1F4, C1F5, C5F2, C3F2, C5F4, C1F6, C3F6, C5F5, C2F2
S6	12	C4F7, C2F1, C3F7, C1F8, C6F3, C5F9, C4F1, C2AcF, C1AcF, C6F6, C5F8, C6F1	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2	C2AcF, C3AcF, C1AcF, C4F1, C4F2, C4F7, C4F3, C4F8, C2F1, C3F3, C3F4, C3F5	, C4F8, C3AcF, C2AR3, C1AR13, C4AR15, C5AR15, C3AR13, C6AR15, CC4, CC3, C6AR2, C1AcF	C3AR7, C4AR5, C5AR8, C4AR6, C3AR8, C1AR7, C5AR7, C3AR9, C4F2, C3F3, C4F3, C3F4
S7	7	C4F4, C3F2, C3AcF, C5F3, C4F1, C1F4, C3F5	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2	C2AcF, C1AcF, C3AcF, C3F1, C3F7, C4F1, C4F2	, C4F5, C3AR1, CC4, C4AR14, C6AR15, C2AR14, C1AR15	C4F6, C4F5, C4F4, C4F2, C4F3, C3F3, C3F2
S8	19	C1F2, C3AcF, C4F1, C3F3, C1AcF, C2AR11 C4F2, C1F6, C4F7, C2F2, C1F9, C4F8, C1F1, C1F5, C2AR15, C3F2, C1F4, CC11, C3F1	C1F1, C2F1, C3F1, , C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2, C1F3, C2F3, C3F3, C4F3, C5F3, C6F3, C1F4	C2AcF, C3AcF, C1AcF, C1F3, C1F2, C1F7, C1F1, C1F4, C1F8, C6F2, C1F5, C6F1, C2F1, C1F9, C1F6, C2F2, CC11, C6F3, C6F7	C1F2, C2AcF, C6AR13, C2AR15, C4AR15, C3AR15, C1AR15, C3AR1, CC2, C2AR2, C6F5, CC3, CC14, C2F6, CC6, C4AR4, C1F9, C3F2, CC12	C4F2, C6F6, C4F4, C4F3, C2F4, C2F5, C6F2, C2F6, C6F5, C2F2, C2F3, C6F4, C4F5, C6F3, C1F3, C4F6, C1F4, C1F5, C3F5
S9	14	C5F5, C2F7, C3F2, C2AcF, C1F8, C4F4, C6AR12, C1AcF, C1AR13, C2F3, CC10, C2F5, C5AR1, C2F1	C1F1, C2F1, C3F1, C4F1, C5F1, C6F1, C1F2, C2F2, C3F2, C4F2, C5F2, C6F2, C1F3, C2F3	C2AcF, C1AcF, C3AcF, C2F9, C2F8, C2F7, C1F1, C2F1, C2F3, C2F6, C2F5, C2F4, C2F2, C1F2	C5F4, C1F3, C4AR15, C3AR15, C6AR15, CC5, C2AR14, C3AcF, CC11, C2AR1, C4AR1, CC6, C6F1, C2F6	C2F3, C5F2, C2F4, C5F3, C2F2, C2F5, C5F4, C2F6, C5F5, C5F6, C1F3, C1F4, C1F5, C1F2
S10	7	C1F7, C3AcF, C1AcF, C3F6, C2AcF, C5F6, C1F4	C1F1, C2F1, C3F1, C4F1, C5F1, C1F2, C2F2	C3AcF, C1AcF, C2AcF, C1F6, C1F5, C1F4, C1F8	, C1F3, C1AcF, C2AR1, C5AR15, C2AR15, C3AR14, C6AR15	C1F4, C1F5, C3AcF, C1F6, C1F3, C3F2, C4F6

TABLE 30. Selected features for training classifiers with all orientations with a medium force level and testing with all orientations with all force levels.

selection method selected features one by one by confirming their highest contribution to the EMG-PR performance. Thus, the proposed feature selection method found the least number of features without compromising the EMG-PR performance. In this study, the proposed method with the KNN classifier achieved the highest EMG-PR performance with the lowest standard deviation compared to chi-square, reliefF, MRMR, and NCA (Section III).

