
Received March 22, 2022, accepted April 13, 2022, date of publication April 25, 2022, date of current version May 4, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3170042

Activation Function Modulation in Generative
Triangular Recurrent Neural Networks
SESHADRI SIVAKUMAR 1, (Senior Member, IEEE), AND
SHYAMALA SIVAKUMAR2, (Senior Member, IEEE)
1Pasumai Energytech LLC, Bradenton, FL 34211, USA
2Computing Information Systems, Saint Mary’s University, Halifax, NS B3H 3C3, Canada

Corresponding author: Seshadri Sivakumar (seshadri.sivakumar@pasumaienergytech.com)

ABSTRACT Autonomous generation of time series is challenging because the network must capture
short-term features while tracking long-term time dependencies. This paper introduces the modulation of the
activation function slopes of the upper-lower triangular recurrent neural networks (ULTRNNs) for dynamic
variation of memory through a secondary recurrent network with its own independent states. A zigzag
propagation algorithm for weight updates is proposed that accounts for the dynamic interaction of the states
between the ULTRNN and the secondary network. A novel training method is proposed that distributes
the eigenvalues of the closed-loop system around the unit circle in the complex z-plane to ensure that the
network behaves as a nonlinear oscillator with an output that neither collapses nor saturates but continues
to emulate the target. Examples encompassing the Lorenz series, Santa Fe laser data, kolam patterns,
electrocardiogram (ECG) signals, stock pricing data, and smart grid data are presented to demonstrate
that the proposed approach is highly effective in the generative modeling of complex periodic, chaotic,
and nonstationary time series. The qualitative and quantitative performance of the ULTRNN obtained with
the proposed activation-function modulation technique is comparable to that of state-of-the-art techniques
including feedforward networks and generative adversarial networks, but with far fewer trainable parameters
and shorter computation times.

INDEX TERMS Triangular RNN, activation function slope modulation, generative networks, closed-loop
training.

I. INTRODUCTION
This paper introduces a novel sparse recurrent neural net-
work (RNN) architecture for the generative modeling of time
series. Generative modeling is challenging because the net-
work must capture short-term features while tracking long-
term time-dependencies. RNN-based networks are uniquely
suited to such problems owing to their autoregression ability.
Typically, the activation function slope used in such networks
is fixed and determines their ability to model long-term time-
dependencies at the cost of short-term features or vice versa.
We propose dynamically varying the activation function slope
to control the memory retention and forgetting. In addition,
unconstrained RNNweight placementsmay result in unstable
networks whose outputs saturate or highly stable networks
whose outputs collapse. Therefore, we propose a novel train-
ing method to constrain the eigenstructure of the closed-loop
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system for marginal stability to ensure a stable emulation
of the target data with an output that neither collapses nor
saturates. We apply activation function modulation, together
with constraining the closed-loop eigenvalue distribution,
to synthetically generate chaotic, complex periodic and quasi-
periodic waveforms, and model non-stationary processes
such as stock data.

Sparse RNNs have the advantage of reduced computation
and storage compared with fully recurrent networks. In addi-
tion, special recurrent structures such as block-diagonal
(BDRNN) [1] and upper-lower triangular (ULTRNN) [2]
inherently facilitate monitoring stability and ensure a robust
learning ability. The eigenvalues of the 2× 2 diagonal blocks
of the BDRNN recurrent weight matrix were constrained
during the training to lie on the unit circle of the complex
z-plane. Such placement inherently mitigates the vanish-
ing and exploding gradient issues normally associated with
conventional RNN [3]. Reported applications of BDRNNs
include speech recognition [1], lung-sound processing [4],
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and telecom call volume prediction [5]. The ULTRNN [2]
uses upper and lower triangular weight matrices, each with
2 × 2 diagonal blocks with the same constraints as the
BDRNN. As a second constraint, the corresponding diagonal
blocks in the two triangular matrices are set equal to reduce
the chances of overfitting as the network learns to model
the hidden oscillatory modes of the target trajectory. The
ULTRNN is effective for modeling dynamic time series that
exhibit chaotic, nonsymmetric, and long-term dependency
behaviors [2].

Adaptation of the activation function slope has previ-
ously been considered a tool for improving learning per-
formance. Reference [6] used this technique with a limited
scope to improve the intrinsic stability of generic recur-
rent networks. Reference [7] used trainable activation func-
tions in a deep feedforward neural network for an MNIST
handwritten digit recognition task. In a previous study, the
learning capability of a ULTRNN was enhanced by mod-
ulating the slope of the activation function associated with
each state variable [8]. Modulation of the activation func-
tion incorporates variable memory with an objective similar
to that of an LSTM network that employs multiplicative
gates [9].

The slope of the activation function directly affects the
time duration contribution of the corresponding state variable.
A sharp activation function slope lengthens the time contri-
bution and helps model and control long-term dependencies.
Conversely, a slack slope shortens the time contribution and
helps to model controlled ‘‘forgetting’’. A fixed activation
slope favors the equal contribution of all states over time and
the network learns long-term dependencies at the expense of
its short-term performance or vice versa [8]. Varying the slope
of the activation function with time can be used to model
the dynamics of the system time constants that produce the
target waveform. Reference [8] dynamically computed the
slope of the (tanh) squashing function for each state variable
using a secondary network. For this secondary network, a
feedforward structure that uses the main ULTRNN states
was chosen to simplify the training with a direct extension
of the conventional backpropagation algorithm. However,
such sharing of states may result in suboptimal mapping of
the activation function slope space. To address this short-
coming, in this study, we propose using a recurrent archi-
tecture for a secondary network with its own independent
and dimensionally unconstrained state variables. We call this
secondary network an independent state activation function
network (ISAFN).

The interaction between the state variables of the ULTRNN
and ISAFN imposes additional constraints on the gra-
dient computation process during training. Considering
this interaction, we developed a novel zigzag propagation
(z-prop) algorithm that uses a combination of forward and
backward steps for exact gradient computation. A trun-
cation technique that increases the computational speed
by trading off the desired gradient accuracy level is
presented. In addition, the activation function slope is

constrained to a range that ensures the marginal stability of
the ULTRNN.

The activation function modulation of the ULTRNN can
be applied to a wide range of time-series modeling and
prediction tasks. This study focuses on the unique objective
of autonomous generation or replication of time series with
behavioral characteristics close to those of the parent system
as envisioned in [10], [16]. From a practical perspective, such
generative networks can be used to clone new data when col-
lecting real data is difficult or when its availability is sparse.
We consider one-step prediction as the primary mechanism
for training, such that the trained network autonomously
generates outputs by feeding back only its own output from
the previous time step. Because the stable performance of the
trained network depends on the eigenstructure of the closed-
loop system, we introduce an eigenvalue-based heuristic
cost function. Using this approach, the closed-loop network
behaves as a nonlinear oscillator emulating the target with an
output that neither collapses nor saturates. We demonstrate
the performance of ISAFN-ULTRNN with the autonomous
generation of synthetic examples of Lorenz limit cycles [11],
Santa Fe laser data [12], one-stroke kolam patterns [13],
ECG signals [14], [15], Google stock data [16], and smart
grid data [17], [18].

The main contributions of this work include: (a) the con-
trolled modulation of the activation function slopes of the
ULTRNN which facilitates the dynamic variation of mem-
ory retention. A secondary recurrent network whose states
are independent of the ULTRNN states is employed for
the dynamic computation of the activation function slopes.
(b) A zigzag propagation algorithm that uses a combination of
forward and backward steps for weight updates to account for
the dynamic interaction of the states between the ULTRNN
and secondary network. (c) A novel training method dis-
tributes the eigenvalues of the linearized closed-loop system
around the unit circle in the complex z-plane to ensure that
the trained network behaves as a nonlinear oscillator with an
output that neither collapses nor saturates but continues to
emulate the target.

