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ABSTRACT Our aim in this paper is to detect bank clients involved in suspicious activities related to money
laundering, using the graph of transactions of the bank. Although we have a labeled real dataset, our target
is not only to obtain relevant results on it, but also on random graphs in which typical anomaly patterns have
been injected. So, we want simultaneously adequacy to the real data and robustness. Our method is based
on designing new features; the most important are those resulting from the reduced egonet, which is the
subgraph that remains from an egonet after eliminating the nodes connected with a single edge to the center;
another feature is built by appealing to random walks and serves as indicator of circular flows. Our features
are added to usual egonet features and a general anomaly detection algorithm, in our case Isolation Forest,
serves to detect the anomalies. Experiments on the real data and a comprehensive set of synthetic data show
that our approach is adequate, robust and better than some previous methods.

INDEX TERMS Anomaly detection, bank transactions, money laundering, graphs, egonet, random walk.

I. INTRODUCTION
Money laundering is an activity through which illegally
obtained money are introduced and circulated as apparently
legitimate transactions, such that their source is difficult to
track. The amount of money subject to laundering has been
estimated at between 2% and 5% of the global Gross Domes-
tic Product (GDP), although, as argued in [1], a significant
part of this amount is hard to trace and does not even enter
the banking system. In any case, only a very small amount
of the laundered money, estimated at 1%, is seized. Since
the stakes are so high, states have institutions and banks
have divisions dedicated to Anti Money Launering (AML)
activities.

There are many AML methods, our concern being only
in data analysis, specifically by looking at the graph repre-
sentation of bank transactions. Our angle is that of anomaly
detection (AD) in the graph, thus using a machine learning
approach.
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A. THE PROBLEM
The input data is the transaction list of a bank during a certain
time window. A directed graph G = (V, E) is extracted from
the transaction list; the nodes (vertices) from V are accounts;
the edges from E represent transfers between two accounts;
the transferred sums are the edges weights. There is a unique
edge (k, `) ∈ E between nodes k, ` ∈ V , with only two
attributes: the total sum transferred from k to ` during the
time window, denoted sk`, and the number of transactions,
nk`; the money amounts are converted to a single currency.
At least one of the two accounts involved in a transaction is a
client of that bank; the other can be a client of another bank.
When several accounts can be identified as belonging to the
same client, they are aggregated in a single node. The purpose
is to find anomalous nodes, in a broad AML sense.

This setup is a simplified view of the bank transactions,
ignoring some information that may be useful, like the cur-
rency, the exact time of the transaction, the modality in which
the transfer was ordered, the amount available in the source
and/or destination accounts. However, it is highly informative
on the network of relations between accounts.
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Most banks have rule-based warnings that point to sus-
picious transfers, based on regulations, experience and own
understanding of illegal financial activities. For example,
a large transfer to/from a fiscal paradise is a certain trigger
for further verification. Rule-based AML tools can be very
effective in spotting isolated dubious transactions or even
small fraudulent networks, but may fail in the face of an
intricated money laundering scheme.

The graph-based approach is not seen as a replacement of
the rule-based system, but as a complementary tool that can
detect more complex or new fraud schemes. We also note that
AML is more difficult for a single bank, due to the instrinsic
partial access to the operations of a criminal group.

B. OUR CONTRIBUTION
There are many methods for anomaly detection in graphs
and they cover many facets of the AML problem as posed
above. An overview will be presented in Section II. How-
ever, the AML task is simply too complex to be definitively
solved. Scarcity of public data contributes to the difficulty
of assessing which approaches and algorithms are the most
appropriate.

We propose a method shaped in a standard format. First,
we design and compute node features that capture relevant
information from the graph. Then, an AD algorithm is run on
the computed feature values to detect the abnormal nodes.

Specifically designed features have the advantage that
they can be based on direct insight on money laundering
schemes and can more easily be accepted by banking experts,
although machine learning algorithms still have an important
role. Graph features or statistical scores have been extracted
from graphs in several previous works, notably [2] (egonet
features), [3] (local connectivity features, like the shortest
distance between the endpoints of a transaction, or global
features like the page rank), [4] (features related to spec-
tral localization, community properties, node connectivity,
NetEMD [5] measures of the difference between an expected
network and the network at hand).

Our contribution consists of proposing new features
resulted from reduced egonets, i.e., egonets from which the
nodes connected with a single edge to the center are removed.
Their differences with respect to the egonets enhance the
peculiarities of fraud patterns, thus making easier the work
of ADmethods in isolating the true anomalies. We also intro-
duce features derived from random walks, especially related
to the amount of money that return to a node through a cycle.

We are in the good position of having access to real bank
transactions, labeled by AML specialists. However, since this
is still a partial view, our goal is to provide graph anomaly
detection methods that are suited for this real dataset as well
as for random graphs in which typical fraud patterns were
injected. So, we simultaneously want adequacy to real data,
which are in limited supply due to the privacy constraints of
the banks, and robustness by addressing generic structures.
Like in [3], we aim to complement the existing systems based
on rules or analytics, not to replace them. Also, wewant not to

excessively tune the methods to the specifics of a single bank,
but to leave place for generality. Comprehensive experiments
show that our goal is attained in good measure.

C. CONTENT OF THE PAPER
Our paper is organized as follows. We start in Section II with
an overview of previous work, trying to outline the existing
main ideas. Section III describes the characteristics of our
datasets; understanding the data structures is central in graph
analysis, due to the complexity of the possible abnormal pat-
terns. Section III-A presents a real graph of transactions pro-
vided by a bank, with two levels of annotations for suspicious
transactions. Synthetic data are the subject of Section III-B;
they consist of random graphs in which typical anomaly
patterns have been injected. Section IV presents the proposed
features, derived from reduced egonets (Section IV-A) and
randomwalks (Section IV-B). Section V gives the feature sets
computed for our data, on which anomaly detection methods
can be run. Section VI contains the results of our methods and
a few well known ones, expressed especially in terms of the
true positive rate. Our methods offer a good mix of results on
real and synthetic data; the reduced egonet features appear to
be the most robust. We publish on our website the real data
and programs for generating the synthetic data, as well as the
Python implementation of our methods.

