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ABSTRACT Chest sound— as the first and most commonly available vital signal for newborns— contains
affluent information about their cardiac and respiratory health. However, neonatal lung sound auscultation
is currently challenging and often unreliable due to the noise and interference, particularly for preterm
infants. The noise often overlaps with the heart and lung contents in both time and frequency. Moreover,
the frequency band of the useful components varies from one case to another, making it difficult to separate
by fixed band-pass filtering. In this study, a single-channel Blind Source Separation (SCBSS) framework
is proposed to separate newborns’ lung and heart sounds from noisy chest sounds recorded by a digital
stethoscope. This method first decomposes the signal into a multi-resolution representation using a time-
frequency transform, and then applies source separation algorithms, to find proper ad hoc frequency filters.
In the simulation scenario, two different time-frequency transforms are considered; Stationary Wavelet
Transform (SWT) with dyadic bases, and Continuous Wavelet Transform (CWT) with redundant bases. The
transforms are followed by three different source separation methods, namely Principal Component Analysis
(PCA), Periodic Component Analysis (πCA), and Second Order Blind Identification (SOBI). The yielded
combinations are applied to the chest sounds recorded from ninety-one preterm and full-term newborns. The
results show that compared to raw signals, fixed band-pass filtering and seven other separation methods, the
heart and lung sounds extracted by the proposed methods have higher quality index and also result in more
reliable heart and respiratory rate estimation.

INDEX TERMS Neonatal chest sound analysis, single-channel blind source separation, heart sound filtering,
lung sound filtering.

I. INTRODUCTION
Diagnosing cardiac and respiratory diseases in newborns
have been the focus of many studies in recent years [1]–[3].

The associate editor coordinating the review of this manuscript and
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Timely diagnosis of cardiac issues in newborns tremendously
helps physicians to arrange the necessary medical interven-
tions and treatments to prevent irreversible consequences.
To assist with diagnosis, there has been a growing interest in
using digital stethoscope (DS) and dedicated computer anal-
ysis, particularly in pediatrics [4]–[7]. The major advantages
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TABLE 1. Frequency bands used in heart sound filtering literature.

TABLE 2. Frequency bands used in lung sound filtering literature.

of DS include its accessibility, affordability, portability and
compatibility with smartphones, which make it suitable to be
utilized in resource-constrained and undeveloped countries.
It also facilitates telemedicine applications for increasing spe-
cialist access, clinical decision support, crowdsourcing and
home-based monitoring of cardio-respiratory conditions [7].
The feasibility of using DS for neonatal population has been
recently investigated in a few studies focusing on heart,
lung or abdominal sound auscultation [8]–[13]. However, its
application for newborns has been limited in current clini-
cal practice, mainly due to the weakness of the sounds and
high levels of interference and background noise [7]. The
sounds recorded from newborns often have poor quality and
therefore denoising is required prior to further analysis and
diagnosis.

Generally, the chest sound is a mixture of heart and lung
sounds, as the two clinically remarkable components in chest
records, and noises from other internal and external sources.
To date, most studies have used typical band-pass filtering to
separate these components. However, the selected frequency
bands have been inconsistent in different studies, complicat-
ing the use of fixed band-pass filtering and the choice of
proper cut-off frequencies. Tables 1 and 2 summarize some
of the frequency bands used in previous studies, demon-
strating their noticeable disagreement. It can be even more
challenging for neonatal chest sounds, where the frequency
components of lung sounds are affected by the gestational
age at birth, lung fluid, and differences in lung, airway and
chest wall size and characteristics [2], [3], [12].

One of the potential solutions for separating the compo-
nents of monophonic records is to use single-channel blind

source separation (SCBSS) methods. These methods usually
involve a decomposition procedure followed by a source
separation algorithm to find the components of interest [35].
SCBSS methods have been widely utilised in the field of
acoustics, including speech recognition [36] andmusic analy-
sis [37]. They have also been used for biomedical audio signal
processing such as fetal-maternal Phonocardiogram (PCG)
separation [38].

The most prevalent heart-lung sound separation algo-
rithms in the literature are based on non-negative matrix
factorization (NMF) [39], empirical mode decomposition
(EMD) [40]–[42], and singular spectral analysis (SSA) [43].
In regard to EMD-based methods, a practical issue is their
reconstruction quality. The intrinsic decomposition in EMD
does not have any implication on reconstruction optimality
and adding optimality constraints requires additional compu-
tational cost, which contradict with the simplicity and intu-
itiveness of EMD [44].

To date, the existing methods in the lung-heart sound lit-
erature do not provide a frequency analysis along with their
signal separation procedure. Also, to the best of our knowl-
edge, the temporal structures of the sound sources– such as
pseudo-periodicity– have not been utilized for the separation
of lung and heart sounds. In addition, most of the existing
methods have been evaluated only on synthetic data instead of
real recordings acquired in real environments. Furthermore,
prior research have focused on extracting one of the sources
(heart or lung sound), or benefit from synchronous ECG
records.While ECGmonitoring is standard in newborn inten-
sive care units (NICUs), it is typically not available in all
clinical settings, especially in the less affluent regions such
as low- and middle-income countries (LMICs).

