
Received April 11, 2022, accepted April 21, 2022, date of publication April 25, 2022, date of current version May 3, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3170094

Dynamic Slicing of Time Petri Net
Based on MTL Property
P. CHARIYATHITIPONG AND W. VATANAWOOD
Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Corresponding author: W. Vatanawood (wiwat@chula.ac.th)

ABSTRACT The time Petri net (TPN) is a powerful tool for modeling, simulating, and verifying real-time
systems. Unfortunately, the state spaces of the time Petri net grow exponentially due to the complexity
of real-time systems. The enormous size of the state spaces could also cause state explosion problems in
model checking. This paper proposes an alternative dynamic slicing algorithm written as a metric temporal
logic (MTL) formula to reduce the size of the time Petri net model by considering specific criteria. Our
algorithm proposes an alternative dependency graph representing the global firing time interval of the
transition to remove the transitions that are never fired and do not affect the state space. The dynamic slicing
algorithm involves the initial marking and the properties of the target metric temporal logic formula. Unlike
the unsliced time Petri net, the result preserves all necessary execution paths for the model checking of a
particular metric temporal logic formula. Therefore, model checking can generate sufficient state space to
conduct verification equivalent to the unsliced time Petri net but may take less time, including if the unsliced
time Petri net causes state space explosion.

INDEX TERMS Dynamic slicing, global firing dependency graph, metric temporal logic, real-time systems,
slicing for verification, state space reduction, structural reduction, time Petri net.

I. INTRODUCTION
The time Petri net (TPN) is a mathematical model commonly
used to represent and capture a real-time system’s behavior,
especially its concurrent, asynchronous, distributed, parallel,
and nondeterministic operations. The TPN can implement all
possible execution paths in a real-time system through recur-
sive paths using the given initial marking and specific time
constraints. The corresponding state space of the real-time
system can be computed or generated using the TPNmodel to
demonstrate the abstraction of its behavior. However, as the
system becomes more complex, the size of its state space
grows exponentially, which causes a state space explosion
problem, a common obstacle in the model checking process.
To address this situation, state space reductions based on
various techniques are commonly exploited to reduce the
number of redundant states visited during runtime state explo-
ration. Moreover, the state space of a TPN is based on the
markings of all its places and the time interval constraints
of the firing sequences of its transitions, making it even
more complex. Therefore, a state class graph (SCG) [1] is
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alternatively used to abstract the specific state space of a TPN,
and an SCG is efficiently generated based on its reachability
properties [2], [3].

Various studies have applied on-the-fly reduction to reduce
the state space of a TPN by constructing aminimal state space
on demand [4] and by limiting the state exploration in the on-
the-fly mode based on the properties of timed computation
tree logic (TCTL) [5], [6] or linear temporal logic (LTL) [7].
Partial order reduction has also been applied to construct the
state space, but only in the same independent state as execut-
ing different firing sequences [8]–[11]. In [12], a stubborn set
method for TPNs that concerns only the transitions and the
firing constraints of the reachable firing rules was proposed.
The stubborn sets are the transition sets that are not affected
or reached by those outside the stubborn sets. A symme-
try reduction method for TPNs to alleviate the combinato-
rial explosion problem by abstracting only one out of two
equivalent states in the state class graph was also proposed
in [13].

Furthermore, structural analysis of the formal model using
pruning algorithms could also be conducted beforehand to
further limit the unnecessary or unreachable structure of a
TPN with regard to the target criterion.
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Several TPN structural reduction methods have been pro-
posed. For example, sets of heuristic reduction rules to
reduce the size of a TPN were proposed in [14]–[16].
In [16] and [17], a TPN model was modularized into TPN
subnets that preserve the original liveness and safety
properties.

Model slicing is another structural reduction method used
to minimize the size of an original model. Fortunately, the
resulting TPN slice performs equivalently to the original TPN
with respect to the target criteria in the verification process.
This model slicing method is classified as either static or
dynamic slicing. Static slicing considers only the slicing cri-
teria while dynamic slicing considers the initial markings, the
so-called initial state, and the target criteria. Model slicing is
additionally used in software verification to reduce the formal
model in the preprocessing phase [18].

In [19], a static slicing algorithm for slicing a formal model
written in the Rebeca language based on the Rebeca depen-
dency graph (RDG) was proposed, and the resulting slice
preserved the deadlock property. Then, in [20], an algorithm
considering the LTLx property was constructed to slice the
original model. A behavior tree dependence graph (BTDG)
was used to construct slices for any target criterion related to
the LTLx property.

The asynchronous system model written in the Promela
program was also sliced before being verified in [21]
and [22]. In [23]–[25], slicing algorithms for timed automata
were proposed. Several Petri net slicing algorithms to alle-
viate the state space explosion that occurs during model
checking under limited conditions have been proposed. For
example, two slicing algorithms were used to reduce a Petri
net model that maintained the safety property in [26] and the
CTL∗−x property in [27]. Moreover, a place-invariant-based
(PI-based) algorithm to slice Petri nets and preserve the place-
invariant property was proposed in [28]. Furthermore, [29]
proposed dynamic slicing algorithms for Petri nets by com-
puting the backward and forward slices while considering an
initial marking, and these algorithms were further improved
using a structural dependency graph (SDG) in [30].

