
Received February 19, 2022, accepted April 12, 2022, date of publication April 22, 2022, date of current version May 4, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3169767

Trusted Execution Environment Hardware by
Isolated Heterogeneous Architecture
for Key Scheduling
TRONG-THUC HOANG 1,2, (Member, IEEE),
CKRISTIAN DURAN2, (Graduate Student Member, IEEE),
RONALDO SERRANO 2, (Student Member, IEEE),
MARCO SARMIENTO 2, (Graduate Student Member, IEEE),
KHAI-DUY NGUYEN 2, (Student Member, IEEE), AKIRA TSUKAMOTO 1,
KUNIYASU SUZAKI 1,3, (Member, IEEE), AND CONG-KHA PHAM 2, (Member, IEEE)
1National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
2Department of Computer and Network Engineering, The University of Electro-Communications (UEC), Tokyo 182-8585, Japan
3Technology Research Association of Secure IoT Edge Application Based on RISC-V Open Architecture (TRASIO), Tokyo 101-0022, Japan

Corresponding author: Trong-Thuc Hoang (thuc@vlsilab.ee.uec.ac.jp)

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO) under Project JPNP16007.

ABSTRACT A Trusted Execution Environment (TEE) sets a platform to secure applications based on the
Chain-of-Trust (CoT). The starting point of the CoT is called the Root-of-Trust (RoT). However, the RoT
implementation often relies on obscurity and provides little flexibility when generating keys to the system.
In this paper, a TEE System-on-a-Chip (SoC) architecture is proposed based on a heterogeneous design by
combining 64-bit Linux-capable processors with a 32-bit Micro-Controller Unit (MCU). The TEE is built
on the 64-bit cores, while the 32-bit MCU takes care of sensitive data and activities. The MCU is isolated
from the TEE side by an Isolated Bus (IBus) that sits above the conventional System Bus (SBus). Besides
the 32-bit processor, the isolated sub-system contains a Random Access Memory (RAM), a Read-Only
Memory (ROM) for storing the boot program, and another ROM for storing root keys. For cryptography
accelerators, we have 512-bit Secure Hashing Algorithm 3 (SHA3-512), 128/256-bit Advanced Encryption
Standard (AES-128/256), Ed25519, and True RandomNumber Generator (TRNG) attached to the Peripheral
Bus (PBus). Additionally, besides the public channel, the TRNGmodule also has a private channel that goes
directly to the IBus. With RoT implemented inside the isolated sub-system, the RoT is inaccessible from the
TEE side after boot. Furthermore, the hidden MCU’s secure boot program makes the key generation flexible
and could be updated for many security schemes. To summarize, the proposed design features a flexible and
secure boot procedure with complete isolation from the TEE domain. Moreover, exclusive secure storage
for the root key and cryptographic accelerators are available for the boot process. The implementation was
tested on a Virtex-7 XC7VX485T Field-Programmable-Gate-Array (FPGA). It was also synthesized in a
Very Large-Scale Integrated (VLSI) circuit with the ROHM-180nm process library.

INDEX TERMS Heterogeneous, isolation, RISC-V, secure-boot, trusted execution environment.

I. INTRODUCTION
A Trusted Execution Environment (TEE) is currently the
most common security extension for an Operating System
(OS) [1], [2]. The idea of it is to provide isolation between

The associate editor coordinating the review of this manuscript and

approving it for publication was Seok-Bum Ko .

applications, thus creating a barrier between programs. The
barrier could be implemented at multiple levels and in many
ways. The most basic implementation is the isolation done
by using privilege separation at the supervisor-mode (i.e.,
kernel-space), a pure software approach. Nowadays, recent
TEE models are gearing up with barrier enforcers imple-
mented in software and hardware at many architectural levels.