In this study, SCBSS methods are epitomized and rep-
resented in a unified framework. SCBSS are further inter-
preted as a versatile approach for denoising, filtering and
also extracting the heart and lung sounds from noisy neonatal
chest audio recordings. Overall, the single-channel signal
is decomposed into its frequency sub-bands using a time-
frequency decomposition. Then, a linear combination of the
frequency channels is found by source separation, such that
a measure of decorrelation or independence is maximized.
Therefore, the optimal frequency filters are adjusted partic-
ularly for each case using SCBSS methods. The framework
may be adapted for different applications and conditions
by defining suitable discrimination functions and optimizing
them. In this study, based on the intrinsic features of the
heart and lung sounds, three different separation measures
are examined for extracting the sources, including minimum
correlation, independent temporal structures, and maximum
pseudo-periodicity. However, the methods using different
time-frequency decompositions and independence measures
are applied on the neonatal chest sound. The results are
compared to raw records, fixed band-pass filtered signals, and
several state-of-the-art methods. The results are evaluated in
terms of an automated signal quality measure, heart-rate and
respiratory rate estimation errors, and computational time.
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FIGURE 1. The general concept of SCBSS methods.

The following sections are arranged as follows: in
Section II, the general concept of tuning the frequency filters
for each case and each source is expressed mathematically,
and some of its limitations and considerations are discussed.
Section III provides details of the chest sounds, the data
acquisition procedure, and some possible versions of the
proposed framework and their implementation procedures.
This is followed by the results of the proposed algorithms in
Section IV. Finally, the findings are discussed and concluded
in Section V.

II. BACKGROUND
A. DATA MODEL AND SCBSS PROBLEM
Suppose that x(t) ∈ R is a single-channel raw chest recording
at the time of t , consisting of three major sources of heart
sound xH (t), lung sound xL(t), and other undesired compo-
nents and noise e(t);

x(t) = xH (t) + xL(t) + e(t). (1)

Separating these sources can be considered as a (blind)
source separation problem. However, the solution is feasible
if the problem is determined or over determined. It means
that the number of observation channels (e.g., simultane-
ously recording sensors) should be at least equal to or
more than the sources. This condition is not met when a
single-channel observation exists. Therefore, most SCBSS
techniques involve a decomposition process before solving
the source separation problem.

Generally, SCBSS methods can be expressed within the
framework shown in Fig. 1, where the single channel obser-
vation is first decomposed to an M -channel real or complex
signal y(t) ∈ CM using a suitable time–frequency transforma-
tion, e.g., short-time Fourier transform, wavelet transforms,
Hilbert–Huang transforms, etc. [45]. Therefore, each of the
decomposed signals in y(t) is represented by a convolution of

the observation and the bases:

yj(t) = x(t) ∗ vj(t) (2)

where j = 1, . . . ,M and vj(t) denotes the transform basis in
the jth channel.
Next, source separation methods are applied to separate

the independent components. If we consider uncorrelated-
ness as a weaker measure of independency, we can also
use PCA as well as ICA methods (generally abbreviated as
‘‘CA’’ methods in the sequel) to find the sources. Therefore,
assuming B ∈ CM×M as the matrix of unmixing coefficients,
the sources are obtained as:

s(t) = B y(t) (3)

where s(t) = [s1(t), . . . , sM (t)]T ∈ CM denotes the sources
vector, while its rows are the linear combinations of interest.
Hence,

si(t) = bTi y(t) = bi1y1(t)+ . . .+ biMyM (t), (4)

where B = [b1, . . . , bM ]T and bij indicates the elements
in B. In most applications, one or few of the sources and their
corresponding rows in B are desired.
For some CA methods the components (sources) are natu-

rally sorted according to a measure, such as energy in PCA or
periodicity in πCA. The sorting may help select the desired
components, but commonly it is not useful for general ICA
methods such as JADE or SOBI. Moreover, the sorting can be
unreliable for signals contaminated by harsh non-stationary
noise. Therefore, the sources of interests need to be selected
generally by a component selection procedure, which can be
done empirically or by an automatic algorithm.

The transformed desired sources (denoted by ŷH for heart
sound and ŷL for lung sound) can be estimated by mixing
the selected components. Suppose that A = B† is the mixing
matrix in CA methods, and ŝH and ŝL are the vector of the
desired heart and lung components, with the same size as s
but in which the unselected components are set to zero. So,

ŷH/L(t) = A ŝH/L(t). (5)

Then, the inverse decomposition transform of ŷ can yield the
estimated filtered signals in the original domain, i.e., x̂H (t)
and x̂L(t) for heart and lung sounds, respectively. All the
procedure’s steps are summarized in Algorithm 1.

