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ABSTRACT This study investigates a multi-server queueing-inventory system in a random environment.
The system has an unlimited waiting space and an inventory capacity of S units. The customer arrives at the
system according to the Markovian arrival process. Whenever all the servers are busy, an arriving customer
either goes to an unlimited waiting space or leaves the system. And if there is a free server with positive
inventory, then the arriving customer gets service immediately. Inventories are filled under the instantaneous
replenishment policy. We consider that the service time follows a phase-type distribution, and we assess the
joint probability distribution of the inventory level and the number of customers in the steady-state case.
On top of that, we extract the sojourn time distributions of arbitrary customers using the Laplace-Stieltjes
transform. Finally, a few numerical examples are provided to illustrate our mathematical model.

INDEX TERMS Infinite queue, Markovian arrival process, multi-server, phase-type distribution, random
environment.

I. INTRODUCTION
The queueing-inventory model’s applications are transporta-
tion systems, grocery shops, computer network systems, etc.
Many researchers have worked in the queueing-inventory
system for the past few decades. Sigman and Levi [18] and
Melikov and Molchanov [12] put forward a discourse on
the queueing-inventory system. Nowadays, the Markovian
arrival process (MAP) is one of the most challenging models
in the queueing-inventory system, which plays a significant
part in the queueing-inventory system.

Neuts [14] was inaugurated as the MAP, many input
flows are considered in the MAP class, such as station-
ary Poisson (M), Erlangian (Ek ), hyper-Markovian (HM),
phase-type (PH), and theMarkovModulated Poisson Process
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(MMPP). Generally speaking, the MAP is correlated, so it’s
ideal for modelling correlated and burst traffic in modern
telecommunication networks. Day by day, the number of
researchers attracted to MAP in the queueing-inventory sys-
tem is increasing.

Chakravarthy [2] explored a single server queueing model
with the customers arriving with MAP compliant with the
FCFS rule. The customers may request an optional sec-
ondary service from the same server where they have
received service immediately or wait until a predeter-
mined threshold is reached by the number of customers
waiting for such services. Krishnamoorthy et al. [10] exam-
ined a single server queue with several services. The
system provides multiple services for each customer, one
of which is required and the other undesired. The cus-
tomers arrive under MAP, and in both undesired and required
phases, the service time has a PH distribution. Finally,
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they analyse the stochastic decomposition of the system
state. Some literatures for MAP are Suganya et al. [21], Nair
and Jose [13], Punalal and Babu [15], Seokjun Lee et al.
[16], and Valentina Klimenok et al. [20]. Chakravarthy and
Khizer Hayat [1] addressed the two vendors in the
queueing-inventory model and who’s accountable for inven-
tory replenishment with the (s, S) policy. Also, they consider
the demands under MAP, lead time depending on the vendor,
and service time according to PH distribution.

Random environment: The present state of the Markovian
random process with a finite state space determines the sys-
tem’s behaviour. The procedure of this process under a fixed
state is known as a ‘‘random environment.’’

The random environment is a very prevalent phe-
nomenon that occurs in business administration. Chesoong
Kim et al. [7] considered a multi-server retrial queueing
model with the BatchMarkovian Arrival Process, and service
time follows the PH-type. The system has a random environ-
ment. Finally, they calculated the ergodicity condition and
stable algorithms.

Chesoong Kim et al. [6] and [8] are a few references to
literature on systems that operate in a random environ-
ment. Jeganathan et al. [22], Alexander Dudin et al. [4], and
Chesoong Kim et al. [9] are some multi-server pieces of
literature.

Jeganathan [5] considered a single server retrial inven-
tory model with server interruptions, multiple vacations,
and demands from a finite population of N sources. Stock
products have exponential lifetimes, and the ordering pol-
icy (0, S) is used. The total expected cost rate, as well as
a variety of system performance measures, are determined.
Dhanya Shajin et al. [17] considered an M/M/1 queue,
in which the inventory has a common lifetime and is expo-
nentially distributed. When the common lifetime is reached
or the inventory level drops to zero for the first time in a
cycle, whichever one first occurs a replenishment order is
placed to restore the inventory level to S (zero lead time).
Customers arrive at a Poisson process with an exponentially
distributed service time. Before the realization of a common
lifetime, reservations and cancellations of sold items were
allowed, and they derived long-run performance measures
and a revenue function.

The impulsion of our work comes from those results in
the above survey. To the best of our knowledge, there is
no research into demands from a random environment with
a queueing-inventory model. In this article, we consider
the arrival process as MAP and the service process as a
phase-type distribution under the fixed state of a random
environment. Whenever the states of a random environment
are changed, the parameters of the arrival and service flow are
changed as well. Furthermore, to avoid losing customers due
to a lack of inventory, we use an instantaneous replenishment
policy.

