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ABSTRACT Facing the issue of flash floods and their important damage both to victims and infrastructures,
involved authorities are interested in the study of the ways to answer at best this kind of crisis both in the
long-term and emergency phase. The victim relief operations can be optimized to help rescue teams improve
their management of the crisis situation. It is translated into the field by the development of a decision
support tool for victim relief operations. The problem addressed is a Vehicle Routing Problem (VRP) for the
rescue vehicles. This article focuses on searching for efficient algorithms both in terms of execution time
and intervention promptness to solve this VRPs. Data from a past crisis is used in this paper to evaluate the
performances of the algorithms on problems as close to field experience as possible. Since rescue teams need
to divide their forces into the different impacted sectors during flooding, algorithms to dispatch the resources
(rescue team’s vehicles) between areas of intervention are studied.

INDEX TERMS Floods, optimization, crisis management, vehicle routing.

I. INTRODUCTION
In the current context of climate change, disasters such
as flooding are more likely to happen as stated in [12]
and [34] for example. A response to these events is needed
because it results in important damage to inhabitants and
infrastructures. [35] offers a table of the impact of flooding
in France from 1983 to 2010 in terms of deaths and estimated
damages. Over this time period, a dozen of crises are
referenced with at least 252 human casualties and more than
8,3 billion euros estimated damages each. As a part of the
response, the crisis management field has been developed
in the last years. This includes victim relief which is a life-
saving challenge. In order to tackle this issue, we work
directly with the SDIS 31 (Service Départemental d’Incendie
et de Secours: French Firefighters that also intervene in
case of floods) to help them fill the gap. In this article,
we consider the short-term response’s main problem: Victim
relief. In order to give the best response, the routes for
rescue vehicles that will intervene need to be optimized. This
category of problem is called VRPs.

Our problem gravitates around VRP, and gathers elements
from various flavors of VRPs
• Capacitated Vehicle Routing Problem (CVRP): Capac-
ity limitations of the vehicles and quantities to be taken
at demand points are considered.
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• Split Delivery VRP: Sub-category of the CVRP where
the demand points can be split between several vehicles
as described by [17]. In our case, Split Delivery is
mandatory because some demands cannot be served by
a single-vehicle due to the number of victims.

• Heterogeneous VRP: This VRP allows to have vehicles
of different capacities as presented in [22]. This is the
case in our model where the rescue vehicles are not of
the same capacities.

• Vehicle Routing Problemwith TimeWindows (VRPTW):
In this category of VRP the demands need to be served
after the beginning of the time window and before its
end, as explained in [21]. The end of the time window is
called the deadline.

Assembling all these types of VRPs and insist on the
major aspects and difficulties of the problem, we call
our problem Capacitated Vehicle Routing Problem under
Deadlines (CVRPD). The decision was made to use the word
Deadlines instead of the classical TimeWindows terminology
to distinguish this problem dealing with human life from
commercial VRPs where Time Window violation does not
have the same consequences. This term also places the
problem more clearly in the crisis management context and
more precisely in the victim relief area.

Flood crises impact the territory and victims at a different
level often correlated with the water level. This means for the
rescue teams different types of interventions that cannot be
served using the same resources. These categories determine
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the types of demands that are in play but also the types of
vehicles (and their associated average speed) thatmay be used
for this kind of intervention.

VRP are known to beNP, it is to be determinedwhether this
problem is NP-complete. In this case, the computation time of
the solution would become a real challenge – at least for large
instances. In fact, rescue teams work on short-term deadlines
and cannot always be reached between two passages through
the rescue center. Furthermore, we want to optimize vehicles
routes over several interventions. That is why they try to
anticipate future events using forecast services. Computation
timemust then be negligible relative to the time of completion
of a tour in order to be consistent with a real-time decision
support tool. However, NP-completeness in the strong sense
problems are expected to become intractable when the
problem size grows even for moderately small instances.
Furthermore, we have observed in [18] that the Mixed
Integer Program with Quadratic terms (MIQP) we developed
indeed has exponential computation time, which explains the
choice that was made to solve this problem through heuristic
algorithms.

In this paper, we present the formulation of the model as
a MIQP but as stated above, an exact method is not suited to
answer the real-life problem in terms of computation time.
However, this formulation allows characterizing a solution
to the problem in order to confirm the results that heuristics
algorithms produce and verify that the constraints of the
model are verified. We present several algorithms in this
article with the purpose of finding a solution in a short amount
of time. They are based on an insertion strategy where the
routes of vehicles are built gradually by inserting demands
into it:
• Shortest Distance Insertion (SDI) algorithm: demands
are inserted into the route of the current closest vehicle
available;

• Best Flow-time Insertion (BFI) algorithm: demands are
inserted to a vehicle, based on the lowest impact on
objective;

• Best Flow-time Insertion with Order Questioning
(BFIOQ) algorithm: same principle is applied as BFI
adding a local search limited to the current route to
improve the solution at every insertion.

In this paper, these algorithms are compared to a reference
heuristic from the literature [33]. Hopefully, the solution
developed in our work shows better performances in term
of solution qualities and computation time than this baseline.
This comparison also helps to highlight the advantages of our
approach compared to other solutions from the literature to
answer the characteristics of our problem.

Comparingwith existing heuristics is not sufficient though.
Data about victim relief operations is needed and its
collection may be difficult in this context. In fact, for VRP
in general the problem of study cases is a real challenge and
a lot of studies choose to use instances from the literature
or to generate random instances. In this paper, we generate
instances based on data from past crises and use as much

real data as possible knowing that some information will be
missing if we want to replay a crisis identically since data
logging is not a priority during the crisis. One of our study
cases is the fast flood that occurred in Luchon’s Valley in
2013. Thanks to the partnership with SDIS 31, which was
in charge of the victim relief for this crisis, we were able to
retrieve the Experience Feedback (EF) from this crisis that
lists interventions of the rescue teams.

A flood can impact several areas at the same time forcing
rescue teams to plan interventions simultaneously in these
areas (we call them sectors). Using data extracted from
EF, we have developed a process to generate the sectors.
A flexible graph generator is important to randomly generate:
(i) stakes on the impacted area, (ii) connectivity between
stakes in the graph, and (iii) impacted stakes that turn into
demands in a configurable way. Finally, we have addressed
another of the problems encountered by rescue teams during
a crisis through resources dispatch. In fact, rescue teams need
to dispatch their resources between the impacted sectors.
The geographic constraints impose to dispatch the resources
of the rescue teams into several sectors in order to tackle
the distance between demands and deal with several rescue
centers. To help improve the response to the crisis, we have
developed an algorithm in order to optimize resources
dispatched through sectors with an application to a simulated
crisis containing several sectors.