The proposed method significantly improved the accuracy, sensitivity, specificity, precision, F1 score, and MCC by 3.18% to 4.28%, 9.14% to 12.85%, 1.83% to 2.57%, 8.30% to 10.99%, and 9.22% to 13.92%, 0.11 to 0.15, respectively when the proposed method was compared second-best performing feature selection method. In this study, the proposed feature selection method achieved forearm orientation and

muscle force invariant F1 score of 91.46% for training KNN classifier with O1 and O3 with a medium force level. The achieved performance was much higher than the existing two works where they employed three orientations for training [19], [20]. Also, we trained the KNN classifier for all orientations with a medium force level and achieved the F1 score of 93.27%, which was improved by 2.27% to 2.92% [19], [20]. In addition to improved EMG-PR performances, the proposed feature selection method selected the least number of features of 7 to 20, less than the feature space used in the existing works (Table 5). So, the proposed feature selection method effectively reduces data dimensionality, design complexity, and hardware computational power, as defined in [19]. Again, the proposed method do not require any dimension reduction technique since the dimension of the

selected feature is shallow. Therefore, the proposed feature selection method shows its robustness for resolving multiple limiting factors, forearm orientation, and muscle force variation, providing improved performance and selecting the least number of features.

In force invariant EMG-PR, the proposed feature selection method selected AcF, F1, F2, F3, F4, F5, F6, F7, F8, CC, and AR in most of the subjects (Table 19), which implied that these features were the most stable features with muscle force variation. AcF and CC were selected since these features did not vary with muscle force levels, according to [14], [15]. The variation of muscle force level changed the values of F1, F2, F3, F4, F5, F6, F7, F8, and AR, but these features were selected due to the use of the signal normalization approach [14]. Again, in the case of forearm orientation and force invariant EMG-PR, the proposed feature selection method selected F1, F2, F3, F4, F5, F6, F7, F8, CC, and AR in most of the subjects (Table 28) which implied that these features were stable with the forearm orientation and muscle force variation. It was also noted from Table 19 and Table 28 that AcF feature was common for force invariant EMG-PR. but it was not selected for the variation of both forearm and muscle force levels. So, accelerometer data changes with various forearm orientations. This research also used the proposed feature selection method when the KNN classifier was trained with a medium force level for all orientations. It was a kind of force invariant EMG-PR considering multiple orientations. So, the proposed method selected similar features in Table 19: AcF, F1, F2, F3, F4, F5, F6, F7, F8, CC, and AR in most of the subjects.

In this study, forearm orientation and muscle force invariant EMG-PR performance was highest when the KNN classifier was trained for O1 and O3 with a medium force level. The possible reason may be that the medium force level is highly correlated with each low and high force level, and O2 is in the middle position among the three orientations, so the angle of forearm rotation from O2 to each of O1 and O3 is minimum. So, it is suggested to use a force level for training so that other force levels are highly correlated. It is also recommended to use those orientations for training so that the angle of unknown testing orientation from the training orientation is minimum.

V. CONCLUSION AND FUTURE DIRECTIONS

This study has proposed an efficient feature selection method to resolve forearm orientation and muscle force variation in EMG-PR. The experimental results imply that the proposed feature selection method significantly improves the accuracy, sensitivity, specificity, precision, F1 score, and MCC by 3.18% to 4.28%, 9.14% to 12.85%, 1.83% to 2.57%, 8.30% to 10.99%, 9.22% to 13.92%, and 0.11 to 0.15, respectively when the proposed method is compared with second best-performing feature selection method. In this research, the proposed feature selection method achieves forearm orientation and muscle force invariant F1 score of 91.46% for training KNN classifier with O1 and O3 with a medium

force level. Also, we achieve the F1 score of 93.27% training KNN classifier for all orientations with a medium force level. In addition to improved EMG-PR performances, the proposed feature selection method selects 7 to 20-dimensional features only. So, the proposed feature selection method does not require any dimension reduction technique and reduces the hardware's computational power. So, the proposed feature selection method would be an option to find efficient features and achieve improved EMG-PR performance with multiple limiting factors.

This research evaluates the performance using a machine, Intel Core i3-7100U CPU with 2.40 GHz processor and 8 GB RAM, whose computational power is relatively low. So, we considered the most efficient groups of feature extraction methods only. In our future study, other feature extraction methods, time-domain power spectral descriptors [24], wavelet bispectrum-based features [19], temporal-spatial descriptors [47], and traditional time-domain and frequencydomain features [39], will be investigated. In addition, this study resolves two factors, forearm orientation, and muscle force variation, but other limiting factors exist. So, our future study will include many limiting factors to make the EMG-PR system more robust, reliable, and user-friendly for prosthetic hand users. Again, our proposed feature selection algorithm is studied for an offline dataset including a limited number of subjects, comparatively simple hand gestures, and artifactsfree signal. So, the proposed feature selection will be studied for an online EMG-PR system considering these factors in our future study.