The perspective of this work is as follows: The model
representation of the queueing - inventory model with the
random environment, multi-server, and MAP is portrayed in

section II. Section III portrayed the analysis of the model.
The joint probability distribution of the number of cus-
tomers in the unlimited waiting hall and the stock stage is
studied in section IV. The stability condition is shown in
subsection IV-A and we calculate the steady-state probability
vector in section IV-B. We acquired some important sys-
tem peculiarities in section V, and we constructed the cost
function in subsection V-A. We describe the distribution of
sojourn time for an arbitrary customer in section VI. Some
numerical examples are provided in section VII and, finally,
we give a conclusion in section VIII.

A. NOTATIONS AND ABBREVIATIONS
• [A]ij : The element of submatrix at (i, j) the position of A
• 0 : Zero matrix
• e : A column vector of 1’s appropriate dimension
• A⊗ B : Kronecker product of matrices A and B
• A⊕ B : Kronecker sum of matrices A and B
• MAP : Markovian Arrival Process
• PH : Phase-type
• LST : Laplace-Stieltjes Transform
• FCFS : First Come First Serve

• δij =

{
1, j = i
0 otherwise.

• δ̄ij = 1− δij

II. MODEL FORMULATION
This article deals with a multi-server (N ) queueing-inventory
system. The system has a maximum inventory capacity of
S units and the demands appear from a random environ-
ment with R various modes, all of which need a single unit
of the item. The behaviour of the system depends on the
state of the random environment. The random environment
is applied by the stochastic process {rt , t ≥ 0}, which is
an irreducible continuous-time Markov chain with the state
space {1, 2, . . . ,R} and the infinitesimal generator H of the
random environment. The customers arrive to the system
follows the MAP and it is represented by (D(r)

0 ,D
(r)
1 ), here

D(r)
0 and D(r)

1 are of size (M1 × M1) under the fixed state of
random environment r(∈ {1, 2, . . . ,R}). The behaviour of the
MAP under the fixed state r is completely characterized by
the above matrices. The underlying Markov process X4(t) of
the MAP has the generator, D(r)

= (D(r)
0 + D

(r)
1 ). Here,

[D(r)
0 ]ij =

{
λ
(r)
i j = i

λ
(r)
i p(r)ij otherwise

and [D(r)
1 ]ij = λ

(r)
i q(r)ij .

where,

• λ
(r)
i = The mean rate of the underlying Markov chain

stays in the state i ∈ 1, 2, . . . ,M1 for an exponential
interval of time.

• p(r)ij = The probability of the underlying Markov chain
changes state transition from state i to state j without
generation of customers (i, j ∈ 1, 2, . . . ,M1).
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• q(r)ij = The probability of the underlying Markov chain
state transition from state i to state j (i, j ∈ 1, 2, . . . ,M1)
happens a customer arrives.

• [D(r)
0 ]ii = Determined in such a way that (D(r)

0 +

D(r)
1 )e = 0.

The stationary row vector η(r) of lengthM1 is unique solution
to the system η(r)D(r)

= 0 and η(r)e = 1 under the fixed state
r . The average arrival rate λ(r) = η(r)D(r)

1 e under fixed state r .
During a customer’s arrival epoch, if there is a free server

with positive inventory, the arriving customer gets service
immediately. On the other hand, if all servers are busy, the
system give an offer to the arriving customer. The customer
may go to unlimited waiting space with probability p(r) or exit
the system with probability q(r)(=1 − p(r)) under fixed state
r . The stock list is stuffing according to instantaneous replen-
ishment principle. The squared coefficient of variation c(r)var of
inter-arrival times of customers under the fixed state r is given
as

c(r)var = 2λ(r)η(r)(−D(r)
0 )−1e− 1 (1)

The correlation coefficient c(r)cor of inter-arrival times of cus-
tomers under the fixed state r is given (see Chakravarthy [3]),
as

c(r)cor =
λ(r)η(r)(−D(r)

0 )−1D(r)
1 (−D(r)

0 )−1e− 1

2λ(r)η(r)(−D(r)
0 )−1e− 1

(2)

The service time of a customer has PH distribution with an
irreducible representation (α(r),T (r)) under the fixed state r
of order M2. This service time can be interpreted as the time
until the underlying Markov process {X5(t), t ≥ 0} with
finite state space 1, 2, . . . ,M2,M2 + 1 reaches the single
absorbing state M2 + 1, conditioned on the fact that the
initial state of this process is selected from among the states
1, 2, . . . ,M2 according to initial probability vector α(r) =
(α(r)1 , α

(r)
2 , . . . , α

(r)
M2

). The transition rates into the absorbing

state are given as T(r)
0 = −T

(r)e. The mean service time of
customer calculated as µ(r)

= α(r)(−T (r))−1e.
In this process, we can track the number of servers in each

phase and it is denoted by Kn =
(
n+M2 − 1
M2 − 1

)
, where n(∈

0, 1, 2, . . . ,N ) identical phase type servers and M2 phases
becomes eminently tractable.

The squared coefficient of variation of service times is
given by

c(r)service,var =
2α(r)(−T (r))−2e
(α(r)(−T (r))−1e)2

− 1 (3)

III. ANALYSIS
In this section, we construct the transition rate matrix on the
queueing-inventory model. The Markov process of the form
ϑt = {(X1(t),X2(t),X3(t),X4(t),X5(t)), t ≥ 0}, with state

space E = (n, r, i,m1, x
(1)
5 , x(2)5 , . . . , x(M2)

5 ), where

n = 0, 1, 2, . . . ; r = 1, . . . ,R; i = 1, . . . , S;

m1 = 1, 2, . . .M1, x(m2)
5 = 0, 1, . . . ,min{n,N }

m2 = 1, 2, . . . ,M2.