Several new contributions are presented in this article:
• Data extraction from Experience Feedback;
• A mathematical model of the problem to consider
categories for the rescue vehicles;

• A heuristic Shortest Distance Insertion that mimics the
behavior of the rescue teams;

• BFI and BFIOQ algorithms that are evaluated on field
data;

• A configurable graph generator in order to evaluate
algorithms on territory adapted from real conditions;

• An experiment based on the resources dispatch between
sectors using the heuristics.

The remainder of this paper is organized as follows.
In Section II we present the literature around the studied
problem. The Section III describes the problem and explains
the mathematical model. The heuristic algorithms are pre-
sented in Section IV and the Data Analysis that seeds problem
instance generation is presented in Section V.

Experimental results are detailed in Section VI.
We conclude in Section VII where we open the perspectives
of our work.

II. STATE OF THE ART
VRP has been studied under various forms. First, it has been
tackled as a static problem as reported in [25]. In 1959 already
the subject was studied in [15] to optimally dispatch trucks
of a fleet to serve customers. The VRP includes the Pick-up
and Delivery Problem (PDP) where we might have to both
pick up and deliver people as in [11] that uses heuristics and
local search to optimize solutions of good distribution and
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waste collection. Reference [5] also works on carrier trucks
minimizing route costs in a flexible delivery context. This
article is an adaptation of the models from the literature to
fit the multi-days delivery period of the study. Reference [13]
focused on less-than-truckload delivery with the idea of
sharing delivery vehicles between professionals that do not
fully use vehicle capacity. This paper uses real data to validate
the optimization of truckload and shipping synchronization.
Recently [30] studied the VRP over a period of several days
with the bi-objective of optimizing both route costs and driver
consistency. A similar bi-objective can be found in the thesis
of [7] where the objective is to minimize route cost and
maximize planning stability for a garbage collection problem.
Most of the VRPs study commercial problems and some
of them are about same-day delivery where we search to
optimize the routing of vehicles to deliver the order the same
day of the command as in [29].

During a crisis, rescue teams need to deal with several
categories of demands. A difference has to be made
between interventions that need specialized vehicles, boats,
or even helicopters. Furthermore for every and each of
these resources of diverse categories, its capacity is a main
constraint of the problem. In the work of [36], capacity
limitations of vehicles are anticipated to minimize the detour
for restocking (action of a vehicle when going back to the
depot to refill or empty its load) on an online model. On the
contrary, [10] studied a model for Pick-up and Delivery
considering various categories of goods but did not consider
capacity as a constraint. However, this article concludes that
exact methods are not suited for problems of such complexity.

The studied problem is related to the split-delivery VRP.
Reference [6] offers a review of the different problems of
this VRP variation in the literature. For instance, [16] offers
a heuristic for this problem but it is only fitted to problems
where each demand is lower than the capacity of vehicles.
Reference [3] offers a Tabu search to solve the problem but
the computation time performances of such solutions are not
appropriate to the Crisis Management Context.

The use of heuristic algorithms is then the best choice
to answer this problem because its dynamic asks for a
computation time kept under the minute. Contrary to some
other VRPs, especially commercial applications, we need to
keep a focus on the computation time of our algorithms.
Indeed the degree of dynamism defined in [27] applied to our
problem demands a computation time negligible compared
to the time scale of the completion of an operation. Even
if, the early article [20] tackled CVRP, the computation
time of the experiments it presents is not adapted to a
dynamic context. Different articles have studied heuristic
solutions to the VRPTW. In [28], a comparison is offered
with different heuristics from the literature. The comparison
presents different high-quality solutions. For instance, [9]
develops a heuristic based on a genetic approach. In this
approach, two populations of solutions evolve simultaneously
in order to improve solutions. The comparison also displays
two-stage heuristics such as [8] and [23]. This approach

generates routes on two-time horizons. In the short-term
phase of the problem, the first solution is used to compute
the route in a short amount of time. Then a search heuristic
tries to improve the solutions on the long-term horizon. The
comparison shows computation time is too important to fit
the requirements of the crisis management context (over five
minutes for the same scale of problems we want to study).
These approaches use local search to improve the initial
solution. Hence, to fit the computation time requirements
induced by the context of our problem, a heuristic with a
short computation time that does not contain an improvement
routine seems more likely to produce feasible solutions in
a short time. Reference [33] presents an insertion heuristic
often used as a baseline in the literature. It computes solutions
in computation time with the same scale we want to obtain.
It also offers graph instances used as benchmarks for many
papers from the domain. However, since these instances do
not contain priorities, we will not be able to use them for
evaluation.

This insertion algorithm is a reference however it does
not consider priorities, which has to be considered in our
problem. The quantity is also not considered in this heuristic.
Finally one of the major drawbacks might come from the
insertion, vehicle by vehicle, not comparing one vehicle with
another. It will then be interesting to compare the results
of our heuristic to this one. Reference [2] also worked on
heuristics but to deal with online requests. Its application
manages no capacity and routes over a day period. It is
considering a short-term period and works on a look-ahead
period to avoid to create infeasibility situation in the future.
Recently [4] offered leads for local search in order to improve
the quality of a first solution with a destroy and repair
heuristic which deletes random demands from the route and
tries to insert them somewhere else to improve the solution.
Reference [26] also uses a local search algorithm as well as
local clustering in the Variable MIP Neighborhood Descent
algorithm. Working with a computation time constraint as
well, [31] decides to use heuristics to find a solution in a time
consistency with a re-optimization approach but on a single-
vehicle problem.

The validation process for VRPs is elaborated either
by replaying the events using collected data or simulating
it based on a configuration the closest possible to the
original problem. Reference [37] studies Hazard material
transportation with an application area in Greece. The model
is trying to minimize the impact of randomly generated
incidents. Other studies validate their model by replaying
a crisis like [32] with Taiwan earthquake on which they
solved logistic material distribution. This article does not
consider though capacity constraints as well as [14] that
studies resources management and rescue team deployment.
Another approach is presented in [1] that generates randomly
200 nodes size network to validate a humanitarian relief
model adapted to the size of the specific crisis. Reference [24]
used a high scale model of the 1994 earthquake in Los
Angeles but with empiric probabilities on casualty types.
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In this article, data from EF are used and instead of replaying
the crisis identically, we choose to play a large-scale set
of similar crises using the configuration obtained by data
extraction. This choice is motivated both by the lack of data
to replay the crisis identically and the objective to test the
studied solution over different situations.

In relation to works from the literature, this article offers
an application of the CVRP to a crisis management problem
with data from a flash flooding event. It is built on the
requirements of emergency teams. The article gathers specific
VRP versions into one problem dealing with the capacity,
deadline, categories, and dynamic aspects all at once. This
article exclusively regroups the beforehand cited constraints
and brings them into the domain of crisis management.
It intends to tackle the problem of the computation time
limitation in the context of emergency relief in order to meet
rescue teams’ expectations.