ACKNOWLEDGMENT

The authors would like to show their sincere gratitude to Dr. Rami N. Khushaba for publicly making the EMG dataset of forearm orientation and muscle force variation available on his website.

APPENDIX A

See Tables 6-30.

REFERENCES

- [1] K. Ziegler-Graham, E. J. MacKenzie, P. L. Ephraim, T. G. Travison, and R. Brookmeyer, "Estimating the prevalence of limb loss in the United States: 2005 to 2050," *Archi. Phys. Med. Rehabil.*, vol. 89, no. 3, pp. 422–429, Mar. 2008, doi: 10.1016/j.apmr.2007.11.005.
- [2] N. Parajuli, N. Sreenivasan, P. Bifulco, and M. Cesarelli, "Real-time EMG based pattern recognition control for hand prostheses: A review on existing methods, challenges and future implementation," *Sensors*, vol. 19, no. 20, p. 4596, 2019, doi: 10.3390/s19204596.
- [3] A. Clinical. (2019). Coapt Now First and Only Advanced Myoelectric Control System with FDA Class II Clearance. Accessed: Oct. 12, 2021. [Online]. Available: https://www.prnewswire.com/news-releases/coaptnow-first-and-only-advanced-myoelectric-control-system-with-fda-classii-clearance-300448734.html
- [4] Openbionics. (2020). Open Bionics—Turning Disabilities Into Superpowers. Open Bionics. Accessed: Oct. 12, 2021. [Online]. Available: https://openbionics.com/
- [5] Ottobock. Ottobock Worldwide—Innovations That Move People | Ottobock SE & Co. KGaA. Accessed: Oct. 12, 2021. [Online]. Available: https://www.ottobock.com/en/