Nevertheless, the firing rules of Petri nets consider only
the markings and ignore the firing time constraints while a
TPN is more concerned with the relative firing time of each
transition. This paper proposes an alternative structural anal-
ysis technique to slice the unnecessary structure of a model
for a specific criterion. We intend to eliminate the irrelevant
TPN elements to the criteria written in the metric temporal
logic (MTL) properties and leave any other elements. Thus,
the slicing algorithm preserves the target MTL properties of
a TPN. We focus on the dynamic slicing approach in which
both the initial marking and target criteria are considered and
provide the traceability of the paths of fired tokens. We pro-
pose a new dependency graph called a firing dependency
graph (FDG) representing all the dependencies within the
global firing time interval of the transitions. First, we provide
an algorithm to construct the firing dependency graph from
the TPN model. Second, our dynamic slicing algorithm for a

TPN to slice the TPNmodel based on the target criteria within
the properties of the MTL is also proposed.

The remainder of this paper is organized as follows.
Section II briefly introduces the time Petri net and the metric
temporal logic. Section III illustrates the slicing TPN algo-
rithm to reduce the TPN model based on these criteria. The
case study is presented in Section IV, and Section V presents
our conclusions.

II. PRELIMINARY
Verifying and analyzing real-time systems has two elements:
the semanticmodels to describe the properties of a system and
the specification of systems. This paper used the TPN model
and MTL to represent the semantic model and the speci-
fication of the system, respectively. Therefore, this section
introduces TPN and MTL concepts.

A. TIME PETRI NET
The time Petri net is a bipartite directed graphwith two nodes:
places and transitions. A circle depicts a place, and a bar
represents a transition associated with the deterministic firing
time. A directed arc connects place and transition. In addition,
each circle may contain one or more dots, called tokens.
Definition 1 formally defines the time Petri net.
Definition 1 (Time Petri net): A time Petri net is a 6-tuple

TPN = (P, T, B, F, m0, st), where
• P is a finite nonempty set of places.
• T is a finite nonempty set of transitions, P ∩ T = ∅.
• B : (P × T ) → N is the backward incidence function

or input function that defines the weight of each directed
input arc from the places to transitions, where N is the set
of nonnegative integers.
• F : (T × P) → N is the forward incidence function or

output function that defines theweight of each directed output
arc from the transitions to the places.
• m0 is the initial marking that defines the tokens in

each TPN place. Function m0(p) denotes the marking of
place p ∈ P.
• st : T → Q∗ × (Q∗ ∪ {∞}) is the static firing interval

function that defines the earliest and latest static firing times
of each transition, where Q∗ is the set of positive rational
numbers. For a transition t , st(t)= [est(t), lst(t)], where est(t)
and lst(t) are the earliest and latest static firing times of
transition t , respectively, satisfying est(t) ≤ lst(t).
The following standard notation denotes the input and

output places. If B (p, t) > 0, then •t denotes the input place
set of transition t . Similarly, •p represents the input transition
set of place p.
Furthermore, if F (t, p) > 0, then t• denotes the output

place set of transition t and p• represents the output transition
set of place p.
Alternatively, the incidence matrices containing the con-

nections from places to transitions and vice versa repre-
sent a particular TPN character. In practice, the input and
output flow matrices construct the incidence matrices. The
input flow matrix contains the input flows from places to
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FIGURE 1. An example time petri net model.

transitions, and the output flow matrix contains the output
flows from transitions to places.

For a TPN with n transitions and m places, the input
flow matrix is an m × n matrix of integer BM = [bij],

where bij =
{
1,B

(
pi, tj

)
> 0

0, otherwise
. Similarly, the output flow

matrix is an n × m matrix of integer FM = [fij], where

fij =
{
1,F

(
ti, pj

)
> 0

0, otherwise
.

B. METRIC TEMPORAL LOGIC
Metric temporal logic (MTL) is used to describe the prop-
erties of a real-time system. MTL formulae extend linear
temporal logic (LTL) with adds time intervals bounds to the
temporal operators.

Let P be a set of propositional variables. Then, the well-
formed formulae of MTL are formed following abstract
syntax:
• ϕ := true|p where p ∈ P;
• ϕ := ¬ϕ|ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2|ϕ1→ ϕ2;
• ϕ := �[t1,t2]ϕ

∣∣ [t1,t2]ϕ
∣∣ϕ1U[t1,t2]ϕ2 where t1εQ+ and

t2εQ+ ∪ {∞} with t1 ≤ t2.
A time state sequence ρ = (π, τ ) is a pair consisting of an

infinite sequence π of states πi ⊆ P and a time point τ at state
πi such that πi ≤ πi+1. The semantics of MTL is defined as
follows.
• (ρ, i) |H p iff p ∈ πi;
• (ρ, i) |H ¬ϕ iff (ρ, i) ϕ;
• (ρ, i) |H ϕ1 ∧ ϕ2 iff (ρ, i) |H ϕ1 and (ρ, i) |H ϕ2;
• (ρ, i) |H ϕ1 ∨ ϕ2 iff (ρ, i) |H ϕ1or (ρ, i) |H ϕ2;
• (ρ, i) |H ϕ1→ ϕ2 iff (ρ, i) |H ϕ1then (ρ, i) |H ϕ2;
• (ρ, i) |H �[t1,t2]ϕ iff ∀j ≥ i : (ρ, j) |H ϕ ∧ τj − τi ∈

[t1, t2];
• (ρ, i) |H [t1,t2]ϕ iff ∃j ≥ i : (ρ, j) |H ϕ ∧ τj − τi ∈

[t1, t2];
• (ρ, i) |H ϕ1U[t1,t2]ϕ2 iff ∀j, i ≤ j < k : (ρ, j) |H ϕ1 and
∃k ≥ i : (ρ, j) |H ϕ2 ∧ τj − τi ∈ [t1, t2].