II. BACKGROUND AND RELATED WORK
Anomaly detection in graphs is a very active topic, with
many applications, most of the research taking place in
the latest ten years. We enumerate here the most impor-
tant lines of attack, many of them directly related to AML.
We also describe the position of our approach with respect
to them.

A. DETECTING KNOWN PATTERNS
Money laundering often generates subgraphs with special
topologies. Several such patterns are illustrated in Figure 1.
Even though the real instances of these patterns have not
exactly the shown ideal form, detection methods inspired by
them have good behavior. Although indirectly, the special
subgraphs discussed below have inspired our feature design,
see especially the examples from Section IV-A.
• Nodes with high out or in traffic, named volcanoes and
blackholes in [6], or stars in other works, may indi-
cate the beginning or the end of a flow of money with
dubious source. Flowscope [7] targets a more evolved
scheme, where money flows from a few sources to a
few destinations throughmiddle accounts that serve only
as buffers, as illustrated in Figure 2. This pattern cor-
responds to what in the AML community is known as
the placement-layering-integration model [8], with each
activity being carried out by the source, middle and des-
tination nodes respectively. Intermediate accounts are
also considered in [9], which uses a tensor approach
to modelling tripartite patterns relevant to money
laudering.
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FIGURE 1. Anomaly structures: clique (top left), clique directed (top middle), clique random (top right), ring (bottom left), star (bottom middle), star
directed (bottom left).

• Acycle is a classic fraud pattern, especially if the amount
transferred over it is nearly constant; in [10], cycles with
various lengths are detected in real time, using a hot
point index to speed up the search.

• Cliques or dense subgraphs may show attempts to mask
the money flow and make analysis difficult. Despite the
impression that cliques should be conspicuous, it was
proved in [11] that finding the densest subgraph of a
certain size is NP-hard. OddBall [2] is a very success-
ful method with this purpose, using simple statistical
measures. In [12] high density subgraphs are found by
efficiently solving a nonconvex quadratic programming
problem. A spectral perspective is considered in [13],
where the adjacency characteristics of dense subgraphs
are analyzed.

• All the above patterns and others (for example, heavy
paths, which represent successive transfers of a large
sum between several accounts) are targeted in [4],
where more than one hundred graph related statis-
tics are proposed, directly giving anomaly scores
by their departure from normality, where ‘‘normal’’
behavior (the null model) is ingeniously sampled
from the whole graph. CoDetect [14] targets also
several possibly fraudulent patterns (outlier point,
merge, ring) and models the weighted graph similar-
ity matrix and the node feature matrix with low-rank
decompositions.

• Although with no application to AML, but mostly for
the discovery of fake reviews, FRAUDAR [15] detects
dense subgraphs in bipartite graphs optimizing a suspi-
ciousness function. EigenPulse [16] deals with a similar
problem, but on streaming graphs.

FIGURE 2. Tripartrite graph.

B. STATISTICAL APPROACHES
Instead of searching (almost) fixed patterns, one may exam-
ine how normal nodes and their neighborhoods are, based on
the distribution of certain relevant features or scores. Some of
the approaches above may be seen as such, for example [2],
which is based on deviations from a power-law distribution,
and [4]. In [17], a normality measure is introduced to charac-
terize neighborhoods of attributed networks. Earlier, in [18],
a greedy beam search and the Minimum Description Length
principle were used starting from the idea that normal graph
structures are those leading to best compression. In [3], devi-
ation from normality is defined by transactions outside the
local community of a node, using easy-to-compute features
that place or not a transaction within such a community; the
main purpose is real-time card fraud detection; only amount
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and time stamp are used as edge attributes. Indications of
anomalous activity can also be found in the evolution of
the graph in time. Dynamic features derived from this time-
series approach can therefore also be considered, as done
in [19], in order to distinguish bursts of activity from typical
transaction regularity. MonLAD [20] considers a series of
money laudering traits that describe network activity specific
to fraudulent schemes by also taking temporal patterns into
account. For example, star-like patterns are considered sus-
pect if, in addition, the time between transactions is short.
The authors define statistical features that summarize account
activity based on these fraudulency assumptions and set up
corresponding thresholds with respect to generalized Pareto
distributions. The thresholds are subsequently used to com-
pute anomaly scores and label transactions.

In a general sense, since we compute features, our
approach has a statistical flavor. However, we do not explic-
itly compute statistical scores, but leave the task of discov-
ering the anomalies in the ensemble of features to general
purpose AD methods.

C. LEARNING APPROACHES
More abstract approaches are based on learning using a global
objective function. Our method has no resemblance with
them.

A first example is that of building embeddings. Low-
dimensional real vectors are associated with nodes, attempt-
ing to associate relations in the graph with distances between
the vectors. For example, in node2vec [21], neighborhoods
(sampled with random walks) are preserved in the low-
dimensional space; anomaly detection is explicitly the goal
in [22], with emphasis on nodes that are connected with
many communities. Structural deep network embedding
(SDNE) [23] preserves distances also in second-order prox-
imities. Netwalk [24] proposed clique embedding via a deep
autoencoder neural network, minimizing pairwise distance
among vertices on random walks while encouraging sparsity;
anomalies are nodes not belonging to clusters (have large
distance to cluster centers).

Other learning approaches optimize a global objective
function that characterizes normality or suspiciousness in a
broad sense. Usually the optimization structure belongs to
deep learning and the form is that of an autoencoder. The
result consists of scores that are associated to nodes. For
example, in [25], [26], the input is an attributed network,
and the autoencoder works with both graph structure and
node attributes. In [27], two decoders with different purposes,
generative and contrastive, are used on the output of a sin-
gle encoder to provide anomaly scores. Specifically oriented
to financial fraud detection is [28], proposing deep learn-
ing using stacked auto-encoders and restricted Boltzmann
machines.

D. OTHER VIEWPOINTS
Besides the approaches described above for fraud detection
in financial applications, there are others that do not fit our

classification. For example, social network statistics are used
in [29] to assess risk profiles of the clients of a factoring
company.