- [6] R. H. Chowdhury, M. B. I. Reaz, M. A. B. M. Ali, A. A. A. Bakar, K. Chellappan, and T. G. Chang, "Surface electromyography signal processing and classification techniques," *Sensors*, vol. 13, no. 9, pp. 12431–12466, 2013, doi: 10.3390/s130912431.
- [7] C. L. Ng, M. B. I. Reaz, and M. E. H. Chowdhury, "A low noise capacitive electromyography monitoring system for remote healthcare applications," *IEEE Sensors J.*, vol. 20, no. 6, pp. 3333–3342, Mar. 2020, doi: 10.1109/JSEN.2019.2957068.
- [8] C. L. Ng, M. B. I. Reaz, M. L. Crespo, A. Cicuttin, and M. E. H. Chowdhury, "Characterization of capacitive electromyography biomedical sensor insulated with porous medical bandages," *Sci. Rep.*, vol. 10, no. 1, pp. 1–12, 2020, doi: 10.1038/s41598-020-71709-0.
- [9] C. L. Ng and M. B. I. Reaz, "Characterization of textile-insulated capacitive biosensors," *Sensors*, vol. 17, no. 3, p. 574, 2017, doi: 10.3390/s17030574.
- [10] C. L. Ng and M. B. I. Reaz, "Impact of skin-electrode capacitance on the performance of CEMG biosensor," *IEEE Sensors J.*, vol. 17, no. 9, pp. 2636–2637, Mar. 2017, doi: 10.1109/JSEN.2017.2675707.
- [11] M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin, "EMG analysis using wavelet functions to determine muscle contraction," in *Proc. HEALTH-COM 8th Int. Conf. e-Health Netw., Appl. Services*, 2006, pp. 132–134, doi: 10.1109/health.2006.246433.
- [12] J. He, X. Sheng, X. Zhu, and N. Jiang, "Position identification for robust myoelectric control against electrode shift," *IEEE Trans. Neural Syst. Rehabil. Eng.*, vol. 28, no. 12, pp. 3121–3128, Dec. 2020, doi: 10.1109/TNSRE.2020.3038374.
- [13] J. He, X. Sheng, X. Zhu, and N. Jiang, "A novel framework based on position verification for robust myoelectric control against sensor shift," *IEEE Sensors J.*, vol. 19, no. 21, pp. 9859–9868, Nov. 2019, doi: 10.1109/JSEN.2019.2927325.
- [14] M. J. Islam, S. Ahmad, F. Haque, M. B. I. Reaz, M. A. S. Bhuiyan, and M. R. Islam, "A novel signal normalization approach to improve the force invariant myoelectric pattern recognition of transradial amputees," *IEEE Access*, vol. 9, pp. 79853–79868, 2021, doi: 10.1109/ACCESS.2021.3084442.
- [15] M. J. Islam, S. Ahmad, F. Haque, M. B. I. Reaz, M. A. S. Bhuiyan, and M. R. Islam, "Force-invariant improved feature extraction method for upper-limb prostheses of transradial amputees," *Diagnostics*, vol. 11, no. 5, p. 843, May 2021, doi: 10.3390/diagnostics11050843.
- [16] J. He, D. Zhang, X. Sheng, S. Li, and X. Zhu, "Invariant surface EMG feature against varying contraction level for myoelectric control based on muscle coordination," *IEEE J. Biomed. Health Inform.*, vol. 19, no. 3, pp. 874–882, May 2015, doi: 10.1109/JBHI.2014. 2330356.
- [17] A. K. Mukhopadhyay and S. Samui, "An experimental study on upper limb position invariant EMG signal classification based on deep neural network," *Biomed. Signal Process. Control*, vol. 55, Jan. 2020, Art. no. 101669, doi: 10.1016/j.bspc.2019.101669.
- [18] E. Campbell, A. Phinyomark, and E. Scheme, "Current trends and confounding factors in myoelectric control: Limb position and contraction intensity," *Sensors*, vol. 20, no. 6, p. 1613, Mar. 2020, doi: 10.3390/s20061613.
- [19] R. Rajapriya, K. Rajeswari, D. Joshi, and S. J. Thiruvengadam, "Forearm orientation and contraction force independent method for EMGbased myoelectric prosthetic hand," *IEEE Sensors J.*, vol. 21, no. 5, pp. 6623–6633, Mar. 2021, doi: 10.1109/JSEN.2020.3042510.
- [20] R. N. Khushaba, A. Al-Timemy, S. Kodagoda, and K. Nazarpour, "Combined influence of forearm orientation and muscular contraction on EMG pattern recognition," *Expert Syst. Appl.*, vol. 61, pp. 154–161, Nov. 2016, doi: 10.1016/j.eswa.2016.05.031.
- [21] M. G. Asogbon, O. W. Samuel, Y. Geng, O. Oluwagbemi, J. Ning, S. Chen, N. Ganesh, P. Feng, and G. Li, "Towards resolving the co-existing impacts of multiple dynamic factors on the performance of EMG-pattern recognition based prostheses," *Comput. Methods Programs Biomed.*, vol. 184, Feb. 2020, Art. no. 105278, doi: 10.1016/j.cmpb.2019.105278.
- [22] A. Waris, I. K. Niazi, M. Jamil, K. Englehart, W. Jensen, and E. N. Kamavuako, "Multiday evaluation of techniques for EMG-based classification of hand motions," *IEEE J. Biomed. Health Inform.*, vol. 23, no. 4, pp. 1526–1534, Jul. 2018, doi: 10.1109/JBHI.2018. 2864335.
- [23] A. Waris, M. Zia ur Rehman, I. K. Niazi, and M. Jochumsen, "A multiday evaluation of real-time intramuscular EMG usability with ANN," *Sensors*, vol. 20, no. 12, p. 3385, 2020, doi: 10.3390/s20123385.