A dynamic slice of a model reduces the size of the model
and focuses on its particular use. However, most slice meth-
ods run themodel and construct the state space from the initial
marking, which involves high costs.

The firing interval in a TPN is relative to the time at
which the transition is enabled, and it cannot directly provide
information about the firing sequences of any two transitions
ti and tj where ti• 6= •tj. Considering the TPN shown in
Figure 1, transitions t4 and t5 can fire after the transition is
enabled at times [3], [5] and [2], [4], respectively, but these
values cannot inform the firing sequence. Although the state
class can provide any firing sequence, none of the values can
provide the exact time at which the TPN is executed from the
initial marking up to the transition to fire.

The next section proposes a directed graph that provides
information about the firing sequence and the global firing
time interval. By ‘‘global,’’ we mean the accumulated time
interval from the initial marking until the transition fire. This
graph is called a firing dependency graph, and it can represent
the behavior of a TPN and estimate the possible global time of
a transition to fire. Our algorithm uses it to consider removing
TPN elements that may not affect the given criterion.

III. METHODOLOGY
This section proposes a dynamic slicing algorithm for TPNs
based on the firing dependency graph. This algorithm can
reduce the size of the TPN model based on the MTL proper-
ties by eliminating the place and transition sets that are irrel-
evant to the MTL properties. The process in Figure 2 shows
how to slice a TPN based on the MTL properties. First,
an FDG is constructed from the TPNmodel. Subsection III-A
describes the firing dependency graph and how it is created.
Second, the slicing criterion is extracted based on the MTL
properties. Third, the firing node that cannot be reached from
the initial markingwithin the criterion is sliced from the FDG.
Finally, the sliced FDG transforms into a sliced TPN based on
theMTL properties. Subsection III-B describes our algorithm
for how to slice a time Petri net.

A. FIRING DEPENDENCY GRAPH
A firing dependency graph (FDG) is a dependency graph
representing the dependencies of the firing transition within a
TPN model. Definition 2 defines a firing dependency graph.
Definition 2 (Firing Dependency Graph): Let TPN =

(P,T ,B,F,m0, ST ) be a time Petri net. Then, a firing
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FIGURE 2. Process for slicing the time petri net.

dependency graph is a quadruple FDG = (FT ,E,FT 0, gt),
where
• FT is a finite set of firing nodes. For a firing node, ft is

firing transition t , t ∈ T .
• E ⊆ FT × FT is a finite set of edges. For an edge,

e =
(
ft i, ft j

)
∈ E, ft i 6= ft j means that transition ft j is always

enabled after transition ft i is fired. Therefore, a firing node ft i
is said to be a predecessor node of firing node ft j whereas a
firing node ft i is said to be a successor node of firing node
ft j, •ft denotes the set of predecessor nodes of firing node ft ,
and ft• denotes the set of successor nodes of firing node ft .
• FT 0 is the set of initial firing nodes. Firing node ft is said

to be an initial firing node if t ∈ En(m0)
• gt : FT → Q∗× (Q∗∪{∞}) is the global firing function

that defines the earliest and latest global firing times of each
transition, where Q∗ is the set of positive rational numbers.
For firing node ft , gt(ft) = [egt(ft), lgt(ft)], where egt (ft)
and lgt(ft) are the earliest and latest global firing times of
transition ft , respectively.

Furthermore, when considering the firing conditions of a
transition, we assume that transition ft was enabled at time
τ and that transition ft fired at time τ + θ if and only if
the following conditions hold: (1) According to the enabling
rules, ft is enabled at time τ . (2) Relative firing time θ is
between est (ft) and lst of all enabled transitions at marking
m [31]. Then, the global firing time of firing node ft is defined
as

gt (ft) = gt_en (ft)+ rt(ft) (1)

where gt(ft) is the global firing time interval in which the
TPN runs from the initial node to current node ft; gt_en(ft)
is the global enabled time at which the TPN runs from the
initial marking up until the time at which transition ft is
enabled; and rt(ft) is the relative firing time of transition ft ,

defined as

rt(ft) =

{
[est (ft) ,min

{
lst
(
tcf
)}
], case1

st (ft) , case2
(2)

Cases 1 and 2 are defined as follows:
case 1. If t is the conflict transition and tcf ∈ CF (t), where

CF(t) is the set of conflicting transitions with transition t;
case 2. Otherwise.
According to (1), we divide the firing nodes into four

groups: (1) The initial firing node where the initial marking
m0 enables the transition. (2) The synchronized firing node
where the transition is synchronized. (3) The merged firing
node where the transitions of •ft are merged. (4) The general
firing nodewith only one predecessor node. The global firing
time gt is calculated as follows:

gt (ft) =



rt (ft) ,
case1[

max{egt(tk )},max{lgt(tk )}
]
+ rt (ft) ,

case2[
min{egt(tk )},max{lgt(tk )}

]
+ rt (ft) ,

case3
gt (•ft)+ rt(ft),

case4

(3)

Cases 1 to 4 are, respectively:
case 1. If ft ∈ FT 0;
case 2. If t is synchronized transition and tk ∈ •ft;
case 3. If tk ∈ •ft and tk are the merge transition;
case 4. Otherwise.
Algorithm 1 illustrates how to construct the FDG from

TPN = (P,T ,B,F,m0, st). The incident matrix represents
the TPN and FDG in this study.