The remainder of this paper is organized as follows:
In Section II, the structure of the ULTRNN with ISAFN
is developed, and its key features are compared with the
common-state AFN (CSAFN) presented in [8]. In Section III,
we develop a learning algorithm for the ISAFN with
a specific focus on the z-prop algorithm for gradient com-
putation, which considers the interaction between the state
variables of the ULTRNN and ISAFN. In this section, we also
discuss the computational burden of the z-prop algorithm
and suggest techniques for increasing computational speed
through truncation. Section IV describes the development of
an eigenvalue-based cost function that ensures the marginal
stability of the linearized closed-loop system. Section V
presents illustrative examples to demonstrate and contrast the
generative performance of the ISAFN-ULTRNN with state-
of-the-art networks. Section VI summarizes the key contribu-
tions of this study.
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II. DYNAMIC ACTIVATION FUNCTION MODULATION
A. ACTIVATION FUNCTION MODULATED ULTRNN
The ULTRNN architecture uses twin triangular state-
feedback weight matrices [2] as shown in Figure 1. The
system equations, with sampling instant k , are given by:

sςx (k + 1) = Wς
x xζ (k)+ B

ς
x u (k)

xς (k) = f x(a
ς
x (k) , s

ς
x (k)), ς = U,L

}
(1)

sy (k) = CU
x x

U (k)+ CL
x x

L (k)
y (k) = hy(sy (k)), ς = U,L

}
(2)

where, with ς = U ,L representing the upper and lower
networks, respectively,

Wς
x = {w

ς
xi,j , i, j = 1, 2, ..Nx} are the triangular

matrices,
Bςx = {b

ς
xi,j , i = 1, 2, . . .Nx , j = 1, 2, . . .Ni} are the

input matrices,
Cςx = {c

ς
xj,i , i = 1, 2, . . .Nx , j = 1, 2, . . .No} are the

output matrices.
With i = 1, 2, . . .Nx ,

xς (k) = {xςi (k)}
T as the state vector,

sςx (k) = {s
ς
xi (k)}

T is the intermediate linear state
vector,
aςx (k) = {a

ς
xi (k)}

T is the activation function slope
vector, and
f x(a, s) = {fx (ai, si)}

T is the state activation function
vector.
u (k) = {ui (k) , i = 1, 2, . . .Ni}T is the network input
vector.

With i = 1, 2, . . .No,
sy (k) = {syi (k)}

T is the intermediate linear output
vector,
y (k) = {yi (k)}T is the network output vector, and
hy (s) = {hy (si)}T is the output activation function
vector.

The state activation function is:

fx (ai, si) =
(1− e−aisi )(
1+ e−aisi

) , ai ≥ 0 (3)

Note ai varies dynamically. With a fixed slope α > 0, the
output activation function is:

hy (si) = fx (α, si) (4)

Note that the ith 2 × 2 block diagonal submatrices of Wς
x ,

ς = U,L are constrained to be equal and formulated using
angular θi variables as follows:[

cos (θi) − sin (θi)
sin (θi) cos (θi)

]
, i = 1, 2, . . .Nx/2 (5)

A key motivation for using (5) is that it is an effective mecha-
nism for modeling the underlying oscillatory modes [1], [2].
A sufficient condition for network and training stability is [1],

aςxi (k) ≤ 2, i = 1, 2, . . .Nx . (6)

Eqn. (5) with (6) constrains each eigenvalue pair
of Wς

x to lie on the unit circle of the complex z-plane.

FIGURE 1. ULTNN architecture with activation function slope modulation.

This ensures both network and learning stability without any
need for online monitoring. Such eigenvalue placement elim-
inates the exploding and vanishing gradients issue associated
with RNN. Constraining the respective 2×2 block diagonals
of WU

x and WL
x to be equal minimizes the possibility of

overfitting while learning [2], [19].
Typically, in neural networks, the slope a of the activation

function fx (a, s) is chosen a priori and is always fixed. In this
study, we dynamically vary the activation function slopes to
emphasize the contribution of some states over others and
this varies with time. With each state variable of the main
ULTRNNhaving a unique activation function, the variation in
the activation function slopes over time enhances the dynamic
performance of the ULTRNN.

We now describe two alternative architectures for a sec-
ondary network that output the variable slope activation func-
tions required by the main network. The first (CSAFN),
is a feedforward network that uses the state variables of the
main network to compute the activation function slopes [8].
The second (ISAFN), is a novel architecture that employs a
recurrent network with its own independent state variables to
compute activation function slopes.

B. COMMON STATES ACTIVATION FUNCTION
NETWORK (CSAFN)
The state variables are common to the ULTRNN and CSAFN
as shown in Figure 2. The output of the CSAFN is the
activation function slope aςx (k) , given by:

sςx̃ (k + 1) = Wς

x̃ x
ς (k)+ Bςx̃ u (k)

aςx (k) = gx̃(s
ς

x̃ (k)), ς = U, L

}
(7)

where,
Wς

x̃ = {w
ς

x̃i,j
, i, j = 1, 2, . . .Nx} are the state weights,

Bςx̃ = {b
ς

x̃i,j
, i = 1, 2, . . .Nx , j = 1 . . .Ni} are the input

matrices,
sςx̃ (k) = {s

ς

x̃i
(k) , i = 1, 2, . . .Nx}

T are the intermedi-
ate linear state vectors, and
gx̃ (s) represents the vector function {gx̃ (si),
i = 1, 2, . . .Nx}T on vector s = {si, i = 1, 2, . . .Nx}T ,
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FIGURE 2. Common-state AFN architecture.

where

gx̃ (si) = m0 +
2m2(

1+ e−m3(si+m1)
) (8)

where,
the parameters mi, i = 0, 1, 2, 3 are the scaling fac-
tors that determine the vertical shift, span, slope, and
horizontal shift, respectively.

During training, the CSAFN simultaneously learns to
output aςx (k) as the ULTRNN learns to model dynamic pro-
cesses. Note that in [8],Wς

x̃ is chosen as a feedforward, trian-
gular matrix with block diagonals of the form (5). However,
such a constraint is not necessary because the CSAFN does
not use recurrence.

C. INDEPENDENT STATES ACTIVATION FUNCTION
NETWORK (ISAFN)
The CSAFN architecture may impact the learning perfor-
mance by mapping the network state to a positive activation
function slope. Such suboptimal mapping compromises net-
work memory. This may impact the generalizability of the
CSAFN, and thereby, the network’s robust learning ability.
With the primary motivation of decoupling the network states
of the AFN from the main network and improving the mem-
ory retention control, we propose a novel AFN architecture
that employs recurrent states that are completely independent
of themainULTRNN states as shown in Figure 3. The outputs
of the independent states AFN (ISAFN) are the activation
function slopes aςx (k) used by the main ULTRNN, as shown
in Figure 1. The state equations of the ISAFN are given by:

sςz (k + 1) = Wς
z z
ς (k)+ Bςz u (k)

zς (k) = hz
(
sςz (k)

)
, ς = U, L

}
(9)

where,
zς (k) = {zςi (k) , i = 1, 2, . . .Nz}

T is the state vector,
Wς

z = {w
ς
zi,j , i, j = 1, 2, . . .Nz}, is the state weight

matrix,

FIGURE 3. Independent-state AFN architecture.

Bςz = {b
ς
zi,j , i = 1, 2, . . .Nz, j = 1, 2, . . .Ni} is the

input matrix,
sςz (k) = {s

ς
zi (k) , i = 1, 2, . . .Nz}

T
, is the intermedi-

ate linear state vector, and
hz (s) = {hz (si)}T , {si, i = 1, 2, . . .Nz}T is the activa-
tion function of the form (4).