46014 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-4078-0836
https://orcid.org/0000-0002-5501-0914
https://orcid.org/0000-0002-3544-8839
https://orcid.org/0000-0003-3623-5250
https://orcid.org/0000-0002-3339-7177
https://orcid.org/0000-0003-0912-0087
https://orcid.org/0000-0001-5255-4919
https://orcid.org/0000-0002-9287-317X


T.-T. Hoang et al.: TEE Hardware by Isolated Heterogeneous Architecture for Key Scheduling

With TEE, the computer system would run a code with
the intended privileges only if that code was authenticated.
Hence, an unauthenticated or infected code cannot run on the
trusted side or gain any special right. The most common TEE
models nowadays are the Intel Software Guard eXtensions
(SGX) [3]–[6] with its variations (i.e., Haven [7]), ARM
TrustZone [8], [9] with its modifications (i.e., Komodo [10]),
and AMD Secure Encrypted Virtualization (SEV) [11] with
its descendants (i.e., AMD SEV-ES [12] and AMD SEV-
SNP [13]). However, they are closed-source TEEs; thus,
we cannot modify their boot flow or their hardware primi-
tives. Recently, with RISC-V emerging, many newly devel-
oped RISC-V-based TEE models were proposed, such as
Hex-Five MultiZone [14], Sanctum [15], TIMBER-V [16],
Keystone [17], and CUstomizable and Resilient Enclaves
(CURE) [18].

The strength of TEE relies on the Chain-of-Trust (CoT),
which is a series of cryptographic functions such as hashing,
signing, verification, and encryption. At each operating layer
(i.e., machine-mode, supervisor-mode, and user-mode), the
authentication is signed by the previous lower layer (higher
privilege) and verified by the next higher layer (lower priv-
ilege), thus creating the chain. The beginning of the CoT
is the first authentication at reset called the Root-of-Trust
(RoT). For security reasons, RoT should be inaccessible
from the Rich Execution Environment (REE) or even the
TEE processors after boot. RoT could be anything from a
randomly generated value, an asymmetric secret key, to a
device’s certificate pre-signed by a root Certificate Authority
(CA). For simplicity, in most crypto-systems, the RoT is often
elaborated from a hard-coded Read-Only Memory (ROM) or
generated locally before boot. As a result, the confidentiality
of the root key and the integrity of the whole TEE system rely
on the secure boot process to establish the RoT.

In a cryptography system, the root key is the most sensitive
data. Therefore, the innovations for protecting them have
been explored and implemented from time to time. Several
attempts have tried to protect the RoT by adding obscurity to
bury the RoT deep under many layers, thus increasing the cost
for attackers. For example, Noorman et al. [19] used a trusted
authority Intellectual Property (IP) core for key management.
The master key was generated and salted inside the IP. Then,
a Key Derivation Function (KDF) was used for obtaining
subsequent keys for each core while the generated master
keys are safe inside the IP. Zhao et al. [20] presented an RoT
by using Physical Unclonable Function (PUF), which is based
on Static Random Access Memory (SRAM) to provide better
secure storage. Qin et al. [21] proposed a TEE by combining
dynamic measurement and integrity flow control with a PUF
device for storing keys and returning program functions’
addresses. Benhani et al. [22] evaluated the security of ARM
TrustZone in Field-Programmable Gate Array (FPGA), thus
recommending isolation between secure IPs and non-secure
IPs to evade various kinds of attack models.

In the implementations mentioned above, because the RoT
is still in the TEE system, uncovering the root key becomes a

matter of time and depends on a budget of attackers. To truly
put the RoT out of the TEE system, the boot process and
key management must be done not by the TEE processors
but by another party inaccessible from the TEE-side after
boot. In the end, TEE is just an isolated environment, and
it cannot be the RoT. As a general rule of thumb, a secure
boot process with RoT is recommended to be run by hardware
primitives. Many TEEmodels begin with the assumption that
their trusted firmware was securely loaded into the stack by
a trusted hardware-assisted secure boot process. In practice,
common TEEs use extra hardware or third-party IPs. For
example, Intel SGX relied on the Intel Active Management
Technology (AMT) [23], ARM TrustZone used ARM Cryp-
toCell [24], AMD SEV required Platform Security Processor
(PSP) [25], and for RISC-V, many RoT IPs were presented,
such as Rambus CryptoManager [26] and OpenTitan [27].
To summarize, the secure boot with RoT in TEE is still an
ongoing problem that needs research and development.