Our view of the previous work is certainly incomplete and
subjective. A more general picture can be found in the review
articles [30]–[35], the latter on methods using deep learning.
A related field is that of network anomaly detection [36],
[37], where the purpose is to find malicious actions over
a computer network; although information flow is different
from that of bank transfers, graph methods can be useful.
An example is [38], where sudden changes in dynamic graphs
are detected via changes in PageRank scores, with application
to network intrusion detection.

Another classification may be made based on the issue of
anomaly detection itself. Most of the methods propose scores
that can be used directly to decide which nodes are more
likely to be the outliers. Other methods, including ours and
those producing embeddings, only build a set of features,
which are then fed to an anomaly detection algorithm, like
those from PyOD [39].

An important issue is that of complexity and scalability,
since graphs involved in AML operations are usually large.
Here the spectrum is quite large, from algorithms that work in
real time to others that need huge resources and are impracti-
cal for very large graphs, with millions or even only hundreds
of thousands nodes. Our method is placed somewhere in the
middle, in the sense that it can be applied to large graphs, but
does not operate in real time.

III. DATASETS
Finding anomalies in a transaction graph entails having
access to (ideally large) datasets. However, most of the indus-
tries for which this analysis would be a great fit, such as
financial services, refrain from publicating datasets for the
research community. Besides the information that can be
anonymized, such as the source and destination IDs, other
important features may be more difficult to conceal. Another
impediment when dealing with real data comes from the
transactions that are made to/from the outside environment,
where we have little to no information about their correspond-
ing destination/source. The alternative is to generate synthetic
datasets, with the ideal of maintaining a natural anomalies-to-
regular entries ratio, as well as inserting anomalies that would
be found in a real-life scenario.

Credit Card Fraud Detection dataset [40], one of the few
real-world datasets, contains transactions made by European
cardholders, through their credit cards in 2013. This dataset
contains 284,807 transactions out of which 492 transactions
(0.173%) are fraudulent. Besides the amount and time infor-
mation, the other public numerical values are obtained via
Principal Component Analysis (PCA). In [3] real banking
data also oriented to card fraud are used, but not made public.

IEEE-CIS Fraud Detection dataset [41] was collected
and published by IEEE Computational Intelligence Society
(IEEE-CIS) in colaboration with Vesta company; it con-
tains real e-commerce transactions with a little over 590K
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instances, of which 3.5% are fraudulent. Even though several
anomaly detection methods can be applied here, a transaction
graph cannot be associated with this type of data, given that
the transactional interaction between users is not captured.

The Bitcoin blockchain is public and large, but the num-
ber of accounts is also very large and it is very difficult to
group accounts by owner. Some AML advances are presented
in [42].

Going now to synthetic datasets, PaySim [43] is a sim-
ulator that can generate datasets of mobile money transac-
tions that are similar to real transactions, using agent based
modeling. Frauds are modeled according to different scenar-
ios by setting some parameters outside the normal interval.
BankSim [44] is a similar solution for constructing bank
transactions datasets and is suited for simulating payment
frauds such as card theft or unauthorized internet purchases;
however, it has no money laundering models. An example
dataset has been made public [45], however it does not
include all supported fraud types and further development
has shifted to commercial settings [46]. A similar commercial
agent-based solution is [47].

In this landscape, where data for testing AML algorithms
are so scarce, we have the advantage of a real dataset, pre-
sented next.

A. LIBRA BANK DATASET
Libra Internet Bank, a Romanian bank, provided a com-
plete list of transactions over three months,1 from which we
have extracted the graph corresponding to transfers between
accounts.

It is worth mentioning that several steps of preprocessing
have been performed, before extracting the transaction graph.
These steps involved the alignment of labeled transactions
with the transaction dataset, merging possibly duplicated
information when both the originator and beneficiary entities
of the transaction had accounts within the bank, or leaving
aside other transactions like card payments. Notably, some-
times the lack of information from the outside environment
may lead to imperfect or incorrect graph construction, for
example by creating multiple nodes instead of a single one,
in the case of multiple accounts belonging to the same exter-
nal entity.

Here are a few characteristics of the Libra dataset, after
preprocessing (the amounts are converted to local currency):
• number of transactions: 4558805
• mean transaction value: 3264
• median transaction value: 152
• max transaction value: 42 million
• min transaction value: 0.01

Figure 3 shows the distribution of the transferred amounts.
We note that it can be approximated with a log-normal distri-
bution, although having a somewhat heavier tail.

1In compliance with Regulation EU 679/2016 (‘‘GDPR’’) and other rele-
vant legislation, no personal identifiable information (personal data) has been
disclosed during the development of the present paper or of any associated
work that has been done in relation to the present paper.

FIGURE 3. Histogram of transaction amounts for the libra dataset.

The associated graph of transactions, denotedGLibra has the
following characteristics:
• number of nodes (distinct client IDs): 385100
• number of edges (recall that there is a single edge
between two nodes, with cumulated amounts over all
transfers between those nodes): 597165

• average in/out degree: 1.55
We see that the graph is sparse. Most of the clients are
involved in a single transaction during the chosen 3-month
time window.

The transactions have been labeled by members of the
AML division of the bank. There are two kinds of labels.
The first is named alert and is generated by an undisclosed
set of rules; an alert means that the respective transaction
has to be investigated by specialized personnel. The second
kind of label is called report and marks a transaction whose
level of suspicion is high enough to be reported for further
examination to the state authorities that investigate money
laundering. (So, note that a report does not necessarily indi-
cate crime.) Obviously, a transactions labeled ’report’ is also
labeled ’alert’. Some information on alerts and reports is as
follows:
• transactions with alerts: 517
• transactions with reports: 11
• distinct nodes involved in transactions with alerts: 600
• distinct nodes involved in transactions with reports: 15

We associate with each node anomaly weights for alerts and
reports, defined as the number of transactions labeled as alerts
or reports, respectively, to which the node participates. For
example, the maximum number of alerts associated with a
node is 22 and the maximum number of reports is 3. In gen-
eral terms, we will also name anomaly an alert or a report.
Some examples of neighborhoods of anomalous nodes will
be shown in Section IV-A. The graph can be downloaded in
csv format from http://graphomaly.upb.ro/.

