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ABSTRACT In recent years, the use of drones for recreational and commercial activities has grown rapidly
due to their affordability and performance. This growing use raises concerns about the threats drones pose to
the security of sensitive areas such as airports, prisons, industrial and military facilities. In response to these
threats, drones detection methods are being actively developed. In particular, most camera-based methods
rely on appearance to perform detection. They are therefore prone to error due to the great similarity between
drones and some other flying entities such as birds. However, from a kinematic perspective, unlike birds,
drones, especially multicopters, have a propeller rotation speed. The method proposed in this paper uses
the propeller rotation speed as the key physical parameter on which to rely to unambiguously distinguish
drones from other flying entities. The basic idea consists in using discrete Fourier transform to determine the
propellers rotation speed from high frame rate videos, and extracting the propellers induced drone signature
as a quantitative camera-based drone signature. The proposed algorithm proceeds as follows: flying entities
are continuously tracked in the sky; discrete Fourier transform, applied to the video stream within a time
window ending at the current instant (frame), is used to extract the propellers induced drone signature which
unambiguously confirm each flying entity as being a drone or not. Experimental results obtained using a
consumer-grade camera at a frame rate of 240Hz demonstrate the effectiveness and reliability of the proposed
method.

INDEX TERMS Drone detection, discrete Fourier transform, high speed camera, propellers induced drone
signature, propeller rotation speed, unambiguous drone signature.

I. INTRODUCTION
Drones (unmanned aerial vehicles) are aircraft that can be
steered non-autonomously by a ground pilot through radio
frequency exchanges, or autonomously by closed loop com-
puter systems. Over the past decade, due to the emergence
of companies commercializing different types of affordable
drones (multicopters) with increasing performance, there has
been an exponential growth in the popularity of drones for
recreational purposes and commercial activities, including
aerial videos shooting, surveying, cartography, monitoring
of public space (for example to enforce social distancing
during the COVID-19 pandemic), search and rescue, delivery
of goods and medicine, etc. [1]. Experts agree on continued
growth in the size of the drone market and forecast five
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hundred billion dollars in revenue by 2028 [2]. This will
represent tens of millions of drone owners around the world.
Unfortunately, this growing use of drones (in particular for
recreational activities) raises concerns about privacy, but also
security of sensitive areas such as airports, prisons, and
industrial and military facilities [3]–[5]. Although in many
countries bills are passed and legislation is updated to regulate
drone activities [1], [5], [6], it is very likely that an untrained
pilot does not know the legislation, and a motivated criminal
simply does not care. Illegal/criminal drone activities recently
reported include the crash of a drone in front of the white
house lawn in january 2015 [7], a collision between a com-
mercial airplane and a drone at the Jean Lesage international
airport at Quebec city, Canada in 2017 [8], a mysterious
presence of several drones for several days around a nuclear
power plant in France [9], the use of drones to bomb a
Ukrainian army weapons warehouse [10], an attempt to use
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drones to drop items at prisons [11], for drug smuggling [12],
for illegal phones traffic [13], etc. [3]. In the coming years,
drones will become a predominant source of intentional and
unintentional threats [14]. Therefore, counter-measures are
required against illegal and criminal drones activities; one of
them is the development of drone detection systems, which is
increasingly gaining the attention of the research community,
both in academia and in industry.

From a kinematic point of view, flying entities are char-
acterized by their moving speed which allows them to move
from one point to another, and their acceleration which allows
them to modify their moving direction and speed. Almost
all flying entities share the same range of moving speed
and acceleration (e.g., we can find birds and drones mov-
ing at 3m/s with a linear trajectory), making it unreliable
to rely on these kinematic parameters to differentiate them.
However, in addition to these common kinematic parameters,
multicopters (drones) are also characterized by their propeller
rotation speed. Therefore, for at least three reasons, it can
be very appealing to rely on the propeller rotation speed
to differentiate drones from other flying entities. First, the
propeller rotation speed has a lower bound different from
zero; this means that even when the drone is hovering (mov-
ing speed is equal zero), the propeller rotation speed is not
null. Second, high speed cameras can be used to capture the
fast propeller rotation. By high speed camera, it is meant
a camera with a frame rate sufficiently high to capture the
propeller rotation in the sense of the sampling theory. Third,
the propeller rotation speed can be determined from a high
frame rate video capturing the blades in rotation.

In this paper, we use the propeller rotation speed as the
key physical parameter on which to rely to unambiguously
distinguish drones from other flying entities. The basic idea
consists in using discrete Fourier transform to determine
the propellers rotation speed from high frame rate videos,
and extracting the propeller induced drone signature as an
unambiguous quantitative camera-based drone signature. The
proposed algorithm proceeds as follows: a steady high speed
camera observes the sky and flying entities are detected.
These entities are continuously tracked over time and track-
ing results are stacked to build a stabilized high frame rate
video ending at the current frame; discrete Fourier transform,
performed pixel per pixel over the entire video sequence,
is used to extract the propeller induced drone signature which
confirm each flying entity as being a drone or not. The
contributions of the paper can be summarized as follows:
• We demonstrate the potential of high speed cameras for
the classification of flying entities using their kinematic
characteristics.

• We demonstrate the existence of a unique propeller fin-
gerprint related to the propeller rotation speed.

• We introduce the propellers induced drone signature
as an unambiguous quantitative camera-based drone
signature.

• We propose an efficient algorithm for drone detection in
high frame rate videos.

The remaining of the paper is organized as follows.
In Section II, we give an overview of the state of the art
on drone detection. We elaborate on the propeller fingerprint
in Section III. In Section IV, the propellers induced drone
signature is introduced and our proposed algorithm for drone
detection is presented. Section V addresses the tracking of
flying entities. This tracking is necessary to compensate for
the motion of these entities in the video supplied as input
to the proposed algorithm. The experimental setup and the
processing strategy are presented in Section VI followed by
the results and discussions in Section VII. We end the paper
with a conclusion in Section VIII.

II. PREVIOUS WORKS
So far, various modalities, including radar, audio, radio
frequency (RF), camera, have been proposed for detec-
tion, tracking, classification for eventual neutralization of
drones [15]. Multimodal approaches combining two or more
of these individual modalities have also been proposed [16].
Moreover, there is a strong trend towards drone detection
systems using machine/deep learning [17], [18].

A. ACOUSTIC-BASED DRONE DETECTION METHODS
The basic principle in acoustic-based drone detection systems
is the recognition of the audio signature of the spinning
propellers in the ambient noise recorded with a microphone.
Feasibility of acoustic-based drone detection using hidden
Markov model has been demonstrated [19]. Correlation tech-
niques have also been used, where pre-recorded audio fin-
gerprints of drones are identified in the recorded ambient
noise [20]. This requires an audio fingerprint for each exist-
ing drone model. Machine/deep learning classifiers are also
reported and rely on different architectures, including PIL
(plotted image machine learning) and KNN (k-nearest neigh-
bors) [21], multi class SVM (support vector machines) [22],
and CNN (convolutional neural network) [23]. An interesting
aspect of acoustic-based drone detection systems is their
ability to operate day and night. They can alert to the presence
of nearby drones, but cannot be used for tracking purposes.
Moreover, they are not robust to intentional alteration or
camouflage of the drone’s acoustic fingerprint, and to noise
resulting, for example, from the proximity of an urban area.

B. RADAR-BASED DRONE DETECTION METHODS
Traditional radar sensors deliver information about the dis-
tance, the size (radar cross section) and the speed of objects in
an activemanner, that is, by sending electromagnetic pulses in
a given direction in space and analyzing the electromagnetic
energy reflected from potential target objects. One strength of
radar systems is their ability to perform long range detection,
even under unfavorable light and weather conditions [24].
However conventional radar systems are not optimized for
detecting small drones moving slowly and flying at low
altitude. This led to the development of millimeter wave
frequencies systems which can provide better radar cross
section resolution depending on the material constituting the
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drone [25]. A survey on radar-based drone detection reveals
three groups of methods [26]. Methods of the first group
aim to understand the radar signatures of drones produced
in the micro-Doppler domain ( [27]) and characterize the
sensed radar cross section in order to set suitable thresholds
and detection ranges [28], [29]. The second group includes
methods using physics-based criteria ( [30], [31]) or neural
networks ( [32], [33]) for drone detection and classification.
The last group is formed by passive radar systems which are
less expensive than active radar systems [34], [35].