III. PROBLEM DESCRIPTION AND
MATHEMATICAL MODEL
A. PROBLEM DESCRIPTION
In this section, we present the CVRPD adapted to handle
several categories with shared resources.

We apply the CVRPD to people rescue in the flash flooding
emergency phase, optimizing routes for rescue vehicles.
We characterize our problem as a directed graph G = (V, E)
where V is the vertex set V = J0,V K of size V + 1,V ∈ N,
where every vertex is a point of demand where people need to
be rescued. A person is considered rescued when it has been
carried out to vertex 0, which is the rescue center. We use
V? as the set of all demand points without the rescue center,
and E = {(i, j) : (i, j) ∈ V2, i 6= j} the set of the direct
edges representing existing roads that link nodes together.
Each edge is associated with a cost, reduced for our problem
to a travel time tti,j,c where c the category of vehicle since
travel speed depends on the vehicle. The category c is an
integer in the set C = J1, nbCatK. Each demand i has a size di
corresponding to the number of victims and has a time ai for
the action to be completed on the node (to rescue victims).

In the perspective of dealing with several categories with
this model, it is necessary to introduce category variables.
There are nbCat categories that depend on the water level
or type of intervention. Depending on the category of the
demand, different types of vehicles are used and so the travel
time also variate.

First, a parameter is needed to identify the category of
a vehicle. For that purpose we define catk ∈ C, for all
k ∈ M, which is the category of vehicle k . We also
define the category of every demand i with ci ∈ C where
i ∈ V?. This category might be subject to evolve over time
depending on the water level for example. Since resources are
specific to the type of intervention, categories are considered
independent for this article. The categories are an input
of the model given by the rescue teams. In fact, they can
depend on other factors than the water level like the medical

emergency of the situation for example. A really emergency
demand might need an intervention by chopper for instance
(category 4). Furthermore, the fifth category is dedicated to
special interventions such as cattle evacuations for instance.

In the CVRPDwe are looking for a global optimal solution
to a VRP problem for the current state of the graph. Due to
the capacity limitations of the rescue vehicles and according
to the SDIS 31 expertise, the rescue teams may not have the
resources to solve the problem with only one passage by the
rescue center.

To deal with the capacity limit of the vehicles, we also need
to consider that a vehicle k ∈M has amaximum capacityQk ,
where M is the set of available vehicles. For the purpose of
the model we also use xzi,j,k , a binary variable which equals
1 if and only if vehicle k visits vertex j using edge (i, j) in tour
z ∈ Z . We introduce the tours, indexed by z ∈ Z = J1,ZK
where Z is the maximum number of times any vehicle has to
go through the rescue center, we will then solve the problem
on several tours.

We study a Crisis Management case with people’s lives at
stake sowe need to determine for themodel a way to differ the
urgent nodes to be treated in priority from demands that do not
need to be treated urgently. To do so, we base our categories of
priorities on the ones of the fireman’s department which uses
the following scale: (1) Can remain on the spot, (2) Have to
be rescued within 12 hours, (3) Have to be rescued within
6 hours, (4) Need to be rescued in emergency. These four
priority categories are used to characterize the problem with
both priority factors and deadlines. To each node i ∈ V? we
then associate a deadline fi ∈ N and a priority factor pi ∈ N.
While the hard deadlines cover the emergency aspect of

the problem through the fi’s, the objective function minimizes
the cumulative weighted time for the demands to be treated.
In fact, we want to obtain a feasible solution, which translates
into rescuing victims on time and also reducing at the
minimum the waiting time for the victims to be rescued.
We introduce the Flow-time which is the time between
reception and treatment of demand at node i: hzi,k − ri for
vehicle k on tour z with hzi,k the absolute date of arrival of
vehicle k to node i on tour z and ri the release date of demand
on node iwhich is the date we received the information of the
demand. With the release date and deadline introduced in the
model, the comparison can be made between CVRPD we are
presenting and the Capacitated Vehicle Routing Problemwith
Time Windows highly represented in the literature, however,
the terminology difference seems important to insist on the
emergency aspect of CVRPD and to differ it from commercial
problems for example. The objective of our optimization is
to minimize the total Flow-time weighted by the priority for
every demand. The aim of the optimization problem is to
assign the demands to the vehicles and to the tours. For each
vehicle on each tour, we have to decide on a circuit in the
graph going through the rescue center. For each node of each
circuit, we assign a part of the demands. We consider that the
action time ai is constant on a node even if only a part of the
demands is assigned. We will consider that the first tour for
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the solution is for z = 1 and we will set all the variables for
z = 0 to 0.

B. MATHEMATICAL MODEL
We have seen in the state of the art section(II) that none
of the existing works covers entirely the problem we deal
with in this paper. Hence we describe here fully, and without
ambiguity, the mathematical model, which embeds both the
objective function to minimize and the constraints to fulfill.
It relies on the constants and the variables that are summed
up in tables 1 and 2. Using these variables and parameters,
we establish the following objective function:

min
∑
i∈V

∑
j∈V

∑
k∈M

∑
z∈Z

(hzi,k − ri) · pi · q
z
i,k (1)

subject to :
∑
k∈M

∑
z∈Z

qzi,k = di, ∀i ∈ V (2)

hzi,k − ri−R · (1−
∑
j∈V

(xzj,i,k )) ≤ fi,

∀i ∈ V?; k ∈M; z ∈ Z (3)∑
i∈V

xzi,j,k −
∑
i∈V

xzj,i,k = 0,

∀j ∈ V; k ∈M; z ∈ Z (4)∑
i∈V

qzi,k ≤ Qk , ∀k ∈M; z ∈ Z (5)

hφ(i,z)i,k + ai + tti,j,catk−R · (1− x
z
i,j,k ) ≤ h

z
j,k

∀i ∈ V; j ∈ V; k ∈M; z ∈ Z (6)

qzj,k/Qk ≤
∑
i∈V

xzi,j,k ,

∀j ∈ V?; k ∈M; z ∈ Z (7)∑
j∈V?

xz0,j,k ≤ 1, ∀k ∈M; z ∈ Z (8)

∑
i∈V?

xz−10,i,k ≥
∑
i∈V?

xz0,i,k ,

∀z ∈ Z?
; k ∈M (9)∑

i∈V
(xzi,j,k )× cj = catk ,

∀j ∈ V?; k ∈M; z ∈ Z (10)

where

• φ(i, z) =

{
z− 1 if i = 0
z otherwise

• R is an integer of big size compared to all other variables.
The objective function (1) is the sum of all the Flow-time

for every intervention of vehicles, weighted by the priority
factor of the demand and the number of persons taken at this
node.