B. SYNTHETIC DATASETS
Following previous work and notably [4], we have generated
synthetic test graphs that have a general ’normal’ structure
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TABLE 1. Synthetic graphs properties.

on which are injected anomalies suited for investigating fraud
and particularly money laundering in bank transactions.

1) UNDERLYING GRAPH
The graph of normal (legitimate) transactions is gener-
ated using a stochastic block model (SBM) consisting of
50000 nodes and 5000 modules. The intuition behind the
choice is that, in real financial networks, communities (for-
malized here as blocks) tend to be rather on the small
side, with few actors maintaining regular activity among
themselves.

The size of each module is randomly set such that each
block contains between 0.01% and 0.9% of the total number
of nodes. We start by constructing a directed graph based on
connectivity probabilities for the nodes and, after building the
underlying network structure, we addmultiple edges between
already connected nodes, in order to form the multidirected
graph. More precisely, the SBM is defined in terms of edge
probabilities either between nodes belonging to the same
block or between two nodes from different blocks. In order
to obtain graphs with different edge densities, we vary these
probabilities.

We generate four types of graphs, named according to their
density: G7, G12, G17, G22, the index being the average degree
of a node (in fact, the average degrees are slightly higher,
see Table 1). Note that the degree is the sum of indegree and
outdegree.

With the underlying graphs constructed as such, we further
add edges between connected nodes. In order not to create
artificially dense structures within the graph, we condition
this addition on the existing local neighborhood connectivity
of each node. As such, we first randomly choose an upper
limit for the number of outgoing edges and check whether
the threshold is already met by the existing connections of
each node. Otherwise, we iterate through the neighborhood
of the node and further add outgoing edges until the limit
is reached. Thus, generally, graphs that are already dense
have fewer multiple edges between two nodes, while less
dense graphs present more multiple edges. In choosing the
threshold, we take the maximum number of outgoing edges
from a node to nodes belonging to different blocks to be 3,
in all experiments. The number of outgoing edges from a node
to other nodes in the same block, the maximum is 6, but for
G12, where it is set to 10.
Table 1 presents the stochastic block model connectiv-

ity probabilities for each graph, together with the resulting

number of edges and average density. The row ’number
of edges’ corresponds to the multigraph. The row below
it shows the number of edges in the compacted oriented
graph, where there is a single edge between a pair of nodes,
with cumulated amounts of all transactions between those
nodes. The edge density is computed with the latter num-
ber of edges, as relevant for our approach. The number
of edges is that of the graph containing anomalies, which
are added as described next. All the reported values are
means over three different instances of the same graph
configuration.

2) ANOMALIES
We experiment with different structured anomalies that are
typical to financial frauds (see again Section II for an intro-
duction to the problem). These are cliques, stars and rings,
shown in Figure 1.
For cliques, we devise three variants, whichwe call regular,

directed and random. Regular cliques are constructed by
first generating edges in both directions between every two
nodes and then removing a fraction of these edges at random.
As such, the resulting structure is not a complete clique. The
fraction is set to 40% in all experiments. In directed cliques,
there exists an edge between every two nodes, however the
direction is kept the same, such that it mimics a flow ofmoney
that goes in one direction only; in Figure 1 (top middle),
the orange node only receives (outdegree 0), the green node
only sends (outdegree 9) and the blue nodes have outdegrees
with all values from 1 to 8 (the clique has 10 nodes). Lastly,
random cliques are fully connected cliques in which the
direction of edges is assigned at random. As a result, it may
happen that one node only has incoming edges (thus acting
as a sink), or it may only have outgoing edges (thus acting as
a source), but typically there is no consistent flow direction.

In order to obtain realistic rings, we employ a Watts-
Strogatz model [48] with mean degree K = 4 and rewiring
parameter β = 0.2. So, the ring of full length is not neces-
sarily complete and also there are shortcuts. The edges are
oriented in the same direction, anti-clockwise in Figure 1
(bottom left).

We experiment with two types of star structures: regular
and directed. Regular stars contain one node that only has
incoming edges, while the others only have outgoing edges.
In directed stars, the flow passes from nodes that only have
outgoing edges, through a single node that collects these
edges and is in turn connected to nodes that only have ingoing
edges. Figure 1 (bottom middle and right) shows typical
examples of each of these structures.

All anomalies contain 10 nodes. Each graph contains
5 rings, 15 cliques and 5 stars, regardless of their type. These
anomalies are implanted in the underlying transaction graph
by randomly selecting the nodes and adding the correspond-
ing edges. We do not restrict nodes to belonging to only one
anomaly; however, superpositions are rare: the number of
anomalous nodes is usually 249 or 250. So, the percentage
of anomalous nodes is 0.5%.
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For each of the four types of graphs defined in
Section III-B1, we experiment with different types of anoma-
lies. We update our naming convention by adding a letter
that shows the type of clique anomalies: no letter for regular
clique, ’d’ for directed clique, ’r’ for random clique.

3) EDGE ATTRIBUTES
In order to obtain a realistic setup, transaction amounts fol-
low a base-10 log-normal distribution, which resembles the
observed real distribution in the Libra dataset, as shown
in Figure 3. The location and scale of the distribution are
set to 3 and 1 respectively. We then prune the values to the
[1, 106] range; this operation decreases the mean to about
12000 from its theoretical value 14167; the median value
of 1000 is only slightly affected. For each anomaly, when
attributing the transaction amounts, we generate a normal
distribution of mean and variance chosen uniformly at ran-
dom from the following ranges: [104, 105] for the mean and
[1000, 3000] for the variance.

IV. NODE FEATURES
As mentioned in Section I-B, we propose sets of features that
capture essential properties of the transaction graph. Then,
a general AD algorithm is run on the computed feature values.
The resulted scores are used to build a list in which the nodes
are ordered decreasingly by abnormality likelihood.