Here,

X1(t)− The number of customers in the system at time t.

X2(t)− The state of random environment at time t.

X3(t)− The number of items in the inventory at time t.

X4(t)− Phase of the customers arrival process at time t.

X5(t) = {X
(1)
5 (t),X (2)

5 (t), . . . ,X (M2)
5 (t)}, t ≥ 0,

X (m2)
5 (t)− The number of servers at phase m2 of service,

which lies between 0 and min{n,N } at time t.

where,
M2∑
m2=1

X (m2)
5 (t) = min{n,N }.

Theorem 1: The infinitesimal generator U has the follow-
ing block-tridiagonal structure U , as shown at the bottom of
the next page. Nonzero blocks An1n2 , n1, n2 ≥ 0, are of the
following form:
• An(n+1) = diag{(Bn)r , r = 1, 2, . . . ,R}, n =

0, 1, 2, . . . ,
For n = 0, 1, . . . ,N − 1; r = 1, 2, . . . ,R

(Bn)r = IS ⊗ (D(r)
1 ⊗ Pn(α

(r)))

For n = N ,N + 1, . . . ; r = 1, 2, . . . ,R.

(Bn)r = IS ⊗ (p(r)D(r)
1 ⊗ IKN ).

• An(n−1) = diag{(Cn)r , r = 1, 2, . . . ,R}, n =

1, 2, 3, . . . ,
For n = 1, 2, . . . ,N ; r = 1, 2, . . . ,R

(Cn)r = G⊗ (IM1 ⊗ LN−n(N ,Q
(r))),

Q(r)
=

(
0 0
T (r)
0 T (r)

)
, r = 1, 2, . . . ,R

For n = N + 1,N + 2, . . . ; r = 1, 2, . . . ,R

(Cn)r = G⊗ IM1 ⊗ L0(N ,Q
(r))PN−1(α(r)),

[G]ij =


1, j = i− 1, i = 2, . . . , S
1, j = S, i = 1
0, otherwise

• Ann = diag{IS ⊗ F2, r = 1, 2, . . . ,R} + 1n + H ⊗
Il2 , n = 0, 1, 2, . . . ,N − 1,where

F2 = D(r)
0 ⊕ An(N ,T

(r)),

1n = −diag{Il1 ⊗ diag{An(N ,T (r))e

+LN−n(N ,Q(r))e}, r = 1, 2, . . . ,R},

n = 1, 2, . . . ,N , 10 = 0.

Ann = diag{IS ⊗ F3, r = 1, 2, . . . ,R} +1N + H ⊗ Il3 ,
n = N ,N + 1,N + 2, . . . , where

F3 = (D(r)
0 + q

(r)D(r)
1 )⊕ AN (N ,T (r)),

l1 = SM1, l2 = SM1Kn, l3 = SM1KN

VOLUME 10, 2022 47373



N. Anbazhagan et al.: MAP/PH/N/∞ Queueing-Inventory System With Demands From Random Environment

Proof:The demonstration is carried out by examining all
potential transitions of the Markov process {ϑt , t ≥ 0} in an
infinitely small time period and putting these rates into block
matrix form.

Here,
• Pn(α(r)) - Transition probabilities of the process
{X5(t), t ≥ 0}, at the epoch of starting the new service
given that n servers are busy at this epoch under fixed
state r .

• LN−n(N ,Q(r)) - Transitions of this process at the service
completion epoch given that n servers are busy at this
epoch under fixed state r .

• An(N ,T (r)) - Transitions of this process, which do not
lead to the service completion given that n servers are
busy under fixed state r .

• 1n - The total intensity of leaving the corresponding
states of this process, given that n servers are busy under
fixed state r .

where X5(t) = {X
(1)
5 (t),X (2)

5 (t), . . . ,X (M2)
5 (t))}, t ≥ 0.

The matrices Pn(α(r)),LN−n(N ,Q(r)),An(N ,T (r)) are
introduced in Ramasami [24] and Ramaswami and
Lucantoni [11].

The output rate from the corresponding state is specified by
the absolute value of each diagonal element of Ann which is
negative. The rates of the diagonal transition are represented
by the diagonal elements of the matrices.
• For n = 0

−diag{IS ⊗ D
(r)
0 ⊕ An(N ,T

(r)), r = 1, 2, . . . ,R}

−H ⊗ Il2 .

• For n = 1, 2, . . . ,N − 1

−diag{IS ⊗ D
(r)
0 ⊕ An(N ,T

(r)), r = 1, 2, . . . ,R}

+ diag{Il1 ⊗ diag{An(N ,T
(r))e+ LN−n(N ,Q(r))e},

r = 1, 2, . . . ,R} − H ⊗ Il2

• n = N ,N + 1,N + 2, . . .