Owing to the recurrence used in the ISAFN, the state matrices
Wς

z are constrained to triangularmatrices with block diagonal
submatrices of form (5). The output of the ISAFN is:

sςa (k) = Cςz z
ς (k)

aςx (k) = gz
(
sςa (k)

)
, ς = U, L

}
(10)

where,
Cςz = {c

ς
zj,i , i = 1, 2, . . .Nz, j = 1, 2, . . .Nx} is the

output matrix, and gz (s) = {gz (si) , i = 1, 2, . . .Nx}T

is the activation function of the same form as (8).
Note Nz does not need to be equal to Nx and can be selected
as higher or lower depending on the task objectives.

The parameters of gx̃(·) of the CSAFN and gz(·) of the
ISAFN, and how they impact the activation function fx (a, x)
of the ULTRNN, are shown in Figure 4. The vertical-shift
factor m0 determines the minimum limit of the activation
function slope; the span factor m1 expands or contracts the
span and determines the granularity of forgetting levels; and
the slope factor m2 impacts both the range and sensitivity of
forgetting levels; the horizontal-shift factor m3 impacts the
desired value of the activation function slope for no exter-
nal inputs. These parameters are empirically chosen such
that (a) the marginal stability of the ULTRNN and its training
are retained at all instants with or without external inputs, and
(b) the slope assumes a range of values above a minimum
threshold to represent various levels of forgetting.

III. TRAINING ALGORITHM
The combined CSAFN and ULTRNN are referred to as
CULTN, and the combined ISAFN andULTRNN are referred
to as IULTN. The learning algorithms for the CULTN and
IULTN are described in this section. The algorithms were
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FIGURE 4. Activation functions of the AFN (left) and the main
ULTRNN (right).

derived from the small perturbation theory to compute the
exact gradients. The cost function for minimizing the output
error during training is:

Jy =
∑Nq

k=1

∑No

i=1
eyi (k)

2 (11)

where eyi (k) is the element of the error vector given by

ey (k) =
{
eyi (k)

}T
= yp (k)− y (k) (12)

where yp (k) =
{
ypi (k) , i = 1, 2, ..No

}T is the target vector
and, Nq is the number of training samples in an epoch.

A. TRAINING CULTN
The feedforward architecture of the CSAFN allows training
to be performed with a simple extension of the conven-
tional backpropagation algorithm. The following steps are
performed for k = Nq, ..1, at each training cycle t = 1, ..Nt ,
with ς = U, L

εςxo =


ey (k)Th

′

y (k)C
ς
x , k = Nq

[f s
′ς

x (k)Wς
x + f a

′
ς

x (k) g′
ς

x̃ (k)W
ς

x̃ ]e
ς
x (k)

+ ey(k)Th
′

y (k)C
ς
x ,

k = Nq − 1, ..2, 1
(13)

where,
ε
ς
xo is an intermediate error function variable,

f a
′
ς

x (k) = diag{f a
′ς

xi (k) , i = 1, 2, ..,Nx}, and

f s
′
ς

x (k) = diag{f s
′
ς

xi (k) , i = 1, 2, ..,Nx}
where,
f a
′
ς

xi (k) and f s
′
ς

xi (k) are the partial derivatives of
fx(a

ς
xi (k) , s

ς
xi (k)) with respect to aςxi (·) and sςxi (·),

respectively;
g′ςx̃ (k) = diag{g′

ς

x̃i
(k) , i = 1, 2, ..,Nx},

where,
g′
ς

x̃i
(k) is the derivative of gx̃

(
sςxi (k)

)
, and

h′y (k) = diag{h′yi (k) , i = 1, 2, ..,No},
where,
h′yi (k) is the derivative of hy (si(k)); and

eςx (k) is updated per (16).

Weight differentials for the ULTRNN are accumulated at
each k iteration step as

1Wς
x− = ε

ς
xof s

′ς

x (k) xς (k − 1)
1Bςx− = ε

ς
xof s

′ς

x (k)uς (k − 1)
1Cςx− = ey (k)Th

′

y (k) x
ς (k)

 (14)

Weight differentials for the CSAFN are accumulated at
each k iteration step as

1Wς

x̃− = ε
ς
xof a

′xς

x (k) g′ςx̃ (k) x
ς (k − 1)

1Bςx̃− = ε
ς
xof a

′ς

x (k) g
′ς

x̃ (k)u
ς (k − 1)

}
(15)

Note that the symbol − = in (14) and (15) represents
the negative accumulation of the weight differentials at the
kth iteration step to the accumulated values from the previous
steps Nq through k + 1. Before the next iteration step, the
following update is performed

eςx (k) = ε
ς
xo. (16)

After the accumulation of the differentials over all sample
steps, the differential of the angular variable of each diagonal
block ofWς

x is computed as [2]

1θ i
2

= cos θ i
2

{
1wUx i,i+1 −1w

U
x i+1,i +1w

L
x i,i+1 −1w

L
x i+1,i

}
− sin θ i

2

{
1wUx i,i+1w

U
x i+1,i+1+1w

L
x i,i+1w

L
x i+1,i+1

}
i = 2, 4, . . .Nx . (17)

(17) constrains the block diagonal elements of Wς
x to lie on

the unit circle in the complex z-plane and helps maintain
network stability and improve robust learning ability. The
possibility of exploding and vanishing gradients is minimized
while retaining the sensitivity required to model the oscilla-
tory modes of the target.

B. TRAINING IULTN
The interaction of the recurrent states of the ISAFN with
the recurrent states of the ULTRNN necessitates two parallel
training processes, one for the ULTRNN and the other for
the ISAFN.

1) BACKPROPAGATION ALGORITHM FOR THE ULTRNN
The following steps are performed for k = Nq, ..2, 1 at each
training cycle t = 1, 2, ..Nt with ς = U, L

εςxo =


ey (k)Th

′

y (k)C
ς
x , k = Nq

f s
′ς

x (k)Wς
xε
ς
x (k)+ ey(k)Th

′

y (k)C
ς
x ,

k = Nq − 1, ..2, 1

(18)

where εςxo is the intermediate error function variable. Weight
differentials are accumulated at each k th iteration step as
shown in (14) using εςxo of (18). Before the next k th iteration
step, the following update is performed:

εςx (k) = ε
ς
xo (19)
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2) ZIGZAG PROPAGATION ALGORITHM FOR ISAFN
xς (k) being a function of two variables is impacted by
the ISAFN weights through two propagation paths. One
is directly through aςx (k) of the ISAFN and the other is
indirectly through sς (k) of the ULTRNN, which is in turn
impacted by aςx (k − 1) andWς

x . Hence, the ISAFN gradient
terms are computed through a combination of forward and
backward propagation steps as summarized below.

The following steps are performed for k = 1, 2, . . .Nq at
each training cycle t = 1, 2, ..Nt with ς = U, L

ε
ς
z (k) = f a

′ς

x (k) g′ςz (k)
Eςz (k) = ey (k)Th

′

y (k)C
ς
xε
ς
z (k)C

ς
z h
′ς
z (k)

}
(20)

where,
ε
ς
z (k) and Eςz (k)are the intermediate error function

variables,
g′ςz (k) = diag{g′

ς

zi (k) , i = 1, 2, ..,Nx}, where g′
ς

zi (k)
is the derivative of gz

(
sςzi
)
; and

h′ςz (k) = diag{h′
ς

zi (k) , i = 1, 2, ..Nz}, where h′
ς

zi (k)
is the derivative of hz(s

ς
zi (k)).