Some of the features are basic information for a node k of
the (directed) transaction graph G. We denote

Ni(k) = {` ∈ V | (`, k) ∈ E}

the set of in-neighbors of node k . Similarly,

No(k) = {` ∈ V | (k, `) ∈ E}

is the set of out-neighbors. The set of basic features is

Fbasic = {in/out degree}

∪ {total in/out amount}

∪ {average in/out amount} (1)

where the features are defined as follows:
• in/out degree: the numbers di(k) = |Ni(k)| and do(k) =
|No(k)| of edges that enter or exit node k;

• total in/out amount, the total amount of money that
enter/exit node k:

tai(k) =
∑

`∈Ni(k)

s`k , tao(k) =
∑

`∈No(k)

sk`;

• average in/out amount, which is simply the total amount
divided by the total number of transactions involving
node k as destination/source; for example, the average
in amount is

aai(k) =
tai(k)∑
`∈Ni(k) n`k

.

Since money laundering is efficient only if large amounts
of money are manipulated (in any case clearly larger than

usual transfers), we expect the total and average amounts to
contain relevant information. The degree is also relevant for
the connectivity of a node.

The egonet has been shown [2] to be a good tool for the
detection of some fraud structures, especially cliques and
stars. The egonet E(k) (of radius 1) of node k is the subgraph
of G generated by node k and all its direct neighbors. So, its
nodes are

k ∪Ni(k) ∪No(k) (2)

and its edges are all edges in E between these nodes. Sim-
ilarly, one can define the in- and out-egonets, but we will
use only the full egonet. Also, egonets taking into account
extended neighborhoods could be considered, but their size
can become impractical for large graphs. Moreover, from the
perspective of a single bank, the egonets of radius 2 give a
more distorted view than those of radius 1, since the connec-
tions between the clients of other banks are not available.

We note that the features from Fbasic are obviously also
egonet features. A specific egonet feature is

• egonet edge density, which is the ratio between the
number of edges of the egonet and its number of nodes.

Other features can be considered, like the egonet weight,
which is the sum of amounts on all its edges, as well as other
derivated features.

All these features have been used in a form or another in
previous research. Besides them, we propose some new ones,
as described below.

A. REDUCED EGONET
Definition 1: The reduced egonet (or egored) Ered(k) of

node k ∈ V is its egonet E(k) from which we remove the
nodes that are connected only with k , with a single edge, no
matter its direction.
Example 1: We give here of two examples from the Libra

dataset, built around nodes with reports. Figure 4 shows an
egonet and the corresponding egored. The colors are: red for
the central node, orange for other nodes with reports, blue
for the normal nodes that have at least two edges (including
the case, visible in the figure, where both edges are with
the center node, in both directions) and green for the normal
nodes with a single edge. The egonet has 24 nodes and the
egored only 9 nodes. Figure 5 shows another example, now
containing three nodes with reports; the egonet has 26 nodes
and the egored has 19.

The basic features can be immediately redefined for the
egored. For example, the egored indegree is the number of
edges from Ered(k) that enter node k . Obviously, the relation
egored indegree ≤ indegree holds. So, we add to our list of
possible features the egored total amounts, average amounts
and edge density.

Moreover, if we want a normalization, we can define, for
example, the egored relative indegree, which is the ratio
between the egored indegree and the indegree. Hence, this is a
number between 0 and 1. Relative values can be defined sim-
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FIGURE 4. Egonet (top) and egored (bottom) of an anomaly from the
Libra dataset.

FIGURE 5. Egonet (top) and egored (bottom) of another anomaly from
the Libra dataset.

ilarly for the other egored features. Note that while the total
amount cannot be larger in the egored, the egored average

amount may be in any relation with the egonet average
amount.

The benefits of egoreds can be seen when looking at the
differences between the egonet and the egored features. They
are biased towards the extreme in some fraud patterns com-
pared with a normal node.
• Nodes that are tightly connected (near-cliques) with
possibly heavy transactions, but that have also legiti-
mate activities with other accounts, are more visible in
the egored because the legitimate transactions go often
through isolated nodes. Hence, the egored amounts are
nearly equal to the egonet amounts, but the egored den-
sity is clearly higher and also the average amounts can
be higher.

• For a pure star pattern, the egored of the center node
contains only that node. For a near-star pattern, the
egored is still almost depleted of nodes and the amounts
are much smaller than in the egonet.

• In a tripartite graph, like the FlowScope [7] AML
model, made of sources, intermediaries and destina-
tions (see Figure 2), the egored has clearly distin-
guishing features. The sources/destinations send/receive
large amounts to/from intermediaries and have relatively
few interactions with other accounts; they are similar
to volcano/blackhole (star) graphs [6]. The intermedi-
aries have balanced and fairly large in-out amounts.
In all cases, their egoreds are almost empty and show
only small amounts, hence they are very different from
the egonets. It is also quite unlikely that sources-
intermediaries-destinations are all at the same bank, so it
is hard to see the full tripartite graph, but only some of
the accounts and the transactions. However, the relative
aspects of the egored and egonet are the same even if
only part of the graph is accessible.

Example 2: Coming back to Figure 4 we see that for real
data the anomaly patterns are not necessarily so obvious.
However, the average in/out degree, which is equal to the edge
density, is 1.79 for the egonet and 3.11 for the egored, which
is a quite significant change. Similarly, in Figure 5, the edge
density is 2.12 for the egonet and 2.53 for the egored; the
growth is smaller but still present. We note that, in both cases,
the anomalous nodes are present in the egored. The opposite
situation can be seen in Figure 6, also built from the Libra
dataset, where the egonet is a directed star, which is a textbook
pattern; only the egonet is shown, since the egored is the
center node alone. Note, however, that only two transactions
(and three nodes) are labeled as reports.
Example 3: Figure 7 shows the distributions of the outde-

gree and egored outdegree for all nodes of an instance of
the synthetic graph G22 and also for the anomalies in the
same graph. Although the distribution of the outdegree for
the anomalies has clearly a larger mean, its shape is not
so different from that of normal nodes; the proportion of
anomalies for a given value of the degree does not vary sig-
nificantly. The outdegree does not give sufficient information
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FIGURE 6. A directed star egonet around an anomaly of the Libra dataset.

FIGURE 7. Outdegree (top) and egored outdegree (bottom) distribution
for a synthetic graph G22, for all nodes and anomalies.

for distinguishing anomalies. On the contrary, the egored out-
degree of the anomalies is clearly informative; larger values
of this feature are much more likely for anomalies than for
normal nodes.

For the Libra dataset the direct benefit of each egored
feature is not that obvious. However, several egored features
together appear to give benefits, as shown in Section VI.