With a RISC-V architecture, custom hardware can be
tailored for custom TEE, thus creating many potentials for
solving long-lasting problems. Several noteworthy security-
driven RISC-V-based hardware implementations are the
ITUS [28], [29], SiFive WorldGuard [30], HECTOR-V [31],
and CURE [18]. ITUS [28], [29] proposed a fixed hard-
ware solution for the secure boot process with RoT.
WorldGuard [30] presented a computer system with secu-
rity primitives developed for strengthening the isolation in
TEEs. HECTOR-V [31] focused on the idea of separating
REE and TEE processors. And CURE proposed a new TEE
model together with newly developed hardware primitives to
provide multiple types of enclaves (i.e., kernel-space, user-
space, and self-contained sub-space enclaves).

Although various RISC-V-based TEEs were proposed as
mentioned above, some of them relied on obscurity for pre-
serving the root key [18], [30], [31], and some others used
a fixed circuit with a specific set of constraints to do the
RoT [19], [27]–[29]. Therefore, they did not provide the
flexibility for the key generation scheme, and the attack sur-
face still exists because the RoT is still in the TEE domain.
In this paper, we propose a secure boot solutionwith hardware
RoT in an isolated architecture based on RISC-V. The pro-
posed architecture is a continuous development of the design
in [32]. Compared to the previous work, the True Random
Number Generator (TRNG), the isolated sub-system, and
the secure boot procedure are the three new things added.
The main design idea is the heterogeneous architecture of
a small and isolated 32-bit Micro-Controller Unit (MCU)
with conventional 64-bit Linux-capable TEE processors. The
hidden MCU will take care of the secure boot process and
schedule the keys, thus achieving a flexible boot program
with complete isolation from the TEE domain. At reset, the
isolated MCU will boot first, do the first authentication, and
then generate subsequent keys salted with random numbers.
After that, the TEE processors will be woken up to follow
the conventional TEE boot flow. The main bus of the isolated
sub-system is called the Isolated Bus (IBus), and it connects

VOLUME 10, 2022 46015



T.-T. Hoang et al.: TEE Hardware by Isolated Heterogeneous Architecture for Key Scheduling

to the conventional System Bus (SBus) via a master-only
TileLink protocol [33]. Therefore, the MCU can access all
the sub-modules in the System-on-Chip (SoC), but the TEE
processors cannot access the IBus peripherals. As a result,
the isolated sub-system is ideal for having secure storage
exclusively for the boot program and the root key. On the
TEE side, several crypto-cores are attached to the Peripheral
Bus (PBus), such as 512-bit Secure Hashing Algorithm 3
(SHA3-512), 128/256-bit Advanced Encryption Standard
(AES-128/256), Ed25519, and TRNG. The TRNG core used
in this paper is based on the previous work [34]. Because the
National Institute of Standard and Technology (NIST) stan-
dard requires the key generation and TRNG to be in the same
environment [35], the peripheral that wraps the TRNG core
was designed with two interfaces, one for the PBus and one
for the IBus. In TRNG peripheral wrapper, the IBus interface
has a higher priority than the PBus interface. Whenever the
isolated core issues a command to the TRNG module, the
IBus transaction will override the PBus transaction. After
finishing the IBus command, the peripheral will reset the
TRNG core to resume the PBus transaction. As a result,
the TRNG module can be shared between TEE and isolated
domains while maintaining security and performance.

To summarize, there are three main contributions of the
proposed implementation:
• TEE with isolated RoT. The heterogeneous architec-
ture was presented with a hidden MCU for the secure
boot flow and key generation. Due to the hierarchy-bus
isolation, the TEE processors cannot access the periph-
erals in the isolated sub-system, thus providing exclusive
storage for the boot code and the root key. By taking the
RoT and the secure boot process out of the TEE domain,
the complete isolation between secure boot and TEEwas
made, and the secure boot program is flexible to adapt
with future attack vectors.

• Key management scheme. A completed keys schedul-
ing was presented. Combining with the proposed
heterogeneous architecture, the secure boot flow was
realized with a hardware RoT signed by the trusted
hardware manufacturer. Furthermore, hardware manu-
facturers and OS providers can securely update their
boot program and TEE model after the chip was fabri-
cated. Finally, an end-user can attest the device or chip’s
integrity even down to the silicon level.