−diag{IS ⊗ (D(r)
0 + q

(r)D(r)
1 )⊕ AN (N ,T (r)),

r = 1, 2, . . . ,R} + diag{Il1 ⊗ diag{An(N ,T (r))e

+LN−n(N ,Q(r))e}, r = 1, 2, . . . ,R} − H ⊗ Il3

Elements of blocks Ann+1, n ≥ 0 indicate the rates of the
transitions that result in raising the number of customers in
the system by one. The following are the transitions:
• When the number of available servers is less than N ,
MAP control process transitions are followed by the
customer’s arrival, and the server initiates the service for
the next customer.
For n = 0, 1, 2, . . . ,N − 1

diag{IS ⊗ (D(r)
1 ⊗ Pn(α

(r))), r = 1, 2, . . . ,R},

• When all the N servers are busy, the arriving customer
choose to wait in the infinite size waiting hall. The rates
of these occurrences are represented by
For n = N ,N + 1, . . .

diag{IS ⊗ (p(r)D(r)
1 ⊗ IKN ), r = 1, 2, . . . ,R},

The rates of transitions that result in a one-to-one reduction
in the number of customers in the system, are specified by
the elements of block Ann−1, n ≥ 1. The following are the
transitions:
• Customer service is completed when the number of
available servers is less than N , and the rates of such
events are determined by matrix elements.
For n = 1, 2, . . . ,N

diag{G⊗ (IM1 ⊗ LN−n(N ,Q
(r))), r = 1, 2, . . . ,R},

where

[G]ij =


1, j = i− 1, i = 2, . . . , S
1, j = i+ S − 1, i = 1
0, otherwise

• Customer service is completed and initiates the service
for the next customer when allN servers are busy and the
rates of such events are determined by matrix elements.

U =

0 1 2 . . . N − 1 N N + 1 N + 2 . . .



0 A00 A01 0 . . . 0 0 0 0 . . .

1 A10 A11 A12 . . . 0 0 0 0 . . .

2 0 A21 A22
. . . 0 0 0 0 . . .

...
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
...

. . .
. . .

. . .
...

...
...

N 0 0 0 . . . AN (N−1) ANN AN (N+1) 0 . . .

N + 1 0 0 0 . . . 0 A(N+1)N A(N+1)(N+1) AN (N+1) . . .

N + 2 0 0 0 . . . 0 0 A(N+1)N A(N+1)(N+1) . . .
...

...
...

... . . .
...

...
. . .

. . .
. . .

...
...

...
... . . .

...
...

. . .
. . .

. . .
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For n = N + 1,N + 2, . . .

diag{G⊗ (IM1 ⊗ L0(N ,Q
(r))PN−1(α(r))),

r = 1, 2, . . . ,R}.

IV. JOINT PROBABILITY DISTRIBUTION
UNDER STEADY-STATE
In this section, we calculate the steady-state probability
vector and ergodicity criterion. Let us consider A = Â1 +
Â0 + Â2, where Â1 = An(n−1), Â0 = Ann, and Â2 =
An(n+1), n ≥ N + 1.

Let Y be the steady-state probability vector of the matrix
A such thatYA = 0, Ye = 1 yields

Y = (Y1,Y2, . . . ,YR),

where

Yr = (Y(r,1),Y(r,2), . . . ,Y(r,S)), 1 ≤ r ≤ R.

A. STABILITY CONDITION
We give the condition for stability through theorem on the
queueing-inventory system.
Theorem 2: The queueing-inventory system under study is

stable if and only if
R∑
r=1

S∑
i=1

Y(r,s)(p(r)D
(r)
1 ⊗ IKN )e

<

R∑
r=1

S∑
i=1

Y(r,s)(IM1 ⊗ L0(N ,Q
(r))PN−1(α(r))e (4)

Proof: From the standard results of Neuts [14] on the
positive recurrence of U we have

YÂ2e < YÂ1e

and by applying the structure of the matrices Â2 and Â1 and
Y the declared results follows.

It can be seen from the structure of the rate matrix U and
from the theorem (2), that the Markov process {ϑt , t ≥ 1}
with the state space E is regular (refer Ross [19]).

B. STEADY-STATE PROBABILITY VECTOR
We derive the steady-state probability vector x and also cal-
culate rate matrixR. The steady-state probability vector x of
the generator U such that xU = 0, xe = 1. Segregation for x
yields

x = (x0, x1, x2, . . .),

where
• xn = (x(n,1), x(n,2), . . . , x(n,R)), n ≥ 0
• x(n,r) = (x(n,r,1), x(n,r,2), . . . , x(n,r,S)), n ≥ 0, 1 ≤ r ≤
R

• x(n,r,i) = (x(n,r,i,1), x(n,r,i,2), . . . , x(n,r,i,M1)), n ≥

0, 1 ≤ r ≤ R, 1 ≤ i ≤ S
The vectors xn, 0 ≤ n ≤ N are obtained by solving the
following system of equations:

x0A00 + x1A10 = 0 (5)

xn−1A(n−1)n + xnAnn + xn+1A(n+1)n = 0, 1 ≤ n ≤ N − 1

(6)

xn−1A(n−1)n + xnAnn + xn+1Â1 = 0, n = N (7)

xn−1Â2 + xnÂ0 + xn+1Â1 = 0, n ≥ N + 1 (8)

The vectors xn, n ≥ N + 1, are obtained by the matrix
geometric relation:

xn = xNRn−N , n ≥ N + 1 (9)

Insert (9) in (8), then the equation (8) becomes the quadratic
equation:

R2Â1 +RÂ0 + Â2 = 0, (10)

where R is minimal non-negative solution, it is defined by
R, as shown at the bottom of the next page. The R matrix
can be computed using the logarithmic reduction algorithm
(refer Latouche and Ramaswami [23]).