B. RANDOM WALK FEATURES
Random walk (RW) is a simple tool for graph analysis (and
not only) that can be used in many circumstances. Anomaly
detection in graphs has seen several ways of putting RW to
work, a direction initiated in [49]. In [50], RWs use transition
probabilities based on a local information graph; the purpose
is to detect less connected points, associated with anomalies,
a situation rather opposite to ours. In some neural network
approaches, for example [24], [27], RWs are directly used
as input for the network, as a sampling method for the input

graph. We use RWs to extract information on the amounts
circulated over long paths, especially in the case of cycles
(rings).

For a node k , we generate random walks with given max-
imum length r , starting or ending in k . (The backward RWs,
ending in k , are generated forward on the reversed graph.)
Denote k0 = k , k1, . . . , kr the nodes of a RW. On each RW,
we compute the amount transferred from start to end:

min
i=1:r

ski−1,ki . (3)

Normally, this amount is small, as there is little correlation
between the transactions of the nodes. When the amount is
large, it may show money deliberately circulated through
many accounts in an attempt to cover their origin. Especially
important is the case when the RW returns to the start node
k0. If that happens, we cut the RW to the current length.
Definition 2: The feature RW ring max associated with

node k is the maximum of the amount (3) over all the RWs of
length at most r starting or ending in node k , for which there
is an i ≤ r such that k = k0 = ki in (3); if there is no such
RW, the feature value is zero.
In other words, RW ring max is the maximum amount

that is transferred over a cycle (or ring) containing the node.
We have computed and used other features, like the average
or the maximum amount over a RW, but we will not report
their results, as they seem to bring no extra benefits for the
data considered in this study.

An important RW issue is that of themodality for choosing,
once in a node k , the next node fromNo(k) (when generating
a forward RW) or Ni(k) (for a backward RW). We adopted
two methods to choose the transition probability:
• equal probability; this method was used with the Libra
data, since the graph is sparse and the likelihood of
finding relevant paths is large;

• probability proportional with the amount; so, the prob-
ability of choosing node ` ∈ No(k) in a forward RW
is

sk`∑
j∈No(k) skj

;

this method was used with the synthetic data, where
the edge density is large and so random walks must be
helped to ‘‘follow the money’’.

Of course, the second method is slower, since we have to read
an edge attribute for each neighbor.

V. ANOMALY DETECTION ALGORITHMS
We combine now the features defined in Section IV in sets
of features to be used for anomaly detection. Only the feature
sets that proved successful or are natural building stones for
our construction will be presented, although we have tried
many other combinations.

The egonet related feature set is

Fegonet = Fbasic ∪ {egonet edge density}, (4)

where the basic features are defined in (1).
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We extend this set with the similar egored features and
obtain

Fegored = Fegonet ∪ {egored relative in/out degree}

∪ {egored relative total in/out amount}

∪ {egored average in/out amount}

∪ {egored edge density} (5)

Although egonet and egored features have equal share, here-
after we name the above set egored feature set (and only
sometimes egonet+egored). Note that the absolute value of
the egored average amount is used rather than the relative one,
as it gives better results, although in principle there should be
no significant difference.

Finally, we make use of a single random walk feature,
added to the egonet features:

Fegonet+RW = Fegonet ∪ {RW ring max} (6)

In the synthetic datasets, the number of transactions
between two nodes is small and also has small variation,
hence we remove in/out average amounts from (1) and (5) and
obtain features sets denoted F ′egonet, F ′egored and F ′egonet+RW
as variations of those defined in (4), (5) and (6), respectively.
The reason is that average amounts essentialy duplicate the
total amount information (unlike in the Libra case, where
average and total amounts have quite a different distribution),
thus giving it too much weight with respect to the topology
information carried by the other features.
Remark 1: The Python implementation for extracting the

above features is relatively straightforward. We note a some-
what unexpected fact. The egonet of a node can be computed
using the Networkx function ego_graph; since we want
the full egonet, we need to first convert the oriented graph
to an unoriented one; surprisingly, the function ego_graph
is quite slow in computing an egonet of radius 1. In our expe-
rience, it is much faster to simply identify the in/out neigh-
bors using the functions predecesors/successors
and then extract the subgraph corresponding to the nodes
from (2) using the subgraph method.

After computing the features, the anomaly detection is
made with Isolation Forest (IF) [51], using the implementa-
tion from PyOD [39]. Although any other AD method could
be used, we selected IF due to the good performance with our
data and reasonable execution time.

VI. EXPERIMENTAL RESULTS
We report here results of our method described in
Section V, with feature sets egonet (4), egored (or rather
egonet+egored) (5), or egonet+RW (6), and also results of
other methods that have proved successful in graph anomaly
detection problems with known patterns. OddBall [2] is
extremely successful in detecting near-cliques. The method
from [4] can detect several types of patterns; unfortunately, its
complexity forbids the computation of many of the proposed
statistics for a graph the size of the Libra one. We selected
a set of simple statistics, namely those using the Geometric

Average of Weights (GAW, GAW10, GAW20) and the stan-
dardised version of the node degree; this is called the basic
module in [4, Sec.3.1]; here, we call it GAW; the result is
directly a score, hence no AD method is required.

The Python implementations of our algorithms are avail-
able at http://graphomaly.upb.ro/.2 We have used the Odd-
Ball implementation given by the authors at https://www.
andrew.cmu.edu/user/lakoglu/tools/Oddball-lite.zip. The
GAW implementations have been taken from the sources
published by the authors at https://sites.google.com/site/
elliottande/anomalydetection. The tests have been made on a
laptop with an i7 processor with 6 cores and 16 GB memory.
Isolation Forest was taken from PyOD [39]; we have run it
with the default parameters, with the exception of the number
of trees, which was taken equal to 200 instead of the default
100 value.