- [24] A. Al-Timemy, R. Khushaba, G. Bugmann, and J. Escudero, "Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees," *IEEE Trans. Neural Syst. Rehabil. Eng.*, vol. 24, no. 6, pp. 650–661, Jun. 2016, doi: 10.1109/TNSRE.2015.2445634.
- [25] S. Saranya, S. Poonguzhali, and S. Karunakaran, "Gaussian mixture model based clustering of manual muscle testing grades using surface electromyogram signals," *Phys. Eng. Sci. Med.*, vol. 43, no. 3, pp. 837–847, Sep. 2020.
- [26] R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore, "Relief-based feature selection: Introduction and review," *J. Biomed. Inform.*, vol. 85, pp. 189–203, Sep. 2018.
- [27] H. Huang, H.-B. Xie, J.-Y. Guo, and H.-J. Chen, "Ant colony optimizationbased feature selection method for surface electromyography signals classification," *Comput. Biol. Med.*, vol. 42, no. 1, pp. 30–38, Jan. 2012.
- [28] S. Biswas, M. Bordoloi, and B. Purkayastha, "Review on feature selection and classification using neuro-fuzzy approaches," *Int. J. Appl. Evol. Comput.*, vol. 7, no. 4, pp. 28–44, Oct. 2017.
- [29] B. Remeseiro and V. Bolon-Canedo, "A review of feature selection methods in medical applications," *Comput. Biol. Med.*, vol. 112, Sep. 2019, Art. no. 103375.
- [30] E. Campbell, A. Phinyomark, and E. Scheme, "Feature extraction and selection for pain recognition using peripheral physiological signals," *Frontiers Neurosci.*, vol. 13, pp. 1–17, May 2019.
- [31] J. Too, A. R. Abdullah, N. M. Saad, and W. Tee, "EMG feature selection and classification using a Pbest-guide binary particle swarm optimization," *Computation*, vol. 7, no. 1, p. 12, Mar. 2019.
- [32] H. Mohammadzadeh and F. S. Gharehchopogh, "A novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: Case study email spam detection," *Comput. Intell.*, vol. 37, no. 1, pp. 176–209, Feb. 2021.
- [33] Y. Geng, X. Zhang, Y.-T. Zhang, and G. Li, "A novel channel selection method for multiple motion classification using high-density electromyography," *Biomed. Eng. OnLine*, vol. 13, no. 1, pp. 1–16, Dec. 2014.
- [34] J. Liu, X. Li, G. Li, and P. Zhou, "EMG feature assessment for myoelectric pattern recognition and channel selection: A study with incomplete spinal cord injury," *Med. Eng. Phys.*, vol. 36, no. 7, pp. 975–980, Jul. 2014.
- [35] H. Huang, P. Zhou, G. Li, and T. A. Kuiken, "An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface," *IEEE Trans. Neural Syst. Rehabil. Eng.*, vol. 16, no. 1, pp. 37–45, Feb. 2008.
- [36] A. C. Turlapaty and B. Gokaraju, "Feature analysis for classification of physical actions using surface EMG data," *IEEE Sensors J.*, vol. 19, no. 24, pp. 12196–12204, Dec. 2019.
- [37] Q. Li, A. Zhang, Z. Li, and Y. Wu, "Improvement of EMG pattern recognition model performance in repeated uses by combining feature selection and incremental transfer learning," *Frontiers Neurorobot.*, vol. 15, pp. 1–11, Jun. 2021.
- [38] A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-Bernard, and Y. Laurillau, "EMG feature evaluation for improving myoelectric pattern recognition robustness," *Expert Syst. Appl.*, vol. 40, no. 12, pp. 4832–4840, 2013.
- [39] A. Phinyomark, P. Phukpattaranont, and C. Limsakul, "Feature reduction and selection for EMG signal classification," *Expert Syst. Appl.*, vol. 39, no. 8, pp. 7420–7431, Jun. 2012.
- [40] G. Li, J. Li, Z. Ju, Y. Sun, and J. Kong, "A novel feature extraction method for machine learning based on surface electromyography from healthy brain," *Neural Comput. Appl.*, vol. 31, no. 12, pp. 9013–9022, Dec. 2019.
- [41] O. W. Samuel, M. G. Asogbon, Y. Geng, N. Jiang, D. Mzurikwao, Y. Zheng, K. K. L. Wong, L. Vollero, and G. Li, "Decoding movement intent patterns based on spatiotemporal and adaptive filtering method towards active motor training in stroke rehabilitation systems," *Neural Comput. Appl.*, vol. 33, no. 10, pp. 4793–4806, May 2021.
- [42] M. Simão, N. Mendes, O. Gibaru, and P. Neto, "A review on electromyography decoding and pattern recognition for human-machine interaction," *IEEE Access*, vol. 7, pp. 39564–39582, 2019.
- [43] H. Ashraf, A. Waris, M. Jamil, S. O. Gilani, I. K. Niazi, E. N. Kamavuako, and S. H. N. Gilani, "Determination of optimum segmentation schemes for pattern recognition-based myoelectric control: A multi-dataset investigation," *IEEE Access*, vol. 8, pp. 90862–90877, 2020.
- [44] H. K. Hameed, W. Z. W. Hassan, S. Shafie, S. A. Ahmad, and H. Jaafar, "A review on surface electromyography-controlled hand robotic devices used for rehabilitation and assistance in activities of daily living," *J. Prosthetics Orthotics*, vol. 32, no. 1, pp. 3–13, Jan. 2020.

