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ABSTRACT Electromyogram (EMG) signal-based prosthetic hand can restore an amputee’s missing
functionalities, which requires a faithful electromyogram pattern recognition (EMG-PR) system. However,
forearm orientation and muscle force variation make the EMG-PR system more complex, and the problem
becomes more complicated when muscle force levels and forearm orientations arise simultaneously. The
problems can be minimized using a more significant number of features or high-density surface EMG, but
it increases design complexity and needs higher computational power. In this regard, we have proposed a
feature selection method that selects both feature and channel simultaneously. The proposed feature selection
method selects only 7 to 20 features among 162 features with comparable or better performance. In this study,
these selected features achieve a significant improvement in the accuracy, sensitivity, specificity, precision,
F1 score, andMatthew correlation coefficient (MCC) by 3.18% to 4.28%, 9.14% to 12.85%, 1.83% to 2.57%,
8.30% to 10.99%, 9.22% to 13.92%, and 0.11 to 0.15, respectively comparing with four existing feature
selection methods. In this research, the proposed feature selection method achieves a forearm orientation
and muscle force invariant F1 score of 91.46% for training the k- nearest neighbor (KNN) classifier with two
orientations, wrist fully supinated (O1) and wrist fully pronated (O3), with a medium force level. We have
also achieved an F1 score of 93.27% for training the KNN classifier with all orientations with a medium
force level. So, the proposed feature selection method would be very much helpful for finding the least
dimensional features and achieving improved EMG-PR performance with multiple limiting factors.

INDEX TERMS EMG pattern recognition, feature selection, forearm orientation, muscle force variation.

I. INTRODUCTION
Limb loss limits individuals from performing their daily
activities, causing them to be considered a burden to society.
A survey carried out in the United States in 2005 indicates
that approximately 1.6 million people were suffering from
limb loss, and the number of amputees may be increased to
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3.6 million by 2050 [1]. Another survey in England reveals
that about 6000 people get amputees each year; roughly a
fifth is upper limb amputee [2]. Researchers focus on this
growing issue to develop a prosthetic armwith higher degrees
of freedom. In the meantime, advanced prosthetic arms are
commercially available, including COAPT [3], Open Bion-
ics [4], and Ottobock [5]. The modern prosthetic arms uti-
lize EMG signals collected from remaining hand muscles
using a surface electrode or capacitive electrode [6]–[10].
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FIGURE 1. Three forearm orientations for EMG data collection. Source:
Electromyogram (EMG) repository (rami-khushaba.com) (accessed
on 06 Feb 2022).

FIGURE 2. The EMG-PR performance using KNN classifier with the
number of features and different feature selection methods.

Further, features are extracted, and the intended movements
are predicted by a classifier [2], [11]. However, the available
prosthetic arms are not commercially successful due to sev-
eral limiting factors including electrode position shift [12],
[13], variation of muscle contraction force [14]–[16], limb
position [17], [18], forearm orientation [19], [20], mobility
of subject [21], and multiday variation [22], [23]. These
factors make significant alterations in EMG signal proper-
ties, i.e., time-domain and frequency-domain properties, and
make changes in extracted features [14], [19], [23]. Conse-
quently, the factors significantly degrade the EMG-PR per-
formance [21]. In addition, the achievement of satisfactory
EMG-PR performance becomes quite challenging when mul-
tiple factors arise simultaneously.

In an attempt to resolve multiple limiting factors simulta-
neously, a few pieces of research have been found over the
last decades. Khushaba et al. [20] employed 39-dimensional
feature space employing time-domain power spectral descrip-
tors and showed that co-factors, forearm orientation, and
muscle contraction force degrade the EMG-PR performance
drastically. Finally, they recommended utilizing all orienta-
tions with a medium force level for training to achieve satis-
factory performance of 91%. Further, Rajapriya et al. [19]
proposed a wavelet bispectrum-based feature extraction
method to resolve forearm orientation and muscle force
variation. They achieved 90.35% EMG-PR performance
using 96-dimensional feature space, all orientations, and a
medium force level for training in this study. In addition,

FIGURE 3. The F1 scores of different feature selection methods when the
classifiers are trained for one orientation with one force level and tested
for trained orientation with all force levels.

Asogbon et al. [21] also proposed a feature extraction
method, invariant time-domain descriptor, to resolve mus-
cle force variation and subject mobility. They employed a
40-dimensional feature space with a medium force level
to achieve 84% to 93% EMG-PR performance. In addition
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TABLE 1. The EMG-PR performances of different feature selection methods when the classifiers are trained for O1 with one force level and tested for
trained orientation with all force levels.
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TABLE 1. (Continued.) The EMG-PR performances of different feature selection methods when the classifiers are trained for O2 with one force level and
tested for trained orientation with all force levels.
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TABLE 1. (Continued.) The EMG-PR performances of different feature selection methods when the classifiers are trained for O3 with one force level and
tested for trained orientation with all force levels.

to addressing multiple challenging factors, several pieces
of research are found on muscle force variation. Recently,
Islam et al. [15] proposed a non-linear scaling-based fea-
ture extraction method to resolve the muscle force variation

of transradial amputees employing 84-dimensional feature
space. Again, Islam et al. [14] extended their previous work
and introduced a novel signal normalization scheme to over-
lap the extracted features of different muscle force levels.
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TABLE 2. The EMG-PR performances of different feature selection methods when the classifiers are trained for one orientation with a medium force level
and tested for all orientations with all force levels.
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TABLE 3. The EMG-PR performances of different feature selection methods when the classifiers are trained for two orientations with a medium force
level and tested with all orientations with all force levels.
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FIGURE 4. The F1 scores of different feature selection methods when the
classifiers are trained for one orientation with a medium force level and
tested for all orientations with all force levels.