Note that the interaction of the ISAFN and ULTRNN states
is reflected in εςz (k).
For each k-th iteration step above, the following steps are

performed for κ = k, k − 1, ..2, 1:

εςzo =

{
ε
ς
z (k) , κ = k
f s
′ς

x (k)Wς
xεzς (κ) , κ = k − 1, ..2, 1

(21)

Eςzo =


Eςz (k) , κ = k

[Eςz (k)W
ς
z+ey(k)Th

′

y (k)C
ς
xε
ς
zoC

ς
z ]h
′ς
z (κ) ,

κ = k − 1, ..2, 1
(22)

Weight differentials are accumulated at each κ iteration step
as

1Wς
z− = Eςzozς (κ − 1)

1Bςz− = Eςzouς (κ − 1)
1Cςz− = ey (k)Th

′

y (k)C
ς
xε
ς
zozς (κ)

 (23)

Before the next κ th step, respectively, the following updates
are performed:

ε
ς
z (κ) = ε

ς
zo

Eςz (k) = Eςzo

}
(24)

Given the backward steps for each forward iteration step,
the algorithm is termed as zigzag propagation (z-prop).
The algorithm is illustrated in Figure 5 for iterations
k−1 and k . In the figure, the solid downward arrow indicates
a conventional backward propagation step, and the dashed
upward arrow indicates forward propagation. Each box shows
an error function from which the gradient components are
obtained by pre-multiplying with ey(·)T and post-multiplying
with the ISAFN state zς (·). The process begins with the initial
error computed for each kth iteration step (shown in the top-
left box). The error function at each lower box is obtained

FIGURE 5. Zigzag propagation algorithm for ISAFN: representative
iteration steps.

through post-multiplication of the term in the box above
with the ISAFN backpropagation termWς

z h
′ς
z (·). The process

continues in the next column with the error in the top box
obtained by pre-multiplying the error in the previous step
(k − 1) with the ULTRNN forward propagation term
f s
′ς

x (·)Wxς . This process is repeated recursively for all
columns in the kth iteration step, and for all k = 1, 2, ..Nq.

3) WEIGHT UPDATES
The CULTN or IULTN weights are updated at each training
cycle consisting of an epoch of Kq time steps, using

8(t + 1) = 8(t)−
ηw

Kq
18(t) , µ > 0 (25)

8(t) represents the weights in training cycle t , and ηw is the
learning rate parameter. Note that updating Wς

x and Wς
z is

subject to the form of (17).

4) COMPUTATIONAL REQUIREMENTS
The number of trainable weights for the CULTN is given by:

NC
w = Nx(3Nx + 4Ni + 2No) (26)

and for the IULTN is given by

N I
w=Nx (Nx+2(Ni+No))+Nz (Nz+2(Ni+Nx)) (27)

For a given network size, the z-prop used by the ISAFN
requiresO(N 2

q /2) computations whereas the CSAFN requires
only O(Nq) computations. Hence, the ISAFN can be compu-
tationally expensive for a large Nq. Truncating the number
of κ recursions for a large k to a fraction of Nq trades off
the accuracy of the gradients with a reduction in computa-
tional speed. For example, κ iterations can be limited to a
threshold κth, that can be selected empirically.

To empirically assess the impact of recursion truncation on
the gradient accuracy and computation speed, a representative
2-output, 5/5-mode (Nx = Nz = 10) IULTN was considered.
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The inputs and outputs were chosen as random values
in the range of (-1:1). The gradients were computed
first with the z-prop algorithm and then with the direct pertur-
bation of the individual weight elements. Errors between the
gradients were compiled for several truncation thresholds as
a fraction of Nq in the range (0.1:1). The error comparison
was repeated for several Nq values in the range (50:200).
The normalized gradient accuracy based on the root-mean-
squared (RMS) error versus the computational time profiles
is summarized in Figure 6. The gradient error is close to
zero with no truncation (κth = Nq), which confirms the
correctness of the z-prop equations (20) – (24). The gradient
errors exhibited a hyperbolic profile with a κth knee point
between 0.2N q and 0.35N q. The lower the epoch size Nq,
the higher the increase in error with increased truncation. The
computational time exponentially increased as the truncation
decreased to zero, with a worse impact for the higher epoch
size cases. A threshold chosen close to the knee point pro-
vides a reasonable trade-off between the gradient accuracy
and computation time.

FIGURE 6. Impact of z-prop truncation depth on error and computation
burden.

IV. CLOSED-LOOP GENERATIVE TRAINING
For autonomous generation using only the network’s pre-
dicted outputs, the question of how to ensure closed-loop
stability of the network needs to be considered. A tractable
metric of the closed-loop system performance would be ideal
to steer the training, such that the trained network behaves as

a nonlinear oscillator with an output that neither collapses nor
saturates but continues to emulate the target. However, owing
to the nonlinearity of the activation functions and the variation
in their slopes, such an ideal metric for guaranteed closed-
loop performance is not computationally feasible. Instead,
we seek a simple metric based on the linear control system
theory that can potentially improve closed-loop performance.
A heuristic metric based on the sufficiency condition for the
local marginal stability of the linearized closed-loop system
is derived. The closed-loop state transition equation of the
ULTRNN with one-step prediction feedback for small per-
turbations is:[

1xU (k + 1)
1xL (k + 1)

]
=

[
f s
′U

x (k) 0
0 f s

′L

x (k)

]

×WUL
xCL (k)

[
1xU (k)
1xL (k)

]
(28)

where,

WUL
xCL (k) =

[
WU

x + B
U
x h
′
y (k)C

U
x

BUx h
′
y (k)C

L
x

BLx h
′
y (k)C

U
x

WL
x + B

L
x h
′
y (k)C

L
x

]
(29)

In (4), with slope α = 2 for the output activation func-
tion hy(·), derivative h′y (k) is a vector of positive values with
a maximum of unity. In (29), we set h′y (k) to unity to obtain
a linearized closed-loop matrix (LCLM)

WUL∗
xCL =

[
WU

x + B
U
x C

U
x BUx C

L
x

BLxC
U
x WL

x + B
L
xC

L
x

]
(30)

and set h′y (k) to zero to obtain the open-loop representation

WUL∗
xOL =

[
WU

x 0
0 WL

x

]
(31)

Ensuring the marginal stability of the closed-loop system
for small perturbations requires constraining the eigenval-
ues of WUL

xCL (k) to within an annular ring around unity in
the complex z-plane. Because the elements of h′y (k) vary
from zero to unity, WUL

xCL (k) transitions within the ranges
WUL∗

xCL and WUL∗
xOL . Given that WUL∗

xOL is marginally stable due

to constraint (5) imposed on its block diagonal elements,
it is heuristically evident that imposing marginal stability
on WUL∗

xCL , in turn, ensures the marginal stability of WUL
xCL (k)

for all values of h′y (k) . Note that in (28) as k varies, modu-
lated by the AFN, f s

′ς

x (k) , ς = U,L, shapes the closed-loop
system performance by dynamically adjusting the annular
ring that constrains the eigenvalues.

The cost function (11) used for training is modified as

Jyλ = Jy + Jλ (32)

to include the cost term Jλ which represents the effective
distance of the eigenvalues ofWUL∗

xCL from unity.

Jλ =
1

2Nx

∑2Nx

i=1

∥∥∥|λi (WUL∗
xCL

)
| − 1

∥∥∥ (33)
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where, λi (W ) is the eigenvalue of W , and ‖·‖ represents
any scalar norm. The gradients of Jλ with reference to the
individual elements of WUL∗

xCL are computed through direct
perturbation at each weight update. Note that echo-state net-
works [20] employ eigenvalues in the training process to
eliminate exploding gradients. The gradients of Jλ require
O(N 4

x ) computations and can be computationally expensive
for large networks. The computational speed can be increased
at the cost of accuracy using an alternative cost function
based on a rough estimate of the spectral radius, that is, the
largest eigenvalue, ofWUL∗

xCL can be used [19]. Note that (29)
applies only to equal input and output dimensions, and if
other additional inputs or outputs are present, they should be
separated from Bςx ,C

ς
x , ς = U,L.