C. RADIO FREQUENCY-BASED DRONE
DETECTION METHODS
Radio frequency (RF)-based systems detect drones by mon-
itoring the radio frequency data exchange between these
drones and their controllers [36]. They are transportable and
can achieve long-range detection and tracking, making them
the most popular anti-drone systems on the market. They can
ultimately be designed to locate the drone pilots [37]. Dif-
ferent features have been considered for training a machine
learning architecture in RF-based drone detection systems.
A statistical analysis of the WiFi fingerprint is performed
in [38]. In [36], RF signatures of the body shifting of drone
caused by the spinning propellers and that of the body vibra-
tion due to environmental factors (wind for example) are
exploited. In [39], raw RF signals are converted into frames
in the wavelet domain and used as features for the training.
Hierarchical learning is used in [40], whereas, in [41], the
repetitive synchronization packets in video traffic between
drones and controllers are used as features to train a ran-
dom forest model. Compared to radar systems, radio fre-
quency systems are energy efficient since they use passive
RF sensors. Compared to acoustic systems, they are more
robust to environment noise due to the strength of RF signals
received. The problem with this drone detection modality is
that they require radio frequency exchange between the drone
and its controller; conceptually, they cannot detect drones
pre-programmed for autonomous flight.

D. CAMERA-BASED DRONE DETECTION METHODS
Camera-based drone detection systems include vision-based
systems (RGB cameras), thermal-based systems (infrared
cameras), and event-based systems (neuromorphic cameras).
Vision-based drone detection is being attracting attention due
to its good balance between price and detection capabil-
ity [42], and also because it can provide additional visual
informations (drone model and color, dimensions, payload)
for easy human interpretation [43]. Unlike radar-based sys-
tems, with which they share the need of a line of sight,
vision-based systems are passive. Unlike RF-based systems,
they can detect autonomous drones. Most vision-based drone
detection systems rely on features extraction or deep learn-
ing [18]. Features-based approaches use morphological oper-
ators/descriptors to extract relevant features which are then
used by a classifier [44], [45]. Deep learning approaches
exploit various neural network architectures including

CNN [45], Faster region based CNN [46], YOLO (You only
look once) [47], [48], etc. [17], [18]. Motion of both drones
and camera has also been addressed. In [49], frame difference
is used to detect moving objects (flying entities) which are
then classified as drones or not. In [50], regression is used
for motion stabilization followed by CNN classification. In
[51], [52], moving cameras are used for drone detection in
the context of drone cooperation, multi-drone autonomous
navigation and collision avoidance. Accuracy of vision-based
drone detection methods typically decreases with the contrast
between the drone and background. It is particularly the
case for long range detection where the drone is represented
by few pixels and is similar in appearance, shape and size
to birds. Some works investigated these scenarios using a
multi-camera strategy (one steady camera with a large field
of view is used to detect intruders [53], one moving camera
with a small field of view follows each intruder to provide
high resolution tracking result to the classifier [54]), or deep
learning [55]. RGB-D systems, based on either time of flight
or stereo vision, have also been proposed for segmenting
drones from background using 3D data (depth) [56], [57].

Vision-based systems perform poorly in limited visibility
conditions (night, dust, cloud, rain, snow or fog). For such
scenarios, thermal cameras can be considered [58], [59].
However, it is very likely that the thermal signature of the
drone is degraded by its constitutingmaterials (plastic, carbon
fiber), as well as by the thermal shielding of its electric
motors.Moreover, for similar specifications, thermal cameras
are more expensive than RGB cameras. Systems utilizing
near infrared or short wave infrared cameras for drone detec-
tion (at night) are also reported [60], [61]. Other devices that
seem promising are neuromorphic cameras which captured
the rapid changes in intensity, mainly related to motion,
occurring in their field of views. In a recent paper, these cam-
eras were used to detect drones by the frequency signature of
their propellers [62]. Unfortunately, neuromorphic cameras
have, at the moment, a small spatial resolution.

E. MULTIMODAL DRONE DETECTION METHODS
Observing that no drone detection modality is perfect, some
authors have proposed multimodal approaches to take advan-
tage of the strengths and reduce the weaknesses of the indi-
vidual modalities involved. Somemultimodal drone detection
systems reported in litterature include the association of radar
and audio sensors [63], a system constituted by a camera array
with audio recording [64], the association of infrared and
RGB cameras [61], a system combining a radar, amicrophone
array, and a RGB camera [16], and a system combining
LIDAR and cameras (RGB and infrared) [65].

III. PROPELLER FINGERPRINT RELATED
TO THE ROTATION SPEED
In this section, we first show that a camera can be used to
measure the propeller rotation speed. Then, we rely on a case
study to introduce the basic idea of our proposed method:
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a unique propeller fingerprint exists, is related to the propeller
rotation speed, and can be determined using a camera.

A. MEASURING THE PROPELLER ROTATION
SPEED USING A CAMERA
Let us consider a propeller having Nb blades and perform-
ing VP rotation per minute (rpm). Let us also consider a
camera with frame rate fc capturing the rotating propeller in
a video {I (p, tm)}

p=np
p=1 ,m = 1, 2, · · · , nf having nf frames

and np pixels per frame. I (p, tm) is the intensity at pixel
p = 1, 2, · · · , np in the frame m = 1, 2, · · · , nf which is
captured at time tm = (m − 1)/fc. We therefore represent
the discrete temporal intensity signal extracted at pixel p
as {I (p, tm)}

m=nf
m=1 . In the recorded video, if pixel p belongs

to an area covered by a blade in rotation, discrete Fourier
transform (DFT) of intensity signal {I (p, tm)}

m=nf
m=1 can be

used to determine the propeller rotation speed VP provided
that the Shannon-Nyquist sampling theorem is satisfied, i.e.,
for:

fc > 2NbVP (1)

Indeed, the magnitude of the DFT of intensity signal
{I (p, tm)}

m=nf
m=1 will show a peak at the fundamental frequency

f0 given by

f0 = NbVP (2)

Peaks will also be present at certain harmonic frequencies fi
defined as follows:

fi = if0 (3)

where i, the harmonic order, is a positive integer.

B. PROPELLER FINGERPRINT
Let’s proceed with a case study. We consider a propeller
made of two blades as illustrated in Fig. 1a and we impose a
rotation speed of 66rpm. Pixels p1 and p2 belong to the region
covered by the blades during their motion, whereas pixel
p3 belongs to the region not covered by the blades. The fol-
lowing camera frame rates are successively considered: 30Hz,
12Hz and 3Hz. Only the first two camera frame rates satisfy
the Shannon-Nyquist condition (1). Fig. 1b-d show intensity
signals extracted at pixels p1, p2 and p3 for frame rates 30Hz,
12Hz and 3Hz respectively. In all cases, signals have the
same number of samples; this result in a longer acquisition
time as the frame rate decreases. The corresponding DFT
magnitudes are shown in Fig. 1e-g. We will refer to the
frequency (abscissa) axis as the pseudo rotation speed ṼP axis
to highlight the fact that this axis is related to the propeller
rotation speed. When the Shannon-Nyquist condition (1) is
satisfied, the pseudo rotation speed ṼP is proportional to the
rotation speed VP ( ṼP = NbVP). The fundamental frequency
2.2Hz (Ṽp = 132rpm) is obtained as the position of the
highest peak for frame rates 30Hz and 12Hz. It is used to
compute the rotation speed: (2) yields Vp = 66rpm. For the
frame rate 3Hz, it is not possible to determine Vp because

the Shannon-Nyquist is not satisfied. However, regardless of
the frame rate, we note a great similarity between magnitude
spectra corresponding to pixels p1 and p2 which belong to the
region covered by the blades. This is confirmed in Fig. 1h-j
which show the position of the highest peaks in Fig. 1e-g.