Constraint (2) makes sure that solutions do treat every
demand fully.

The constraint (3) is the deadline constraint that states
that a solution cannot contain any completion time over the
deadline associated with the demand. The third term is used

TABLE 1. Inputs.

TABLE 2. Variables.

to ensure the constraints only apply when node i is visited by
vehicle k on tour z, in other cases the big factor R makes the
inequality true for all reachable values of the other terms.

The inequalities (6) are necessary in order to ensure that
Flow-times respect the timing imposed by travel times and
action times compared to the previous interventions of a
vehicle. Thereby the time of arrival at a node is equal to the
time of arrival to the previous node to which we add the action
time on the previous node and the travel time between these
two nodes. Constraint (4) ensures that a vehicle that arrives at
a vertex also leaves it and (5) sets the maximum capacity of
vehicles.

The quantity and binary variables qzi,k and x
z
i,j,k are linked

thanks to (7). (8) defines the tours as the route between two
transitions through the rescue center and (9) makes sure there
are no empty tours in the planning because it ensures that a
vehicle that leaves the rescue center at tour z is also leaving
the rescue center at tour z− 1.
The constraint (10) has been added to the model to order

the dependencies of the categories. This ensures that a vehicle
can only be affected to a demand of the same category.
This constraint guarantees that the categories are treated
independently and could be treated as parallel problems.

In practice considering the complexity of the problem,
we will not be able to solve it using exact methods and
heuristic algorithms are a better fit to solve the problem in
real-time.

C. COMPLEXITY
The CVRPD is NP-complete in the strong sense.

Proof: We prove CVRPD is NP-complete by using
a reduction from 3-Partition problem, known to be
NP-complete in the strong sense [19]. A 3-Partition problem
consists in deciding whether a set 0 = {b1, . . . , bN } of
N = 3n positive integers can be partitioned into n triplets
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01, . . . , 0n (i.e. such that for any k ∈ {1, . . . , n}, 0k =
{gk,1, gk,2, gk,3}) where

∑3
i=1 gk,i = B. We will denote

σ : {1, . . . , n} × {1, . . . , 3} → {1, . . . ,N } the permutation
such that for all (k, i) ∈ {1, . . . , n}×{1, . . . , 3}, gk,i = bσ (k,i).
First, CVRPD is NP since one can check in a polynomial

time whether a given route is feasible or not. From any
3-Partition problem instance we call I1, we build up an
instance of CVRPD called I2 as follows. In I2, we dispose
of n vehicles, i.e. |M| = n, and the maximum capacity of
the vehicles is set to 3. We consider a single category for
this instance. We also consider a set V? = {1, . . . ,N } of N
demands, whose action time is set to bi: for all i ∈ V?, ai = bi.
Each node carries a single victim: ∀i ∈ V?, di = 1. All the
demands treated are from the same category numbered 1. The
travel time for every edge of the graph tti,j,1 for all i, j ∈ V? is
set to the same value of 2 · B. Finally the deadlines for every
node are defined as follows ∀i ∈ V?, fi = 9 ·B. All the release
dates are null: ∀i ∈ V?, ri = 0.
(⇒) First we show that if there exists a solution to I1 then

there exists a solution to I2. We assume that I1 has a solution,
i.e. there exist n triplets 0k = {gk,1, gk,2, gk,3}, such that
for any k ∈ {1, . . . , n},

∑3
i=1 gk,i = B, and we build a

solution to I2. For every vehicle k ∈ {1, . . . , n}we use the sets
0k to provide a plan of the demands to be served. We have
that gk,i = bσ (k,i) and bj = aj (by construction) for all
j ∈ {1, . . . ,N }, hence the node σ (k, 1) (resp. σ (k, 2), σ (k, 3))
needs an action time of gk,1 (resp. gk,2, gk,3). We decide
that vehicle k goes through node σ (k, 1) then σ (k, 2) then
σ (k, 3), dealing with the full demands. We remark that the
capacity is not exceeded. Since all travel times are equal to
2 ·B by construction, the arrival date back at the rescue center
for vehicle k is therefore: 2 · B + gk,1 + 2 · B + gk,2 + 2 ·
B + gk,3 + 2 · B = 4 · 2 · B +

∑3
i=1 gk,i = 9 · B. All

demands are satisfied and the deadline for every demand is
fulfilled: we have exhibited a solution to I2. In other terms,
a solution of CVRPD is given by taking q1i,k = 1 for all
i ∈ V? and k ∈ {1, . . . , n}. We also need x10,σ (k,1),k = 1,
x1σ (k,1),σ (k,2),k = 1, x1σ (k,2),σ (k,3),k = 0 and x1σ (k,3),0,k = 1.
For all k ∈ {1, . . . , n}, xzi,j,k = 0 otherwise. The variable hzi,k
as to be affected according to the order of the plan determined
by the xzi,j,k .
(⇐) Now we show that if there exists a solution to I2 then

there exists a solution to I1. We assume that I2 has a solution.
A vehicle can plan intervention to at most 3 nodes due
to deadlines set to 9 · B and the sum of travel times for
3 interventions equals 4 × (2 · B) = 8 · B. For the same
reasons, the problem needs to be treated in only one tour.
Otherwise for 3 interventions in 2 tours, the sum of travel
times would equal 10 · B (6 · B for the first tour and 4 · B
for the second one) and it would imply deadline violation.
Since every node has to be rescued, and the total number of
nodes is equal to 3 ·n, a vehicle routes exactly 3 interventions.
We define a permutation σ such that for all k ∈ {1, . . . , n}
as an intervention on nodes σ (k, j) for j ∈ {1, . . . , 3}. With
the deadlines ∀i ∈ V?fi = 9 · B, by removing the travel

times we have ∀k ∈ {1, . . . , n},
∑3

j=1 aσ (k,j) ≤ B. We have,
for all i ∈ V?bi = ai consequently

∑3
j=1 bσ (k,j) ≤ B.

In addition, knowing that
∑N

i=1 bi = n · B we have that
∀k ∈ {1, . . . , n},

∑3
i=1 bσ (k,i) = B. Therefore, I2 has a

solution if and only if I1 has a solution.
Altogether, CVRPD is NP-complete in the strong sense.

IV. HEURISTICS
In this section, we will present the heuristics that we
developed. First, we introduce SDI heuristics programmed
as a reproduction of current rescue team behavior on the
field. Secondly, BFI heuristic and its improved version are
explained.