FIGURE 5. The F1 scores of different feature selection methods when the
classifiers are trained for two orientations with a medium force level and
tested with all orientations with all force levels.

FIGURE 6. The F1 scores of different feature selection methods when the
classifiers are trained for all orientations with a medium force level and
tested with all orientations with all force levels.

In addition to these, Al-Timemy et al. [24] proposed a feature
extraction method based on orientation between a set of spec-
tral moments descriptors. This work utilized 48-dimensional

Algorithm 1 The Proposed Feature Selection Method
1: Initialize K = I × J, total number of features, I number

of features from J number of channels
2: Temporary feature array F = [F1,F2, . . . ,FK]
3: Proposed Set S = {}
4: Initialize maximum performance PHigh = 0
5: Initialize counter i = 1
6: S = S ∪ F[i], set union operation
7: P[i] = F1 Score KNN(S)
8: S = S – F[i], set difference operation
9: i = i + 1

10: if i <= K GO TO step 6
11: PMax = P[1], j=2
12: IF P[j] > PMax THEN

BEGIN
PMax = P[j]
MaxID = j

END
13: j = j + 1
14: IF j <= K GO TO step 12
15: IF PMax < PHigh

THEN GO TO step 21
16: S = S ∪ F[MaxID], set union operation
17: PHigh = PMax
18: F[MaxID] = F[k]
19: IF k > 1

THEN k = k – 1
ELSE GO TO step 21

20: GO TO step 5
21: END

feature space to resolve muscle force variation. So, most of
the recent works propose a unique feature extraction method
that can resolve a limiting factor. Also, these works utilize
a high dimensional feature space, multiple orientations, and
sometimes multiple force levels for training the classifiers.
These multiple factors increase training time of classifier,
data dimensionality of feature space, design complexity, and
computational power of the hardware as well [19]. Finally,
it can be mentioned here that, we didn’t find any literature
studying in identifying important feature to resolve multiple
limiting factors.

There are mainly two methods in EMG feature selection,
including filter-based and wrapper-based methods. The filter-
based method includes chi-square [25], ReliefF [26], min-
imum redundancy maximum relevance (MRMR) [27], and
neighborhood component analysis (NCA) [26] which are rel-
atively faster, scalable, and independent of the classification
algorithm. However, their performance is not high compared
to the wrapper-based method [28]. Popular wrapper-based
method includes sequential forward selection [29], [30],
genetic algorithms [31], ant colony optimization [31] and
particle swarm optimization [32]. Among these, the sequen-
tial forward selection is a classical and reliable method used
widely for EMG channel selection [33]–[35] or EMG feature
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TABLE 4. The EMG-PR performances of different feature selection methods when the classifiers are trained for all orientations with a medium force level
and tested with all orientations and all force levels.

selection [36], [37]. Nevertheless, the method increases the
dimension of feature space by the total number of features or
the number of channels.

This study has proposed a feature selection method
to resolve forearm orientation and muscle force variation
simultaneously. In this proposed method, we considered
162-dimensional feature space generated by employ-
ing [14], [30] as described in Section II-B. In this proposed
algorithm, the feature extracted from each EMG channel was
considered a unique feature rather than computing a feature
across all channels as done in a traditional sequential forward
selection algorithm. So, the proposed method considered
K = I × J number of unique features for an I number of
features extracted from J number of EMG channels. Finally,
the proposed feature selection method selected those features
only which contributed to the EMG-PR performance. Thus,
the proposed feature selection method selects a specific
feature from a specific channel rather than selecting either
feature [36], [37] or channel [33]–[35]. In addition, our pro-
posed algorithm increases the dimension of features by one,
whereas the sequential forward selection algorithm increases
the dimension by its total number of channels. Thus, the
dimension of selected features through the proposed feature
selection algorithm is always less than the dimension of fea-
tures obtained by the sequential forward selection algorithm.

Consequently, the proposed feature selectionmethod could
reduce the training time of the classifier, data dimensional-
ity of feature space, design complexity, and computational
power of the hardware. In addition to a reduced number of
features, the selected features indicate the importance of a
channel and a feature to resolve the limiting factors. In this
research, we also considered four existing feature selection