This set of peak positions, identical for all pixels covered
by the blades in motion, forms the unique propeller finger-
print. We can confirm this by extracting the peak positions
in the DFT magnitudes for all pixels along the yellow line in
Fig. 1a. The results are shown in Fig. 1k-m for the consid-
ered frame rates. Each row in Fig. 1k-m indicates the peak
positions obtained for a pixel on the yellow line in Fig. 1a.
It is confirmed that pixels covered by the blades have most of
their main peaks at the same positions (same pseudo rotation
speed) which are the vertical lines indicated by the yellow
arrows in Fig. 1k-m. DFT magnitudes for pixels not covered
by the blades does not show any peak (black areas on the
top and bottom in Fig. 1k-m). These qualitative analysis lead
to three major conclusions: (1) It is possible to retrieve the
unique propeller fingerprint, closely related to the propeller
rotation speed, by computing the DFT magnitude of intensity
signals obtained by capturing the propeller rotation using a
camera with a given frame rate. (2) A high sampling rate is
preferable to reduce the data acquisition time. (3) If the frame
rate of the camera satisfies the shannon-Nyquist criterion, the
propeller rotation speed can also be determined.

Quantitatively, we can chose the position of the highest
peak to represent the propeller fingerprint. The result is
shown in Fig. 1n-p for frame rates 30Hz, 12Hz and 3Hz
respectively. Therefore, in this case study, the propeller fin-
gerprint is quantitatively represented by the following pseudo
rotation speed: 132rpm for frame rates 30Hz and 12Hz, and
42rpm for frame rate 3Hz. A similar analysis performed
with a four-blades propeller led to the same conclusions
(see Fig. 2).

IV. EXTRACTING THE PROPELLERS INDUCED DRONE
SIGNATURE FROM HIGH FRAME RATE VIDEOS
Drones (multicopters) form a unique class of flying entities
characterized by a unique range of propeller rotation speeds
with a lower bound of some hundreds rpm. We rely on the
pseudo propeller rotation speed ṼP obtained using DFT to
determine the unique fingerprint of each propeller of a drone.
Together, these individual propeller fingerprints define the
propellers induced drone signature (PIDS), an unambigu-
ous camera-based drone signature. The PIDS discussed in
this section is derived in three steps using a high frame
rate video sequence. These steps are the static background
subtraction, the peaks extraction and the voting consensus.
At each step, criteria are used to classify pixels as belonging
or not to a drone propeller. Thus, the number of pixels of
interest decreases as one advances in the processing. The
obtained PIDS represents the pixels most likely to belong
to a propeller, or to be impacted by the rotation of the
blades.
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FIGURE 1. Propeller fingerprint: case of two blades. (a) Picture of the blades. The propeller rotation speed is 66rpm. Pixels p1 and p2 belong to the
region covered by the blades, whereas pixel p3 belongs to the background. (b-d) intensity signals captured at pixels p1, p2 and p3 for frame rates
30Hz , 12Hz and 3Hz respectively. Only the first two frame rates satisfy the Shannon-Nyquist theorem. (e-g) DFT magnitudes of the signals in (b-d). The
fundamental frequency of 2.2Hz (pseudo rotation speed ṼP = 132rpm) is obtained as the position of the highest peak for frame rates 30Hz and 12Hz .
Equation (2) yields VP = 66rpm. For frame rate 3Hz , it is not possible to determine VP . (h-j) However, regardless of the frame rate, the highest peaks
have the same position for pixels p1 and p2 belonging to the region covered by the blades during the rotation. This set of peak positions forms the
propeller fingerprint. (k-m) Propeller fingerprint obtained for pixels along the yellow line in (a). Regardless of the frame rate, all pixels belonging to the
region covered by the blades during the rotation show peaks at the same positions as indicated by the yellow arrows. (n-p) The position of the highest
peaks can be used to quantify the propeller fingerprint: we have (n) 132rpm for frame rate 30Hz , (o) 132rpm for frame rate 12Hz and (p) 42rpm for
frame rate 3Hz .

A. STATIC BACKGROUND SUBTRACTION
In this section, we present the straightforward static back-
ground subtraction approach used to extract the PIDS. The
effectiveness of this simple approach demonstrates that the
PIDS can easily be incorporated into appearance-based drone
detection methods that may already include a more sophisti-
cated background subtraction [66], [67].

We define the pseudo intensity {Ĩ (p, tm)}
m=nf
m=1 :

Ĩ (p, tm) = I (p, tm)− Ī (p, tm) (4)

where {Ī (p, tm)}
m=nf
m=1 is the moving average of signal

{I (p, tm)}
m=nf
m=1 . The static background is formed by the pix-

els whose pseudo intensity does not significantly change
throughout the video sequence. A pixel belongs to the static
background if the following condition is satisfied:

max
1≤m≤nf

[Ĩ (p, tm)]− min
1≤m≤nf

[Ĩ (p, tm)] ≤ δI (5)

Intensity threshold δI is chosen according to the sky condi-
tions (blue, cloudy, rainy) and defines the minimum contrast
expected between the drone and background. We provide
an illustrative example with a video (frame rate of 240Hz)
showing a hovering quadcopter (four propellers) havingNb =
2 blades per propeller. Fig. 3d shows one frame extracted
from the video. Pixel p1 belongs to the area covered by a

blade in motion, pixel p2 belongs to a part of the drone other
than propellers, and pixel p3 does not belong to the drone.
Intensity signals measured at these pixels are presented in
Fig. 3a, Fig. 3b and Fig. 3c respectively. Their respective
pseudo intensity signals, obtained by subtracting the moving
average, are shown in Fig. 3e, Fig. 3f and Fig. 3g respectively.
For the chosen intensity threshold δI , pixel p3 is classified as
static background pixel. Further processing is irrelevant for
pixels which, like pixel p3, belong to the static background.
We highlight the fact that we perform the static background

subtraction by applying a threshold to the difference between
the maximum and minimum pixel intensities over the entire
video sequence (see Fig. 3h), and not the difference of con-
secutive frames as traditionally done [66]. Indeed, due to the
rotation of the propellers, the pixels covered by the blades
can receive background light for several consecutive frames;
they can also receive the light reflected by the blades during
several consecutive frames. In either cases, consecutive frame
difference will yield a very small intensity value at these
pixels, causing an error in the estimated static background.
Although, in our study, taking the difference between the
maximum and minimum pixel intensities over the entire
video sequence improved the static background estimation,
other approaches could also be considered for more robust-
ness [67].
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FIGURE 2. Propeller fingerprint: case of four blades. (a) Picture of the blades. The propeller rotation speed is 66rpm. Pixels p1 and p2 belong to the
region covered by the blades, whereas pixel p3 belongs to the background. (b-d) intensity signals captured at pixels p1, p2 and p3 for frame rates
30Hz , 12Hz and 3Hz respectively. Only the first two frame rates satisfy the Shannon-Nyquist theorem. (e-g) DFT magnitudes of the signals in (b-d). The
fundamental frequency of 4.4Hz (pseudo rotation speed ṼP = 264rpm) is obtained as the position of the highest peak for frame rates 30Hz and 12Hz .
Equation (2) yields VP = 66rpm. For frame rate 3Hz , it is not possible to determine VP . (h-j) However, regardless of the frame rate, the highest peaks
have the same position for pixels p1 and p2 belonging to the region covered by the blades during the rotation. This set of peak positions forms the
propeller fingerprint. (k-m) Propeller fingerprint obtained for pixels along the yellow line in (a). Regardless of the frame rate, all pixels belonging to
the region covered by the blades during the rotation show peaks at the same positions as indicated by the yellow arrows. (n-p) The position of the
highest peaks can be used to quantify the propeller fingerprint: we have (n) 264rpm for frame rate 30Hz , (o) 264rpm for frame rate 12Hz and
(p) 84rpm for frame rate 3Hz .