Algorithm 1 : Construct a Firing Dependency Graph
Input: TPN = (P,T ,B,F,m0, st) is a Time Petri net
Output: FDG =

(
FT ,E, ft0, gt

)
is a firing dependency

graph
1 Create the set of firing nodes FT = T ;
2 Create the input flow matrix BM ;
3 Create the output flow matrix FM ;
4 Create the firing transition relation matrix E = FM ×
BM ;

5 Create the set of initial nodes ft0 = En(m0);
6 Initial the set of nodes queT = ft0;
7 for each ft ∈ queT do
8 Calculate gt(ft), the vector of the global firing time
of transition t .
9 if ft has successornodes then

10 queT = queT ∪ successor (ft);
11 end
12 queT = queT − {ft};
13 end
14 return FDG =

(
FT ,E, ft0, gt

)
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According to Algorithm 1, Line 1 creates all the firing
nodes of the FDG. Then, Lines 2 to 4 construct all the edges
of the FDG by multiplying an input flow matrix by an output
flow matrix. Next, Line 5 creates all initial firing nodes.
Finally, Lines 6 to 13 calculate the global firing time of each
firing node from the initial firing nodes. In addition, regarding
the time complexity, Algorithm 1 is a breadth-first traversal
algorithm. Therefore, the boundary of the time complexity is
the number of elements in the original time Petri net.

Therefore, the time complexity of Algorithm 1 is
O(|T|2|P|), where |T| is the number of transitions and |P| is
the number of places in the unsliced time Petri net.
Example 1: Consider the TPN model shown in

Figure 1, where transition T = {t1, t2, t3, t4, t5, t6, t7, t8}.
The initial marking m0 = (1 0 0 0 0 1 0 0 0 0 0)T , and
En(m0) = {‘t1’, ‘t6’}.

The input flow matrix BM and output flow matrix FM are
as follows:

BM =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0



FM =



0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1


According to Algorithm 1, firing node FT = {t1, t2, t3, t4, t5,
t6, t7, t8}.

Edge E = FM × BM = {(t1, t2) , (t1, t3) , (t2, t4) , (t3, t5),
(t4, t7) , (t5, t7) , (t6, t8) , (t7, t8)}.
Initial firing nodes FT 0 = t1, t6.
According to (3), we calculate the global firing time gt of

each firing node from the initial firing nodes such that:

gt (t1) = rt (t1) = [3, 6].

gt (t6) = rt (t6) = [1, 8].

Next, firing transition t1 causes transitions t2 and t3 such
that t2 and t3 are the successor nodes of t1, where

gt (t2) = gt (t1)+ rt (t2) = [3, 6]+ [1, 4] = [4, 10],

gt (t3) = gt (t1)+ rt (t3) = [3, 6]+ [2, 5] = [5, 11].

Similarly, we derive t4 and t5 as

gt (t4) = gt (t2)+ rt (t4) = [4, 10]+ [3, 5] = [7, 15].

gt (t5) = gt (t3)+ rt (t5) = [5, 11]+ [2, 4] = [7, 15].

FIGURE 3. The firing dependency graph of the TPN in Figure 1.

Firing node t7 is a synchronized firing node. According
to (3), •t7 = {t4, t5}. Then,

gt (t7) = [max {egt (•t7)} ,max {lgt (•t7)}]+ rt (t7)

= [max {egt (t4) , egt (t5)} ,max {lgt (t4) , lgt (t5)}]

+ rt(t7)

= [max {7, 7} ,max {15, 15}]+ [0, 2]

= [7, 15]+ [0, 2] = [7, 17]

We can generate a firing-dependency graph following this
step, as shown in Figure 3.

The FDG can represent the TPN’s behavior and the global
firing time of each transition, which is the possible accumu-
lated time interval from the initial marking until the transition
fired, as will be shown in Theorem 1. To facilitate our descrip-
tion, we illustrate the firing schedule that leads the TPN from
the initial ft0 to ftn by firing t0t1 . . . tn using ft0ft1 . . . ftn.
Theorem 1: Let ft i be a firing node from ft0. Then, gt i is

the global firing time of ti.
Proof: From the precondition, we know that there must

be a firing schedule starting with ft0 and ending with fti,
that is, ft0ft1 . . . ft i−1ft i. We apply mathematical induction to
exponent i.

For the basic step (i = 0), ft0 is the initial firing node.
We have ∀t j ∈ En(m0), the global enabled time of tj = [0, 0].
Therefore, gt j is the exact relative firing time and global firing
time of tj. Therefore, this assumption is true for i = 0.

For the inductive step, we assume that the assertion holds
for all positive integers k. Furthermore, we assume that gtk is
the global firing time of tk , which is a firing transition at ftk .
Under this assumption, we must show that gtk+1 is the global
firing time of tk+1, a firing transition at ftk+1. We now apply
this to three different cases of ftk+1.