methods to compare and validate the EMG-PR performance
of the proposed feature selection method. The experimen-
tal data showed that the proposed feature selection method
significantly improved the accuracy, sensitivity, specificity,
precision, F1 score, and MCC by 3.18% to 4.28%, 9.14%
to 12.85%, 1.83% to 2.57%, 8.30% to 10.99%, 9.22% to
13.92%, and 0.11 to 0.15, respectively when the proposed
method was compared second-best performing feature selec-
tion method (Section III). In this study, the proposed feature
selection method achieved a forearm orientation and mus-
cle force invariant F1 score of 91.46% for training KNN
classifier with orientations O1 and O3 with a medium force
level. The achieved performance was much higher than the
existing two works that employed three orientations for train-
ing. Also, we trained the KNN classifier for all orientations
with medium force level, and then we achieved an F1 score
of 93.27%,whichwas improved by 2.27% to 2.92% (Table 5).
In addition to improved EMG-PR performances, the pro-
posed feature selection method selected the least number
of features of 7 to 20 (Table 28 and Table 30), which was
less than the feature space used in the existing works. So,
the proposed feature selection method would be a promis-
ing method to resolve both forearm orientation and muscle
force variation by employing efficient features only. How-
ever, in this work, we have employed three classifiers, i.e.,
KNNs, support vector machines (SVMs), and linear discrim-
inant analysis (LDAs), to estimate and validate the EMG-PR
performance. These classifiers are utilized as they require a
low computational cost and achieve a reasonable EMG-PR
performance [14]. Also, the achieved EMG-PR performances
for each feature selection method were validated statisti-
cally by utilizing a two-way analysis of variance (ANOVA),
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TABLE 5. The comparison of EMG-PR performance with existing works.

considering the classifier and feature selection method as
independent parameters.

The remaining paper is arranged as follows. Section II
describes the proposed feature selection method, the EMG
datasets for three orientations with three force levels, feature
extraction, and classification. Section III presents the impact
of the number of features and the feature selection methods

on the EMG-PR performance, the EMG-PR performances for
different training and testing cases, and the comparison of
the achieved performances with existing works. Section IV
investigates the details behind the improved forearm orienta-
tion and muscle force invariant EMG-PR performance, and
finally, Section V concludes with the overall experimental
results.
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TABLE 6. Summary of two-way ANOVA when classifiers are trained with
O2 with one force level and tested with trained orientation with all force
levels.

TABLE 7. Comparison between the feature selection methods when
classifiers are trained with O2 with one force level and tested with
trained orientation with all force levels.

TABLE 8. Summary of two-way ANOVA when classifiers are trained with
one orientation with a medium force level and tested with all
orientations with all force levels.

TABLE 9. Comparison between the feature selection methods when
classifiers are trained with one orientation with a medium force level and
tested with all orientations with all force levels.

II. METHODOLOGY
A. THE PROPOSED FEATURE SELECTION METHOD
In particular, in EMG-PR, a large number of features have
been proposed over the decades, and these features are

TABLE 10. Summary of two-way ANOVA when classifiers are trained with
two orientations with a medium force level and tested with all
orientations with all force levels.

TABLE 11. Comparison between the feature selection methods when
classifiers are trained with two orientations with a medium force level
and tested with all orientations with all force levels.

TABLE 12. Summary of two-way ANOVA when classifiers are trained with
all orientations with a medium force level and tested with all orientations
with all force levels.

TABLE 13. Comparison between the classifiers when classifiers are
trained with all orientations with a medium force level and tested
with all orientations with all force levels.

problem-specific [14], [24], [38], [39]. Therefore, to resolve
any EMG-PR problem, an efficient feature selection method
is necessary to find the least number of features and achieve
the highest pattern recognition performance with low compu-
tational power [27].

As shown in Algorithm 1, we evaluated the I number
of features from the J number of EMG channels in this
proposed method. Thus, the total number of features K is
equal to I × J . We considered each of the K features as
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TABLE 14. Comparison between the feature selection methods when
classifiers are trained with all orientations with a medium force
level and tested with all orientations with all force levels.

a unique feature. The reason is that each feature increases
the total number of features by the total number of channels

since each feature is evaluated across all EMG channels.
Also, the extracted features from all EMG channels do
not contribute to enhancing the EMG-PR performance [40].
However, the proposed feature selection method selects those
features only, which contributes to the F1 score. In this
method, the performance was evaluated for each feature,
and the best-performing feature was selected. Then, the
selected feature was grouped with each of the remaining
features, and the group of two features that provided the
highest performance was selected. The procedure was con-
tinued until the addition of a new feature contributed to the
performance.

This study considered the KNN classifier to evaluate the
F1 score since the KNN classifier performed better than
SVMandLDA (Section III). For performance evaluationwith
various training and testing datasets, we employed widely
used 5-fold cross-validation as described in Section III-D.
Therefore, the proposed feature selection method would be
able to find the least number of features without compromis-
ing the EMG-PR performance.

TABLE 15. Selected features for training classifiers with O1 with a low force level and testing with O1 with all force levels.
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TABLE 16. Selected features for training classifiers with O1 with a medium force level and testing with O1 with all force levels.

B. DESCRIPTION OF EMG DATASET
In this research, the EMG dataset was collected from
Khushaba et al. [20] using an online respiratory (https://
www.rami-khushaba.com/electromyogram-emg-repository.
html, accessed on Oct. 12, 2021). The dataset includes ten
intact limbed subjects (S1 to S10) aged between 20 and
33 years. The EMG signal was recorded using the Bagnoli
desktop EMG system (Delsys Inc., USA). In this data record-
ing, six equally spaced EMG signal electrodes were attached
across the forearm circumference, where their common ref-
erence electrode was placed near the wrist. In addition, the
EMG signal was digitalized at a 4000 Hz sampling rate
using National Instruments, BNC-2090, with 12 bits reso-
lution. During data recording, each subject performed six
movements: hand close, hand open, wrist extension, wrist