B. PEAKS EXTRACTION
We define Fp as the normalized DFT magnitude of intensity
signal {I (p, tm)}

m=nf
m=1 measured at pixel p (Fig. 3i-j) andRṼ =

[Ṽmin
P ; Ṽ

max
P ] as the range of pseudo propeller rotation speed

ṼP (region delimited by the vertical brown lines in Fig. 3i and
Fig. 3j). We remind that the lower bound of RṼ is not equal
to zero, i.e., Ṽmin

P > 0.
We compute the mean amplitude ā of Fp in interval RṼ

(Fig. 3k and Fig. 3l) and locate all the peaks, actually the
local maximums, present in interval RṼ . We define A as the
amplitude of the highest peak. User-defined coefficient δā ≥
1 is used to ensure that the highest peak is sufficiently high
to be relevant; the intention is to avoid any pixel belonging
to parts of the drone other than its propellers, belonging to
other flying entities, or belonging to a moving background.
Thus, a pixel is kept for the next steps if the amplitude A of
its highest peak satisfies the following condition:

A ≥ āδā (6)

For the example in Fig. 3, only pixel p1 is kept for the
next steps (Fig. 3k); pixel p2 does not show a relevant peak
although it belongs to the drone (Fig. 3l). For each pixel kept
after previous steps, we extract the position of all peaks whose

amplitude Apk satisfies the following condition:

Apk ≥ Aδa (7)

where δa ∈]0; 1] is a user-defined coefficient. We finally
define Pp as the group of peak positions satisfying (7) at
pixel p. Fig. 3m indicates the peaks selected at pixel p1 in the
considered example. These peaks form the signature obtained
as outlined in Fig. 3n.

C. VOTING CONSENSUS FOR RETRIEVING THE PIDS
In Section III, for a single propeller, we showed that the posi-
tions of the highest peaks in the DFT magnitude are identical
for all pixels covered by the blades, and that this set of peak
positions forms the propeller fingerprint. We also showed
that one of these positions (the position of the highest peak
for example) can be used as the quantitative unambiguous
propeller fingerprint.

For a multicopter, it is very likely that propellers will
have different fingerprints since they individually provide
different amount of energy to support the motion (speed
and direction) of the drone. Moreover, there will always
be a great similarity between the DFT magnitudes of the
pixels covered by the same blades, but, unlike the ideal
case in section III, we will notice a drift in the peak posi-
tions. This drift is due to the drone body shifting and
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FIGURE 3. Processing steps to retrieve the propellers-induced drone signature (PIDS). (a-c) Measured
intensity signals at pixels p1, p2 and p3. (d) A frame extracted from the analyzed video. Pixel p1 belongs to
the area covered by the blades of a propeller. Pixel p2 belongs to a part of the drone other than propellers.
Pixel p3 does not belong to the drone. (e-g) Pseudo intensity signals obtained after subtracting the moving
average in intensity signals (a-c). (h) The difference between the maximum and minimum pixel intensities
over the entire video sequence. Threshold δI is applied and only foreground pixels (e.g. pixels p1 and p2 (e-f))
are considered in the next steps. (i-j) DFT magnitudes of pseudo intensity signals in (e-f). Range RṼ of
pseudo propeller rotation speeds is also represented and is delimited by the vertical brown lines. (k-l) We
pursuit the processing only with pixels for which (6) is satisfied. (m) All peaks satisfying (7) are extracted and
form the signature in (n). A voting consensus is used to retrieve the propellers-induced drone signature (o).

vibrations caused by the drive of the rotating propellers
and the wind. Parameter δd is used to take this drift into
account. Let us consider the group P = {Pp}

p=np
p=1 formed

by all the peak positions Pp, p = 1, 2, · · · , np determined
as discussed in Section IV-B. We define Lp as the label
of pixel p. All labels are initialized to zero and back-
ground pixels are labeled as ′ − 1′. We also define Vi, i =
1, 2, · · · , nV as the unique set of peak positions defined as
follows: Vi ∈ P

Vi 6= Vj, i 6= j
(8)

Algorithm 1 describes the voting consensus used to determine
the propellers-induced drone signature, that is, to classify
pixels as belonging or not to a region covered by the blades
of the drone (see Fig. 3o).

Algorithm 1 Voting Consensus
(1): Use (8) to extract Vi, i = 1, 2, ·, nV the unique set of
peak positions in P .
(2): Use Vi, i = 1, 2, ·, nV as bins to compute the histogram
of P .
(3): V is the bin having the highest percentage of
occurrences.
(4): Use the drift parameter δd to define interval
Rd = [V − δd ;V + δd ].
(5): Assign the label V (set Lp = V) to all pixels not yet
labeled (i.e. for which the label is currently Lp = 0) and for
which we can find an element of Pp belonging toRd .

D. ALGORITHM FOR DRONE DETECTION USING PIDS
Algorithm 2 summarizes the steps used to extract the PIDS
from high frame rate videos. Input video (frame rate: fc,
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Algorithm 2 Propellers Induced Drone Signature (PIDS)
(1) Inputs: camera frame rate fc; range of propeller rotation
speedRṼ ; intensity threshold δI ; user-defined coefficients
δa and δā; drift parameter δd ; high frame rate video
{I (p, tm)}

p=npt
p=1 ,m = 1, 2, · · · , nf .

(2) Initialize all pixel labels Lp, p = 1, 2, · · · , npt to zero.
(3) Peak extraction.
sp (a) Take intensity signal {I (p, tm)}

m=nf
m=1 of next pixel p

and compute pseudo intensity signal (4).
sp (b) if (5) is satisfied, set Lp = −1 (label for background)
and go to step (3a).
sp (c) Compute Fp, the normalized DFT magnitude of
pseudo intensity signal (4).
sp (d) Compute the mean amplitude ā of Fp in intervalRṼ .
sp (e) Extract all peaks in intervalRṼ and find A, the
amplitude of the highest peak.
sp (f) if A < āδā, set Lp = −1 (label for background) and go
to step (3a).
sp (g) Build Pp which contains the positions of the peaks
whose amplitude is greater than Aδa and go to step (3a).
(4) Voting consensus.
sp (a) Consider P = {Pp}

p=npt
p=1 formed by the peak positions

Pp of pixels not yet labeled (i.e. for which the label is
currently Lp = 0).
sp (b) if ∃P , Apply Algorithm 1 and go to step (4a).
(5) Output: detected drone. The current video frame is
segmented into two groups of pixels: background pixels
(Lp = −1) and PIDS (Lp > 0).

npt pixel per frame, npt ≤ np) represents a tracked and
motion-stabilized flying entity (see Section V) and the PIDS
unambiguously confirm this flying entity as being a drone or
not.

The computational complexity of the proposed algorithm,
including the tracking (see Section V), is given in Table 1.
A standard (naive, academic) analysis is performed. For each
step of the algorithm, we only report the additional time/space
complexity. Except fast Fourier transform which has a lin-
earithmic complexity in terms of the number of frame nf , all
other steps of the proposed algorithm has linear complexity
with respect to both the number of pixels np and the number
of frames nf . Globally, for nt tracked flying entities, each
captured by npt (npt ≤ np) pixels, the time complexity is
O(max(npnf , ntnptnf log nf )), whereas the space complexity
is O(max(npnf , ntnptnf )).

V. EVENT-BASED TRACKING AND VIDEO STABILIZATION
We remind that the primary data used in our proposed method
is a video stream obtained using a high speed camera observ-
ing the sky from a fixed point. However, the algorithm pre-
sented in Section IV-D takes as input a high frame rate video
capturing a stabilized (motion-compensated) flying entity.
This means that the input video of algorithm presented in
Section IV-D has all frames registered in the same local
system coordinate linked to the flying entity. Such a video

TABLE 1. Computational complexity.

is built from the primary video stream by tracking the flying
entity continuously over time and stacking the frame-by-
frame tracking results up to the current frame. We are aware
that various tracking methods and image/video stabilization
algorithms have been proposed in the literature [68], [69].
However, in the present study, we perform the tracking and
the stabilization by utilizing the difference in pixel intensities
between consecutive video frames. The resulting event-based
approach is straightforward, has a low computation cost and
does not require training data.

By event, wemean a rapid intensity change at a given pixel.
Neuromorphic cameras can monitor this changes within very
short periods of time (∼ µs) and thus can capture events
(at each pixel) with high temporal resolution [70]. In the
proposed approach, events are detected by comparing pixel
intensities between consecutive frames in the high frame rate
video stream. Thus we can capture events with a temporal
resolution of 1/fc using a camera with frame rate fc. Event
at a given pixel is determined by applying a threshold to the
difference between pixel intensities of consecutive frames.