Equation (7) can be written as

xN−1A(N−1)N + xN (ANN +RÂ1) = 0 (11)

Equation (9) in normalizing condition as

N−1∑
n=1

xne+ xN(I −R)−1e = 1, (12)

where

xn = x0
n∏

n1=1

Zn1 , 1 ≤ n ≤ N (13)

with

Zn1 =

{
−A(n1−1)n1 (An1n1 + Z(n1+1)n1 )

−1, 1 ≤ n1≤N−1
−A(N−1)N (Â0 +RÂ1)−1, n1 = N

(14)

V. SOME IMPORTANT SYSTEM PECULIARITIES
In this section, we acquire some important peculiarities crite-
ria of queueing-inventory system in the steady-state.

1) Expected number of customers in the system is

ES =
N∑
n=1

nxne+ NxNR(I −R)−1e

+ xNR(I −R)−2e.

2) Expected number of customers in the waiting hall is

EWH = xNR(I −R)−2e.

3) Expected number of busy servers is

EBS =
N−1∑
n=1

nxne+
∞∑
n=N

Nxne.

4) Expected loss rate is

EL =
∞∑
n=N

R∑
r=1

S∑
i=1

x(n,r,i)(q(r)D
(r)
1 ⊗ IKN )e.
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5) Expected number of items in the inventory is

EI =
∞∑
n=0

R∑
r=1

S∑
i=1

ix(n,r,i)e.

6) Expected reorder rate is

ER =
N∑
n=1

R∑
r=1

x(n,r,1)(IM1 ⊗ LN−n(N ,Q
(r)))e

+

∞∑
n=N+1

R∑
r=1

x(n,r,1)(IM1 ⊗ L0(N ,Q
(r))

×PN−1(α(r))e.

7) The intensity of out flow of customer, which get the
service in the system, is determined as

λservice =

N∑
n=1

xnLN−ne+
∞∑

n=N+1

xndiag{IS ⊗ IM1

⊗L0(N ,Q(r)), r = 1, 2, . . . ,R}e,

If all the N servers are busy, then the arriving customer
has a choice to make whether to join the infinite size
waiting hall or leave the system. The leaving customer
is considered lost.

8) The loss probability of an arbitrary customers is

Ploss = 1−
λservice

λ
,

where the average total arrival rate λ is given as λ =
ηdiag{D(r)

1 , r = 1, 2, . . . ,R}e and the vector η is the
unique solution to the following system of equation:
η(H ⊗ IM1 + diag{D(r)

0 +D
(r)
1 , r = 1, 2, . . . ,R}) = 0,

ηe = 1.

A. CONSTRUCTION OF THE COST FUNCTION
The expected total cost function per unit time is given by

C(S,N ) = cscER + chEI + csES + cbEBS + clEL ,

where

csc : Setup cost per order.

ch : The inventory carrying cost per unit time.

cs : Waiting cost of a customer in the system per unit time.

cb : The service cost for each server per unit time.

cl : The loss cost of a customer per unit time.

VI. SOJOURN TIME ANALYSIS
In this section, we determine the sojourn time distribution for
an arbitrary customer’s in the system.
Theorem 3: The LST g(s) of the distribution of an arbitrary

customer’s sojourn time in the system is

g(s) = Ploss +
1
λ
{

N−1∑
n=0

R∑
r=1

S∑
i=1

x(n, r, i)(D(r)
⊗ IKn )

× eα(r)f(s, r)+
∞∑
n=N

R∑
r=1

S∑
i=1

(1− q(r))x(n, r, i)

× (D(r)
1 e⊗ IKN )w(s, n− N , r)}, (15)

where f(s, r) = (f (s, r, 1), f (s, r, 2), . . . , f (s, r,M2))T , r =
1, 2, . . . ,R

Proof: Let g(s) =
∫
∞

0 e−sxdG(x), Re s > 0, be the LST
of an arbitrary customer’s sojourn time distribution, where
G(x) is distribution function of a system customer’s sojourn
time.
g(s) denotes the probability that no catastrophe occurs

during the customer’s stay. The proof is based on the claim
1 and claim 2 as well as the rules of law of total probability,
a probabilistic sense of the LSTs.
Claim 1: The formula f(s) = (−T − H ⊗ IM2 +

sI )−1T0 produces the vector f(s), where T = diag{T (r), r =
1, 2, . . . ,R} and T0 = ((T0

(1))T , . . . , (T0
(R))T )T .