• Two-channel TRNG peripheral. The two-channel
TRNG implementation satisfies the NIST standard that
requires the TRNG and key generation to be in the same
environment. The TRNG core’s randomness quality was
proven not to be affected by the two-channel design [34],
and the peripheral wrapper maintains the security of the
isolated channel over the public channel.

The remainder of this paper is organized as follows.
Section II reviews the related works. Section III gives an
overview of the TEE hardware system. Section IV presents
the isolation architecture. Section V describes the secure boot
flow with the proposed key management scheme. Section VI

shows the experimental results with comparison and discus-
sion. Section VII gives a thought on the future work based on
the current limitations. And finally, Section VIII concludes
the paper.

II. RELATED WORKS
This section briefly explains the most recent security-driven
RISC-V-based computer systems, including CURE [18],
HECTOR-V [31], WorldGuard [30], and ITUS [28], [29].

A. CURE
CURE was proposed by Bahmani et al. [18]. It provides a
strong enclaves isolation for TEE based on new hardware
security primitives using RISC-V architecture. In CURE,
we can have many types of enclaves coexisted in the
same system (i.e., kernel-space, user-space, and sub-space).
To achieve that, three main hardware modifications were
added. They are the core registers for checking enclave exe-
cution, system bus arbitrator for controlling bus accesses,
and shared cache partitioning. With three proposed hardware
primitives, CURE can strengthen the isolation for TEE and
assist in protection against Side-Channel Attacks (SCAs).
The underlying mechanism is based on enclave IDs stored
in the core’s registers and propagated throughout the sys-
tem. Therefore, we can identify which enclave is currently
executed by which core. The ID values are set during the
enclave’s setup, teardown, and context switch. The bus arbi-
trator checks the access rights based on the enclave ID
whenever a memory access request happens. If there is a
violation, the transaction will be redirected to an unused,
forbidding the transaction to continue. For the enclave-to-
peripheral binding, since no party can access the memory
without permission, no encryption or authentication is done
on the communication between the enclave and the periph-
eral. For mitigating SCAs, two main methods were used,
including L1 flushing and L2 cache partitioning using a way-
based approach. For the RoT, CURE didn’t do the RoT but
assumed that the secure boot process was done on reset.
And the first bootloader stored in ROM would verify and
load the firmware, including the Secure Monitor (SM), to the
designated Random Access Memory (RAM).

B. HECTOR-V
HECTOR-V was introduced by Nasahl et al. [31]. It is a
RISC-V-based SoC tailoring for the isolation effect of the
existing TEEs. Unlike CURE, HECTOR-V was not propos-
ing a new TEE model; it enhances the security strength for
the conventional TEEs at the architectural level. HECTOR-V
design came from two main ideas, the heterogeneous multi-
core architecture and the security-hardened RISC-V Secure
CoProcessor (RVSCP). The RVSCP was designed exclu-
sively for TEE with many SCA resilient features, and the
heterogeneous design separated TEE and REE domains.
Hence, the two processors of TEE and REE are coupled
tightly together with many hardware primitives, enforcing
strong isolation between them. The underlying mechanism of

46016 VOLUME 10, 2022



T.-T. Hoang et al.: TEE Hardware by Isolated Heterogeneous Architecture for Key Scheduling

HECTOR-V centers around the trusted I/O path design [31].
The trusted I/O paths were done by the ID-identifier in
the communication fabric, thus making fine-grain pro-
tection between cores, peripherals, and Direct Memory
Access (DMA) devices. Based on the IDs, every transaction
is checked by the SMmodule, and any illegitimate access will
be turned down. The core processor ID is permanently fixed
in hardware, and the process and peripheral IDs are assigned
at run time. Since the core IDs are hard-coded directly to the
bus interface, no attacker could change those IDs. Due to the
clean separation of TEE and REE processors, all cache-based
and micro-architecture-based SCAs are prevented because
no sensitive components (i.e., caches, branch predictors, and
execution pipelines) are shared between the two domains.
The key difference of HECTOR-V from the CURE is that
a hardware module does the SM, and the concept of SM
ownership is introduced. Therefore, the SM ownership can be
dynamically transferred between participants, thus providing
a variety of uses. Only one SM owner was allowed at a time,
and only the SM owner could define the access rights of
resources.