flexion, wrist ulnar deviation, and wrist radial deviation.
Each movement was repeated three times (known as tri-
als). In addition to performing complex movements, three
forearm orientations (O1, wrist at rest (O2), and O3) as
shown in Fig. 1 and three muscle contraction force levels
(low, medium, and high) were considered in this recording.
Therefore, each subject performed 162 trials (6 movements×
3 orientations × 3 muscle force levels × 3 trials). In this
data recording, each trial was performed for 5 s duration
with a 10 s rest between any successive trials to mini-
mize the effect of muscle fatigue. In this dataset, an addi-
tional 3-D accelerometer (MPU-6050 from InvenSense)
was also attached to the wrist of the subject to observe
wrist acceleration. The accelerometer data was sampled
at 26.6±0.30 Hz.
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TABLE 17. Selected features for training classifiers with O1 with a high force level and testing with O1 with all force levels.

C. FEATURE EXTRACTION
In this research, we extracted nine features (F1 to F9) and
correlation coefficients (CCs) according to Islam et al. [14].
In this feature extraction method, the multichannel EMG
signals were normalized by the root mean square (RMS)
value of the current window since the signal normalization
scheme is very much helpful to overlap muscle activation
patterns of different muscle contraction forces [14]. Then, the
features were extracted as follows:

F1 = log(
1
N

N−1∑
i=0

|x[i]|) (1)

where x[i] is the discrete EMG signal of window size N .

F2 = log(
N−1∑
i=0

[x[i]]2) = log(
1
N

N−1∑
k=0

[X[k]X∗[k]])

= log(
N−1∑
k=0

P[k]) (2)

where P[k] is the power spectrum, and X∗[k] is the complex
conjugate of X[k] with a frequency index of k .

F3 = log(
N−1∑
k=0

k2P[k]) = log(
1
N

N−1∑
k=0

[kX[k]]2)

= log(
N−1∑
i=0

[1x[i]]2) (3)

F4 = log(
N−1∑
k=0

k4P[k]) = log(
1
N

N−1∑
k=0

[k2X[k]]2)

= log(
N−1∑
i=0

[12x[i]]2) (4)

VOLUME 10, 2022 46455



M. Johirul Islam et al.: Forearm Orientation and Muscle Force Invariant Feature Selection Method

TABLE 18. Selected features for training classifiers with O2 with a low force level and testing with O2 with all force levels.

F5 = log(
N−1∑
k=0

k6P[k]) = log(
1
N

N−1∑
k=0

[k3X[k]]2)

= log(
N−1∑
i=0

[13x[i]]2) (5)

F6 = log(
N−1∑
k=0

k8P[k]) = log(
1
N

N−1∑
k=0

[k4X[k]]2)

= log(
N−1∑
i=0

[14x[i]]2) (6)

F7 = log(
1

N − 1

N−1∑
i=0

|1x|) (7)

F8 = log(
1

N − 2

N−1∑
i=0

|12x|) (8)

F9 = log(
1

N − 3

N−1∑
i=0

|13x|) (9)

In our proposed feature selectionmethod, the feature calcu-
lated for each EMG channel was considered a unique feature
denoted as CJFI. Where C, J, F, and I indicate the channel,
channel number (J = 1, 2, 3, . . . .6), feature name, and the
feature number (I = 1, 2, 3, . . . .9), respectively.

The CC p(x,y) between any two channels, x, and y, was
evaluated as follows:

ρ(x, y) =
Cov(x, y)
σxσy

=

N−1∑
i=0

(xi − x)(yi − y)√
N−1∑
i=0

(xi − x)2

√
N−1∑
i=0

(yi − y)2

(10)

where x and y present the mean of channels x and y for a
window size of N , respectively. Here, CCs are presented as
CC1, CC2, CC3, . . . ..CC15.

The autoregressive (AR) coefficients are a promising fea-
ture extraction method for EMG-PR [41], [42]. So, we also
considered 15 order AR coefficients to find their importance
in resolving forearm orientation and muscle force variation.
In the AR model, each sample of the EMG signal xi is
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TABLE 19. Selected features for training classifiers with O2 with a medium force level and testing with O2 with all force levels.

presented as a linear combination of the previous samples
xi−p and a white noise error wi as follows:

xi =
P∑
p=1

apxi−p + wi (11)

where P is the order of AR coefficients, fifteen order AR
coefficients for multichannel EMG signals are presented as
CJARP where P = 1, 2, 3, . . . . . . 15.

In addition to these features, we also calculated the RMS
feature for 3-D accelerometer data, which are presented as
C1AcF, C2AcF, and C3AcF. Finally, total number of features
became 162 (6 channels × (9 features + 15 AR coefficients)
+ 15 correlation coefficients + 3 accelerometer features).