The true positive rate (TPR) or recall is the ratio of true
positives and total number of anomalies. Since for both
Libra and synthetic data a node can be in several suspicious
transactions, we associate to node k the anomaly weight wk ,
which is the number of these transactions; a normal node has
wk = 0. Denoting W =

∑
k∈V wk the sum of all weights

and assuming the nodes are ordered by an AD method in
decreasing order of perceived abnormality, the TPR is

TPR(k) =
1
W

k∑
i=1

wk . (7)

We note theW is twice the number of suspicious transactions;
for Libra data, W = 1034 for alerts and W = 22 for reports;
for the synthetic graphs,W = 1910 for the graphs containing
regular cliques and W = 1640 for the graphs containing
directed or random cliques.

Since the number of nodes is large and checking the fraud-
ulent nature of the transactions involving an account requires
the work of a human specialist, we are interested in finding
the relevant anomalies in the first few outliers predicted by the
AD method. We focus on the TPR for the first 0.1%, 0.2%,
0.5% and 1% of the nodes, with special emphasis on the first
mark; note that 0.1% means 385 nodes for the Libra data,
which is not a small number.

As a global measure, we also compute the TPR area under
curve, defined as

TPR AUC(k) =
1
k

k∑
i=1

TPR(i). (8)

We report the TPR AUC for the first 1% of nodes and denote
it AUC_1%. For the sake of completeness, we also give the
overall TPR AUC, computed over all nodes of the graph.

We note that TPR AUC is more relevant than receiver
operating characteristic (ROC) AUC when anomalies are
weighted, especially when the AUC is partial, only on 1%
of nodes in our case. If two anomalies with different weights

2A more comprehensive software is the library Graphomaly, freshly
released at https://gitlab.com/unibuc/graphomaly/graphomaly
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TABLE 2. TPR results for several methods on the Libra graph. The best result on each column is in bold.

have successive positions in the score-ordered list, ROCAUC
is the same no matter the relative order of the two anomalies,
while TPR AUC is larger if the anomaly with larger weight is
first. On the other side, the perfect value for ROC AUC is 1,
while for TPR AUC it must be computed from case to case;
for our data, where the number of anomalies is very small,
the perfect TPR AUC value is close to 1. For example, for the
alerts in Libra data, TPR AUC is 0.99946; for the synthetic
graph G22, it is 0.9983.

A. RESULTS ON LIBRA DATASET
The results on the Libra graph of the methods listed in the
beginning of the section are shown in Table 2, separately for
alerts and reports. For our methods, the results are averaged
over 10 IF runs. Figure 8 gives the TPR evolution on the first
1% predicted anomalies, for our methods.

The RW features were computed using RWs of length
r = 5 and 100 repetitions for each starting/ending node.
OddBall gives anomaly scores for nine pairs of statistics.
The results given in Table 2 are the best over all pairs;
they are obtained by ‘‘egonet number of nodes vs egonet
number of edges’’ for reports, and ‘‘egonet-in-degree vs
egonet-in-weight’’ for alerts. The other statistics give rather
poor results. We report here the results for the case where
the (unique) weight on edge (k, `) used by OddBall was
the total amount sk`; the results for average amounts are
similar.

The results from both Table 2 and Figure 8 show that
the combination of egored and egonet features is clearly the
best on the first marks (0.1% and 0.2% of the number of
nodes) andmarginally better onAUC_1%; note that, for Libra
data, the ideal alerts TPR value at 0.1% is 0.793, which
shows that more than half of the alerts than that can be
discovered are discovered. Egonet features alone are more
successful in the long run, but clearly less effective in the
top scores region. The single RW feature added to them
appears to boost performance on the initial anomalies, while
diminishing the long term effect; it is not so effective as
egored features, but can serve as a compromise approach.
GAW, despite its simplicity, has a reasonable performance,
although clearly below that of egonet+RW. Finally, OddBall
obtains low performance indicators, although it cannot be
totally dismissed, the results on reports being near those
of GAW.

The overall AUC results, shown in Table 3, confirm the
trend that can be extrapolated from Figure 8. As we said,
these results have smaller significance, since we do not want

FIGURE 8. TPR on first 1% predicted anomalies for the Libra dataset. Top:
alerts. Bottom: reports.

TABLE 3. TPR AUC for several methods on the libra graph.

to emulate exactly the rule-base AD in use, but to extend it in
a robust manner to other possible anomalies.

The execution times for the extraction of the egored and
RW features are about 35 and 30 minutes, respectively. The
egonet features are extracted together with the egored ones,
so we do not have a specific time for them; the most time
consuming task, the extraction of the egonet from the graph,
is common. Remind that the random walks are built with
equal probabilities of the neighbors, see Section IV-B. An IF
run takes at most 40 seconds. OddBall requires about two
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TABLE 4. TPR AUC_1% results for several methods on synthetic graphs.

TABLE 5. TPR AUC results for several methods on synthetic graphs.

hours for computing all its statistics. GAW is faster and needs
only about 10 minutes.

Besides the methods whose results are given above,
we have tried others, notably node2vec [21], with poor
results. Corroborating with the OddBall results, we reach the
natural conclusion that graph topology information alone,
although important, is not sufficient for good performance
without the information on the transaction amounts.

B. RESULTS ON SYNTHETIC DATA
We run now the same methods on the synthetic graphs.
We have generated three graphs from each of the
12 categories described in Section III-B: four graph densities
(average degree 7, 12, 17, and 22) and three types of cliques
(regular, directed, random). We remind that the other anoma-
lies are the Watts-Strogatz ring and the star. Since the results
with the directed star anomaly structure are similar to those
with the regular star, they will not be reported.

For our methods, the parameters are the same as for the
Libra data, with the exceptions listed below. As explained in
Section V, all average amounts have been removed from the
features. The RW length is r = 10 and, during the walk, the
probability of the next edge is proportional with the amount.
The IF results are averaged over 5 runs.

For OddBall we report the results of ‘‘egonet number of
nodes vs egonet number of edges’’, which is consistently
better than the other statistics.

The TPR AUC results are given in Tables 4 and 5 and
consist of averages over the three instances of each graph. The
AUC_1% values from Table 4 show a few trends. The results
are usually the best for the lowest graph density andworsen as
the density increases; this is natural, since the anomalies have
the same size and so the anomalous pattern is more difficult
to find in a denser graph. For most methods, the results on
the graphs containing directed cliques are the worst, followed
closely by those containing random cliques; the difference is
small for the egonet and egored features and larger for the
other methods. For RW this is explainable by the inexistence
of rings in the directed clique and the lower probability of
finding rings in a random clique. For OddBall we do not have

an explanation; however, OddBall shows the largest variation
of the results between instances of the same graph type, in
contrast with our methods, which are quite consistent.