In HECTOR-V, the secure boot process was achieved by
only allowing the first virtual core of TEE (VC0) to access the
secure storage. The access right is permanently hard-coded
and exclusively owned by the VC0. The other virtual TEE
cores can only fetch the codes from the claimable Block
RAM (BRAM). At reset, the reset unit configures the VC0 to
be the SM owner while keeping the REE processors halted.
Then, VC0 executes the Zero Stage BootLoader (ZSBL) in
the secure storage, thus making the first authentication of
the system; this is the RoT of HECTOR-V. Subsequently,
ZSBL configures the Memory Protection Unit (MPU) for
external memory access rights, like the Secure Digital card
(SD-card) or Double Data Rate (DDR) memory. Then, VC0
compares the hash value of the Berkeley BootLoader (BBL)
with the expected one in the secure storage. If the verification
is successful, the BLL will be loaded into the main memory,
and the VC0 will release the SD-card driver together with
claimed DDR memory regions. Finally, VC0 transfers the
SM owner over the REE processors and triggers the reset
unit to start the REE. Compared to CURE, HECTOR-V has
a clear secure boot procedure, while in CURE, the RoT is
assumed by reset. Furthermore, HECTOR-V guarantees that
the secrets stored in the secure storage are still protected after
boot.

C. SIFIVE WorldGuard
WorldGuard [30] was developed by SiFive for strengthening
the TEE isolation. It resembles CURE and HECTOR-V in
many ways because it also relies on the IDs implementation.
InWorldGuard, each core has a world ID, and each process on
the core has a process ID. Similar to CURE and HECTOR-V,
these IDs are propagated throughout the system, includ-
ing cores, caches, buses, memories, peripherals, and DMA
devices. The difference is that WorldGuard leverages the
Physical Memory Protection (PMP) and Physical Memory

Attributes (PMA) in the RISC-V Instruction Set Architecture
(ISA), while CURE and HECTOR-V are not. Furthermore,
HECTOR-V has an exclusive processor reserved only for
TEE, while the TEE and REE share the same processors in
WorldGuard.

Regarding the secure boot process, WorldGuard uses a
similar approach with HECTOR-V, storing the first boot-
loader and root keys in ROM at the time manufactured.
At reset, the first bootloader verifies and loads the SM into
RAM for further processing. The difference is that because
WorldGuard didn’t have an exclusive processor for the boot
process, no secure storage was exclusively assigned for the
boot procedure.

D. ITUS
ITUS is a RISC-V-based SoC aiming for a secure boot
process with RoT in TEE. The new hardware primitives
were first introduced by Kumar et al. in [28], and then
the complete secure boot procedure was implemented by
Yajya et al. in [29]. Compared to the implementations men-
tioned above, ITUS is not proposing a new TEE model
like CURE or focusing on isolating environments like
HECTOR-V and WorldGuard. It attempted to solve the RoT
problem in TEEs by a pure hardware approach using two
modules named Key Management Unit (KMU) and Code
Authentication Unit (CAU). Together, KMU and CAU pro-
vided a secure boot flow entirely out of the TEE processor’s
touch.

In the secure boot flow, CAU was used for verifying the
CoT integrity based on the Elliptic Curve Digital Signature
Algorithm (ECDSA) and SHA3 accelerators. The key gen-
eration was done in KMU using PUF and TRNG circuits.
At reset, the boot sequencer, a Finite State Machine (FSM),
activates the KMU to retrieve the root key, then passes the
root key to the CAU to generate the subsequent asymmetric
keys. Finally, if the BBL authentication successes, the boot
sequencer will wake up the TEE cores. The drawback of this
implementation is that the secure boot procedure is not flexi-
ble due to the fixed hardware solution. Furthermore, because
all the cryptographic functions used in the boot process need
to be realized in hardware, the cost of the resources will
increase significantly together with the complexity of the
chosen cryptographic functions.

III. RISC-V-BASED TEE HARDWARE SYSTEM
The proposed heterogeneous architecture is given in Figure 1.
This design is a continuous version of the one presented
in [32]. The isolated 32-bit MCU and TRNG are the twomain
differences compared to the previous architecture [32]. The
system was created by using a hardware generator written
in the Chisel library [36]. The integration was performed
based on the Chipyard framework [37]. The Chisel-based
generator was proven to be able to generate Register-Transfer
Level (RTL) codes that are friendly with Very Large Scale
Integration (VLSI) implementations [38], [39]. It can also

VOLUME 10, 2022 46017



T.-T. Hoang et al.: TEE Hardware by Isolated Heterogeneous Architecture for Key Scheduling

FIGURE 1. The proposed TEE hardware architecture.

create file artifacts such as testing scripts and Device Tree
Source (DTS) files.