D. CLASSIFICATION
In this study, we utilized MATLAB 2020a (MathWorks,
USA) for evaluating the EMG-PR performance. First, the
EMG signal was segmented using disjoint rectangular

windowing for 150 ms [15], [43]. Thus, three trials of
15 s duration provided 100 samples, and each subject pro-
vided 600 samples per forearm orientation and muscle force
level (6 movements × 100 samples). Then, we extracted
162-dimensional features for each sample as described in
Section II-C. The high dimensional features were fed to the
proposed feature selection method (Section II-A), which only
identifies the efficient features. In this research, selected
features were lied between 3 to 20 without compromising
the EMG-PR performance (Table 15 to Table 30). However,
to evaluate the EMG-PR performance, we considered three
well-recognized classifiers, namely KNNwith Euclidean dis-
tance and ten neighbors, SVM with a Gaussian radial basis
function, and kernel scale=3, and LDA [14], [24], [43]. In this
optimization, we employed the ‘Classification Learner’ app
of MATLAB 2020a and the selected feature space of S1 from
the proposed feature selection method considering the best
training orientation, O2, with the best training force level,
medium (Section III). We employed one orientation and one
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TABLE 20. Selected features for training classifiers with O2 with a high force level and testing with O2 with all force levels.

force level to achieve forearm orientation and force invari-
ant EMG-PR. Also, we employed 5-fold cross-validation to
evaluate EMG-PR performance and avoid data overfitting
problems. This 5-fold cross-validation considering forearm
orientation and/or muscle force invariant properties con-
firmed that unknown testing samples never mixed with the
training samples. To carry out this special 5-fold cross-
validation, known samples were conventionally divided into
training and testing samples. Unknown testing samples were
also divided using 5-fold cross-validation, with the only
unknown testing fold added to the known testing sam-
ples. To compare and validate the proposed feature selec-
tion method, we considered four existing feature selection
methods, chi-square [25], ReliefF [26], MRMR [27], and
NCA [26]. In these existing feature selection methods, the
least number of features defined by the proposed feature
selection method was also selected for chi-square, ReliefF,
MRMR, and NCA. Depending upon the feature ranking con-
sidering K = I ×J number of unique features for a I number
of features extracted from J number of EMG channels and
all samples as employed in the proposed feature selection
method. Thus, we selected the same number of features

for the existing four feature selection methods. In addition,
to analyze the EMG-PR performance in different aspects,
we considered six statistical parameters, accuracy, sensitivity,
specificity, precision, F1 score, and MCC [14], [31]. These
parameters are defined as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(12)

Sensitivity =
TP

TP+ FN
(13)

Specificity =
TN

TN + FP
(14)

Precision =
TP

TP+ FP
(15)

F1 Score =
2× Precision× Sensitivity
Precision+ Sensitivity

(16)

MCC =
TN×TP−FN×FP

√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

(17)

where TP, TN, FP, and FN define the number of the true
positive movements, the true negative movements, the false
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TABLE 21. Selected features for training classifiers with O3 with a low force level and testing with O3 with all force levels.

positive movements, and the false negative movements,
respectively. This research considered four cases of training
the classifiers to evaluate forearm orientation and muscle
force invariant EMG-PR performance. These are as follows:
Case 1: Training for one orientation with one force level.
Case 2: Training for one orientation with a medium force

level.
Case 3: Training for two orientations with a medium force

level.
Case 4: Training for all orientations with a medium force

level.

E. STATISTICAL TEST
To find the significant difference between any pairs of fea-
ture selection methods, we employed two-way ANOVA.
The independent variables were classifiers and feature
selection methods, and the dependent variable was the

F1 score. In this statistical test, we included Bonferroni
correction with a threshold level of 5%. The obtained
p-values below 0.05 imply that the performance is sig-
nificant. In this research, the subject-wise F1 score under
three training and testing cases (training and testing cases in
each table, Table 1 to Table 3) was concatenated to form a
30-dimensional vector (10 subjects × 3 training and testing
cases), and two-way ANOVA was performed.

III. RESULTS
A. IMPACT OF THE NUMBER OF FEATURES AND FEATURE
SELECTION METHODS ON EMG-PR PERFORMANCE
To show the impact of the number of features and dif-
ferent feature selection methods on the F1 score, we con-
sidered the KNN, SVM, and LDA classifiers. However,
these impacts using KNN are shown in Fig. 2. In this
study, we employed S1, where the classifiers were trained
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TABLE 22. Selected features for training classifiers with O3 with a medium force level and testing with O3 with all force levels.

with O2 with a medium force level and tested with O2 with
all force levels. The figure indicated that the F1 score of
the existing feature selection methods fluctuated with the
number of features. These fluctuating characteristics implied
that all features did not contribute to enhancing the F1 score;
instead, some of the features played a negative role in the
EMG-PR performance. Again, it was clear from Fig. 2 that
the proposed feature selection method achieved 100% F1
score using only 6 efficient features. It was about 4% to 5%
higher F1 scores than the existing methods, where chi-square,
ReliefF, MRMR, and NCA achieved the highest F1 score
of 95.11%, 95.59%, 95.87%, and 94.96% using 157, 4, 56,
and 136 features, respectively. It could be noted here that the
other two classifiers, SVM and LDA, also followed KNN.
So, the proposed feature selection method would be able
to select the least number of features with improved EMG-
PR performance for forearm orientation and muscle force
invariant EMG-PR.

B. TRAINING FOR ONE ORIENTATION WITH ONE FORCE
LEVEL (CASE 1)
To find the force invariant properties of the proposed fea-
ture selection method, we trained the classifiers for one
orientation with one force level and tested the classifiers for
trained orientation with all force levels. The force invariant
EMG-PR performances for each orientation, O1, O2, and
O3, are shown in Table 1. The summary of the tables is
shown in Fig. 3a, Fig. 3b, and Fig. 3c, where only F1
scores with standard deviation across the subjects are plotted.
The experimental results indicated that the proposed feature
selection method overperformed existing methods consid-
ered in terms of performance and standard deviation. The
force invariant EMG-PR performance was highest when the
KNN classifier was trained with O2 with a medium force
level. In this best training arrangement, the proposed feature
selection method achieved the highest accuracy, sensitivity,
specificity, precision, F1 score, andMCCof 99.34%, 98.01%,
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TABLE 23. Selected features for training classifiers with O3 with a high force level and testing with O3 with all force levels.