B. UNCORRELATED AND INDEPENDENT SOURCES
SEPARATION
Principle Component Analysis (PCA) and Independent Com-
ponent Analysis (ICA) are two key techniques to solve source
separation problems. For example, PCA seeks to find max-
imum variance resulting uncorrelated sources. The coeffi-
cients vector bi which satisfies the PCA constraint can be
estimated by the eigen-vector corresponding to the largest
eigenvalues of the observation’s covariance matrix.

However, if being uncorrelated is not a sufficiently strong
constraint for separating the sources, ICA methods are the
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Algorithm 1 SCBSS Framework
REQUIRED: the single-channel signal, the decomposition

transform, the CA method, and the component selection
method

OUTPUT: the filtered signal,
PROCEDURE:
1: decompose the 1-d record to an M -d signal using the

decomposition transform,
2: analyse the decomposed signals using the CA method

and find the independent components,
3: for each of the aimed output (heart and lung sounds):

• using the component selection method, select the
desired components and eliminate the rest,

• reconstruct the decomposed signals by applying the
CA inverse transform on the desired components,

• merge the reconstructed M -d signals back to the
original 1-d domain using the inverse of the decom-
position transform.

alternatives. They estimate the sources with higher degrees
of independence, but at cost of a higher computational cost,
mostly arising from solving a non-linear optimization prob-
lem.Most of the ICAmethods utilize PCA as a pre-whitening
step, and then optimize the ICA contrast function to analyse
signal statistics.

Different contrast functions makes different types of ICA
methods. For example, JADE algorithm uses the contrast of
forth order moments to find the independent sources [46].
Other methods such as AMUSE, πCA and SOBI are satisfied
of the second order statistics by diagonalizing the covari-
ance and time–lag auto-covariance matrices of observa-
tion [47]–[50]. Therefore, they can be more effective than
JADE if the data has temporal structures.

Assume that s(t) is a zero-mean source signal, and
Et {.} denotes expectation over time, by defining the
τ time–lagged covariance of s(t) as

Cs(τ ) = Et {s(t + τ )s(t)}, (6)

then it can be expressed using the observation’s covariance
matrix:

Cs(τ ) = bHCy(τ )b, (7)

where

Cy(τ ) = Et {y(t + τ ) y(t)H }. (8)

All the second-order-statistic source separation methods
attempt to joint-diagonalize the set of covariance matrices
{Cy(τk )} for different time–lag values τk ∈ {τ0(= 0),
τ1, τ2, . . . τK}, and maximize the following general cost
function:

ε(b, τ ) =
K∑
k=0

|bHCy(τk )b|. (9)

Therefore, in PCA Cy(τk ) is diagonalized just for τ0 = 0,
in AMUSE two covariance matrices with k = 0, 1 are
involved, and SOBI utilizes several time–lags i.e., k =
1, 2, 3, . . . ,K , and attempts to approximately joint-
diagonalize their corresponding auto-covariance matrices.

Among the mentioned methods, πCA is the one which by
definition is customized for extracting semi-periodic signals.
Some of the semi-periodic bio-signals like ECG and PCG can
be considered cyclostationary, meaning that their statistical
characteristics are repeated by a period of time like τ . In the
wide-sense definition of a zero mean cyclostationary signal,
the statistics are reduced to the covariance, and it is expected
that

Cs(0) = Cs(λ τ ), λ = 1, 2, . . . (10)

This periodicity as a temporal structure can be a useful
piece of prior information in coordinating the CA methods
to extract the semi-periodic sources. This objective is car-
ried out in πCA by minimizing the following measure of
periodicity [48]:

ε(b, τ ) =
∑

t |s(t + τ )− s(t)|
2∑

t |s(t)|2
. (11)

It can be shown that the above cost function is equivalent to
the following [48]:

ε(b, τ ) = 2
[
1−

bH Cy(τ ) b

bH Cy(0) b

]
. (12)

It is obvious that minimizing this measure can be satisfied
by the cyclostationarity criteria in (10) for λ = 1. However,
this is a Rayleigh–Ritz optimization problem and the value of
b minimizing (11) and (12) is attainable by the eigenvector
corresponding to the largest generalized eigenvalue of the
matrix pair (Cy(τ ),Cy(0)).

C. FREQUENCY FILTERING BY SCBSS
Considering (2) and (4), we can rewrite the ith source as
below:

si(t) = bi1 y1(t)+ . . .+ biM yM (t)

= bi1[v1(t) ∗ x(t)]+ . . .+ biM [vM (t) ∗ x(t)]

= [bi1v1(t)+ . . .+ biMvM (t)] ∗ x(t)

= wi(t) ∗ x(t) (13)

where wi =
∑M

j=1 bijvj(t) is a linear combination of the
decomposition bases. Since the CA methods are linear trans-
formations, if they are applied to time–frequency decom-
posed signals, the outputs are again frequency filtered signals,
but under the constraint of being uncorrelated or (statistically)
independent. In other words, they find the coefficients of the
frequency filters with filtered components being uncorrelated
or independent as much as possible. In the frequency domain,
by Fourier transform of (13), we have

F{si(t)} = [b′i1F{v1(t)} + . . .+ b
′
iMF{vM (t)}] ◦ F{x(t)}

= F{wi(t)} ◦ F{x(t)} (14)
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in which ◦ indicates an element-wise multiplication. So,
it is equivalent to frequency filtering of x(t) using the filter
obtained from a linear combination of the time–frequency
transform bases. In other word, the coefficients calculated
from the CA methods amplify the frequency bins which
discriminate the sources, and attenuate the other correlated
frequency bins.