To increase the flexibility of the TEE hardware framework,
several properties of the design were kept as optional and
can be reconfigured easily depend on specific requirements.
For example, the number of cores and the type of cores
can be changed. Currently, there are two types of cores
available, Rocket and BOOM [40], [41]. The ISA can be
selected from these four options of RV64GC, RV64IMAC,
RV32GC, and RV32IMAC [42]. The sizes of L1 and L2
caches can be changed. The Peripheral Component Inter-
connect express (PCIe) connection, the whole isolated sub-
system, and each crypto-core can be included or excluded
depending on needs. The default configuration used in this
paper is a dual-core system with the Rocket core first and the
BOOM core second; each core has a 16-KB instruction cache
and 16-KB data cache. By default, the ISA is RV64GC, the
size of L2 cache is 512-KB, the PCIe controller is excluded,
the isolated architecture is included, and all of the peripherals
shown in Figure 1 are included.
The processors are structured into the design by the SBus.

From the SBus, the PBus and Memory Bus (MBus) are
attached. All the SBus, MBus, and PBus are TileLink [33].
The SBus also includes the option of having a coherence
cache manager, the L2 cache. As shown in Figure 1, the PBus
contains several peripherals that can be categorized into two
groups of utility group and crypto-core group. The utility
group consists of a General-Purpose In-Out (GPIO), a Uni-
versal Asynchronous Receiver-Transmitter (UART), a ROM
for the boot program, a Serial Peripheral Interface (SPI)
for using SD-card, and an SPI for using a flash device.
All cryptographic accelerators needed for TEE are included
in the crypto-core group, such as SHA3-512, AES-128/256,
Ed25519, and TRNG.

For the OS memory space, the TEE hardware system
offers a 1-GB DDR controller. This controller is driven by an
Advanced eXtensible Interface 4 (AXI4) [43] bus connected
to the MBus via a TileLink-to-AXI4 bridge. The DDR IP
could be Altera’s or Xilinx’s depends on which FPGA is
being used. For the VLSI implementation, the MBus signals
can be exported to the outside like GPIO digital buffers.
Therefore, the fabricated chip can be mounted on an FPGA
to use that FPGA’s DDR IP as its primary OS memory.

IV. ISOLATED ARCHITECTURE
Figure 2 shows the isolated 32-bit architecture side-
by-side with the conventional 64-bit TEE system. The
isolated sub-system contains a RISC-V-based RV32IMC
IBex core [44]. The IBex was chosen because it is a small
32-bit core with tamper awareness. The main bus in the
isolated architecture is a TileLink bus named IBus, and
its peripheral contains a boot ROM for the secure Boot-
Loader (sBL), a 16-KB RAM for working memory, and
another ROM for storing the root key. Additionally, this
isolated sub-system contains its own Platform Level Inter-
rupt Controller (PLIC) and Core Local INTerrupt (CLINT).
The isolated CLINT handles internal core-level interrupts
for scheduling. Through the PLIC, the outside TEE pro-
cessors can issue commands to the isolated core for attes-
tation. Then, the IBex core handles the PLIC’s interrupts
through programs stored in its boot ROM. The connection
from the IBus to the SBus is master-only. That means all
the sub-modules below the SBus are accessible from IBus
but not the other way round. Therefore, all the information
processing inside the isolated sub-system is inaccessible from
the TEE side due to the hierarchy-bus architecture. Hence,
the isolated sub-system is ideal for storing the root key and
the initial bootloader program, the sBL. Due to the complete

46018 VOLUME 10, 2022



T.-T. Hoang et al.: TEE Hardware by Isolated Heterogeneous Architecture for Key Scheduling

FIGURE 2. The isolated sub-system implementation.