Egored features give the best results in most categories,
followed closely by OddBall. Egonet+RW has clearly better
results than egonet only for the graphs containing cliques,
while for the other graphs the situation is somewhat reversed.
GAW has poor results in the AUC_1% category.

The results for the overall TPR AUC, shown in Table 5,
give a slightly changed ranking. While egored is the clear
winner, egonet+RW takes the second position, and OddBall
falls behind and is beaten even by egonet in several cases.
Since for the synthetic graphs the ground truth is totally avail-
able, the overall TPR AUC is certainly much more relevant
than for the Libra data. So, we can say that the RW approach
brings benefits to the egonet one, as its results are always
better. Also, although GAW keeps the lowest ranking, its
results are overall decent.

To get more insight on the behavior of the methods,
we show in Figures 9–11 the TPR curves on the first 2% of
the nodes, separately for each type of anomaly, on the densest
graphs that we used. The curves are for a single graph in each
category and, for our methods, for a single IF run; however,
we chose a run whose results are close to the average.

As expected, OddBall has excelent results for all types of
cliques, followed closely by the egored approach. Egonet and
egonet+RWcurves rise slower, but still reach 1 in the first 2%
of the nodes or not much later.

For rings, the situation is different. The RW approach has
the best start, detecting earlier than other methods part of
the anomalous nodes on rings; this is explained by the RW
feature that is able to reveal rings with large transactions. The
egored approach detects more anomalies, but slower. OddBall
has inconsistent results, often reasonably good (especially in
Figure 11) but sometimes quite poor, like in Figure 10. Egonet
alone behaves rather poorly on all graphs.

Finally, most methods detect well enough star centers,
especially egored and OddBall. Since the star centers are
involved in many ‘‘fraudulent’’ transactions, their weight is
much larger than the weight of the other nodes in the star;
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FIGURE 9. TPR for on first 1000 anomalies for a graph G22. Top: clique.
Middle: ring. Bottom: star.

the detection of a star center leads to a large increase of the
TPR curve, here precisely with 0.1 (since stars have 10 nodes,
the weight of the center is 9, while the other nodes have
weight 1; there are five stars and the centers gather half of
the weights). The other nodes in the star are actually not
easily discoverable by the studiedmethods; however, once the
center is discovered, a targeted analysis of its neighborhood
can reveal the star structure; this is beyond our purpose here.

So, the egored approach is nearly best for all types of
anomalies, which shows its versatility and explains the over-
all best position among the studied methods.

The execution times of the methods depend on the density
of the graph. The extraction of egored (and egonet) features

FIGURE 10. TPR for on first 1000 anomalies for a graph G22d . Top: clique
directed. Middle: ring. Bottom: star.

takes from 38 seconds for G7 to 140 seconds for G22. RW fea-
tures need between 55 and 80 minutes; the increased time
with respect to Libra data is explained by the larger RW
length and the proportional probability computation. An IF
run on the extracted features takes less than 5 seconds; here,
the number of nodes is important, hence the smaller time
compared with Libra data. OddBall needs between 250 and
575 seconds for computing all its statistics. Finally, GAW is
again the fastest, with times between 44 and 58 seconds.

C. DISCUSSION
We examine now the results of the proposed methods on both
datasets, real and synthetic. The egored approach behaves
verywell in the early detection of a good amount of anomalies
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FIGURE 11. TPR for on first 1000 anomalies for a graph G22r . Top: clique
random. Middle: ring. Bottom: star.

(alerts and reports) from the Libra dataset. It also quickly
detects most of the artificial anomalies from the synthetic
graphs and has the best overall TPR AUC performance. So,
we can say that putting together the egored and egonet fea-
tures gives a robust graph AD method, covering well real and
simulated situations.

The random walk approach is also promising. For Libra
data, the addition of the RW feature to the egonet ones
improves anomaly detection in the first 0.1% nodes. For
synthetic data, it improves the overall behavior. It is also a
method very suited for online implementation, as individual
random walks can be quickly generated as the graph evolves
and feature values can be permanently updated. In contrast,
egonet and egored features are a coarser computation task.

Among the other approaches, egonet features give also
balanced results on the real and synthetic data, but weaker
than those of the proposed methods. OddBall discovers very
well cliques and star centers, but has a weak performance
on the Libra data. On the contrary, GAW has fairly good
behavior on the Libra data (although below our methods), but
is poor on the synthetic data.

VII. CONCLUSION AND FURTHER WORK
We have introduced a method for anomaly detection in bank
transactions, with the purpose of detecting money laundering
activities. Our method can be summarized as follows:

1) Given a list of transactions, build the transaction
graph, where nodes are accounts and edges have
two attributes: the cumulated amount transferred from
source to destination and the number of transactions.

2) Compute node features. Here is our main contribution.
Most of these features are derived from the notion
of reduced egonets (egoreds) and consist of in- and
outdegrees, total and average amounts sent/received
by a node, and edge density. These features are used
together with the corresponding (standard) egonet
features. We have also proposed new random walk
features.

3) Run an anomaly detection algorithm, Isolation Forest
in our case, on the feature values, to detect abnormal
nodes (accounts).

We have obtained very good results with this method.
Many of the labeled anomalies are recovered early in the
Libra (real) dataset and also the behavior on synthetic graphs
is excellent. So, our method appears to be adequate and
robust.

Moreover, comparisons with some of the relevant existing
methods, like OddBall or statistical approaches (GAW), are
favorable; better true positive rate is obtained with compa-
rable execution time. We have also shown that the addition
of the newly proposed egored or random walk features to
existing egonet features always improves the results.

We conclude that our method can bring clear benefits to
AML activities, from the specific angle of the graph structure
of the bank transactions. Certainly, other types of features can
be added with the purpose of getting a more comprehensive
approach.

Further work will be dedicated to the development of
online algorithms and to validation on larger datasets, ideally
on real datasets covering the transactions of several banks.
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