Case 1. ftk+1 is a general firing node that has only one
predecessor node.

According to (1), gtk+1 = gt_en (ftk+1)+ rt(ftk+1)

= gtk + rt(ftk+1)

where gtk is the global firing time of ftk , which is also the
global enabled time of tk+1. Because firing a transition takes
no time, rt(ftk+1) is the relative firing time of tk+1. Therefore,
gtk + rt(ftk+1) is the global firing time interval of tk+1.
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Case 2. ftk+1 is the synchronized firing node in which the
transition is synchronized. We have ∀t j ∈ •ft .

According to (1), gtk+1 = gt_en (ftk+1)+ rt(ftk+1)

gtk+1 =
[
max{egt(ftj)},max{lgt(ft j)}

]
+ rt(ftk+1)

gtk+1 = [max
{
egt

(
ftj
)}
+ ert

(
ftk+1

)
,

×max{lgt(ft j)} + lrt (ftk+1)]

where
[
max{egt(ft j)},max{lgt(ft j)}

]
is the global enabled

time of ftk+1. Because ftk+1 is enabled only when any transi-
tion ftj is fired and ert (ftk+1) is the earliest relative firing time
of ftk+1,max

{
egt

(
ftj
)}
+ ert (ftk+1) is the earliest global fir-

ing time of ftk+1. Additionally, lrt (ftk+1) is the latest relative
firing time of ftk+1; therefore, max

{
lgt
(
ftj
)}
+ lrt

(
ftk+1

)
is

the latest global firing time of ftk+1. Therefore, gtk+1 is the
global firing time interval of tk+1.

Case 3. ftk+1 is the merged firing node, where the tran-
sitions of •ft are merged transitions. The transition ftk+1 is
enabled when a transition in •ft is fired. We have ∀t j ∈
the domain of •ft .

According to (1), gtk+1 = gt_en (ftk+1)+ rt(ftk+1)

gtk+1 =
[
min{egt(ft j)},max{lgt(ft j)}

]
+ rt(ftk+1)

gtk+1 = [min
{
egt

(
ft j
)}
+ ert (tk+1) ,

×max{lgt(ft j)} + lrt
(
ftk+1

)
]

where
[
min{egt(ft j)},max{lgt(ft j)}

]
is the earliest global

enabled time of ftk+1. As ftk+1 is enabled when a transition
ftj is fired and ert (ftk+1) is the earliest relative firing time of
ftk+1, min

{
egt

(
ft j
)}
+ ert

(
ftk+1

)
is the earliest global firing

time of ftk+1. Additionally, lrt (ftk+1) is the latest relative
firing time of ftk+1; therefore, max

{
lgt
(
ft j
)}
+ lrt

(
ftk+1

)
is

the latest global firing time of ftk+1. Therefore, the global
firing time interval of ftk+1 is gtk+1.

Hence, the theorem holds.
The proof shows that if the sequence t0t1 . . . ti−1 is fired,

then the current time must be in gt i, and any time τ in gt i
must be able to fit into the firing sequence t0t1 . . . ti−1 and
end at time τ and ti. Therefore, gt i gives the exact global time
at which transition ti fires.
Corollary 1: Let ft i and ft j be the two firing nodes of an

FDG. If gt i occurs before gt j, then ft i always fires before ftj
fires.
Proof: In Allens’ Interval Algebra [32], if gt i is before gt j,

then egt (fti) < lgt
(
ft i
)
< egt

(
ftj
)
< lgt(ftj). lgt

(
ft i
)
is

the latest global firing time of ti, and egt
(
ft j
)
is the earliest

global firing time of ft j; therefore, ftj must fire before or at the
same time as lgt (fti), and ft j cannot fire before time egt

(
ftj
)
.

Therefore, fti always fires before ftj fires.
Corollary 2: Let ft i and ft j be the two firing nodes of an

FDG. If ft j is reachable from ft i, then the time interval in
which the TPN runs (from fti to ftj) is gt j − gt i.

Proof: With a TPN starting from •ti at time 0, fti will
have fired at the global time [a, b], and then ftj will fire

globally [a + c, b + d]. The time interval from which the
TPN runs from ft i to ft j is [a + c, b + d] – [a, b] = [c, d].
Furthermore, if the TPN starts from •ti at time [x, y], fti fires
globally [x + a, y + b], and ftj fires globally [x + a + c, y +
b + d]. The time interval from which the TPN runs from fti
to ftj is [x + a + c, y + b + d] − [x + a, y + b] = [c, d].
The time interval from which the TPN runs from ft i to ftj

is independent of the starting time. According to Theorem 1,
the time interval is gt j − gt i.
Example 2: Consider the FDG shown in Figure 3. Suppose

that we have a time constraint that determines the transitions
in which ft1, ft2, ft3 and ft6 must fire within five time units
from the initial marking. We then know that the constraint is
satisfied.
Example 3: Consider theFDG shown in Figure 3.We found

that ft8 can be reached from ft3 via many firing sequences.
The time interval proceeds via each firing sequence within
[10, 21] – [5, 11] = [5, 10].
Corollaries 1 and 2 can be used for the timeless analy-

sis of whether a transition can fire with time constraints.
Corollary 1 is used to find the reachable firing node within
the timing constraint. Corollary 2 is used to establish a
quantitative timing relationship between any two reachable
transitions.