D. APPROPRIATE DECOMPOSITION TRANSFORMS
For the hereby proposed framework, various choices of
time–frequency expansions are possible. Some of them such
as DiscreteWavelet Transform (DWT) benefit from orthonor-
mal bases, providing no redundant components. However,
some of the DWT specifications should be modified and
matched to the proposed SCBSS framework. Firstly, the
CA methods need the decomposed signals at each scale to
have the same length, which is not valid in the orthonormal
expansions like DWT because of its decimated translation.
It can be addressed using undecimated versions of DWT
like Stationary Wavelet Transform (SWT) [51] or Maximal
Overlap Discrete Wavelet Transform (MODWT) [52].

Although the undecimated translation causes the bases in
the same scale to be redundant and not orthogonal, they
remain mutually orthonormal in different scales. Therefore,
the decomposed signals are supposed to be uncorrelated in
different levels, and no more de-correlation process can be
done by the methods like PCA. For illustration, consider
an orthonormal time–frequency transform followed by PCA.
Regarding the equation (13), the desired linear combina-
tion is estimated by PCA by finding the eigen-vector cor-
responding to the largest eigenvalue of Cy, the covariance
matrix of y(t). However, if orthogonal bases are used in
the time–frequency decomposition, Cy becomes the iden-
tity matrix, i.e., PCA does not add any advantage beyond
the sub-band decomposition readily accomplished by DWT.
However, other CA methods using more potent indepen-
dency constraints like ICA techniques can still discriminate
the sources. Moreover, orthonormal expansion sets involve
dyadic scaling, predefined frequency bands and constant
Q-factor wavelet decomposition. These restrictions lead to
less flexibility in tuning the frequency-domain filtering.
To avoid these constraints and to achieve more degrees of
freedom, one may employ more redundant transformations,
such as the DWT with Biorthonormal bases, Rational Dila-
tion Wavelet Transform (RADWT), or even more redun-
dant expansions such as the Continuous Wavelet Transform
(CWT), which benefits from highly localized time–frequency
filters. Even more redundancy (viz. degrees of freedom) can
be achieved by CWT with complex coefficients, which com-
prises phase information as well as amplitude. Note that these
excess redundancies will be subsequently reduced by the
CA methods, and do not imply any restriction but computa-
tional cost. The advantages of utilizing redundant transforms
have been studied in the context of heart and lung sound
processing [53]–[56].

III. METHODS
A. DATA ACQUISITION
In this work, the proposed methods were applied to
single-channel chest sounds recorded from two groups of
pre-term and full-term infants. To record the sounds, the
digital stethoscope (Clinicloud Stethoscope, Clinicloud Ltd
Pty, Melbourne, Australia) was placed on the right anterior
chest of the infant. Lung and heart sounds were then recorded
for 60 s. The recordings were saved by Voice Recorder &
Audio Editor [57], a commercially available smartphone
software, in MP3 format with 16 kHz or 44 kHz sam-
pling rates. The study was conducted at Monash Newborn,
Monash Children Hospital, a tertiary-level neonatal unit in
Melbourne, Australia, and was approved by the Monash
Health Human Research Ethics Committee (HREA/18/
MonH/471). Recordings were made between 24 and 48 hours
after birth, to avoid potential interference from lung fluid
clearance in the first 24 hours. More information about the
data is available at [12], [58].

Some of the recordings were excluded manually because
of significant artifacts such as crying, recorder saturation,
stethoscope slipping, and some loud environment noises,
making the lung and heart sounds impossible to recover.
Since irregular breathing periods existed in most of the
studied newborns, specially for the preterm cases, there are
long non-breathing segments in the recordings. Therefore,
10 s segments containing both the heart and lung sounds
were chosen manually by an expert. Totally, 91 segments
are considered for further analysis, while 28 of them were
accompanied by NICU Heart Rate (HR) and Respiration
Rate (RR) information. In addition, to avoid unnecessary high
computational cost in future processes, the recordings were
down-sampled to 4 kHz.