Proof of Claim 1: Let f (s, r,m2) be the probability that
a catastrophe will not arrive during the rest of the customer’s
service time in the system, the position of the customer in the
system is n, n ≥ 1 To calculate the unknown vector f(s) using
a probabilistic understanding of the LST and the law of total
probability:

f (s, r,m2) = (−(T(r))m2,m2 − Hr,r + s)
−1
× ((T(r)

0 )m2

+

R∑
r ′=1,r ′ 6=r

Hr,r ′ f (s, r
′,m2)

+

M2∑
m′2=1,m

′

2 6=m2

(T(r))m2,m′2
f (s, r,m′2)),

r = 1, 2, . . . ,R, m2 = 1, 2, . . . ,M2. (16)

The system (16) can be rewritten with the help of T, T0 in
matrix form as

(T+ H ⊗ IM2 − sI )f(s) = −T0, (17)

R =

1 2 . . . R− 1 R


1 R(1,1) R(1,2) . . . R(1,R−1) R(1,R)
2 R(2,1) R(2,2) . . . R(2,R−1) R(2,R)
...

...
...

. . .
...

...

R− 1 R(R−1,1) R(R−1,2) . . . R(R−1,R−1) R(R−1,R)
R R(R,1) R(R,2) . . . R(R,R−1) (R(R,R)
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because the matrix T + H ⊗ IM2 represents a subgenerator,
the matrix (T+H⊗IM2−sI )

−1 exists, the assertion of lemma
follows instantly.
Claim 2: The vector w(s, n) can be calculated using the

recursion shown below:

w(s, 1) = (−A−H ⊗ IKN + sI )
−1

× (L(IR ⊗ eKN )αf(s)),

(18)

w(s, n+ 1) = (−A−H ⊗ IKN + sI )
−1

× (Lw(s, n)), n ≥ 1,

(19)

where A = diag{AN (N ,T (r)) − diag{AN (N ,T (r))e +
L0(N ,Q(r))e}, r = 1, . . . ,R}, α = diag{α(r), r =

1, 2, . . . ,R}, f(s) = (f(s, 1), f(s, 2), . . . , f(s,R))T , w(s, n) =
(wT (s, n, 1),wT (s, n, 2), . . . ,wT (s, n,R))T , n ≥ 1. and
L = diag{L0(N ,Q(r))PN−1(α(r))}, r = 1, . . . ,R}

Proof of Claim 2: Let w(s, n, r, i,m1, x
(1)
5 , x(2)5 , . . . ,

x(M2)
5 ), n ≥ 1, r = 1, 2, . . . ,R,m1 = 1, 2, . . . ,M1, x

(m2)
5 =

0, 1, . . . ,min{n,N },m2 = 1, 2, . . . ,M2 be the probability
that a catastrophe will not arrive during the rest of the cus-
tomer’s sojourn time in the system.

Enumerate the probabilities w(s, n, r, i,m1, x
(1)
5 , x(2)5 , . . . ,

x(M2)
5 ) in the lexicographic order of the components

x(1)5 , x(2)5 , . . . , x(M2)
5 and build column vectors w(s, n, r) from

these probabilities.
To calculate the unknown vector w(s, n, r), n ≥ 1.r =

1, 2, . . . ,R using a probabilistic understanding of the LST
and the law of total probability:

w(s, n, r) = ((s− Hr,r )IKN − A
(r))−1 × (δ̄n1L0(N ,Q(r))

× eα(r)f(s, r)+ (1− δ̄n1L(r) + w(s, n− 1, r)

+

R∑
r ′=1,r ′ 6=r

Hr,r ′w(s, n, r ′)), (20)

the system (20) can be rewritten in the form:

(A− sI + H ⊗ ITN )w(s, n)+ δ̄n1Leαf(s)

+ (1− δ̄n1)(Lw(s, n− 1)) = 0T , n ≥ 1, (21)

let us present the column vector w(s, n), n ≥ 1 in I-A. The
matrix A + H ⊗ IKN represents a subgenerator, the matrix
(A+H ⊗ IKN − sI )

−1 exists, the assertion of lemma follows
instantly.
Corollary 1:
1) The average sojourn timeGsoj of an arbitrary customer

is

Gsoj = −g′(s)|s=0

= −
1
λ
(
N−1∑
n=0

R∑
r=1

S∑
i=1

x(n, r, i)(D(r)
1 ⊗ IKn )

× eα(r)
∂f(s, r)
∂s
|s=0 +

∞∑
n=N

R∑
r=1

S∑
i=1

(1− q(r))x

TABLE 1. The function of total cast rate with two variable C(S, N),
when R = 1.

TABLE 2. When R = 1, the effect of EL dependence of S and N.

× (n, r, i)(D(r)
1 e⊗ IKN )

∂w(s, n− N , r)
∂s

|s=0).

(22)

Here the vectors
∂w(s, n, r)

∂s
|s=0, n ≥ 1, r = 1, 2, . . . ,R.

As sub-vectors of the vectors, there are computed.