Let us consider two consecutive frames {I (p, tm)}
p=np
p=1 and

{I (p, tm−1)}
p=np
p=1 capturedwith the frame rate fc.We define the

event threshold δE as the minimum intensity change related
to a motion occurring between these consecutive frames. The
event E(p, tm) at pixel p in the mth frame is determined as
follows:{

E(p, tm) = 1, if |I (p, tm)− I (p, tm−1)| > δE

E(p, tm) = 0, otherwise
(9)

We are interested by events related to flying entities with
strong kinematic parameters (moving speed, rotation speed).
Thus δE must be sufficiently high to avoid capturing events
related to flying entities moving slowly as well as moving
backgrounds. The event image {E(p, tm)}

p=np
p=1 correspond-

ing to the mth frame can be viewed as the result of the
motion-based segmentation of frame {I (p, tm)}

p=np
p=1 . Flying

entities can therefore be tracked and their motion can be com-
pensated using only the temporal information at each pixel.

45324 VOLUME 10, 2022



F. B. Djupkep Dizeu et al.: Extracting Unambiguous Drone Signature Using High-Speed Camera

FIGURE 4. Event-based tracking of a flying entity (here a drone). First row: short range (SR) tracking where the
drone flies near the camera. Second row: long range (LR) tracking where the drone flies far away from the
camera. Third row: long range tracking of a hovering drone. (a) The most recent video frame is sent to the event
detector. (b) Event images obtained for a low event threshold δE1

. Captured events include the moving cloud and
the drone. (c) By increasing the event threshold to δE2

> δE1
, we limit the captured events to only those related to

the drone. (d) Trajectory of the drone in the video sequence. Note that the trajectory of the hovering drone is a
point. The tracking window is centered at the centroid of pixels belonging to the same cluster of events (see the
red region of interest in (a) and (c)). (e) Tracking result for the frame in (a).

Thus, using the high frame rate video {I (p, tm)}
p=np
p=1 ,m =

1, 2, · · · , nf , it is possible to: (1) capture pixel events occur-
ring between consecutive frames; (2) determine the trajectory
of flying entities in the sky by aggregating events related to
them in the entire video sequence; (3) perform a continuous
tracking of moving entities in the sky; (4) compensate for the
motion of these entities by stacking the tracking results.

We illustrate the event-based tracking of flying entities
in Fig. 4 by considering three scenarios. The first scenario
is the short range (SR) tracking where the flying entity is
moving close to the camera and is therefore captured with a
very good spatial resolution. The second scenario is the long
range (LR) tracking where the flying entity moves far away
from the camera and is captured with very few pixels (low
spatial resolution). In the third scenario the flying entity is
hovering far away (long range) from the camera. The current
frame (Fig. 4a) is sent to the event detector. Fig. 4b shows
the event image obtained using a low threshold δE1 . Events
related to the motion of the flying entity are captured as well
as event related to the cloud moving very slowly. Fig. 4c
is obtained with a threshold δE2 > δE1 and shows only
events related to the flying entity. Local clusters are formed
among pixels associated with an event and the centroid of
each cluster is taken as the position of a flying entity in the
current video frame. The trajectory of each flying entity is
then obtained throughout the video sequence (Fig. 4d): first,
the determined positions of flying entities in the previous
frames are considered; second, each position in a frame is
matched to at most one position in the previous frame and at
most one position in the next frame; Third, the matching is
performed so that the deviation between the paired positions
in consecutive frames is minimal. The tracking result of a
flying entity in a given frame is a region of interest centered
at the determined centroid (see the red rectangle in Fig. 4a

and Fig. 4c). Fig. 4e shows the tracking result for the frame
in Fig. 4a. By stacking these tracking results frame after
frame, we build the stabilized video supplied as input to
the proposed algorithm (Section IV-D). Note that, there will
be as many stabilized videos as there are detected flying
entities (centroids) in the current frame. The PIDS extracted
from each video will confirm the corresponding flying entity
as being a drone or not.

VI. DATA ACQUISITION AND PROCESSING
We used a GoPro Hero 6 black camera ([71]) to collect
our data. It was mounted on a tripod and observed the sky
from a fixed position as outlined in Fig. 5a. The camera
had vertical, horizontal and diagonal field of views of 69.5◦,
118.2◦ and 133.6◦ respectively. It was configured to cap-
ture RGB videos (8 bits, H265 compression) with a reso-
lution of 1080 × 1920 and a frame rate of fc = 240Hz.

FIGURE 5. Data Collection and processing. (a) We used a GoPro hero
6 black camera mounted on a tripod and observing the sky from a fixed
position. (b) In the proposed method, the input video sequence has a
length tv , ends at the current frame at time tf and is extracted from the
video stream provided by the camera. This input video sequence is
updated with a periodicity t∗ ≥ 1/fc .
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FIGURE 6. Data acquisition. (a) Drone models used: Mavic, Matrice and Phantom. (b-e) Frame extracted from the
video sequences used. Drones fly at different altitudes and speeds against backgrounds ranging from blue sky to
scattered clouds.

FIGURE 7. Mavic slow/fast in short/long range detection. Left: last frame of the input video sequence (length tv ) showing a detected flying entity (red)
and its trajectory within the input video. Right: tracking result.

We started and stopped video recording remotely using the
GoPro application installed on a phone. The recorded data
was saved on the onboard SD card for offline post-processing.
Three drones were used to collect the data, namely, the Dji
Mavic Pro (Mavic), the DjiMatrice 210 (Matrice), and theDji
Phantom 4 Pro V2 (Phantom), all shown in Fig. 6a. The data
consist in a collection of video sequences recorded during
the flight of one of these drones over the camera. A flight
scenario involved a dronemoving slowly (∼ 2m/s) or quickly
(∼ 6m/s) at a given altitude chosen such that the drone was
represented by very few pixels (we will use ’’low resolution’’
to refer to this case) or a sufficient number of pixels (we
will use ’’high resolution’’ to refer to this case) throughout
the video sequence. Fig. 6b-e show some recorded video
frames which include backgrounds changing from clear sky
to scattered clouds. In some images, it is not easy to see the
drone because of its small size and its low contrast against
background.

Preliminary tests were carried out to ensure that the
(consumer-grade) camera was indeed operating at the set
frame rate. First, all automatic settings was disable and we
manually adjusted all necessary camera parameters. In par-
ticular, we set the exposure time (or shutter speed) to a
fixed value 1/fc, where fc is the desired frame rate. Second,
we recordedmultiple videos of exactly t seconds (e.g. t = 1s)
at frame rate fc (e.g. fc = 240Hz), and we verified that
there were indeed t · fc (e.g. 240 frames) frames in each
recorded video. Third, we captured the propeller spinning
very fast. By playing back the recorded video frame by

frame, we verified that the consecutive frames captured the
blades at different positions, which means that an image was
indeed captured every 1/fc seconds. Fourth, the experiment
described in section III-B was repeated several times under
different lighting, including different background brightness
and/or different ambient lighting, while maintaining the rota-
tion speed at 66rpm. We confirmed that the rotation speed
obtained using the DFT ( DFT assumes that the sampling fre-
quency is constant) was equal to the actual rotation speed for
all measurements, meaning that the assumption of constant
sampling frequency is true.