99.60%, 98.14%, 98.02%, and 0.98, respectively, employing
only 5 to 15 features (Table 19). Also, the proposed feature
selection method improved the performances, accuracy, sen-
sitivity, specificity, precision, F1 score, and MCC by 3.18%,
9.52%, 1.90%, 8.30%, 9.71%, and 0.11, respectively, when
the performances were compared with the second-best per-
forming method among the existing, i.e., chi-square. For the
best-performing orientation, O2, we also evaluated p-values
considering classifiers and feature selection methods
(Table 6 and Table 7). The obtained p-values indicated that

the F1 score significantly depended on the feature selection
methods (p�0.001) rather than the classifiers (p=0.68).
In addition, the proposed feature selection method provided
a significantly improved F1 score considering the existing
four feature selection methods (p�0.001). However, the
experimental results indicated that the SVM classifier follows
the KNN classifier, but another classifier, LDA, reported in
various literature, provided relatively poor EMG-PR perfor-
mance. Table 19 shows subject-wise selected features in this
best training strategy for different feature selection methods.
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TABLE 24. Selected features for training classifiers with O1 with a medium force level and testing with all orientations with all force levels.

The proposed feature selection method selected AcF, F1,
F2, F3, F4, F5, F6, F7, F8, CC, and AR in most subjects,
which implied that these features were significant for force
invariant EMG-PR.

C. TRAINING FOR ONE ORIENTATION WITH A MEDIUM
FORCE LEVEL (CASE 2)
To find the performance of the proposed feature selection
method for forearm orientation and force invariant EMG-
PR, we trained the classifiers for one orientation with a
medium force level and tested the classifier for all orienta-
tions with all force levels. The orientation and force invariant
performances in terms of accuracy, sensitivity, specificity,

precision, F1 score, and MCC with standard deviation are
shown in Table 2. The summary of results is shown in Fig. 4,
where the F1 score is used only for simplicity. In this orienta-
tion and force invariant scheme, O2with amedium force level
performed well for training the classifiers. The proposed fea-
ture selection method overperformed existing methods in this
training arrangement. The proposed feature selection method
improved accuracy, sensitivity, specificity, precision, F1
score, andMCC by 4.28%, 12.85%, 2.57%, 10.99%, 13.92%,
and 0.15, respectively, when the proposed method was com-
pared with the second-best performing method, chi-square.
In this performance evaluation, the proposed feature selection
method with the KNN classifier achieved accuracy, sensi-
tivity, specificity, precision, F1 score, and MCC of 92.84%,
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TABLE 25. Selected features for training classifiers with O2 with a medium force level and testing with all orientations with all force levels.

78.52%, 95.70%, 80.35%, 78.44%, and 0.75, respectively
employing 5 to 17 features only (Table 25). The proposed
feature selection method selected F1, F2, F3, F4, F5, F6, F7,
F8, CC, and AR in most subjects. In addition, we performed
two-way ANOVA considering independent variables, classi-
fiers, and feature selection methods (Table 8 and Table 9).
The obtained p-values indicated that the F1 score signifi-
cantly depended on the feature selection methods (p�0.001)
rather than the classifiers (p=0.26). Also, we obtained
much smaller p-values (p�0.001) when the proposed feature
selection method was compared with each of the existing
feature selection methods, which confirmed the significant
performance improvement of the proposed feature selection
method.

D. TRAINING FOR TWO ORIENTATIONS WITH A MEDIUM
FORCE LEVEL (CASE 3)
To achieve satisfactory EMG-PR performance for forearm
orientation and force invariant EMG-PR, we trained the
classifiers for two orientations with a medium force level
and tested the classifiers for all orientations with all force
levels. The detailed EMG-PR performances with standard
deviation are shown in Table 3. The performances are also
shown in Fig. 5 using F1 scores only. In this training scheme,
the proposed feature selection method achieved the highest
performance training KNN classifier for both O1 and O3
with a medium force level. The obtained F1 score was sat-
isfactory and about 13% higher than case 2. In this study,
the proposed feature selection method improved accuracy,
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TABLE 26. Selected features for training classifiers with O3 with a medium force level and testing with all orientations with all force levels.

sensitivity, specificity, precision, F1 score, and MCC by
3.82%, 11.45%, 2.29%, 9.86%, 11.43%, and 0.13, respec-
tively, when the proposed method was compared with chi-
square. The proposed feature selection method with the
KNN classifier achieved accuracy, sensitivity, specificity,
precision, F1 score, and MCC of 97.19%, 91.57%, 98.31%,
92.14%, 91.46%, and 0.90, respectively, employing 7 to
20 features only (Table 28). The proposed feature selec-
tion method selected F1, F2, F3, F4, F5, F6, F7, F8, CC,
and AR in most subjects. Again, we evaluated p-values
considering independent parameters, classifiers, and feature
selection methods (Table 10 and Table 11). The obtained
p-values indicated that the F1 score significantly depended
on the feature selection methods (p�0.001) rather than the

classifiers (p=0.051). Also, the F1 score obtained by the
proposed feature selection method and each of the existing
feature selection methods were significantly different since
p-values were much smaller than 0.001.