∂w(s, 1)
∂s

|s=0 = (A+ H ⊗ IKN )
−1

× (e−(L(IR⊗eKN )α
df(s)
ds
|s=0)),

(23)
∂w(s, n+ 1)

∂s
|s=0 = (A+ H ⊗ IKN )

−1

× (e−(L
∂w(s, n)
ds

|s=0)), n≥1,

(24)

and the values ∂f(s,r)
∂s |s=0 are determined as the

sub-vectors of the vectors
df(s)
ds
|s=0 = (T+ H ⊗ IM2 )

−1e. (25)

2) The formula determines an arbitrary customer’s aver-
age waiting time Gwait .

Gwait = −
1
λ

∞∑
n=N

R∑
r=1

S∑
i=1

(1− q(r))× x(n, r, i)

× (D(r)
1 e⊗ IKN )

∂z(s, n+ 1, r)
∂s

|s=0, (26)

where the values
∂z(s, n, r)

∂s
|s=0, n ≥ 1, r = 1, 2, . . . ,R.

are calculated as the entries of the vector
∂z(s, 1)
∂s
|s=0 = (A+ H ⊗ IKN )

−1e, (27)
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FIGURE 1. When R = 1, the effect of EL dependence of S and N.

TABLE 3. When R = 1, the ramification of EWH dependence of S and N.

FIGURE 2. When R = 1, the effect of EWH dependence of S and N.

∂z(s, n+ 1)
∂s

|s=0 = (A+ H ⊗ IKN )
−1

× (e−((L
∂z(s, n)
∂s
|s=0)), n≥1.

(28)

VII. NUMERICAL ILLUSTRATION
We give a few descriptive numerical examples that expose the
convexity of the expected cost rate and consider single arrival
mode of the random environment (R = 1), the MAP for the
appearance of demands are

1) Hyper-exponential(HEX):

D(1)
0 =

[
−1.90 0

0 −0.19

]
,

D(1)
1 =

[
1.710 0.190
0.171 0.019

]

TABLE 4. Ramification of some system peculiarity measures with N and
different λ(1).

TABLE 5. When R = 1, the ramification of cost values cs, cb, and cl
corresponding to N.

2) Negative Correlation (NC):

D(1)
0 =

−2.73 2.73 0
0 −2.73 0
0 0 −7.3

 ,
D(1)
1 =

 0 0 0
0.0273 0 2.7027
7.227 0 0.073


3) Positive Correlation (PC):

D(1)
0 =

−2.73 2.73 0
0 −2.73 0
0 0 −7.3

 ,
D(1)
1 =

 0 0 0
2.7027 0 0.0273
0.073 0 7.227


The service time distribution characterized by

T (1)
0 = (0.9, 0.1), T (1)

=

(
−10 0
0 −1

)
.

The demand process has negative(positive) correlated arrival
with coefficient of variance,

c(1)var = 2λ(1)η(1)(−D(1)
0 )−1e− 1 = 1.2285(1.2285)
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FIGURE 3. Ramification some system peculiarity measures with N and
different λ(1).

and coefficient of correlation,

c(1)cor = (λ(1)η(1))(−D(1)
0 )−1D(1)

1 (−D(1)
0 )−1)e− 1)/c(1)var

= −0.3742(0.3742)

with arrival rate λ(1) = 2.2999. The average service time is
0.1900 and the coefficient variance of this time is 5.0388.
Table 1 displayed the behaviour of the cost function of two
variables C(S,N ), for the case of hyper-exponential distri-
bution. The values are divulged bold in each column indicate
the minimum cost rate whereas, the least cost rate is specified
in each row by underlining the values. Thus a value (bold
and underlined) spectacles the local minimum of the function
C(S,N ). The optimal cost value C(S,N )∗ = 11.47978 is
achieve at S∗= 13,N ∗= 10with parameters λ(1) = 1, p(1) =
0.7, q(1) = 1−p(1), ch = 0.15, cs = 0.055, csc = 0.01 cb =

FIGURE 4. When R = 1, the ramification of cost values cs, cw , cb, and cl
corresponding to N.

TABLE 6. The function of total cast rate with two variable C(S, N),
when R = 2.

0.12, cl = 0.4. Table 1 shows that the function C(S,N ) is
convex.
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TABLE 7. When R = 2, the effect of ER .

FIGURE 5. When R = 2, the effect of ER .

Table 2 and figure 1 demonstrate EL the dependence of S
and N, whenever number of server is increase EL is decrease
but if take number of server is 10 in our corresponding
to S, we got increase value and EL is increase whenever
number of item increase. Table 3 and figure 2 shows effects
of EWH (expected number of customers in the waiting hall)
dependence of S and N, whenever N increase EWH decrease
and S increase EWH also increase. In Table 4 displayed rami-
fication of N and some system peculiarity measures with λ(1),
whenever N increase ES (expected number of customers in
the system) also increases but EI (expected inventory level),
EWH and EL(expected lost) are decrease corresponding all
λ(1) values. In particular λ(1) = 1, λ(1) = 2 and λ(1) = 3,
figure 3 (a), (b) and (c) are showed respectively. Table 5
and figure 4 demonstrate ramification of waiting cost of a
customer in the system (cs), the cost of busy server(cb) and
the lost cost of a customer(cl) values. In figure 4 (a) and (b)
are shows ramification of cs with cb and cl respectively and
(c) demonstrate cb with cl corresponding expected total cost
rate are studied.