FIGURE 3. TRNG’s peripheral with two interfaces.

isolation between the two domains, in the architectural point-
of-view, the only potential threat from the public side is by
having the TEE processors exploit the interrupt channel to
request the IBex core for attestation. However, the IBex core
only responds to the external interrupts based on its program

written in the isolated boot ROM. Thus, we can modify the
IBex’s program to adapt with the attack vector if there is one.

Because the NIST standard requires the TRNG and keys
attestation to communicate in the same environment [35],
TRNG’s peripheral was designed with two interfaces,

VOLUME 10, 2022 46019



T.-T. Hoang et al.: TEE Hardware by Isolated Heterogeneous Architecture for Key Scheduling

FIGURE 4. Proposed key management scheme with the secure boot process.

as shown in Figure 2, one with blue responding to the PBus,
and one with green responding to the IBus. As a result, the
IBex core has a direct connection to the TRNG module, and
it could use the TRNG core without the risk of exposing
data to the public domain. Figure 3 shows the TRNG module
with two bus connections. In the figure, the TRNG core
highlighted in blue comes from the previous work [34]. The
generated random number can be extracted via any channel.
However, the TRNG’s peripheral is configured to respond
with a higher priority for the IBus. As shown in Figure 3,
if the isolated enable is activated, the accumulation process
will halt and prevent the shift-register from accumulating the
result. When the TRNG finishes its IBus transaction, it will
self-reset and then resume the PBus transaction if there was
one. Because the commands that come from the two channels
are not treated as equals, the TRNG’s outputs are classified
as non-independence and Identically Distributed (non-IID)
data in this case. The TRNG core was proven to pass the
NIST non-IID restart test [34]. As a result, the two-channel
TRNG’s peripheral did not affect the quality of generated
random numbers.

V. KEY MANAGEMENT AND SECURE BOOT FLOW
Figure 4 shows the key management scheme with the pro-
posed secure boot process and TEE boot flow done by the
isolated processor and TEE processors, respectively. As seen
in the figure, there are four tiers of key pairs, including
manufacturer, root, device or chip, and program. The pair
of (SM , PM ) identifies the trusted manufacturer. The pair of
(SR, PR) stands for a series of products. The pair of (SD, PD)
stands for one product. And the pair of (SK , PK ) is generated
during boot for the TEE at machine-mode (M-mode). Beyond
the flow in Figure 4, there are subsequent keys generated by
the TEE for the supervisor-mode (S-mode) and user-mode
(U-mode), i.e., SM key pair (SSM , PSM ) and enclave key pair
(SEnc, PEnc), respectively. The idea behind Figure 4 is that
the trusted manufacturer plays the role of a root CA; thus, its
public key of PM is well-known, and its certificate ofMCert. is
self-signed. One manufacturer can have many key pairs, but
each pair must be unique for each manufacturer. Because the
(SM , PM ) generation are done offline, they should be high-bit
Rivest-Shamir-Adleman (RSA) [45] keys with many years of
validity.

46020 VOLUME 10, 2022



T.-T. Hoang et al.: TEE Hardware by Isolated Heterogeneous Architecture for Key Scheduling

FIGURE 5. Boot sequence in the isolated environment.

The subsequent root’s keys of (SR, PR) are Elliptic
Curve (EC) keys, Ed25519 in this case, created by the man-
ufacturer at the design time. The root certificate of RCert. is
signed offline by the manufacturer’s secret key SM . The root’s
secret key SR is not stored in the chip, but the root’s public key
PR is stored in the isolated ROM for the ZSBL authentication.
The sBL is stored in the same place with the PR, the isolated
ROM. The content in sBL is signed previously by the SM ,
as shown in Figure 4. At reset, the IBex core executes the
sBL, and its very first task is to verify and load the ZSBL
using the given PR; this is the RoT establishment.
Next is the device or chip’s key pair generation of (SD,

PD). As shown in Figure 4, they are also generated offline by
the manufacturer or the TEE/OS provider. The device’s secret
key SD is stored in the isolated ROM, and the device’s public
key PD is stored in the public domain (i.e., on-chip ROM or
off-chip flash). The ZSBL is stored in the same place as the
PD, and it has a signature pre-signed by the root’s secret key
SR. Because the first act of the isolated processor is to verify
and load the ZSBL, this scheme allows the manufacturer or
the TEE/OS provider to update the ZSBL securely, even if the
ZSBL is stored in public as in an off-chip flash.