After training, the marginal stability of the closed loop sys-
tem can be assessed through an evaluation criterion based on
several eigenvalue measures including Jλ. Example of other
measures include the ones based only on the maximum and
minimum amplitude of the eigenvalues. A successful training
will result in the closed-loop eigenvalues distributed close to
the unit circle in the complex z-plane. If the network with
the chosen dimensions is inadequate to model the target time
series, Jλ may not reduce sufficiently during learning. In such
a scenario, the network dimensions need to be increased and
retrained.

V. ILLUSTRATIVE EXAMPLES
Several illustrative examples are presented to demonstrate
and compare the effectiveness of the IULTN architecture with
state-of-the-art networks for generative tasks. The first two
examples pertain to the autonomous generation of chaotic
waveforms with characteristics close to those of Lorenz
limit cycles [11], and Santa Fe laser data [12]. The third
example deals with the autonomous generation of a com-
plex periodic waveform based on the South Indian kolam
patterns [13]. The fourth example autonomously generates
synthetic electrocardiogram (ECG) data with characteristics
similar to real patient data [14], [15]. The fifth example
models a nonstationary process using the Google stock data
studied in [16]. The final example generates hourly solar gen-
eration and energy consumption data studied in [18] as part of
smart grid data synthesis. In each example, the network was
trained for one-step prediction using the cost function (32)
and tested in a closed loop with the output from the current
time step used to predict the next output. Techniques adopted
to improve the learning robustness include [8]: (a) input noise
injection to improve generalizability [7], [21], (b) use of addi-
tional pilot inputs to embed periodicity, (c) use of a composite
input consisting of the target and the network outputs for
guided training, and (d) combined use of n-step prediction
outputs for improved noise rejection during generation.

For the chaotic time series considered in the first two
examples, the Kullback-Leibler (KL) divergence [22] was
used for performance comparison. The KL divergence is not
a measure of the global closeness of the network output to
that of the target. However, at the local level, it is useful to

quantitatively compare the probability distribution of outputs
from different networks. We use the following formulation to
facilitate a performance comparison of CULTN and IULTN:
A covariance phase plot for each of the target and network
outputs is created with coordinates {ypi (k) , y

p
i (k + Nc)} and

{yi (k) , yi (k + Nc)}, i = 1, 2, ..No, k = 1, 2, . . .Nd , respec-
tively, where Nd is the data length for an arbitrarily chosen
covariance time step Nc. Each point on the plot is quantized
into

{
y∗m, y

∗
n
}
,m, n = 1, 2, . . .Nr using a quantization

level Nr . The probability distribution of the target out-
puts Ppi

(
y∗m, y

∗
n
)
, and the network outputs Pi

(
y∗m, y

∗
n
)
, i =

1, 2, ..No,m, n = 1, 2, . . .Nr , are computed as the joint
probability of the occurrence of y∗m and y∗n over all time
instances k = 1, 2, ..Nd . The symmetric KL divergence is
computed as

Di = 0.5


∑Nr

m=1

∑Nr

n=1
Pi
(
y∗m, y

∗
n
)
ln

(
Ppi
(
y∗m, y

∗
n
)

Pi
(
y∗m, y∗n

) )

+Ppi
(
y∗m, y

∗
n
)
ln

(
Pi
(
y∗m, y

∗
n
)

Ppi
(
y∗m, y∗n

))

(34)

The parameters for the comparative analysis were the covari-
ance time step Nc and quantization range Nr .
For all the examples, minimizing the cost function (32) was

used to ensure closed-loop stability and robust learning. Typi-
cally, training is conducted in two phases to improve learning
robustness. The first phase uses only the target waveform as
the input, and the second combines the target waveform ypi (k)
and predicted network output yi (k):

ui (k + 1) = γ ypi (k)+ (1− γ ) yi (k) ,

i = 1, 2, . . .No, 0 ≤ γ ≤ 1 (35)

where γ is chosen empirically. The training transition from
the first to the second phase occurs when the eigenvalue
metric Jλ decreases below a threshold. During the second
training phase, the weight update parameter ηw was progres-
sively reduced to ensure Jλ was maintained at or below the
threshold.

To generate complex periodic waveforms, the waveform
period was set to the epoch length Nq. To reduce the initial
transient errors, the initial values of the network state vari-
ables in each training cycle τ are updated as

χi (1) |τ+1 =
(
βχi (1)+ (1− β) χi

(
Nq
))
|τ , 0 ≤ β ≤ 1

(36)

with β chosen empirically. Note, χi represents the network’s
state variables.

For all networks used in the examples, based on several
trial-and-error runs and evaluating for consistent stability and
learning performance, the parameters m0, m1, m2, and m3
of gx̃(·) used in the CSAFN and gz(·) used in the ISAFN
per (8) are empirically chosen as 0.1, 2.1, 2.1, and 1.5, respec-
tively. This selection limits the activation function slope to
a maximum of 2.2 aimed at sustained long-term memory,
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and a minimum of 0.1 heuristically chosen to regulate the
forgetting level. The initial angular variables θi of the block
diagonals of the ULTRNN and ISAFNwere assigned random
values that were uniformly distributed in the range (0:2π).
The elements of all other matrices were randomly distributed
in the range (−1:1). For input-output compatibility, before
training, the inputs and targets were amplitude-normalized by
scaling to span the range (-0.85:0.85). The initial value of the
weight update parameter ηw was set to 0.1.

Tables 1 and 2 summarize the network parameters for the
CULTN and IULTN, respectively, and Table 3 lists the key
training and testing parameters used in the examples.

TABLE 1. CULTN network parameters.

TABLE 2. IULTN network parameters.

TABLE 3. Training and testing parameters.

A. LORENZ LIMIT CYCLE
We consider the autonomous generation of time-series with
characteristics close to the Lorenz limit cycles [11]. The target
outputs are produced by solving the ordinary differential
equation (ODE):

d
dt

 yp1yp2
yp3

 =
 σp

(
yp2 − y

p
1

)
ρpy

p
1 − y

p
1y
p
3 − y

p
2

yp1y
p
2 − βpy

p
3

 (37)

where σp = 10, ρp = 28, and βp = 8/3 [11]. The ODE is
solved with initial values set at yp1 = −10, y

p
2 = −8, y

p
3 = 30,

using a fourth-order Runge Kutta with a step size of 0.001 to
generate the targets ypi , i = 1, 2, 3. The trajectories after
amplitude normalization are shown in Figure 7.

FIGURE 7. Lorenz limit cycles: target trajectories.

With 3-inputs and 3-outputs, a 6-mode (Nx = 12) CULTN,
4/4-mode (Nx = Nz = 8) IULTN, and 6/6-mode
(Nx = Nz = 12) IULTN were considered. The networks
were trained with 10000 points of the data generated by (37),
with an epoch size Nq = 100. White noise with a variance
of 0.016 was injected into the input. The network was first
trained in an open loop and then in a closed loop with γ
in (35) reduced from 1 to 0.5 to 0.25 such that the net-
work was forced to rely more on its prediction to improve
the orbit switching accuracy. The generative performance
of the network was assessed by replacing the targets ypi (k)
with the corresponding network outputs yi (k) , i = 1, 2, 3.
The performance of the 6-mode CULTN closely matched
that of the 4/4-mode IULTN but was inferior to that of the
6/6-mode IULTN. Hence, an 8-mode (Nx = 16) CULTN
was considered, and its performance was comparable to that
of 6/6-mode IULTN. From Figure 8, it can be observed that
the LCLM eigenvalues for the two networks are distributed
closely around the unit circle in the complex z-plane.