The following section proposes a way to reduce the size of
an FDG based on the time criterion to reduce the size of a
TPN model.

B. SLICING OF THE TIME PETRI NET MODEL
Based on the FDG, we can derive a sliced net under any
firing node criterion. The algorithm starts with the transi-
tion criterion, according to which the successor node of the
criterion of the place travels the FDG. Then, we derive a
reachable firing node within the global firing time of the
transition criterion. Thus, a subgraph of the FDG represents
the behavior of a sliced TPN under the initial marking, and
its firing nodes represent the transitions of a sliced TPN.
Algorithm 2 describes our slicing TPN as slicing a TPN based
on an FDG.

According to Algorithm 2, Lines 1 to 2 construct the
firing dependency graph (FDG) from the TPN model com-
puted according to Algorithm 1. Then, Lines 3 to 4 extract
the slicing firing node criterion (tCrit) from the MTL for-
mula by deriving the criterion from all propositions of the
MTL. Next, Lines 5 to 27 slice the FDG based on tCrit .
Lines 5 to 10 create the initial firing nodes that run into tCrit ,
Lines 11 to 19 remove the firing nodes that cannot run into
tCrit , Lines 20 to 23 remove the firing nodes that always fire
after tCrit fires, and Lines 24 to 27 add the firing nodes that
are elements of the conflict transition set in FT ′. The final
graph contains all the firing nodes representing the transition
set of the sliced TPN. Finally, Lines 28 to 33 construct the
sliced TPN from the sliced FDG as follows: Line 28 initializes
the transitions (T’) in the firing node of the sliced FDG;
Line 29 initializes the input places (P′) of the transitions in
both TPN ′ and TPN ; and Line 30 initializes the backward
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Algorithm 2 : Slicing Time Petri Net
Input: TPN = (P,T ,B,F,m0, st) is a time Petri net
MTL is a matrix temporal logic formula
Output: TPN ′ =

(
P′,T ′,B′,F ′,m′0, st

′
)
is a sliced TPN

1 Construct the firing dependency graph FDG =(
FT ,E, gt, ft0

)
2 Initialize the set of firing nodes FT ′ = FT ;
3 Initialize the place criterion pCrit = set of propositions ofMTL
4 Initialize the firing node criterion set tCrit = •pCrit;
5 Initialize the set of the initial firing nodes ft ′0 = {};
6 for each t ∈ ft0 do
7 if tCrit is reachable from t then
8 ft ′0 = ft ′0 ∪ {t};
9 end
10 end
11 Initialize the set of nodes queT = (ft0 − ft

′

0) ∪ tCrit;
12 FT ′ = FT ′ − (ft0 − ft

′

0);
13 for each ft ∈ queT do
14 while ft has successornodes then
15 FT ′ = FT ′ − successor (ft);
16 queT = queT ∪ successor (ft);
17 end
18 queT = queT − {ft};
19 end
20 Calculate max_gt(tCrit), the maximum global firing

time of tCrit;
21 for each ft ′ ∈ FT ′ do
22 if tCrit is unreachable from ft ′ and

gt
(
ft ′
)
> max_gt_tCrit then

23 FT ′ = FT ′ − ft ′

24 else if ft ′is conflict transition then
25 FT ′ = FT ′ ∪ CF

(
ft ′
)

26 end
27 end
28 T ′ = FT ′;
29 P′ = {t ∈ T ∩ T ′|p = •t}
30 B′ = {p ∈ P ∩ P′, t ∈ T ∩ T ′|b(p, t)}
31 F ′ = {p ∈ P ∩ P′, t ∈ T ∩ T ′|f (p, t)}
32 st ′ = {t ∈ T ∩ T ′|st(t)}
33 m′0 = {p ∈ P ∩ P

′
|m(p)}

34 return TPN ′ =
(
P′,T ′,B′,F ′,m′0, ST

′
)

incidence function (B′) of TPN , the places and transitions of
which are in both TPN ′ and TPN .

Similarly, Line 31 initializes the forward incidence func-
tion (F ′) of TPN , the places and transitions of which are
in both TPN ′ and TPN . Line 32 initializes the static firing
interval (st ′). In TPN , st ′ is the static firing interval of the
transitions in both TPN ′ and TPN . Finally, Line 33 initializes
the initial marking (m′0) of TPN , the places of which are in
both TPN ′ and TPN .
As for the time complexity of the algorithm, Algorithm 2

constructs a firing dependency graph and slicing FDG.
In addition, when considering the slicing FDG, this algorithm
is a breadth-first traversal algorithm. Hence, the boundary of
the time complexity is the number of elements in the unsliced
FDG. The number of firing nodes and the number of edges
of FDG equal the number of transitions and the number of
forward incidence functions of TPN , respectively. Therefore,
the time complexity related to slicing the FDG algorithm is

FIGURE 4. The SDG of the TPN in Figure 1, where the place criterion is p7.

FIGURE 5. TPN ′ , where the place criterion is p7.