IEEE Access

- [45] C. Fang, B. He, Y. Wang, J. Cao, and S. Gao, "EMG-centered multisensory based technologies for pattern recognition in rehabilitation: State of the art and challenges," *Biosensors*, vol. 10, no. 8, p. 85, Jul. 2020.
- [46] E. Scheme and K. Englehart, "Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use," *J. Rehabil. Res. Dev.*, vol. 48, no. 6, pp. 643–660, Jan. 2011.
- [47] R. N. Khushaba, A. H. Al-Timemy, A. Al-Ani, and A. Al-Jumaily, "A framework of temporal-spatial descriptors-based feature extraction for improved myoelectric pattern recognition," *IEEE Trans. Neural Syst. Rehabil. Eng.*, vol. 25, no. 10, pp. 1821–1831, Oct. 2017.

MAMUN BIN IBNE REAZ (Senior Member, IEEE) was born in Bangladesh, in December 1963. He received the B.Sc. and M.Sc. degrees in applied physics and electronics from the University of Rajshahi, Bangladesh, in 1985 and 1986, respectively, and the D.Eng. degree from Ibaraki University, Japan, in 2007. He is currently a Professor with the Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti

Kebangsaan Malaysia, Malaysia, involved in teaching, research, and industrial consultation. He has also been a Senior Associate with the Abdus Salam International Centre for Theoretical Physics (ICTP), Italy, since 2008. He has vast research experiences in Japan, Italy, and Malaysia. He has published extensively in the area of IC design, biomedical application IC, and smart home. He is the author and coauthor of more than 300 research articles in design automation and IC design for biomedical.

MD. JOHIRUL ISLAM received the B.Sc. and M.Sc. degrees in applied physics and electronic engineering from the University of Rajshahi, Rajshahi, Bangladesh, in 2011 and 2012, respectively, where he is currently pursuing the Ph.D. degree with the Department of Electrical and Electronic Engineering. He is currently an Assistant Professor with the Department of Physics, Rajshahi University of Engineering and Technology, Rajshahi. His research interests

include feature engineering, myoelectric pattern recognition, human-machine interfacing, biomedical instrumentation, and embedded systems.

SHAMIM AHMAD (Member, IEEE) received the B.Sc. and M.Sc. degrees in applied physics and electronic engineering from the University of Rajshahi, Rajshahi, Bangladesh, and the D.Eng. degree in electrical engineering from Chubu University, Japan. Following that, he worked as a Post-Graduate Research Student with the Department of Computer Engineering, Inha University, South Korea. He is currently working as a Professor with the Department of Computer Science

and Engineering, University of Rajshahi. His research interests include bioinformatics, embedded systems, and image processing.

MOHAMMAD A. S. BHUIYAN was born in Chittagong, Bangladesh, in 1985. He received the B.Sc. and M.Sc. degrees in applied physics, electronics, and communication engineering from the University of Chittagong, Bangladesh, in 2006 and 2007, respectively, and the Ph.D. degree from Universiti Kebangsaan Malaysia, Malaysia, in 2017. He is currently an Associate Professor with the Department of Electrical and Electronics Engineering, Xiamen University Malaysia, Malaysia.

He has over ten years of active teaching and research experience and authored more than 100 indexed international journal and conference papers. His current research interests include the field of VLSI, the IoT, and artificial intelligence.

FAHMIDA HAQUE received the B.Sc. degree in electrical and electronic engineering from American International University-Bangladesh. She is currently pursuing the Ph.D. degree with the Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia. Her research interests include electronics, biomedical systems, biomedical signal processing, and machine learning.

MD. REZAUL ISLAM received the B.Sc. and M.Sc. degrees in applied physics and electronics from the University of Rajshahi, Rajshahi, Bangladesh, in 1982 and 1983, respectively. He is currently a Professor with the Department of Electrical and Electronic Engineering, University of Rajshahi. His research interests include electronics, biomedical instrumentation, biomedical signal processing, and embedded systems.

...