We implemented the event-based tracking method
(Section V) and the PIDS algorithm (Section IV-D) in Matlab
R2018. The data were played back to emulate a continuous
video stream at the frame rate fc = 240Hz. A raw full
frame video sequence of length tv was extracted from the
video stream between time tf − tv and the current time tf .
This raw video sequence was updated with a periodicity
t∗ ≥ 1/fc as illustrated in Fig. 5b. The first processing step
was the event-based tracking of flying entities in each frame
of the raw input video sequence (Section V). The output
of this step was the stabilized videos, each capturing one
flying entity detected. The second processing step was the
extraction of the PIDS from the stabilized videos (algorithm
in Section IV-D). The supplementary materials emulates
the processing and shows the results obtained with the
drones moving slowly in short-range / high-resolution detec-
tion (SupMat_MATRICE_SR, SupMat_MAVIC_SR, Sup-
Mat_PHANTOM_SR), and in long-range / low-resolution
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FIGURE 8. Short range PIDS for the Mavic with low moving speed. (a) Top:
temporal signature (t∗ = 1/fc ) obtained for a 4s video stream, with input
videos of length tv = {1s;2s} (δd = {5;10}, δI = 0.35 and δā = 3.7).
Bottom: PIDS extracted from the input video ending (frame 600) with the
frame in Figure 7a. (b) Influence of coefficients δI and δā (δd = 5, tv = 1s).

detection (SupMat_MATRICE_LR, SupMat_MAVIC_LR,
SupMat_PHANTOM_LR).

VII. RESULTS AND DISCUSSIONS
In this section, we present the experimental results of the
proposed method and highlight some keys points in a dis-
cussion. Results are organized in five groups of figures for
each considered drone. The first group of figures (Fig. 7,
Fig. 12, Fig. 17) show the four configurations adopted. The
four last groups of figures are the results for each of these four
configurations, namely, short range detection - low moving
speed (Fig. 8, Fig. 13, Fig. 18), long range detection - low
moving speed (Fig. 9, Fig. 14, Fig. 19), short range detection
- high moving speed (Fig 10, Fig 15, Fig 20), and long range
detection - high moving speed (Fig. 11, Fig. 16, Fig. 21).
In short range detection, the drone is captured with high
resolution (Fig. 7a,c, Fig. 12a,c, Fig. 17a,c), whereas, it is
captured with low resolution (around 15pixels × 15pixels)
in long range detection (Fig. 7b,d, Fig. 12b,d, Fig. 17b,d).
Each of the last four groups of figures is constituted by the
plots showing the temporal evolution of the extracted PIDS
(length of the video stream: 4s, PIDS extracted each t∗ = 1/fc
second) and the PIDS obtained for δd = 5, tv = 1s and
different values of δI and δā. The PIDS at a given frame (time)
is the signature obtained using an input video of length tv
ending with that frame.

FIGURE 9. Long range PIDS for the Mavic with low moving speed. (a) Top:
temporal signature (t∗ = 1/fc ) obtained for a 4s video stream, with input
videos of length tv = {1s;2s} (δd = {5;10}, δI = 0.15 and δā = 3.7).
Bottom: PIDS extracted from the input video ending (frame 745) with the
frame in Figure 7b. (b) Influence of coefficients δI and δā (δd = 5, tv = 1s).

A. TRACKING RESULTS
The tracking was performed in two steps. First the
event-basedmethod described in Section Vwas used to deter-
mine the coarse position (region of interest in red in Fig. 7,
Fig. 12, Fig. 17) of the flying entity in each frame of the video
stream between time tf − tv and current time (frame) tf . This
set of coarse positions (pixel coordinates) forms the coarse
trajectory of the flying entity within this portion of the video
stream. Second, the smoothed trajectory (shown in green in
Fig. 7, Fig. 12, Fig. 17) was obtained as themoving average of
the coarse trajectory. The fine positions (pixel coordinates) on
the smoothed trajectory were then used to build the stabilized
video provided as input to the PIDS algorithm.

B. TEMPORAL EVOLUTION OF THE PIDS
We have plotted the temporal evolution of the PIDS to eval-
uate the reliability of the proposed method when all the
necessary parameters (moving speed, resolution, parameters
of the algorithm) are kept constant. Indeed the temporal PIDS
presented show that the signature of the drone is persistent
over time. There is almost the same number of main peak
at each frame, meaning that the distribution of the pseudo
propeller speed is almost the same for the entire video stream
(4s long) considered. For high resolution scenarios ( Fig. 8a,
Fig. 10a, Fig. 13a, Fig. 15a, Fig. 18a, Fig. 20a), the main
peaks are almost at the same position, showing that same
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FIGURE 10. Short range PIDS for the Mavic with high moving speed.
(a) Top: temporal signature (t∗ = 1/fc ) obtained for a 4s video stream,
with input videos of length tv = {1s;2s} (δd = {5;10}, δI = 0.27 and
δā = 3.3). Bottom: PIDS extracted from the input video ending (frame
660) with the frame in Figure 7c. (b) Influence of coefficients δI and δā
(δd = 5, tv = 1s).

values of pseudo propeller speed are obtained over time.
For low resolution scenarios ( Fig. 9a, Fig. 14a, Fig. 16a,
Fig. 21a), similar observations are done. However, for the
Phantom moving slowly, different values of the pseudo pro-
peller rotation speed are obtained in different parts of the
video stream as clearly seen in Fig. 19a (tv = 1s). Moreover,
the results obtained with the Mavic moving fast (Fig. 11a)
show a drift in the signature from one frame to another.
This can be explained by a combined effect of resolution
and misalignment of the tracking results. For some videos
considered, no drone was present in the first video frames
and in the last. For these frames, obviously, no signature (no
drone) is found (e.g., see Fig. 15a).

C. INFLUENCE OF ALGORITHM PARAMETERS
The algorithm parameters are the length tv of the stabilized
video, the intensity threshold δI , the coefficients δā and δa,
and the drift parameter δd . In all scenarios, we used δa = 0.5.
Conceptually, the proposedmethod is not a single shoot drone
detection method in the sense that it needs a certain number
of images, actually tvfc images, to work properly and provide
the PIDS. Using the same video stream (4s long), we have
tested the algorithm for different lengths of the stabilized
input video, namely tv = {0.5s; 1s; 1.5s; 2s}. We obtained
the best results with tv = 1s for all tested scenarios. It is

FIGURE 11. Long range PIDS for the Mavic with high moving speed.
(a) Top: temporal signature (t∗ = 1/fc ) obtained for a 4s video stream,
with input videos of length tv = {1s;2s} (δd = {5;10}, δI = 0.15 and
δā = 3.7). Bottom: PIDS extracted from the input video ending (frame
480) with the frame in Figure 7d. (b) Influence of coefficients δI and δā
(δd = 5, tv = 1s).

worth noting that, ideally, each pixel must belong or not to a
propeller (region covered by the blades in motion) throughout
the entire stabilized video. In practice, the background, the
pose of the drone, the resolution with which it is captured,
and its moving speed change throughout the video sequence:
it is most likely that many pixels belong to a propeller in
some frames and to background in other frames. Therefore,
the extracted PIDS may include parts of the drone (body)
other than the propellers. This is noticeable for long input
videos (high value of tv) as observed for example in Fig. 20a
(Bottom: tv = 2s compare to tv = 1s). Short input videos
(a small value for tv) seems to be a way to improve the
PIDS. Indeed, in a short video sequence, we do not expect a
significant change in the resolution and the pose between the
camera and drone. We also expect an almost constant moving
speed. Moreover, for a practical implementation, it is better
to choose tv as small as possible to reduce the computational
load. For a given value of the video length tv, we did not
notice any significant difference between PIDS obtained with
δd = 5 and δd = 10. We took δd = 5 as the optimum value.
The non-optimal choice of parameters δI and δā affects

the PIDS obtained in the same way as tv, i.e., by increas-
ing the number of misclassified pixels: pixels belonging to
background or to the boby of the drone are classified as
belonging to a propeller (PIDS). Only some combinations
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FIGURE 12. Matrice in slow/fast motion in short/long range detection. Left: last frame of the input video sequence (length tv ) showing a detected flying
entity (red) and its trajectory within the video. Right: tracking result.