B. ALGORITHM DEVELOPMENT AND IMPLEMENTATION
Different choices for the decomposition transform and the
CA method in the proposed framework of Fig. 1 provides a
variety of SCBSS algorithms. In the present study, SWT and
CWT in combination with PCA, SOBI and πCA methods
provide four algorithms to separate lung and heart sounds
from single channel chest records. Their configurations and
implementation details are described in the following.1

1) SWT–PCA
As the first and simplest configuration, we adapted the
Biorthogonal basis function with one and three van-
ishing moments for decomposition and reconstruction
wavelets [59], [60]. Moreover, in order to keep the length
of the signals unchanged, an undecimated version of
DWT known as Stationary Wavelet Transform (SWT) is
utilised [51]. Considering the sampling frequency of the data
(4 kHz), a 6-level SWT is used to decompose the signal
into dyadic subbands shown in Fig. 2. The six detail levels

1The implemented codes of the methods are available at:
https://bitbucket.org/fmarzbanrad/blind-filtering-framework

VOLUME 10, 2022 50719



D. Fattahi et al.: Blind Filtering Framework for Noisy Neonatal Chest Sounds

are given to PCA and the heart and lung sounds are even-
tually selected among the components. The final desired
heart and lung sounds can be achieved according to Step 3
in Algorithm 1.

2) CWT–PCA
Discrete Time Continuous Wavelet Transform (DT-CWT) is
a redundant time–frequency expansion utilized as the decom-
position transform in our framework. Using one sample trans-
lation of the bases leads the decomposed signals to have
the same length as the original signal. On the other hand,
since the bases are redundant in scales, we can skip some
of the scales considering a trade-off between the efficient
redundancy and the computational cost. In the present study,
we use Analytical Morlet (Gabor) wavelets with 17 scales
(four voices per octave) covering 50–1000Hz. Then like
the previous algorithm, we can expect that PCA ranks the
possible sources corresponding to heart sound, lung sound
and noise. Therefore, according to our visual inspection,
the best components corresponding to the heart and lung
sources are selected, and the desired sources are obtained
after reconstructing and converting the coefficients into the
original domain.

3) CWT–SOBI
SOBI utilizes plenty of time–lags and attempts to
joint-diagonalize the corresponding covariance matrices. The
covariance matrix of the time–lag τk is calculated as:

C̃y(τk ) = [
∑
t

y(t + τk )y(t)H ]/L, k = 1, . . . ,K . (15)

In combination with CWT, SOBI is supposed to extract
the sources by finding linear combinations of the sub-bands
which maximize their temporal dependency. According to a
regular use of SOBI, the set of time–lags τ = {τ1, . . . , τK }

might be considered randomly or uniformly just to sweep
the time interval containing the expected temporal structures.
Instead, in the present study, we propose a more proper
method to set the time–lags based on the available prior
information of heart sounds.

First of all, the space between the time–lags can be inferred
from the expected higher bound of heart sounds frequency
components, denoted by fh. Defining δτ = τk − τk−1,
we have δτ = 1

2fh
. Although the maximum frequency is

reported about 300Hz for neonates, a slightly higher value
can be chosen to ensure that all the frequency components are
covered [14]. Therefore, taking fh ' 330Hz, the time–lags
are chosen uniformly with 1.5ms spacing.

In addition, it is expected that the autocorrelation of cyclo-
stationary signals have a higher envelope around the shifts
equal to the recurring period of the heart sound. Therefore,
if the average period of heart sound is T , the shifts around λT
for λ = 0, 1, 2, . . . are appropriate candidates to be used
as SOBI’s time–lags. Mathematically, let τpλ be the time
around λT at which the autocoralation envelope has the local

maximum, i.e.,

τpλ = argmax
τ
{|Rx(τ )+H{Rx(τ )}|}

s.t. |τ − λT | ≤ r, λ = 0, 1, . . . , 3, (16)

where Rx is the autocorrelation of x, H{.} denotes Hilbert
transformation, and r is the neighbourhood radius around the
λT in which we search for the local maximum. So, from a
wide set of available τk , the proper time–lags τk ′ can be found
as

τk ′ = {τk | |τpλ − τk | ≤ 1τ }, (17)

where 1τ is named maximum effective lag and can be
calculated as 1τ = 1

2fl
, where fl is the expected lower

frequency bound of the desired signal, here the heart
sound. By assuming fl = 50Hz according to the literature
in [19]–[22], the proper time–lags are supposed to be around
the peaks of the autocorrelation envelope with at most
1τ = 10ms difference.
Number of detectable peaks in envelope of auto-correlation

is affected by quality and regularity of heart sound. In the
present study, the time–lags are set to cover three heart beats,
which means 3 = 3 in (16).
The CWT configuration is the same as the previous algo-

rithm. After applying the SOBI, the suitable components
corresponding to the heart and lung sounds are visually
selected from the delivered components, and the rest is per-
formed according to the step 3 of the general framework
in Algorithm 1.

4) CWT–πCA
As mentioned before, πCA unlike SOBI uses a specific
time–lag obtained from prior information [48]. In the case of
heart sound filtering, it can be related to an averaged or syn-
chronized heart beat captured from an auxiliary signal, like
ECG or HRV. However, this reference time–lag is achieved
in this study from the chest sound itself without using extra
hardware and recording auxiliary signal. The heart sound
is the major component in the lower frequencies, and the
other components are almost negligible compared with it.
So, the signals decomposed by one of the CWT scales cor-
responding to low frequencies (75–90Hz) is selected, and its
envelope is calculated. Since the Analytical Morlet provides
complex coefficients, the envelope can be yielded easily by
their absolute values. Then, a conventional peak detection
algorithm can find S1 peaks, and the S1–S1 intervals are
used as the reference time–lag for πCA. The peak detection
algorithm searches for each peak in the expected interval
of [0.7 T , 1.3 T ] after the previous peak, while T is the
average heart sound period.