A. SHORTEST DISTANCE INSERTION ALGORITHM
This algorithm is based on the first-fit algorithm. The first fit
is a resources allocation scheme. It is used in the bin packing
problem where one must pack different size’s items in bins
also of different sizes. The list of items is sorted (in size
order) and then items are allocated, in order, to the first bin
in which they fit without consideration of the optimal choice.
In our case, items are the nodes whose size is the number of
victims and bins are the vehicles with their capacity. The list
of nodes (demands) with Shortest Distance Insertion (SDI) is
sorted first in terms of priority and then for the nodes of the
same priority according to the distance of the closest available
vehicle. When a vehicle is full it returns to the depot and is
available for the next turn.

Detailed description of the algorithm is given in Figure1.
This heuristic represents the decision process of the

rescue teams. However, we suspect it not to be the most
efficient. In fact, the demand splits are not optimal since
the quantity of rescued persons is not taken into account in
the decision process in this algorithm. Furthermore, it is a
greedy algorithm so the allocations are not re-assessed after
a demand has been assigned to a vehicle. In fact, the process
followed by rescue teams without decision support tools is
to rescue the nodes by order of priority and then, using fast
scooting techniques, assign rescue operation to the closest
vehicle available. In this context, even if field experience
can lead rescue teams operative to take an unpredictable
decision, this algorithm is a good way to model rescue teams’
relief decision process. From this observation, we will now
be able to compare the rest of our heuristics to this one in
order to evaluate the improvement rate it brings to the current
situation.

B. BEST FLOW-TIME INSERTION ALGORITHMS
The allocation scheme of this heuristic is based on Best Fit.
In opposition to First Fit, the purpose of this scheme is to
allocate resources to the most appropriate task. The allocation
process of this algorithm is described in algorithm 1.

With:
• biggestDemand: sorts the demands by priority and then
by size in order to insert highest priority and biggest
demand first
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FIGURE 1. Shortest distance insertion algorithm flow chart.

Algorithm 1 Best Flow-time Insertion
prio← 1
for cat ∈ categories do

while prio < nbPrio do
dem← biggestDemand(cat, prio)
for vehicle ∈M do

for pos ∈ routeSize(vehicle) do
score← FIS(pos, dem, vehicle)
if score < bestScore then

bestScore← score
bestV ← vehicle
bestPos← pos

end if
end for

end for
assignDemand(bestScore, bestV , bestPos)

end while
end for

• routeSize: looks for the different positions we might
insert the new demand depending on the already built
route

• assignDemand: assigns a demand to a vehicle. This
operation modifies the solution’s variables: xzi,j,k , h

z
i,k

and qzi,k with k the vehicle of insertion, z its turn and
for all the nodes i, j affected by the insertion.

The first step of this heuristic is to sort the demands by
priority first and by decreasing size for demands of the same
priority. The sorted list of the demands (updated each time
a vehicle picks up partially demands) constitutes the queue
line for the demands. Then for each demand, the Flow-time
Insertion Score (FIS) is computed for every vehicle as follows
for the vehicle k starting from node i for a rescue at node j:
This score equals+∞ if a deadline is violated by the insertion
and otherwise:

FIS(i, j, k) =
pj × (tti,j,c + ai + h

z
i,k )

qzj,k
, ∀z ∈ Z, c ∈ C

(11)

In this case the number of victims planned to be rescued at
node j, qzj,k is dependent on the current available capacity of
the vehicle and it needs to be included in the score calculation
in order to avoid the algorithm to allocate resources to treat
demand points partially if it can be avoided. It does not forbid
demand division but it reduces it compared to SDI. This FIS
is compared between vehicles and the demand is allocated
to the vehicle with the lowest score which means the lowest
impact on the objective function. This process is then repeated
as long as necessary to rescue all the victims. At the end of
the loop on priority, we check if there is at least a vehicle
left for the current tour, or else we change the tour: increment
the current tour and empty the vehicles. Then we also check
if there are demands left in the current priority, if not we
switch to the next one. Finally, the same check is made on the
categories at the end of the loop on categories. This algorithm
terminates on 2 conditions:
• All demands are served. In this case, the algorithm
terminates with a solution to the problem.

• For all left demands FIS = +∞. The algorithm failed to
find a feasible solution and generated a partial solution
that violates constraints of deadline.

C. BEST FLOW-TIME INSERTION WITH ORDER
QUESTIONING
This heuristic is based on BFI adding improvement. The
principle of this algorithm is mainly the same as BFI but
any time we add a demand in the route of the vehicle, the
order of the demands that are already handled by this vehicle
will be questioned, as shown in the next algorithm. A brute
force algorithm is then launched. It builds all the n! routes
possible, with n the number of demands already in the route
of the vehicle for this tour. Note that n is always lower than
the capacity of the vehicle which makes the number of routes
builds reasonable. An objective score for the tour is computed
for each of these routes. The route with the lower score is
selected and the assignment is made to the vehicle in the
final order. During the computation of this score, capacity
constraints do not enter in the calculation since they are not
modified. The pseudo-code of this heuristic is presented in
algorithm 2.
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Algorithm 2 Best Flow-time Insertion with Order Question-
ing
prio← 1
for cat ∈ categories do

while prio < nbPrio do
dem← biggestDemand(cat, prio)
for vehicle ∈M do

for pos ∈ routeSize(vehicle) do
score← FIS(pos, dem, vehicle)
if score < bestScore then

bestScore← score
bestV ← vehicle
bestPos← pos

end if
end for

end for
assignDemand(bestScore, bestV , bestPos)
for route ∈ routesSize(bestV )! do

if OS(routes) < OS(bestRoute) then
bestRoute← routes

end if
end for
assignNewRoute(bestRoute)
checkTurn(z)

end while
end for

WithOS that computes the objective score of a given route.
This function computes the value of eq 1 for a given vehicle
and turn concerned by the local search limited to the current
route.

D. SOLOMON HEURISTIC
In this section, a short presentation of the insertion heuristic
presented in [33] is made. This heuristic is used as a baseline
in the experimental part of our work. This heuristic starts by
initializing every route according to a criterion: The farthest
unrouted demand.

In this algorithm from literature, the vehicles are consid-
ered one after the other. Therefore, the routine initializes
the route for a vehicle and then inserts demands in this
route until the vehicle capacity is reached. Then it handles
the next vehicle. When the route for the first tour is
planned for all vehicles, the routine continues with the
second tour for the first vehicle. Tours are incremented
until all demands are served. The algorithm depends on
parameters λ,µ, α1 and α2 that can be adjusted to adapt the
performances of the algorithm by changing the weights of
different factors. Further details about the values used for
parameters λ,µ, α1 and α2 are given in sectionVI.