FIGURE 13. Short range PIDS for the Matrice with low moving speed.
(a) Top: temporal signature (t∗ = 1/fc ) obtained for a 4s video stream,
with input videos of length tv = {1s;2s} (δd = {5;10}, δI = 0.25 and
δā = 3.5). Bottom: PIDS extracted from the input video ending
(frame 660) with the frame in Figure 12a. (b) Influence of coefficients δI
and δā (δd = 5, tv = 1s).

of coefficient δI and δā lead to the expected PIDS con-
stituted of four independent regions, each representing a
propeller. This is observable (tv = 1s) with the Mavic in
Fig. 8b ({δI/2; 5δā/4}), in Fig. 9b ({3δI/4; δā/2}), in Fig. 10b
({δI ; δā}), and in Fig. 11b ({3δI/4; δā}); with the Matrice
in Fig. 13b ({5δI/4; 5δā/4}), in Fig. 14b ({3δI/4; 5δā/4}),
in Fig. 15b ({3δI/4; 5δā/4}), and in Fig. 16b ({3δI/4; 5δā/4});
with the Phantom in Fig. 18b ({δI ; δā}) and in Fig. 20b
({δI ; δā}).

D. INFLUENCE OF RESOLUTION
We remind that, by resolution, we mean the number of pixel
capturing the drone in the video. In high resolution, the drone
is captured by a high number of pixels, whereas it is captured
by very few pixels (15pixels × 15pixels) in low resolution.
The proposed method performs very well in all cases (high
resolution, low resolution) whatever the moving speed of

FIGURE 14. Long range PIDS for the Matrice with low moving speed.
(a) Top: temporal signature (t∗ = 1/fc ) obtained for a 4s video stream,
with input videos of length tv = {1s;2s} (δd = {5;10}, δI = 0.15 and
δā = 4.6). Bottom: PIDS extracted from the input video ending
(frame 500) with the frame in Figure 12b. (b) Influence of coefficients δI
and δā (δd = 5, tv = 1s).

the drone. However, the PIDS obtained with the Phantom
at low resolution do not clearly show the four propellers
(Fig 19b and Fig 21b). This is essentially explained by the low
contrast between the white drone and the white cloudy sky
constituting the background. The drones used in this study
had different sizes and colors. The results obtained show that
a resolution of the order of 15pixels× 15pixels (the width of
the blades captured by 3 to 5 pixels) is sufficient to extract the
PIDS. In all the video sequences used, we had a frontal pose
between the camera and the drone (the drone was passing
over the camera) and the resolution was almost the same in all
the video frames (the drone was moving at a fixed altitude).
A minimal resolution greater than 15pixels× 15pixels might
be required in other configurations; for example when the
resolution changes in the video sequence (drone approaching
or moving away from the camera) or when the camera pose
is not frontal (drone flying on the horizon). To increase the
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FIGURE 15. Short range PIDS for the Matrice with high moving speed.
(a) Top: temporal signature (t∗ = 1/fc ) obtained for a 4s video stream,
with input videos of length tv = {1s;2s} (δd = {5;10}, δI = 0.44 and
δā = 5). Bottom: PIDS extracted from the input video ending (frame 625)
with the frame in Figure 12c. (b) Influence of coefficients δI and δā
(δd = 5, tv = 1s).

resolution and therefore the detection range while keeping
the same coverage (field of view - FoV ) of the sky, a strategy
could be to use an array of N cameras, each equipped with a
small angle lens, having a field of view of FoV/N and cover-
ing a different part of the sky. The availability of affordable
high-speed cameras, such as the one used in this work, may
justify this strategy for practical implementations.

E. INFLUENCE OF DRONE CHARACTERISTICS
Drone characteristics include the span of the drone, its color,
the presence of protection elements on the propellers and
the load carried by the drone. The span (size) of targeted
drones must be taken in account while selecting the camera
lens as the detection range is determined by both the camera
resolution and span of the drone. The color of the drone
is intrinsically related to the contrast obtained with a given
background or under given illumination conditions. As with
the white Phantom, it might be difficult to extract the PIDS in
low resolution videos with a white cloudy sky background.

One requirement of camera-based drone detectionmethods
is the existence of a line of sight between the camera and the
drone, more precisely the propellers in the proposed method.
The propeller protection elements or a load may obstruct
the propeller blades and prevent the correct operation of the
proposedmethod, especially when the drone is flying towards

FIGURE 16. Long range PIDS for the Matrice with high moving speed.
(a) Top: temporal signature (t∗ = 1/fc ) obtained for a 4s video stream,
with input videos of length tv = {1s;2s} (δd = {5;10}, δI = 0.15 and
δā = 4.6). Bottom: PIDS extracted from the input video ending
(frame 500) with the frame in Figure 12d. (b) Influence of coefficients δI
and δā (δd = 5, tv = 1s).

or from the horizon. Fortunately, the axis of the propeller
must be free to allow air circulation and guarantee the lift
and stability of the drone. Therefore, it is very likely that the
occlusion will only exist for specific poses between the drone
and camera. If the drone is in motion, its pose will change
from one video frame to another. Since the stabilized input
video is updated with a t∗ periodicity, a PIDS will be obtained
at some point.

F. POSE OF THE DRONE AND CONTRAST BETWEEN THE
DRONE AND THE BACKGROUND
We performed three experiments to investigate the influence
of the pose of the drone, and the influence of the contrast
between the blades and the background. We characterize the
pose of the drone by the angle θ between the camera viewing
direction and the propeller rotation axis (see schematic in
Figure 24).
The first experiment took place in the laboratory. A pro-

peller with two blades was placed, with different pose
(θ = {0; 45; 65; 90}), in front of a computer screen
(background), whose brightness was changed from zero
(background level 0, screen turned off) to the maximum
luminosity allowed by the screen (background level 255) with
a step of 5. For each background level (BL), the root-mean-
square contrast (Ct ) was computed as described in [72] using
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FIGURE 17. Phantom in slow/fast motion in short/long range detection. Left: last frame of the input video sequence (length tv ) showing a detected flying
entity (red) and its trajectory within the video. Right: tracking result.

FIGURE 18. Short range PIDS for the Phantom with low moving speed.
(a) Top: temporal signature (t∗ = 1/fc ) obtained for a 4s video stream,
with input videos of length tv = {1s;2s} (δd = {5;10}, δI = 0.2 and
δā = 5.5). Bottom: PIDS extracted from the input video ending
(frame 565) with the frame in Figure 17a. (b) Influence of coefficients
δI and δā (δd = 5, tv = 1s).

intensity signals extracted from background pixels (Cbgd
t )

and intensity signals extracted from pixels covered by the
blades during rotation (Cbla

t ). For each pose and contrast, the
camera captured the spinning propeller during 1s at 240Hz.
It turned out that, regardless of the pose of the propeller, the
PIDS is always successfully extracted when there is enough
contrast between the blades and the background, i.e., when
Cbla
t > Cbgd

t . Results of the two extreme poses (θ = 0◦,
θ = 90◦) are reported in Figure 22. The only cases where
PIDS is not extracted (not enough contrast) for the frontal
pose θ = 0◦ is when BL ∈ [25; 45[, or BL � 255.
Note that when BL ∈ [0; 25[, enough contrast exists due to
ambient light. For the pose θ = 90◦, the PIDS is not extracted
when BL ∈ [0; 45[, or BL � 255. Note also that the case
BL � 255 corresponds to a background excessively bright
(e.g., the sun in real scenarios), so that the pixels of the camera
are dazzled. It is worth noting that, in the field, the failure

FIGURE 19. Long range PIDS for the Phantom with low moving speed.
(a) Top: temporal signature (t∗ = 1/fc ) obtained for a 4s video stream,
with input videos of length tv = {1s;2s} (δd = {5;10}, δI = 0.15 and
δā = 3.5). Bottom: PIDS extracted from the input video ending
(frame 590) with the frame in Figure 17b. (b) Influence of coefficients
δI and δā (δd = 5, tv = 1s).

case due to very bright background (camera pixels completely
dazzled) will only occur if there is perfect alignment between
the central area of the sun, the drone (blades captured with
few pixels) and the camera. We believe that this extreme
case will rarely happen. In real defense applications, we can
improve the robustness to camera glare, caused by very bright
backgrounds and/or specular reflections from nearby surfaces
(urban environment), by monitoring the sky from more than
two viewpoints (cameras).