Because of variability in heart rate, the S1-S1 intervals
are not equal, and it can decrease the accuracy of calculat-
ingCy(τ ). Therefore, in order to make the beats more aligned,
we use a simple linear phase warping and map each beat
to (−π, π). So, the covariance matrices in (12) are calculated
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FIGURE 2. The frequency sub-bands corresponding to (a) Stationary
Wavelet Transform with 6 levels decomposition, (b) Continuous Wavelet
Transform with 4 voices per octave.

in the phase domain as:

C̃y(τ ) = (
∑
t

y(t + τt ) y(t)H )/L (18)

in which L is the total number of samples, and

τt = min{τ |φ(t + τ ) = φ(t), τ > 0} (19)

where φ(t) is the cardiac phase signal [48]. To ensure that
the eigenvalues are real, we can make the covariance matrix
symmetric by

C̃y(τ ) = (C̃y(τ )+ C̃y(τ )H )/2. (20)

By descending sort of the generalized eigenvalues of the
pencil (C̃y(τ ), C̃y(0)) the sources are ranked from high to low
periodicity. Since the heart sound is the most periodic source,
we can expect to see it among the first components, and the
lung sound is found in other components. However, because
of some occasional non-stationary noises in the recorded data,
this order may be slightly inconsistent.

C. COMPONENT SELECTION
The component selection can be carried out by classifying
the components into three group of heart sound, lung sound
or noise. The following features are used as inputs:
• peak frequency of power spectral density,
• band power ratio of 50–200Hz (as the heart sound dom-
inant frequency band) to 50–2000Hz,

• band power ratio of 200–400Hz (as the heart and lung
sounds mixture frequency band) to 50–2000Hz,

• band power ratio of 400–1000Hz (as the lung sound
dominant frequency band) to 50–2000Hz,

• band power ratio of 1000–1200Hz (as the lung sound
and noise mixture frequency band) to 50–2000Hz,

• band power ratio of 1200–2000Hz (as the noise domi-
nant frequency band) to 50–2000Hz,

• standard deviation of S1-S1 intervals, as a periodicity
related feature. The S1 detection algorithm is same as
the one used in CWT-πCA algorithm.

• ratio of the second peak to the first peak of the enve-
lope of auto-correlation absolute values. As a period-
icity related feature, this value falls between 0 (least
periodicity) and 1 (most periodicity). The procedure of
finding first and second peaks is similar to (16), while
λ = 0, 1.

15 chest records were utilised here to optimize the classifier,
and then excluded from the main dataset in the subsequent
performance evaluation. So, 840 components were produced
using the 4 proposed algorithms and labeled via listening
and visual assessing by an expert, to be used as the training
dataset. Five popular classifiers including K-Nearest Neigh-
bours (KNN), Linear Discriminant Analysis (LDA), Support
Vector Machine (SVM), Naive Bayesian, and multi-class
Binary Decision Tree (BDT) were applied and their param-
eters were optimized in a 10-fold cross validation. Then,
their classification accuracy rates were obtained through
a 10-by-10 cross validation, and KNN was chosen according
to its better result (see Table 3).

The component selector may occasionally label none of
the components as one or two of the desired sources. In the
present study, it happened for heart sound extraction of 3.4%
of the recordings, but none of the lung sound extractions.
However, in the case of no-labeling, in order to avoid empty
outputs, the components with the power peak closest to
50Hz and 400Hz are returned respectively as heart and lung
sounds.

D. PERFORMANCE EVALUATION
1) COMPARED METHODS
To assess the improvement of heart and lung sound
quality by the proposed methods, they are compared to
the raw sounds and the fixed band-pass filtered signals.
The band-pass filters are 10th order Butterworth passing
100–1000Hz for the lung sounds and 50–250Hz for the
heart sounds. The cutoffs are corresponding to the domi-
nant frequency bands of each signal based on the previous
studies listed in Tables 1 and 2. In addition, seven state-of-
the-art heart-lung separation methods are examined and com-
pared to the proposed methods including: Singular Spectrum
Analysis (SSA) [43], Empirical Mode Decomposition
(EMD) [40], Ensemble Empirical Mode Decomposition
(EEMD) [41], Complete Ensemble Empirical Mode Decom-
position (CEEMD) [42], Non-negative Matrix Factorization
Clustering with Kullback-Leibler (KL) divergence cost func-
tion (NMFC-KL), Non-negative Matrix Factorization Clus-
tering with L-2 cost function (NMFC-L2), and Non-negative
Matrix Factorization Clustering with Sparse cost function
(NMFC-Sparse) [39], [61], [62]. The parameters and set-
tings of these methods are chosen based on the suggested
values in the corresponding references. The utilised toolboxes
and codes can be found in [62]–[66].
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TABLE 3. Accuracy rate of component selectors, shown by mean ± standard deviation of accuracy percentage in 10-by-10 cross validation.