Figure 9 shows the autonomously generated outputs of
the 8-mode CULTN and the 6/6-mode IULTN. Qualita-
tively it can be seen that both networks can generate and
sustain chaotic waveforms with attractor contours similar
to that of the target. The two basins of attraction are dis-
tinguishable, and orbit switching between them is retained
Quantitative performance was assessed using symmetric
KL divergences (33) for multiple ensembles of autonomous
generation. The ensembles are computed for quantization
levels Nr in the range (4:44), by setting (a) the time instant
for transfer from open-loop to closed-loop in the range
(500:2500) and (b) the covariance parameters Nc in the range
(20:200). Figure 10 shows the ensemble average and standard
deviation of the KL divergences for the 8-mode CULTN and
4/4 mode, and 6/6-mode IULTN. The average KL divergence
of the 6/6-mode IULTN is consistently lower than that of the
8-mode CULTN with a lower standard deviation. Even the
4/4-mode IULTN exhibited marginally better performance
than the 8-mode CULTN.

In summary, IULTN with fewer weights (N I
w = 792)

outperformed CULTN (NC
w = 1056) both qualitatively and

quantitatively in the generative modeling of the Lorenz limit
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FIGURE 8. Lorenz limit cycles: LCLM eigenvalue placement in the complex
z-plane.

FIGURE 9. Lorenz limit cycles: autonomously generated trajectories with
8-mode CULTN (top) and 6/6 mode IULTN (bottom).

FIGURE 10. Generating lorenz limit cycles: ensemble average and
standard deviation of KL divergences vs. quantization level (top: first
output, middle: second output, bottom: third output); gray line: 4/4 mode
IULTN, dash line: 6/6-mode IULTN, dark thin line: 8-mode CULTN.

cycles. A similar task considered in [23] used a reservoir
computing network with an estimated 1800 trainable weights.

B. SANTA FE LASER DATA
We considered autonomously generating synthetic data sim-
ilar to the Santa Fe laser dataset [12]. The original dataset

consists of periodic to chaotic intensity pulsations of a far-
infrared laser. The laser output exhibited significant dis-
symmetry around the mean value and mimicked a chaotic
low-frequency waveform modulating a high-frequency car-
rier as shown in Figure 11.

FIGURE 11. Santa Fe laser data: target waveform.

First, a 4-mode (Nx = 8) CULTN and a 4/4-mode
(Nx = Nz = 8) IULTN were considered. With the laser
data as the target input, a 1-input 2-output network was
used with the outputs being the 1-step and 4-step prediction
values. To improve the learning robustness, a second output
is included to enhance the network’s ability to capture the
structure of the laser data better, for example, its rise and
collapse. In addition, white noise with a variance of 0.01 is
added to the input. The networks were trained with the first
1500 data points of the original data series ‘‘A.Cont,’’ with
an epoch size of Nq = 100. The networks were first trained
in an open loop and then in a closed loop with γ in (35)
reduced from 1 to 0.5 such that the network relied more on
its prediction. Figure 12 shows that the LCLM eigenvalues
of the two networks were distributed within an annular ring
closely around the unit circle in the complex z-plane.

The generative performance of the trained networks was
assessed by replacing the target yp (k) with the mean of the
predicted network outputs y (k) and y (k − 4). The perfor-
mance of the 4-mode CULTN is significantly inferior to that
of the 4/4-mode IULTN. Hence, an 8-mode CULTN was
considered to have the performance comparable to that of
a 4/4 mode IULTN. Figure 13 shows the CULTN and
IULTN output time plots for 2000 sampling instants. The first
200 points show the network output with the target input,
and the remaining autonomously generated. It is qualita-
tively evident that both networks can sustain high-frequency
oscillations and chaotic low-frequency variations similar to
the original laser data. However, the CULTN waveform has
’softer’ valleys with higher values at which the envelope
collapses compared to that of the IULTN. The IULTN output
was more similar to the target (Figure 11) with a sharper rise
and lower valleys of the envelope.

Figure 14 compares the representative covariance phase
plots of the autonomously generated outputs with those of the
target. The phase plots describe y(k + 50) vs. y(k) where the
time step 50 is arbitrarily chosen to represent the fractional
period of the dominant low-frequency envelope of the target.
It can be seen that the contour edges of the phase plots of
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FIGURE 12. Santa Fe laser data: LCLM eigenvalue placement in the
complex z-plane.

FIGURE 13. Santa Fe laser data: autonomously generated network
outputs (top: 8-mode CULTN, bottom: 4/4 mode IULTN).

FIGURE 14. Santa Fe laser data: covariance phase plots of original laser
data (top left) and autonomously generated outputs (top right: 4-mode
CULTN, bottom left: 8-mode CULTN, bottom right: 4/4-mode IULTN.

the 4-mode CULTN are fuzzier than those of the target. The
contour edges of the 8-mode CULTN phase plots are sharper
and are similar to the target. The phase plots of the 4-mode
IULTN are the closest to the target, including a distinct eye-
like feature.

Quantitative performance was assessed using symmetric
KL divergences (33) for multiple ensembles of autonomous
generation. The ensembles were computed for quantization
levelsNr in the range (4:44) and setting the covariance param-
eters Nc in the range (20:200). Figure 15 shows the ensemble
average and standard deviation of the KL divergences as
a function of the quantization level Nr . The average KL
divergence of the 4/4-mode IULTN was consistently lower
with a smaller standard deviation than the 4-mode CULTN
and closer to that of the 8-mode CULTN.

FIGURE 15. Santa Fe laser data: KL divergences of autonomously
generated outputs.

In summary, IULTN with far fewer weights (N I
w = 320)

outperformed CULTN (NC
w = 896) in the generative model-

ing of Santa Fe Laser data. A similar task considered in [10]
with a multilayer perceptron network used an estimated
1300 trainable weights.

C. KOLAM PATTERN
Kolam is a floor art of complex and intricate patterns that is
commonly practiced in South India. A kolam is drawn as a
continuous line looping or joining straight and curved lines
typically around symmetric dot patterns [13]. The mathemat-
ical properties implied in kolam design have been studied
in [13], [24] and [25]. A single-stroke kolam variant can be
represented as a trajectory plot with x and y coordinates.
The modeling complexity of a single-stroke kolam lies in the
rich harmonic content of the x- and y- variables, and their
spatiotemporal synchronization.

Case 1 compares the performance of CULTN and IULTN
in the autonomous generation of a single-stroke kolam with
4-4-4-4 dot placements, as shown in Figure 16. A 2-input,
2-output, 6-mode (Nx = 12) CULTN, and 5/5-mode (Nx =
Nz = 10) IULTN were trained to perform 1-step prediction
with the target being the Kolam’s x and y coordinates. The
kolam pattern was periodic normailized with Nq = 100.
Given that the kolam pattern is periodic, updates to the initial
values of the network states for each training epoch used
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β = 0.95 in (36). The network was first trained in an open
loop and then in a closed loop with γ in (35) reduced from
1 to 0.5, to improve the replication accuracy. The kolam
plots autonomously generated by CULTN and IULTN are
shown in Figure 16. Both CULTN and IULTN can stably
and continuously generate a kolam pattern. However, the
5/5-mode IULTN, with fewer weights (N I

w = 520), outper-
forms the 6-mode CULTN (NC

w = 576) in terms of accuracy
and symmetry around the dot pattern, as confirmed by the
average and standard deviation of the errors. Errors were
obtained by comparing the distances between the generated
pattern and target to the nearest dot.

FIGURE 16. Kolam with 4-4-4-4 dot pattern: target waveform (left),
autonomously generated output with 6-mode CULTN (middle), 5/5-mode
IULTN (right). (µ: error average; σ : error standard deviation).

Case 2 shown in Figure 17 is the autonomously generated
plot by a set of nine 6/6-mode (Nx = Nz = 12) IULTNs, each
trained to reproduce one of the symmetric one-stroke kolams
drawn around 1-3-5-3-1 dot placements studied in [13]. The
low average errors and low standard deviations confirm the
quantitative accuracy achieved by IULTN.