O(|T | + |F |), where |T | is the number of transitions and |F |
is the number of forward incidence functions in the unsliced
TPN . Furthermore, the time complexity of constructing a
firing dependency graph is O(|T |2 |P|).
Consequently, the time complexity of Algorithm 2 is

O(|T |2 |P|+|T |+|F |), where |T | is the number of transitions,
|P| is the number of places, and |F | is the number of forward
incidence functions in the unsliced time Petri net.
Example 4: Consider the TPN model, as shown in Figure 1,

where the place criterion is p7. We can construct SDG,
as shown in Figure 4; and TPN ′, as shown in Figure 5.

IV. CASE STUDY
This section presents an experiment to verify the timing prop-
erties of a tactic anti-air command and control (C2) system
derived from [33]. The C2 system consists of one C2 center,
two subcenters, two air radar groups, and two firing units.

As for the operations of the system, first, each air radar
group senses air targets to fuse the data at the data processor
and then sends messages to the corresponding subcenter. Sec-
ond, after each subcenter receives the message from its radar
group, it conducts its commands and sends them to the C2
center. Third, when the messages arrive at the C2 center from
two subcenters, situational assessment is performed at the two
intelligence seats, and a scheme is worked on at the decision-
making seat before sending the results to the two subcenters.
Fourth, the subcenter fuses the message with the related data
and then sends the results to the firing units upon receiving
the command from the C2 center. Finally, when the firing
unit receives an assignment from its subcenter, it conducts
the assessment and feeds the results back to its corresponding
subcenter. Table 1 shows the duration of each operation.
The TPN model represents the structure and behavior of this
system, as shown in Figure 6; and Tables 1 and 2 provide
transition and place descriptions, respectively.

Furthermore, the two systems considered for the slicing
criterion in this example are as follows:
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FIGURE 6. The TPN of the tactical anti-air C2 system.

TABLE 1. The transition description.

Property 1: Each air radar group sends the target informa-
tion to its subcenter, which takes 40 time units. The MTL
representation of this can be expressed as follows:

�(((p201 ∧ p202 ∧ p203)→
(
≤40RG1.MSG

)
)

∧ ((p501 ∧ 502 ∧ p503)→
(
≤40RG2.MSG

)
))

Property 2: The C2 center groups the messages from all
subcenters and sends back results. The entire processing time
must be less than or equal to 22 time units. The MTL is
expressed as follows:

� ((C2C.R1 ∧ C2C.R2)→
(
≤22(C2C.S1 ∧ C2C.S2

)
)

45214 VOLUME 10, 2022



P. Chariyathitipong, W. Vatanawood: Dynamic Slicing of Time Petri Net Based on MTL Property

TABLE 2. The place description.

In the experiment, we slice the time Petri net based on two
properties according to Algorithm 2. Additionally, we com-
pared the structural model, state space class, and the results of
the MTL satisfaction check between the sliced and unsliced
TPNs. The comparison of the structural model focuses on
the total number of places, the number of transitions, and
the number of arcs that link these places and transitions.
Alternatively, comparing the state–space class focuses on the
number of states and the number of edges that connect those
states. In this study, the model checker used to construct the
structure and state space models is the time Petri net analyzer
(TINA) toolbox, dependent on the LTL properties. As for the
MTL satisfaction check results, we split the MTL properties
into two categories: the LTL and timing properties of the C2
system. Then, we verify the LTL properties using the TINA
model checker and analyze the timing properties according to
corollary two.

As for the experimentation, applying Algorithm 2 to slice
the TPN based on two properties gives the following FDG:
FT = {t101, t102, t103, t104, t13, t16, t201, t202, t203,

t204, t205, t23, t301, t302, t303, t31, t34, t401, t402, t403,
t43, t501, t502, t503, t504, t505, t56, t601, t602, t603, t61,
t67, t701, t702, t703, t76}.
gt = {gt(t101) = [37, 43], gt(t102) = [40, 48], gt

(t103) = [40, 48], gt(t104) = [45, 54], gt(t13) = [45, 54],
gt(t16) = [45, 54], gt(t201) = [30, 30], gt(t202) = [30, 30],
gt(t203) = [30, 30], gt(t204) = [32, 34], gt(t205) = [33, 36],
gt(t23) = [33, 36], gt(t301) = [35, 39], gt(t302) = [36, 41],
gt(t303) = [49, 60], gt(t31) = [36, 41], gt(t34) = [49, 60],
gt(t401) = [53, 66], gt(t402) = [54, 68], gt(t403) = [59, 75],
gt(t43) = [59, 75], gt(t501) = [30, 30], gt(t502) = [30, 30],
gt(t503) = [30, 30], gt(t504) = [32, 34], gt(t505) = [33, 36],
gt(t56) = [33, 36], gt(t601) = [35, 39], gt(t602) = [36, 41],
gt(t603) = [49, 60], gt(t61) = [36, 41], gt(t67) = [49, 60],

gt(t701) = [53, 66], gt(t702) = [54, 68], gt(t703) = [59, 75],
gt(t76) = [59, 75]}.
Furthermore, when considering the sliced TPN based on

property 1 and its capacity for satisfaction, the slicing cri-
terion is {RG1.MSG, RG2.MSG}, and the time delay from
the initial marking to RG1.MSG and RG2.MSG is 40 time
units. Thus, the transition criterion is {t205, t505}. Our slic-
ing algorithm can remove all firing nodes that always fire
after the transition criterion. Figure 7 shows the sliced TPN
based on property 1, and Table 3 presents the number of
places and transitions of unsliced and sliced TPNs. Finally,
considering MTL satisfaction, the result for the LTL property
is true, as shown in Table 4. Furthermore, when considering
the timing property, the time interval in which the transition
criterion can be reached from the initial marking is [33], [36],
so the timing property is satisfied. Therefore, property 1 of the
system was satisfied.
Similarly, slicing the TPN based on property 2 yields the