2) SIGNAL QUALITY ASSESSMENT
The measure of quality utilised here for both the heart and
lung sounds assessment is based on our previous work in [67].
Briefly, a linear regression model has been tuned in order
to map a collection of audio features into a 5-point scale
measuring signal quality for heart and lung sounds (from 1 for
the lowest to 5 for the highest quality). The quality scores
are obtained after annotation of 176 chest sound recordings
(different from ones involved in the present study) by
7 experts and used as the ground truth. Different vari-
eties of features are engaged as the predictors, including:
several envelope-based and wavelet-based features, statis-
tical characteristics of the signals like variance and kurto-
sis, mel-frequency cepstrum, linear predictive coding, and
line spectral frequencies coefficients, power ratios of dif-
ferent frequency ranges, dominant frequencies, properties
of different fractal dimensions and entropy measures, num-
ber of detectable heart sounds (S1 and S2) and breathing
periods, and length of periods without detectable heart and
lung sounds. The best feature set is selected using Mini-
mumRedundancyMaximumRelevance (MRMR) algorithm.
Then, the regression model is trained by a set of best features,
while different cost functions (SVM and least-squares) and
different regularization methods (lasso and rigid) are exam-
ined to obtain the best test results based on mean squared
error. More description of the features and the regression can
be found in [67].

3) HR AND RR DETECTION
Estimating the vital signs like HR and RR is expected to
be more reliable and accurate in well-filtered chest sounds.
Therefore, two HR and BR estimation algorithms are applied
on the filtered heart and lung sounds respectively, in addition
to the raw signals. The results are then compared to the refer-
ence values recorded simultaneously via an NICU machine.
The HR estimation algorithm introduced by Springer et. al.,
is initialized with HR determined from peak detection of
envelope, and then uses it for heart segmentation to obtain
overall heart rate estimate [68]. Breathing rate is determined
from peak detection of 300-450Hz power envelope. More
details of calculated heart and breathing rate are described
in [58]. Their Root Mean Square Error (RMSE) compared to
the NICU refernce values are shown in Table 5.

4) COMPUTATIONAL TIME
The algorithms are implemented in MATLAB 2020b and
Microsoft Windows 10 × 64, on a hardware with Intel R©

Core
TM

i5-8250U CPU @ 1.60GHz, 1800MHz, 4 Cores,
8 logical processors, and 8.00GB of installed physical mem-
ory (RAM). The required time of extracting both heart and

lung sounds from 10 s recordings are calculated for the pro-
posed and benchmark methods, and their mean and standard
deviation are reported in Table 4. For the KNN component
selector utilised in the proposed methods, mean and stan-
dard deviation of the running time was 66±11ms, which is
included in the table values.

IV. RESULTS AND DISCUSSION
Fig. 3 shows a 10 s sample chest record which are filtered by
4 different methods proposed in the present study and also
band-pass filtering with fixed cut-offs. First of all, we can see
that the heart and lung sounds obtained by the fixed band-pass
filters are not filtered well, and both of them are contaminated
with other undesired components. Clearly, the residual heart
sound exists in the filtered lung sound, and vice versa. It to
some extent happened for the heart and lung sounds filtered
by SWT–PCA, but the amount of undesired components are
less than fixed band-pass filtering. However, these residuals
are pretty much reduced in the sources estimated by CWT–
PCA, CWT–πCA and CWT–SOBI.

The quality of the sources extracted by the proposed and
compared methods is assessed by the methods described
in III-D. Fig. 4 shows how much improvement is caused by
each method compared to the raw signals for heart and lung
sounds. Obviously, all the proposed methods have provided
more quality improvement for the heart and lung sounds
compared to the simple band-pass filtering. The performance
of CWT–PCA is better than SWT–PCA in lung sound extrac-
tion, that may imply the advantage of using redundant bases
instead of dyadic ones in high frequencies. The results of
CWT–πCA were expected to be better than CWT–PCA, but
they are not; πCA finds the proper components by diag-
onalizing just one delayed auto-covariance matrix, and its
result is highly sensitive to its time–lag value. Miss-detection
of S1 in poor quality sounds or presence of significant
non-stationary noises can drastically affect estimating accu-
rate values for period of heart sounds and consequently the
time–lag. This drawback would likely be addressed if an
external heart beat detection source were used. Using auxil-
iary signals like ECG along with chest sound could be helpful
in this regard. Lately, simultaneous ECG-PCG recording and
developing related devices, which have recently become an
interesting trend [69], [70]. However, CWT–SOBI are more
robust against the mentioned noises, because of using plenty
time–lags and joint diagonalization of more than two auto-
covariance matrices. Therefore, it can be seen that the results
of CWT–SOBI for heart sound quality improvements is much
better than others.