E. TRAINING FOR ALL ORIENTATIONS WITH A MEDIUM
FORCE LEVEL (CASE 4)
In this study, we trained the classifiers for all orientations
with a medium force level and tested the classifiers for all
orientations with all force levels. The detailed EMG-PR per-
formances with standard deviation are shown in Table 4. The
summary of the performances is also shown in Fig. 6 using F1
scores only. The proposed feature selection method achieved
the highest performance with the KNN classifier in this
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TABLE 27. Selected features for training classifiers with O1 and O2 with a medium force level and testing with all orientations with all force levels.

training scheme. The obtained F1 score was 1.81% higher
than in case 3. However, the proposed feature selection
method improved accuracy, sensitivity, specificity, precision,
F1 score, and MCC by 3.35%, 9.14%, 1.83%, 8.67%, 9.22%,
and 0.11 respectively, when the proposed method was com-
pared with ReliefF. In this training scheme, the proposed
feature selection method with the KNN classifier achieved
accuracy, sensitivity, specificity, precision, F1 score, and
MCC of 97.77%, 93.31%, 98.66%, 93.53%, 93.27%, and
0.92, respectively employing 7 to 19 features only (Table 30).
The proposed feature selection method selected AcF, F1, F2,
F3, F4, F5, F6, F7, F8, CC, and AR in most of the subjects.

Again, we evaluated p-values considering indepen-
dent parameters, classifiers, and feature selection methods
(Table 12, Table 13, and Table 14). The obtained p-values
indicated that the F1 score significantly depended on both
the feature selection methods (p�0.001) and the classifiers
(p=0.012). Also, the F1 score obtained by the proposed
feature selection method and each of the existing feature
selection methods were significantly different since p-values
were much smaller than 0.001. Besides, the KNN classi-
fier provided significantly improved performance than LDA
(p=0.037), but the SVM classifier provided an almost equal
F1 score to the KNN classifier (p=1).
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TABLE 28. Selected features for training classifiers with O1 and O3 with a medium force level and testing with all orientations with all force levels.

F. PERFORMANCE COMPARISON
To compare and validate the proposed feature selection
method for resolving forearm orientation and muscle force
variation, we considered most related existing works shown
in Table 5. In this table, some additional works that deal
with muscle force variation were included since only two
related works were found to the best of our knowledge.

The table shows that the proposed feature selection method
achieved 2.92% and 2.27% improved F1 scores compared to
Rajapriya et al. [19] and Khushaba et al. [20], respectively,
where three orientations were employed for training. In addi-
tion to training with all orientations, the proposed feature
selection method achieved an improved F1 score of 91.46%
training with O1 and O3 only. This study also noted that

46466 VOLUME 10, 2022



M. Johirul Islam et al.: Forearm Orientation and Muscle Force Invariant Feature Selection Method

TABLE 29. Selected features for training classifiers with O2 and O3 with a medium force level and testing with all orientations with all force levels.

the proposed work achieved these improved performances
using the least number of features of 7 to 20 (Table 28 and
Table 30). Thus, the proposed work showed its robustness
to reduce data dimensionality of feature space, design com-
plexity, and computational power of the hardware as defined
in [19]. Again, the performances achieved in this work were
higher than the other works shown in this table, where only
muscle force variation was resolved. So, the proposed fea-
ture selection method would be an option to resolve both
the forearm orientation and muscle force variation problems
of EMG-PR.

IV. DISCUSSION
Myoelectric pattern recognition is an efficient method to
decode the intended movements and restore the missing func-
tionalities of an amputee [42], [44]. Nevertheless, several
factors affect the EMG-PR performance [45], [46]. These
factors change the time-domain and frequency-domain char-
acteristics of the EMG signal and alter the values of existing

features extracted from the EMG signal. Consequently, the
factors degrade the EMG-PR performance [14], [19], [23].
Researchers have proposed different feature extraction meth-
ods to resolve these factors, including multiple numbers of
features. The feature space becomes very high when extract-
ing these features from a multichannel EMG signal [47].
In addition to high dimensionality, the EMG features are
problem-specific, i.e., a feature extraction method or a group
of features proposed to resolve any particular problem may
not be effective for other problems [21], [47]. So, to resolve
any single or multiple limiting factors of EMG-PR, an effi-
cient feature selection method is required to find out the least
number of features.

We have proposed an efficient feature extraction method to
resolve forearm orientation and muscle force variation simul-
taneously. The proposed feature selection method considered
a feature extracted from each channel as a distinct feature.
Thus, the proposed feature selection method selected the
features and the channels. In addition, the proposed feature
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TABLE 30. Selected features for training classifiers with all orientations with a medium force level and testing with all orientations with all force levels.

selection method selected features one by one by confirming
their highest contribution to the EMG-PR performance. Thus,
the proposed feature selection method found the least number
of features without compromising the EMG-PR performance.
In this study, the proposed method with the KNN classifier
achieved the highest EMG-PR performance with the lowest
standard deviation compared to chi-square, reliefF, MRMR,
and NCA (Section III).