Once a route has been initialized for a vehicle, the heuristic
tries to insert demands optimally in the route. At every
insertion, 2 criteria are used:
• The first criterion c1, is used to determine for each node,
the best feasible insertion spot. It is based on a sum of

two terms that represent the temporal deviation induced
by the insertion of the node in the existing route and the
delay in service for the next demands in the route. In fact,
insertion is not necessarily at the end of the route but at
different positions. It might lead to offsetting an already
planned intervention to a node. Both terms are weighted
by α1 and α2 respectively.

• The second criterion c2, allows determining which
demand is inserted knowing the results of best position
selection with the first criterion. The demand selected
is the one minimizing the difference between the travel
time from the depot, and the first criterion is weighted
by λ and µ respectively.

Solomon Insertion Heuristic pseudo code is presented in
algorithm 3.

Algorithm 3 Solomon Heuristic
Input: d: List of demands
k ← 1
z← 1
while d 6= [ ] do

initializeRoute(k, d)
while

∑
i∈V? q

z
i,k < Qk do

positions← computeBestPositions(c1, d)
bestNode, pos← bestNode(c2, d, positions)
insertDemand(bestNode, pos, d)

end while
if k = length(M) then F Vehicles full in current tour

z← z+ 1 F Switch to next tour
k ← 1 F Select first vehicle

else
k ← k + 1 F Switch to next vehicle

end if
l ← sortDemands(criterion, d)

end while

E. RESOURCES DISPATCH
As stated earlier, a flood might impact several sectors.
However, rescue teams might have to handle the sectors
with their limited resources. We implement algorithms
that dispatch the resources among sectors to optimize the
response by minimizing the objective overall sectors. The
first approach we follow in order to make the best resources
dispatch is to try all the possible configurations and keep the
best one. This is done by launching a heuristic with x vehicles,
for x ∈ [0,Mcat ] with Mcat the maximum vehicle number
of a category. Then we pick the vehicle dispatch solution for
which the sum over all sectors of the Flow-time objective is
the lowest. But this Brute Force Resources Dispatch (BFRD)
method might be expensive in terms of computation time.

That is why we also develop Greedy Resources Dispatch
algorithms (GRD). These algorithms give a resources (vehi-
cles) dispatch configuration based on the ratio of a specific
metric over the different sectors. The three versions of GRD
we test are based on 3 different metrics:
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• GRD1 dispatches the total number of vehiclesmultiplied
by the ratio of nodes of the sector.

• GRD2 dispatches the total number of vehiclesmultiplied
by the ratio of victims in the sector.

• GRD3 dispatches the total number of vehiclesmultiplied
by the ratio of the cumulative distance from the rescue
center to the nodes of the sector.

These algorithms are very fast compared to the brute-force
approach but as they do not try different configurations we
expect that these greedy algorithms might give infeasible
vehicles dispatch, which means they might not allocate
enough vehicles to one sector for the algorithm to be able to
find a feasible solution (there might not even exist a solution
at all).

We then try another approach in order to get a feasible
solution and also reduce the number of computations tested
by BFRD. After checking with the results from BFRD that
variations of the objective are constant, a second algorithm
can be developed on the principle of a brute force. But
instead of testing all configurations Constant Objective
Detection Resources Dispatch algorithm (CODRD) can
stop the computation when we reach 2 identical objectives
in a row. This exit condition can be stated because we
confirmed that the variations of the objective with BFRD
are constant and therefore if the objective does not vary
with the addition of a vehicle then it will not vary with
more. For the experiments, we will apply these algorithms
to 2 sectors but it can be generalized to more. In fact,
a study on 2 sectors is sufficient to compare the different
Resource Dispatch algorithms and avoids using the algorithm
on more sectors which would only increase the number
of possibilities of dispatch and therefore the computation
time.

V. DATA ANALYSIS
With the objective of reproducing a real-life experiment to
validate the model and heuristics, data has been extracted
from Experience Feedback from rescue teams of SDIS
31. SDIS 31 is responsible for the rescue operations for
the Haute-Garonne Department in the South of France.
We conceived the model to fit their logistics and therefore
the priority categories that they usually use. The values of the
priority coefficients are fixed to:

1) Can remain on the spot: 1
2) Have to be rescued within 12 hours: 2
3) Have to be rescued within 6 hours: 4
4) Need to be rescued in emergency: 10

These values have been arbitrarily picked to represent the rel-
ative importance of each priority category one from another.
They can be adapted consequently to discussions with the
rescue teams in order to fit the situation requirements. In
2013 a flash flood has occurred in the valley of Luchon in
the South of Haute-Garonne. The information kept in the
experience feedback documents is not sufficient to simulate
an identical crisis. Nevertheless, we were able to extract
useful data to base our experiment on. Using this data, the

goal is to build several territories model as graphs that are
similar to the Luchon crisis. These experimental graphs will
be referred to as Luchon-like.

One of the aspects that was not retrievable is the
connectivity between the nodes of the graph. Since we
aim at reproducing similar graphs, there is then a need to
build random graphs keeping the control on some known
parameters of the territories we intend to study.

The extracted data characterization is described in the
first part of this section. Then the graph generator that
was developed for these experiments is detailed. Finally,
experimental results are presented and interpreted in the last
part of this section.

A. EXPERIENCE FEEDBACK
During a crisis such as flooding, interventions are very
distinctive and need a response using appropriate resources.
That is why rescue teams consider mainly categories of
interventions. Following the same characterization system,
we looked into the experiment feedback from Luchon for
statistics for each of these categories during the crisis. The
number of vehicles for each category is the same as the
Experience Feedback description except for category 4 where
we reduced the number of helicopters on purpose to make the
problem harder to solve in this category.

Category 1
This category of intervention represents mass evacuations.

These operations can be made by common vehicles such as
buses. It can be for example the evacuation of a school or
camping that will be impacted by the flood. The vehicles
of this category generally have high capacity so we set it
to 30. 5 vehicles are considered for the experiments. During
the crisis, this category represented 66% of victims rescued
through 7 interventions.

Category 2
The interventions gathered in this category need more

specific vehicles than the first one. When water already
reaches inhabited areas, evacuation is more difficult, and
specialized vehicles are needed. These vehicles can go up
to 80 centimeters water level in case of emergency but are
often limited to 50 centimeters for the safety of the rescue
teams. In fact, when the water level is too high, a firefighter
scoots in front of the vehicle to detect a potential ditchmasked
by the water. But this might become dangerous for this scoot
in urban areas with sewer drains that might aspirate him for
example. These vehicles have limited capacitywe set to 10 for
4 vehicles in the experimental fleet. There were 32 demand
points of this category during the Luchon crisis for 19% of
the victims.

Category 3
When the water level is too high, road vehicles cannot

access the area of the intervention. The relief operation is then
operated by teams equipped with boats. These boats have a
limited capacity set to 5 for the experiments with 3 vehicles of
this category covering the crisis. This category affected fewer
victims with 8% of them dispatched on 15 nodes.
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TABLE 3. Category dispatching summary.