Consider two different state of arrival mode in the random
environment (R = 2), customers are confined by the infinites-
imal generator.

H =
[
−0.10 0.10
0.01 −0.01

]
The MAP for the appearance of demands D(1)

0 , D
(1)
0 are

considered as we used in the case of R = 1.
1) Hyper-exponential (HEX):

D(2)
0 =

(
−15 0
0 −5

)
,

D(2)
1 =

(
13.5 1.5
4.5 0.5

)

TABLE 8. When R = 2, the effect of EL dependence of S and N.

FIGURE 6. When R = 2, the effect of EL.

TABLE 9. Ramification of some system peculiarity measures with
different λ(2) and N.

TABLE 10. When R = 2, the ramification of cost values cs, cb, and cl .

2) Negative Correlation (NC):

D(2)
0 =

−2.35 2.35 0
0 −2.35 0
0 0 −3.5

 ,
D(2)
1 =

 0 0 0
2.3265 0 0.0235
0.035 0 3.465


47380 VOLUME 10, 2022
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FIGURE 7. Ramification some system peculiarity measures with different
λ(2) and N.

3) Positive Correlation (PC):

D(2)
0 =

−2.35 2.35 0
0 −2.35 0
0 0 −3.5

 ,
D(2)
1 =

 0 0 0
0.0235 0 2.3265
3.465 0 0.035

 .
When R = 2 the service time distribution:

T (2)
0 = (1, 0), T (2)

=

(
−0.3 0.3
0 −0.3

)
.

The demand process has negative(positive) correlated arrival
with coefficient of variance

c(2)var = 2λ(2)η(2)(−D(2)
0 )−1e− 1 = 12.7420(12.7420)

and coefficient of correlation

c(2)cor = (λ(2)η(2))(−D(2)
0 )−1D(2)

1 (−D(2)
0 )−1)e− 1)/c(2)var

= −0.3440(0.3440)

FIGURE 8. When R = 2, the ramification of cost values cs, cw , cb, and cl
corresponding to N.

with arrival rate λ(2) = 12.5000. The average service time
is 6.6667 and the coefficient variance of this time is 0.5000.
Here, r = 1 demand martices as consider to R = 1 matrices.
Table 6 displayed the behaviour of the cost function of two
variables C(S,N ), for the case of hyper-exponential distri-
bution. The values are divulged bold in each column indicate
the minimum cost rate whereas, the least cost rate is specified
in each row by underlining the values. Thus a value (bold
and underlined) spectacles the local minimum of the function
C(S,N ). The optimal cost value C(S,N )∗ = 2160.591 is
achieve at S∗ = 20, N ∗ = 8 with parameters λ(1) = 1, p(1) =
0.7, q(1) = 1 − p(1), λ(2) = 12.5, p(2) = 0.7, q(2) =
1 − p(2), ch = 0.15, cs = 1.55, csc = 0.37, cb = 0.12,
cl = 0.01. Table 6 shows that the function C(S,N ) is convex.

Table 7 and figure 5 demonstrate ER the dependence of S
and N with R = 2, whenever number of server and number
of item are increases ER also is increase. Table 8 and figure 6
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shows effects of ER(expected reorder) dependence of S and N
with R = 2, whenever N increase ER decrease and S increase
ER also increase. In Table 9 displayed ramification of N and
some system peculiarity measures with λ(2) under second sate
of random environment, whenever N increase ES (expected
number of customer in the system) andEI (expected inventory
level) are also increase but EWH (expected number of cus-
tomers in the waiting hall) and EL(expected lost) are decrease
corresponding all λ(2) values. In particular λ(2) = 11.5,
λ(2) = 12 and λ(2) = 12.5, figure 7 (a), (b) and (c) are
showed respectively. Table 10 demonstrate ramification of
waiting cost of a customer in the system (cs), the cost of busy
server(cb) and the lost cost of a customer(cl) values when
R = 2. Figure 8 (a) and (b) are shows ramification of cs
with cb and cl respectively and (c) demonstrate cb with cl ,
corresponding expected total cost rate are studied.

VIII. CONCLUSION
In this suggested work, we discussed the queueing-inventory
model with multi-server (N ) and demands from R varieties
of mode from a random environment. The customers arrival
occurs according to the MAP. We obtained a steady-state
vector with the help stability condition, and we derived the
distribution of the sojourn time of an arbitrary customer in the
system. We provided sensitive analysis in table 1 and table 6
to understand how the S and N changes cause expected cost
rate R = 1 and R = 2, respectively. It is done only after
obtaining the local optima, S∗, and N ∗. The corresponding
expected total cost rate is studied for R = 2.
This paper will be extended to a positive lead time and

random environment-based onmultiple types of service in the
future.
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