D. ELECTROCARDIOGRAM (ECG) WAVEFORM
Case 1 considers several 2-input, 2-output CULTN, and
IULTNs to autonomously generate the ECG waveform syn-
thesized using the model presented in [14]. As shown in
Figure 18, the first input is the target, and the second is a pilot
sine wave whose frequency is the same as the fundamental
ECG waveform. To improve learning robustness, given that
segments of the ECG waveform are nearly flat for a substan-
tial amount of time, the pilot signal plays a key role in the
distinct mapping of each ECG segment. The ECG waveform
was period normalized with Nq = 100. The networks were
first trained in an open loop and then in a closed loop with γ
in (35) reduced to 0.5, and then to 0.25, such that the network
relied more on its prediction as training progressed. To reduce
the initial transient errors, the initial values are updated at
each cycle with β in (36) set to 0.95.
The autonomously generated outputs, and LCLM eigen-

value distribution of a 4-mode CULTN (Nx = 8) are shown
in Figure 19. Note that the pilot sine wave was also generated
by the networks; hence the process was fully autonomous.
The CULTN continuously reproduces the subperiod, shape,
and peak values of the P, R, and T waves, and heartbeat with
reasonable accuracy. However, it cannot accurately reproduce
flat segments.

FIGURE 17. Kolam with 1-3-5-3-1 dot pattern: autonomously generated
outputs with 6/6-mode IULTNs: KL divergences of autonomously
generated outputs. (µ: error average; σ : error standard deviation).

FIGURE 18. ECG: target (dark) and pilot (grey) waveforms.

FIGURE 19. ECG: autonomously generated outputs (left) by 4-mode
CULTN (ECG output (dark) and pilot (grey); LCLM eigenvalue placement in
the complex z-plane (right).

The autonomously generated outputs, and the asso-
ciated LCLM eigenvalue distributions, of a 2/2-mode
(Nx = Nz = 4), 3/3 mode (Nx = Nz = 6), 3/4 mode
(Nx = 6,Nz = 8) IULTNs are shown in Figure 20. It can be
observed that the 2/2 IULTN,with fewerweights (N I

w = 112),
outperformed the 4/4 mode CULTN (NC

w = 288), with P and
T waves better reproduced. The reproduction of the flat seg-
ment between the T and P waves improved with the 3/3 mode
IULTN. The ECG waveform reproduction was significantly
improved with the 3/4 mode IULTN, and with approximately
the same number of weights (N I

w = 276), it significantly
outperforms the 4-mode CULTN (NC

w = 288). Note that
the additional dimensional freedom of the 3/4 mode IULTN,
with the 3-mode ULTRNN (Nx = 6) and 4-mode ISAFN
(Nz = 8), results in a better reproduction of the valleys in the
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FIGURE 20. ECG: autonomously generated IULTN outputs (left) by
2/2-mode (top), 3/3-mode (middle), 3/4 -mode (bottom) - ECG
output (dark) and pilot (grey), and LCLM eigenvalue placement in the
complex z-plane (right).

Qand Swaves. Relaxing the dimensional constraintmay have
resulted in a more optimal activation function slope dynamic,
thus improving the network memory for modeling.

Case 2 considered the generation of clones with charac-
teristics close to the ECG of a general population using a
single network. Similar tasks using generative adversarial
networks (GANs) were studied in [26], [27]. The synthesized
generation of clone waveforms is useful for data augmen-
tation in biosignal classification, clinical training, and data
analysis tasks where real field data are scarce and difficult to
collect. In addition, synthetic data are useful for anonymiz-
ing and alleviating patient privacy concerns [26]. In the
dataset [15], it was noted that ECGs with elevated T waves
are normal variants and form a small fraction (<5%) of over
4000 patients with no heart ailments. Such cases may not be
well represented in data-modeling tasks, and their synthetic
generation may be useful for increasing the data diversity.
We consider a 3-input, 2-output, 12/12-mode (Nx = Nz = 24)
IULTN for the autonomous generation of ECG clones with
elevated T waves.We used the 50 samples drawn from [15] as
the training set. Each training sample was period normalized
with Nq = 100. While the first and second inputs are the
target ECG and pilot sine wave, the third input is a random
seed drawn from a Gaussian noise generator and is associated
with each target ECG. The outputs were one-step predicted
values of the target and the pilot sine wave. The network was
first trained in the open loop, and then in the closed loop with
γ gradually reduced to 0.5. During closed-loop training, only
the first two inputs use output feedback, and the noise seed is
retained as the external third input.

Figure 21 shows the representative target ECGs, alongwith
the corresponding autonomously generated outputs when fed
with the training seeds. In addition, the test outputs were
autonomously generated using new Gaussian noise inputs
that were different from the training seeds. The generative
capability of IULTN is evident from cloned outputs that
have structural similarity to the training set, while exhibiting

FIGURE 21. ECG with elevated-T segments: target waveforms (left),
autonomously generated outputs by 12/12-mode IULTN with training
seed (middle) and with random seed (right); x-axis: time steps; y-axis:
target (left) and network outputs (middle and right).

natural diversity. This example demonstrates the ability of
the IULTN to autonomously generate complex biosignals
with characteristics similar to those of a parent popula-
tion. Reference [26] considered an LSTM-based deep GAN
with 200 hidden units and three layers for an estimated
800000 trainable weights for each of the generator and dis-
criminator networks. Comparable results were obtained with
IULTN, which uses only 2880 trainable weights, a minuscule
fraction (0.2%) of LSTM-GAN [26].

E. STOCK DATA MODELING
We consider synthetically generating nonstationary
time- series data with a probability distribution that best
approximates that of the parent. We specifically modeled
the distribution of Google’s stock data previously studied
in [16] which used TimeGAN. TimeGAN uses an embedding
subnetwork and a recovery subnetwork to learn the under-
lying temporal dynamics, in addition to the discriminator
and generator subnetworks common to a generic GAN. The
training process has three stages: the first for the embedding
subnetwork, the second for the full network, but with only
supervised loss, and the third for a joint process considering
all losses. TimeGAN exhibits the best performance among
competing techniques for a range of time-series generative
tasks [16].
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The stock dataset consists of six variables: open, low,
high, closing, and adjusted closing stock prices, and the
stock trading volume for each trading day for the years
2004-2019. The objective of this exercise is to synthetically
generate stock data over a 48-day period that mimics the
Google stock data distribution. Stock data exhibit a high
feature correlation among the five pricing variables. A 48-
day period is considered here, as the temporal correlation for
the 24-day periods studied in [16] is high, but significantly
reduced for 48-day periods. We trained a 7-input 6-output
10/10 mode (Nx = Nz = 10) IULTN to perform generation
through a one-step prediction. The first six inputs are the
stock data variables. To improve learning robustness, the
seventh is Gaussian noise vector that better maps the temporal
variability in any period. The network was first trained in
the open loop and then in the closed loop, with γ in (35)
progressively reduced to 0.25. The network was tested for
autonomous generation of stock data using Gaussian noise as
the external input. TimeGANs with four, six, and eight gated
recurrent units (GRUs) for each of the six stock variables,
similar to the one studied in [16] were trained, and the one
with the eight GRUs that had the best performance was
chosen for comparison with the IULTN. The key comparative
items of the network architecture, its dimensions, and the
computational burden are listed in Table 4. As shown in the
table, the number of trainable parameters for IULTN (2400)
is a small fraction (∼1.4%) of that of TimeGAN (174727).
This is reflected in the substantially low computation time per
epoch iteration for IULTN training (∼15.3% of TimeGAN).
The number of generative parameters required for the trained
IULTN remains at 2400 and is still a small fraction (∼6.2%)
of the trained TimeGAN (38400).

TABLE 4. Stock data modeling – TimeGAN vs IULTN.