In the second experiment, we confirmed laboratory obser-
vations regarding the pose. we captured a drone hovering
with different poses. Figure 24 shows the results obtained
with the Mavic Mini, one of the smallest drone on the
market. In these videos (e.g., see supplementary material
SupMat_MAVIC_Pose90deg) the width (smallest size) of the
blades is captured by 3 to 5 pixels only.
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FIGURE 20. Short range PIDS for the Phantom with high moving speed.
(a) Top: temporal signature (t∗ = 1/fc ) obtained for a 4s video stream,
with input videos of length tv = {1s;2s} (δd = {5;10}, δI = 0.3 and
δā = 4). Bottom: PIDS extracted from the input video ending (frame 645)
with the frame in Figure 17c. (b) Influence of coefficients δI and δā
(δd = 5, tv = 1s).

In the third experiment, the flying drone was captured
with the sun in the background. Frame by frame results
are shown in supplementary material SupMat_MAVIC_
SunAsBackground and laboratory observations regarding
contrast are confirmed as indicated in Figure 23.

G. PRACTICAL IMPLEMENTATION
For practical implementations, a trade-off must be found
between the expected detection range for given drone char-
acteristics (color, span) and the camera settings. A multi-
cameras system similar to those described in Section VII-
D and [53] could be contemplated to extend the detection
range although it may result in a complex system. Another
important point to consider for a practical implementation is
the computing time, that is, the time needed to perform the
tracking, build the stabilized videos, each of length tv, and
extract the PIDS. We implemented the proposed algorithm
using Matlab and emulate the computations as shown in sup-
plementary materials. The computing time was about 4s for a
video of tv = 1s (240 frames, each of 1080·1920 pixels). This
time does not include video decoding. We also implemented
the proposed algorithm inMicrosoft Visual Studio C++ 2019.
We used CUDA libraries to take advantage of the paral-
lel computing offered by graphics processing units (GPU).
All the computations were performed on a consumer-grade

FIGURE 21. Long range PIDS for the Phantom with high moving speed.
(a) Top: temporal signature (t∗ = 1/fc ) obtained for a 4s video stream,
with input videos of length tv = {1s;2s} (δd = {5;10}, δI = 0.15 and
δā = 3.5). Bottom: PIDS extracted from the input video ending
(frame 610) with the frame in Figure 7d. (b) Influence of coefficients δI
and δā (δd = 5, tv = 1s).

computer runningWindows 10 (64-bit version) and equipped
with a 3.70 GHz Intel(R) Xeon(R) W-2145 CPU, a 32 GB
core memory and a GPU (NVIDIA GeForce RTX 3080). The
computation time including video loading/decoding, tracking
of nt = 1 flying entity, video stabilization, and extraction of
the PIDS was 0.93s for tv = 1s (nf = 240 frames), 1.35s
for tv = 2s (nf = 480 frames), 1.77s for tv = 3s (nf =
720 frames), and 2.18s for tv = 4s (nf = 960 frames). There-
fore, the proposed algorithm operates in real time. Note that
about 30% of processing time was spent on video decoding
(GoPro applies H265 compression). Reported computation
times can be further reduced if video encoding/decoding is
avoided, e.g., by using high-speed machine vision cameras
instead of consumer-grade (Gopro) cameras.

H. CONNECTION TO MACHINE/DEEP LEARNING
Camera-based machine/deep learning approaches have been
proposed for drone detection [17], [18]. Despite their
promising performance, especially for long-range detection,
machine/deep learning architectures need training data; they
suffer from the reduced amount of annotated data available.
Building a training dataset can be a big challenge because,
for the sake of robustness, it has to include so many scenarios
involving drones (different sizes and colors of drones, various
backgrounds and lighting conditions, etc. ) as possible. Object
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FIGURE 22. Contrast between the propeller blades and the
background [72]. θ is the angle between the camera viewing direction and
the propeller rotation axis. In this experiment, the PIDS is not extracted
when the background level (BL) is between 25 and 45 (frontal view),
when it is less than 45 (Side view), or when it is very high. The PIDS is
always extracted when there is minimum contrast (e.g.,
BL ∈ [0;25] ∪ [45;255] for θ = 0◦, BL ∈ [45;255] for θ = 90◦) between the
blades and the background whatever the pose of the propeller. To avoid
confusion, the vertical yellow line ( BL ∈]55;255]) indicates the position
of the bar holding the propeller.

FIGURE 23. Performance with the sun in the background (see
supplementary material SupMat_MAVIC_SunAsBackground). The PIDS is
extracted only when there is a minimum contrast between propeller
blades and background. Only (a) three propellers (Frames 388− 430 in
supplementary material), (b) two propellers (Frames 630− 830), and
(c) one propeller (Frames 1000− 1300) are captured with enough
contrast. (d) No contrast, light from bright background glares camera
pixels, PIDS is not extracted (Frames 1375− 1650). Finally, (e) two
propellers (Frames 1847− 1865) and the four propellers (Frames
1900− 2633) are captured with enough contrast.

detection based on machine/deep learning can be performed
using either handcrafted features or learned features. In both
cases, features are obtained using the appearance of the
object: the object to be detected must look similar as the one

FIGURE 24. PIDS for different poses of the drone. θ is the angle between
the camera viewing direction and the propeller rotation axis. If there is
minimum contrast between the propeller blades and the background, and
the propeller blades are captured with sufficient resolution (at least
3 to 5 pixels for the width of the blades), the PIDS is always extracted
regardless of the pose of the drone. Frame by frame results for the
extreme pose θ ∼ 90◦ are given in the supplementary material
SupMat_MAVIC_Pose90deg.

used for training. Therefore, the training dataset should be
updated regularly. It is almost mandatory for drone detec-
tion, as new models of drones are regularly released to the
market.

The proposed method does not require any training data.
It is not an appearance-based method as the drone is detected
through the rotation speed of its spinning propellers. In this
sense, the PIDS can be extracted as long as the drone is a
multicopter, newly released to the market or not. Therefore,
one can contemplate machine/deep learning architectures
that use the PIDS (kinematic-based features) in addition to
appearance-based features. This should compensate, to some
extent, for the need for continuous updating of the train-
ing dataset. This needs to be confirmed (1) by building
a dataset of PIDS extracted from high speed videos cap-
turing drones, (2) by training machine/deep learning archi-
tectures with these PIDS dataset, and (3) by testing the
robustness of these architectures against new drone mod-
els. One can also consider using machine/deep learning for
the automatic choice of parameters δI , δā, δd (parameters
of the PIDS algorithm) with respect to sky and illumina-
tion conditions. Moreover, in a two-step detection (track-
ing and classification) such as the one presented in this
paper, machine/deep learning can be devoted to the frame by
frame tracking of flying entities, while the PIDS is used for
classification.

VIII. CONCLUSION
In this paper, we presented a very new end-to-end camera-
based drone detection method which uses the propeller rota-
tion speed to extract an unambiguous drone signature. The
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method proceeds in three steps. First, a flying entity is
detected and tracked frame by frame in a video stream
provided by a high speed camera observing the sky from a
fixed position. Second, the tracking results are used to build
the motion-stabilized input video capturing the tracked flying
entity. Third, the propellers induced drone signature (PIDS)
is extracted from the input video sequence to confirm the
flying entity as being a drone or not. The theoretical fun-
damentals of the method has been detailed. Experimental
results obtained with four different drones (Mavic, Matrice,
Phantom, Mavic Mini), captured with low/high resolution
while they moving with low/high speed with different poses
and backgrounds, demonstrated the effectiveness and the
reliability of the proposed method. In particular, the PIDS,
which unambiguously identify a drone, can be successfully
extracted if: (1) there is a line of sight between the camera
and the propeller blades (the protective elements or the body
of the drone are the main causes of occlusion of the blades);
(2) the blades are captured with enough resolution (at least
3 to 5pixels for the width of the blades); (3) a minimum con-
trast exists between the blades and the background.Wewould
like to point out that the proposed method should also work
with near infrared cameras, especially for drone detection at
night.

All scenarios considered in this paper had the sky (clear
or cloudy) or the sun as background. A future work will
be to test the performance of the proposed method in
urban environment or in the presence of vegetation/forest.
It will also be interesting to develop machine/deep learn-
ing architectures using PIDS as an extra channel concate-
nated to the RGB channels (appearance-based) commonly
used.
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