Category 4
When none of the resources listed above can rescue a

victim, the only way may be to use a helicopter. This kind
of resource is very scarce but is available in cases of extreme
danger for a victim.We consider only one helicopter available
full time for our experiments and its capacity is 1. This
category only represents 1% of the victims of the flood with
5 interventions via helicopter for the case of study.

Category 5
This category is specific since it does not consider human

victims but animals. In fact, cattle can also be affected by the
flooding events and it needs saving too. Usually, the rescue
teams act as reinforcement for the cattle’s owner and the
transportation is operated thanks to the breeder’s resources.
That is why we only consider one vehicle with a capacity of
10 to relieve this category of victims that represented about
6% of the victims in Luchon on only one node.

To give some perspective to this percentage, it is important
to clarify that during the Luchon crisis more than 500 persons
or animals were rescued over 60 nodes according to the
experience feedback. The data is recapitulated in the table
hereunder:

B. GRAPH GENERATION
In order to evaluate the performance of the heuristics
presented in this article, the objective, as stated earlier, is not
to replay the crisis that happened in 2013 since the data
is not complete. The purpose of this generator is to be
able to generate a wide variety of graphs depending on the
parameters. The process is to use the data extracted from
EF in order to generate the demands rescue teams have to
intervene. In real-life, rescue teams have access to maps
of the impacted area at the beginning of the crisis. These
maps display the different stakes of the territory that might
turn into demand points at some time of the crisis. This
is not exhaustive but gives a good representation of the
impacted area. The set of nodes that rescue teams take into
account at the beginning of the crisis is a subset of the nodes
of this map forming the initial graph. For the purpose of
experimentation, the goal is to reproduce the distribution of
such nodes over the area of study. In order to do so we
developed a graph generator that creates territories. Since as
we will discuss later, there might be several different areas
of action, we call them sectors. A sector is most of the time
an urban area so we model it through concentric circles.
The number of zones represented by these concentric circles

FIGURE 2. Example of generated graph.

TABLE 4. Category dispatching summary.

is set at the creation of the sector. These zones represent
the different areas of population density from the center of
an urban area to the countryside around it. That is why
for each zone the population density and the connectivity
factor are configurable as well. This last parameter is the
number of direct neighbors each node has in the zone. From
these factors, nodes are randomly generated on a Cartesian
coordinate system as we may observe on Figure2:

We can see the different zones of the same sector
differentiated colors on this graph. The numbers inside the
nodes just represent the id of the demand. We created it with
the following parameters:

Using this generator and a set of parameters chosen to fit
the studied area, we generate graph similar to Luchon we call
Luchon-like.

At this stage, the graph only represents the potential stakes
in a Luchon-like crisis. The next step is to select some of
these nodes to become demands for the experiment. In our
experiment protocol, we already have the number of demands
we desire to try our heuristics on, to simulate a Luchon-like
crisis. In order to select the nodes, a selection program was
designed to randomly choose the nodes in a specific area of
the studied sector. This area is composed of a segmented line
representing the riverbed and, for each of these segments,
a value is associated to delineate the expansion of the flood
from its bed. Values are then associated with these demands
for the following variables:
• Priority: Uniform distribution among the different
priority values. Note that the deadlines are associated
with the priority.
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FIGURE 3. Truncated normal distribution with µ = 45, a = 10,
b = 120 and σ = 35.

TABLE 5. Demands size distribution law by category.

• Action Time: Uniform distribution on the interval
[5, 35]. This interval was given by the rescue teams from
SDIS 31, the unity of time is the minute.

• Category: Uniform distribution among the 5 categories
with a maximum of nodes for each predefined category.

• Demand size: The law of distribution for these parame-
ters depends on the category as stated in Table 5.

In this table, we refer to Normal law. In this case, the
distribution is truncated so that for all x-value: a ≤ x ≤ b
and the mean of the distribution is equal toµ and the standard
deviation is equal to σ .

VI. EXPERIMENTAL RESULTS
The validation of the different algorithms presented in this
article is based on Luchon-like graphs. Three experiments are
presented in this section. First, we present the performances
of the different heuristics. The criterion for this evaluation are
both the computation time and objective score (evaluation of
the solution proposed by the algorithm through the objective
function). The experiment is made on 100 Luchon-like graphs
and for each of the three heuristics tested (SDI, BFI, BFIOQ)
a mean for the computation time and the objective score is
calculated. The results displayed in Figure 4 offer the detail
category by category for the Flow-time score in ordinate,
the computation time mean is displayed on the abscissa. For
this experiment, we also developed the Solomon insertion
heuristic from [33] in order to compare our performance to
this heuristic from the literature. Note that we did 6 runs
with the Solomon heuristic for each graph using only one
initialization criteria: the farthest unrouted customer. The
second initialization criteria used in the article was not a fit
for our model since several demands might have the same
deadlines. The parameters used (µ, λ, α1, α2) are: (1,1,1,0),
(1,1,0,1), (1,1,1,1), (1,2,1,0), (1,2,0,1) and (1,2,1,1). Finally
note that the computation time displayed in the results are

FIGURE 4. Graphic comparing computation time and cumulative
objective score performances of the heuristics.

only counting the computation time for the best solution and
not for the 6 runs accumulated in order to make the reading
of the results easier.

The figures of this graphic are detailed in Table 6:

TABLE 6. Demands size distribution law by category.

OS = Objective Score and CT = Computation Time
In detail, these results show a 30% improvement in

Objective score from SDI to BFI and 40% from SDI
to BFIOQ. These improvements are non-negligible and
demonstrate the gain that BFIOQ incurs over the first version
of the heuristic BFI. Furthermore, we observe that every
developed heuristic shows better performances in terms of
computation time and objective than Solomon’s heuristic.

However, we can observe that improving the objective
score has a cost on the computation time as we see in Figure 4.
Note that the categories in the figure are piled up, from
one to five from the bottom to the top. SDI has a better
computation time than BFI and is almost 15 times faster than
BFIOQ. These results are expected since BFIOQ questions
the first solution is found and this is time-consuming. Even
if this drawback for BFIOQ is not to be totally forgotten,
its impact is not as important as its advantages. In fact,
the computation time mean for BFI over the 100 graphs is
approximately 600 ms and is rarely over the second which
fits the requirements for the decision support tool.

This article also tackles the issue of resources dispatch.
When the flood impacts several distinctive areas but has to be
treated by the same entity, an effective dispatch of resources
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FIGURE 5. Variations of the objective score with affected resources evolution.

through the impacted sectors is essential to optimize the
relief operations. Different options studied to optimize this
dispatch are presented earlier in this article. We test BFRD on
a larger number of vehicles than usual in order to make sure
to catch all the variations of the objective with the quantity of
resources over the possible value interval. The results of this
experiment are presented in Figure 5.