following results: the slicing criterion is {C2C.R1, C2C.R2,
C2C.S1, C2C.S2}; therefore, the transition criterion is {t31,
t61, t104}. The time delay from {C2C.R1, C2C.R2} to
{C2C.S1, C2C.S2}was 22 time units. All firing nodes always
fire after the transition criterion is removed. Figure 8 shows
the slicing of the TPN based on property 2. As a result, the
TPN model size is summarized in Table 3. As for the satis-
faction of the MTL, the LTL property is satisfied, as shown
in Table 4. Additionally, according to Corollary 2, the time
interval from {C2C.S1, C2C.S2} to {C2C.R1, C2C.R2} is
the time interval from which the TPN runs from {t31, t61} to
t104 and is [45, 54] - [36, 41]= [9, 13], so the timing property
is satisfied. Therefore, the system property was satisfied.
In addition, we combine two properties to obtain the over-

all system property. The slicing criterion is {RG1.MSG,
RG2.MSG, C2C.R1, C2C.R2, C2C.S1, C2C.S2}, so the
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FIGURE 7. The TPN ′ where the criterion is property 1.

FIGURE 8. The TPN ′ where the criterion is property 2.

transition criterion is {t205, t505, t31, t61, t104}. The time
delay from the initial marking to RG1.MSG and RG2.MSG
is 40 time units, and from {C2C.R1, C2C.R2} to {C2C.S1,
C2C.S2}was 22 time units. Our slicing algorithm can remove
all firing nodes that always fire after the transition crite-
rion, which is the same as the sliced of the TPN based on
property 2, as shown in Figure 8. According to the satisfac-
tion of both LTL and timing property, the system property was
satisfied.

Table 3 shows the number of places and transitions of
unsliced and sliced TPNs. When comparing the sizes of the
sliced and unsliced TPN models, the sliced TPN is smaller
than the unsliced TPN.

Table 4 shows the results of state space analysis by the
TINA model checker. In terms of the number of states, the

TABLE 3. The structural models of unsliced and sliced TPNs.

state space size of the sliced TPN is smaller than that of the
unsliced TPN; furthermore, the sliced TPN still preserved all
properties of the LTL satisfaction results of the unsliced TPN,
and the sliced TPN consumed less CPU time.

Suppose that the slicing criterion is the output place set of
all transitions that fired in the same order. We then slice the
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TABLE 4. The state space analysis of unsliced and sliced TPNs.

FIGURE 9. Comparison of the number of states of the sliced TPN with
that of the unsliced TPN. On the X-axis is the order of the transitions fired
in ascending order.

TPN based on each slicing criterion and obtain a plot for the
number of states of the sliced TPN, as shown in Figure 9.

Figure 9 compares the number of states sliced from the first
transition fired to the last transition fired with the number
of states of the unsliced TPN. According to the graph, the
state space size of the sliced TPN increases considerably in
proportion to the order of the transitions fired and stays the
same at the size of the unsliced TPN at the last transition fired.

According to the study findings, our slicing algorithm may
reduce the size of the TPN for a software system with target
MTL properties preserved as the unsliced TPN decreases the
state space size. However, the sliced TPN that concerns the
target properties can vary with the MTL properties. More-
over, the order of the transitions fired can considerably influ-
ence any reductions. The early order of the transitions fired
is attached to the criterion and allows for greater reductions
while the last order of the transitions fired may not reduce the
size of the sliced TPN.

Additionally, our slicing algorithm is based on a firing
dependency graph that represents the overall behavior of a
TPN, and it can be possible to compute the global firing time

of the criteria. Therefore, our slicing algorithm may slice
a TPN where several MTL formulas do not recompute the
FDG.

V. CONCLUSION
This paper proposes an alternative dynamic TPN slicing
algorithm based on a firing dependency graph, representing
the global firing time interval of transitions, to reduce the
TPN elements irrelevant to the MTL properties’ criterion.
Furthermore, the sliced TPN that was obtained only ensured
that it had fewer enabled transitions than the unsliced TPN
and preserved all the properties of the unsliced TPN.

Our slicing algorithm does not replace traditional model
checking. However, we propose an alternative to verify the
TPN model to possibly reduce the size of a TPN; and then
the sliced TPN, which performs equivalently to the unsliced
TPN, is the input of the traditional model checking. Although
our algorithm had a cost to reduce the model, it might be
helpful for model checking to generate state space. For exam-
ple, suppose that massive real-time systems with the target
MTL formula might cause state space explosion resulting
in the inability to conduct model checking. Perhaps we can
remove a sufficient number of the transitions that do not affect
the state space to prevent state space explosion, and then the
model check can be verified.

As the slicing algorithm considers only the propositions of
MTL properties, some state space classes may not be reach-
able from their initial states. Therefore, it is recommended
that further research with time constraints of theMTL proper-
ties to account for the sliced TPN be conducted. Furthermore,
the approach may be applicable to a high-level Petri net, and
thus more complex systems with data and variables can be
verified.
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