Among the other compared algorithms, SSA outperforms
the EMD-based and NMF-based methods. Its heart sound
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FIGURE 3. The sources extracted by different methods from the same 5 s sample of chest sound; (a) filtered heart sounds, the foregrounds in red
indicate the annotated S1 and S2 sounds, (b) filtered lung sounds, the foreground in blue is the annotated exhale intervals. From top to bottom: Raw
signal, SWT–PCA, CWT–PCA, CWT–πCA, CWT–SOBI.

TABLE 4. Computational time of extracting heart and lung sounds from a 10 s chest record using different methods. The component selection time is
included for the proposed methods.

SQI is almost like CWT-SOBI, but its lung sound SQI is
not competitive with the proposed methods. EMD-based and
NMF-based methods are in the next ranks for both heart and
lung sound SQIs. It is also observed that there are occasional
degradations in all the proposed and benchmark methods.
This can be explained by considering that: A) the utilized
SQI estimation method is not 100% accurate and occasional
incorrect estimations would be expected. But on average it
is an appropriate metric for SQI calculation; B) None of
the proposed and benchmark algorithms are perfect in their
performance, especially for the case of low quality and noisy
chest sound of newborns.

Table 5 shows the effect of different filtering methods
on accuracy of HR and RR estimation. As we can see,
CWT–πCA, CWT–PCA, and CWT–SOBI generally caused
lower RMSE for HR and BR estimation than the benchmark

methods, fixed band-pass filtering, and raw signals. However,
no improvements in RR and HR is demonstrated by SWT–
PCA. It might be caused by its dyadic sub-bands which
leads less flexibility of filter adjustment specially in low
frequencies.

The computational time of the proposed methods for
a heart-lung sound extraction from a 10 s record are
demonstrated in Table 4. CWT–SOBI has significantly
higher needed time compared to the other proposed
methods, because of its joint diagonalization of plenty
covariance matrices. Even so, it seems feasible to use
the algorithms in commercial, portable and affordable
medical devices. Among the seven benchmark methods,
SSA and NMFC-L2 also have relatively low compu-
tational time, while the worst time-consuming method
is CEEMD.
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FIGURE 4. Signal quality index (SQI) improvement of heart and lung sounds by employing different algorithms vs the raw records.

FIGURE 5. The filters optimized by the proposed methods, depicted in logarithmic scales; blue for lung sound filtering, and red for heart sound filtering.
The overlaid transparent lines represent the filters for different cases, and the bold one represents their mean value.

TABLE 5. RMSE of the estimated HR (beats per 10 s) and RR (count per 10 s) of the extracted heart and lung sounds, and raw signals, compared to the
NICU reference values.

Fig. 5 depicts the frequency filters adjusted for extracting
heart and lung sounds using the four implemented methods.
The filters of all the records are overlaid on each other in
order to show their variation caused by the adaptability of
the methods. The SWT–PCA filters has the least variation
because of less frequency localization of SWT comparedwith
CWT. TheπCAfilters seems unstable and tumultuous, which
as mentioned before, might be caused by the inappropriate
setting of the time–lag.

V. CONCLUSION
In auscultation of chest recordings, usually either the heart
or lung sounds are the intended acoustic signals for examina-
tion. However, the recording inevitably is a mixture of both
components and also different environmental and acquisition
noises, causing lower agreement and accuracy in medical
diagnosis. Therefore, filtering of the raw signals is a crucial
step before any clinical auscultation. We have found it par-
ticularly challenging for newborns’ chest auscultation, due to

the closeness of the heart and the lung, noise and weakness
of the sounds of interest.

Despite the common use of frequency filtering, charac-
teristics of an ‘‘optimal’’ frequency filter varies among the
cases. Specifically, defining suitable cut-off frequencies has
not been straight forward. We addressed this challenge by
customizing a SCBSS framework using the combination
of different CA methods and time-frequency expansions to
design ad-hoc filters, per case. Its main advantage is that it
can find the adaptable filters for each case in a non-parameter
procedure. In addition, using the proposed framework both
heart and lung sounds can be extracted simultaneously. In two
of the methods suggested within the framework, periodicity
and temporal structure of the heart sound is used as the
contrast function in tuning the frequency filters. Specifically,
a novel method is proposed to set the parameters of SOBI
(specifically the proper time-lags of its lagged covariance
matrices) according to known characteristics of heart sound
such as its lower and higher frequency bounds. The results of
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implementation using neonatal chest sounds showed that the
proposed methods can improve the quality of both heart and
lung sounds, compared to seven state-of-the-art heart-lung
sound separation algorithms, fixed bandpass filtering and the
raw signals.

The proposed methods can potentially assists healthcare
providers with a more reliable auscultation using an inex-
pensive DS, applicable also in resource-limited settings. It is
more significant in the potential application in tele-health,
when the sounds are recorded by non-experts, for remote
monitoring and diagnosis.

The present study will be more comprehensive and
enriched by setting out the following point for further study;
Involving other decomposition and CAmethods may provide
higher source extraction performance. Assaying the methods
on other older age groups, including children and adults, and
also the cases with pathological heart and lung sounds, poten-
tially from the same group of subjects, could be investigated
in future studies.
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