The proposed method significantly improved the accu-
racy, sensitivity, specificity, precision, F1 score, and MCC by
3.18% to 4.28%, 9.14% to 12.85%, 1.83% to 2.57%, 8.30%
to 10.99%, and 9.22% to 13.92%, 0.11 to 0.15, respectively
when the proposed method was compared second-best per-
forming feature selection method. In this study, the proposed
feature selection method achieved forearm orientation and

muscle force invariant F1 score of 91.46% for training KNN
classifier with O1 and O3 with a medium force level. The
achieved performance was much higher than the existing
two works where they employed three orientations for train-
ing [19], [20]. Also, we trained the KNN classifier for all
orientations with a medium force level and achieved the F1
score of 93.27%, which was improved by 2.27% to 2.92%
[19], [20]. In addition to improved EMG-PR performances,
the proposed feature selection method selected the least num-
ber of features of 7 to 20, less than the feature space used in
the existing works (Table 5). So, the proposed feature selec-
tion method effectively reduces data dimensionality, design
complexity, and hardware computational power, as defined
in [19]. Again, the proposed method do not require any
dimension reduction technique since the dimension of the
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selected feature is shallow. Therefore, the proposed feature
selection method shows its robustness for resolving multiple
limiting factors, forearm orientation, and muscle force varia-
tion, providing improved performance and selecting the least
number of features.

In force invariant EMG-PR, the proposed feature selection
method selected AcF, F1, F2, F3, F4, F5, F6, F7, F8, CC,
and AR in most of the subjects (Table 19), which implied that
these features were the most stable features with muscle force
variation. AcF and CC were selected since these features did
not vary with muscle force levels, according to [14], [15].
The variation of muscle force level changed the values of
F1, F2, F3, F4, F5, F6, F7, F8, and AR, but these features
were selected due to the use of the signal normalization
approach [14]. Again, in the case of forearm orientation
and force invariant EMG-PR, the proposed feature selection
method selected F1, F2, F3, F4, F5, F6, F7, F8, CC, and AR
in most of the subjects (Table 28) which implied that these
features were stable with the forearm orientation and muscle
force variation. It was also noted from Table 19 and Table 28
that AcF feature was common for force invariant EMG-PR,
but it was not selected for the variation of both forearm and
muscle force levels. So, accelerometer data changes with
various forearm orientations. This research also used the
proposed feature selection method when the KNN classifier
was trained with a medium force level for all orientations.
It was a kind of force invariant EMG-PR considering mul-
tiple orientations. So, the proposed method selected similar
features in Table 19: AcF, F1, F2, F3, F4, F5, F6, F7, F8, CC,
and AR in most of the subjects.

In this study, forearm orientation and muscle force invari-
ant EMG-PR performance was highest when the KNN clas-
sifier was trained for O1 and O3 with a medium force level.
The possible reason may be that the medium force level is
highly correlated with each low and high force level, and
O2 is in the middle position among the three orientations,
so the angle of forearm rotation from O2 to each of O1 and
O3 is minimum. So, it is suggested to use a force level for
training so that other force levels are highly correlated. It is
also recommended to use those orientations for training so
that the angle of unknown testing orientation from the training
orientation is minimum.

V. CONCLUSION AND FUTURE DIRECTIONS
This study has proposed an efficient feature selection method
to resolve forearm orientation and muscle force variation in
EMG-PR. The experimental results imply that the proposed
feature selection method significantly improves the accu-
racy, sensitivity, specificity, precision, F1 score, and MCC
by 3.18% to 4.28%, 9.14% to 12.85%, 1.83% to 2.57%,
8.30% to 10.99%, 9.22% to 13.92%, and 0.11 to 0.15, respec-
tively when the proposed method is compared with second
best-performing feature selection method. In this research,
the proposed feature selection method achieves forearm ori-
entation and muscle force invariant F1 score of 91.46% for
training KNN classifier with O1 and O3 with a medium

force level. Also, we achieve the F1 score of 93.27% training
KNN classifier for all orientations with a medium force level.
In addition to improved EMG-PR performances, the pro-
posed feature selection method selects 7 to 20-dimensional
features only. So, the proposed feature selection method does
not require any dimension reduction technique and reduces
the hardware’s computational power. So, the proposed feature
selection method would be an option to find efficient features
and achieve improved EMG-PR performance with multiple
limiting factors.

This research evaluates the performance using a machine,
Intel Core i3-7100U CPUwith 2.40 GHz processor and 8 GB
RAM, whose computational power is relatively low. So,
we considered the most efficient groups of feature extrac-
tion methods only. In our future study, other feature extrac-
tion methods, time-domain power spectral descriptors [24],
wavelet bispectrum-based features [19], temporal-spatial
descriptors [47], and traditional time-domain and frequency-
domain features [39], will be investigated. In addition, this
study resolves two factors, forearm orientation, and muscle
force variation, but other limiting factors exist. So, our future
studywill includemany limiting factors tomake the EMG-PR
system more robust, reliable, and user-friendly for prosthetic
hand users. Again, our proposed feature selection algorithm
is studied for an offline dataset including a limited number of
subjects, comparatively simple hand gestures, and artifacts-
free signal. So, the proposed feature selection will be studied
for an online EMG-PR system considering these factors in
our future study.
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