Figure 22 shows a qualitative comparison of the IULTN-
generated data with that of TimeGAN. The visualization
plots compare the principal component analysis (PCA) [28]
and t-distributed stochastic neighbor embedding (t-SNE)
[29] maps of the synthetically generated data with those of
the original data. It is apparent that the distribution of the
IULTN-generated data closely follows that of the original
data and is comparable to that of the TimeGAN-generated
data.

A quantitative comparison was performed using the train
on the synthetic test on real (TSTR) technique using generic
assessment networks based on GRU [16]. The first assess-
ment network was trained to predict the closing stock price
using training data extracted from the synthetic generation,
with the trading volume data discarded. Next, the second
assessment network with the same structure and dimensions

FIGURE 22. Stock Data: Comparative PCA (left) and t-SNE (right) plots of
TimeGAN (top) and IULTN (bottom) generated outputs.

FIGURE 23. Stock Data: Comparative MAE density map of predictions
with TimeGAN (left) and IULTN (right) generated outputs.

as the first was trained using the training data extracted from
the original data. The prediction performance of both net-
works was tested using fresh test data extracted from the orig-
inal data. The mean absolute errors (MAE) of the predictions
obtained using the two assessment networks collected over
200 train and test runs were used as comparison metric. The
prediction MAE densities obtained for the TimeGAN- and
IULTN-generated data are shown in Figure 23. It is clear from
the figure that the prediction MAE with IULTN-generated
data is closer to that obtained with the original data than that
of TimeGAN. Specifically, the peak MAE of the IULTN case
(0.0135) occurred in close proximity to that corresponding
to the original data (0.0125). However, an accurate objective
comparison with TimeGAN is not possible because the net-
work dimensions and training are not fully optimized in either
case.

In summary, the generative performance of IULTN com-
pares well with that of TimeGANboth qualitatively and quan-
titatively with far fewer weights, a simpler training process,
and lower computational times.

F. SMART GRID DATA MODELING
The objective of this exercise, similar to the task addressed
in [18], is to synthetically generate energy consumption and
solar generation data with the same probabilistic distribution
as that of the Pecan Street Dataset [17]. We observed that
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FIGURE 24. Smart grid data: Comparative solar generation (top) and
energy consumption (bottom) data: original (left) and IULTN generated
outputs (right).

the solar generation data for multiple users with installed
PV panels exhibited repetitive patterns with variations owing
to the onset of clouds and rain. Energy consumption data
also exhibit similar trends but are accompanied by irreg-
ular spikes because of random consumption. The training
data comprised hourly data of nine users in Austin collected
over a year. We trained a 23-input 22-output 15/15 mode
(Nx = Nz = 15) IULTN to perform autonomous generation
through one-step prediction. The first 18 inputs and outputs
correspond to the solar generation and energy consumption
data of nine users. The 4 inputs/outputs were the pilot sine
waves to represent the periodicity of the daily, weekly, and
annual variations. A Gaussian noise seed is used as the final
input. The autonomous generation capability of the network
was tested using pilot waves and a Gaussian noise seed as the
only external inputs. Figure 24 shows the IULTN-generated
solar generation and energy consumption data over a one-
year period for a representative user, compared with the
corresponding original data.

Figure 25 shows a qualitative assessment of the IULTN-
generated data using visualization plots based on PCA [28]
and t-SNE [29] maps. It is apparent that the distribution of
IULTN-generated data closely follows that of the original
data.

A quantitative comparison was performed using the TSTR
technique with assessment networks based on GRU [16],
similar to the one considered in Section E for stock data
modeling. The two assessment networks were trained for
one-step prediction, the first with the original data and the
second with the IULTN-generated data. The MAEs of the
solar and energy data prediction for the nine users collected
over 200 train and test runs are shown in Figure 26. It is
clear from Figure 26 that the MAE density of the predic-
tions with the IULTN-generated data closely matched that of
the original data. An objective comparison with the results
of [18] is not possible because of the sparsity of network
information.

FIGURE 25. Smart grid data: Comparative PCA (left) and t-SNE (right)
plots of IULTN generated outputs vs. that of the original data.

FIGURE 26. Smart grid data: Comparative MAE density map of predictions
with IULTN (right) generated outputs vs. that of the original data.

In summary, the autonomously generated IULTN data
compares well with the original solar generation and energy
consumption data both qualitatively and quantitatively.

VI. CONCLUSION
The main contributions of this study are as follows:
(1) Activation function slope modulation with a recurrent
ISAFN architecture where the states and dimensions are
decoupled from the ULTRNN for better control of mem-
ory retention. (2) Zigzag propagation algorithm for the
weight updates to account for the state interactions in
the IULTN. A truncation technique is presented that signif-
icantly reduces the speed of gradient computation without
significantly affecting accuracy. (3) Closed-loop trainingwith
an eigenvalue metric of the linearized closed-loop system
to ensure sustained output generation emulating the target.
The effectiveness of the proposed approachwas demonstrated
with applications in synthetic data generation encompassing
chaotic systems, complex periodic patterns, biosignals, and
nonstationary processes.

We developed a novel method to dynamically vary the
activation function slopes of a ULTRNNby using a secondary
network. Varying memory retention over time allows the
network to capture short-term features while continuing to
remember long-term dependencies, which is a key require-
ment for the generative modeling of time series. We com-
pared two architectures for the secondary network, CSAFN
and ISAFN. The CSAFN is a feedforward architecture that
uses the main ULTRNN states to compute activation func-
tion slopes. This simplifies training by directly extending
the backpropagation algorithm. The ISAFN uses a recurrent
architecture with independent states to compute activation
function slopes. The interaction between the ISAFN and
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ULTRNN states makes the z-prop training process complex.
The biggest advantage of the ISAFN over the CSAFN is
its recurrent architecture which aids in controlling long-term
memory. The ability of the CSAFN to build long-term mem-
ory is limited by its feedforward architecture. The indepen-
dent recurrent states of the ISAFN are more effective in
the dynamic shaping of the activation function slopes which
results in enhanced control of memory retention. This is
exemplified in the generative experimental results where the
IULTN accurately captures nuanced features of the target data
such as the sharp collapse of the Santa Fe laser data followed
by a low frequency ramp rise, and the flat segments of the
ECG waveform. Even with increased network dimensions,
the CULTN is unable tomatch the performance of the IULTN.

The marginal stability of the triangular state-feedback sub-
matrices of the ULTRNN ensures stable and robust training of
the open-loop system, because the gradients are not allowed
to either explode or vanish. In generative tasks, with the
predicted output fed back as the input to generate the next
prediction, it is essential to ensure marginal stability of the
closed-loop system. An eigenvalue metric of the linearized
closed-loop system was employed to ensure that the network
behaved as a nonlinear oscillator whose output neither sat-
urated nor collapsed. Maintaining the marginal stability of
both open- and closed-loop systems inherently allows for
the robust and stable learning of the target features. Robust
learning was enhanced by noise injection, n-step prediction,
and pilot waves.

Examples presented demonstrate that the autonomous
waveforms generated by the IULTN have qualitative and
quantitative features closely similar to the target, and that the
IULTN outperforms state-of-the-art neural network architec-
tures with a smaller number of trainable weights and lower
training times, as shown in Table 5. Specifically, the IULTN
uses only a very small fraction of the weights when compared
with deep GAN networks. The better performance achieved
by the IULTN is at the cost of increased gradient computa-
tions imposed by the zig-zag propagation algorithm and the
eigenvalue basedmarginal stability computations required for
stable learning. Future work will explore additional means to
speed up gradient computations without impacting learning
performance. It will also study the impact of hyper-parameter

TABLE 5. Comparative architecture & weight profiles.

selection on controlling memory retention and its application
to modeling complex multivariate time series tasks such as
bio signals.
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