The results are displayed category by category, we choose
not to display the 5th category because it is only one demand
so its variation is not interesting to study. In the graphics,
the number of vehicles allocated to each sector varies on the
abscissa (decrease for the first sector and increase for the
second one). The sum of both objectives is also displayed
in green. These results show that the objective variations are
constant, the objective always decreases with the increase
of the resources or is constant. These results justify the
development of an improved version of BFRD we also
presented: CODRD.

As for the previous experiment, the resources dispatch
algorithm is tested on 100 graphs, and each of them is split
into two sectors. In fact for this experiment, 100 Luchon-like
graphs have been generated and then split into two sectors
where resources are dispatched. The performance results are
the mean of the objective score over these graphs. However,
as mentioned in Section IV-E, the greedy algorithm might
induce some infeasible situation. We then mean only the
graphs that are feasible by all 5 algorithms. The results are
displayed in Figure 6 where the percentage of infeasibility
as defined earlier is written over the bars of each algorithm.
Note that the categories in the figure are dispatched from one
to five from the bottom to the top. The experiments were built

FIGURE 6. Objective Score performances for the different resources
dispatch algorithms.

using BFIOQ as a heuristic since it is the heuristic showing
the best objective score performances.

In this figure, we observe that GRD3 implies a lot of
infeasible situations. The choice has been made to keep it in
the displayed results even if it reduces the number of graphs
on which the mean is computed. The reason is that we tried
the experiment without it and the performance results are
slightly the same. We observe as expected that in general,
greedy algorithms induce a non-negligible infeasibility ratio
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which is not the case for the other algorithms. Furthermore,
the performances of CODRD are 4% better than those of
GRD1 which is the best greedy algorithm. However, the
computation time in this situation is not negligible contrary to
the previous experiment and it needs to be taken into account.
The average computation time for the greedy algorithms is
the same as those of the heuristic used (BFIOQ) so under the
second. The results show that CODRDneeds 6 runs instead of
1 for the greedy algorithms on average and the computation
time follows the same logic with a computation time 6 times
superior. We consider that in a situation where the resources
sufficient enough to avoid to be a hard constraint on the
problem, the use of a greedy algorithm such as GRD1
is probably the most appropriate choice regarding the few
performance gain from the use of CODRD compared to
the computation time gain. On the opposite, we prefer to
use CODRD in situations where resources are rare and the
computation time is worth the gain because at list a solution is
guaranteed where GRD1 shows a 14% error rate (dispatching
problems where the greedy algorithms dispatch led to an
infeasible situation for the heuristic BFIOQ).

Despite the good performances of the heuristics observed
on the experimental set, it might be interesting to get some
perspective on the reaction of the heuristics to scenarios
of different nature. Some characteristics of the data-set
could lead to different performances from the heuristics
as follows:
• The number of nodes in the graph is a key factor for the
computation time performances. In fact, dealing with an
NP-complete problem, we expect to have exponential
computation time with the size of the problem as studied
in [18] using MIQP. This problem is also expected
to arise at a lower scale with the heuristics, most
specifically with BFIOQ that includes an optimization
on turns that tries all the orders possible. It would
be interesting for further studies to take good care of
experimenting with larger-scale scenarios.

• The distribution of the quantity among demands might
also have an impact on performances. For example for
a total number of 20 victims dispatched on 4 nodes,
the scenarios where there are 5 victims at each node
or 1 victim at 3 nodes and the 17 other victims at
one node will most likely require different routes to
follow in order to optimize the response. In the first case
the travel to a node will have the same benefit on the
objective for every node whereas in the second one we
still have to travel to all the nodes but of them will only
be to rescue one person. The impact on the objective
of each node of the graph is less balanced in this
second case. This could be interesting to create an index
to measure the distribution of victims among nodes
and experiment with different distributions instead of
mimicking Luchon’s victim distribution.

• In this paper we worked with 4 levels of priorities
but this scale could be smoothed on a larger range of
values in order to improve the treatment of the demands.

It would probably not show better performances in terms
of objective since the priority is one of the factors taken
into the computation of the objective score but it might
induce better specific handling of each demand.

• The nature of the graph itself is a major issue. Depending
on whether we deal with high distances and few
connectivity or short distances and high connectivity,
the constraints for the heuristics are different. These
limit cases could represent respectively a crisis in a
countryside territory with few inhabitants compared to
flooding in a big city. This problem can be solved by the
rescue teams with the dimensioning of the vehicle fleet
and clustering. The same solution might be applied in
the case of dealing with very high action time values.

Finally this article focus on developing algorithms sized to
answer to real data and problem characteristics.

VII. CONCLUSION
In this article, we developed the problem encountered when
trying to optimize the rescue teams’ response to flashflood.
After exposing the complete model we demonstrated that
the use of heuristics is the best fit for the computation
time requirements for a real-time support decision tool.
The heuristics BFI and its improved version BFIOQ were
presented and compared to the heuristic SDI that is meant
to reproduce the current behavior of the rescue teams. The
comparison made on a large set of graphs built to reproduce
conditions from the Luchon flooding from 2013, shows that
the use of BFIOQ helps improve the objective performance
by more than 55% with an affordable cost on computation
time. In fact, SDI computation is completed under 100ms and
BFIOQ over 600ms which makes SDI 87% faster on average,
the computation time for BFIOQ stays under the second
which is satisfying. Furthermore, we compared BFIOQ to
a widespread algorithm from the VRP’s literature, Solomon
insertion Heuristic. The results show that this algorithm does
worth on both comparison criteria with almost 2 times worth
performances in objective and a 30% increase of computation
time. These results might be explained by the choice of the
objective that this heuristic was not developed to respond to.

Several algorithms of different types were also developed
to tackle the issue of resources dispatch over several impacted
sectors. Their comparison on the same kind of graphs
mentioned earlier but adapted to two sectors shows that
greedy algorithms like GRD1 allow good performances in a
very short amount of time but can create infeasible situations
while heuristics like CODRD allow to make sure not to
create an infeasible situation and are slightly more efficient
in objective score aspect (5% approximately) but with a huge
cost on computation time (computation time 6 times higher
for CODRD). This raises the question of its usage in a final
tool where the common time expensive operations could
be gathered to speed up the process. Also, the importance
of the computation time varies during the different phases
of the crisis, this can be made into perspectives accordingly
to the approach chosen to tackle the problem dynamically.
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If we choose a re-optimization approach the computation
time is a central issue however if another approach is
preferred such as insertion heuristics the computation time
is less of an issue.
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