After verified and loaded, ZSBL then uses TRNG as seed
for the on-chip key generation, as seen in Figure 4. The
generated key pair of (SK , PK ) is stored in a public RAM
on the TEE side. Then, the device’s secret key SD is used to
sign on the program’s public key PK , thus creating the first
TEE certificate ofKCert.. The First Stage BootLoader (FSBL)
content is then loaded from the SD-card to the TEE’s main
memory, hashed, and signed by the SD. After this step, both
program’s key pair and FSBL are in the TEE’s working
memory, ready to be executed by the TEE processors. Finally,
the isolated core wakes the TEE processors to follow the
conventional TEE boot flow. Note that the program’s secret
key of SK should be clean after use, as also stated in [17]; this
is for TEE’s own sake of integrity and confidentiality.

Figure 5 shows the boot procedure in the isolated environ-
ment. This flow runs once the system is in the reset state.
At reset, the TEE processors are halted in a wait state. The
isolated processor will boot first and execute the sBL in the
isolated boot ROM. The sBL then starts to copy the ZSBL
and its signature (from an off-chip flash in this example) to
the IBex core’s working memory; this is Step 1 in the figure.
Then, the root’s public key PR, the ZSBL’s program, and

VOLUME 10, 2022 46021



T.-T. Hoang et al.: TEE Hardware by Isolated Heterogeneous Architecture for Key Scheduling

TABLE 1. Hardware overhead of the proposed TEE SoC in Virtex-7 XC7VX485T FPGA.

TABLE 2. Synthesis results of the proposed TEE SoC with ROHM-180nm process.

the ZSBL’s signature are fetched to Ed25519 crypto-core,
as seen in Step 2. Together with the usage of SHA-3, Ed25519
verifies the ZSBL’s signature and writes the result back to
the isolated RAM, as shown in Step 3. Depending on the
verify(ZSBL) result, the IBex core will jump to the ZSBL
program if the verification is valid. In Step 4, the TRNG’s
private channel is used to get a random value. The generated
random number is then fed to the Ed25519 as a seed to
generate the next key pair of (SK , PK ). In Step 4, the content
of FSBL is also loaded to the OS main memory. In Step 5,
the FSBL is hashed by the SHA-3 crypto-core, and its hash
result is delivered to the Ed25519. In Step 6, the device’s
secret key of SD is written to the write-only register in the
Ed25519 crypto-core. This write-only register of Ed25519
is not exposed to the peripheral’s register map. Therefore,

it can not be read by any party, and it can be used only for
the subsequent processing in the Ed25519 [32]. Finally, in
Step 7, Ed25519 generates the FSBL’s signature and wakes
up the TEE processors to follow the conventional TEE boot
flow. From this point forward, the procedure of loading BBL
and setting up SM using crypto-cores is the same as described
in [32].

VI. EXPERIMENTAL RESULTS
A. FPGA AND VLSI IMPLEMENTATIONS
The proposed TEE SoC in Section III is implemented in
both FPGA and VLSI with the default configuration. That
means the TEE processors are the dual-core of Rocket and
BOOM with the ISA of RV64GC; each core has 16-KB for
each instruction cache and data cache. The size of the L2

46022 VOLUME 10, 2022



T.-T. Hoang et al.: TEE Hardware by Isolated Heterogeneous Architecture for Key Scheduling

TABLE 3. Dhrystone tests comparison.

cache is 512-KB. The isolated sub-system is included, and the
IBex core has a 4-KB instruction cache. The PCIe connection
is excluded. And all modules in the utility and crypto-core
groups, as shown in Figure 1, are included.

The chosen FPGA is the Virtex-7 XC7VX485T Xilinx
FPGA, and Table 1 gives the resources utilization by total and
by different parts of the system. The entire design occupies
51.3% of the FPGA resources, and nearly half of it is because
of the BOOM core with 22.86%. The 7.64% FPGA resources
are for the Rocket core, almost one-third compared to the
BOOM core. The whole isolated sub-system costs 2.02%
FPGA resources, nearly a quarter compared to the Rocket-
core. The crypto-cores need a very few FPGA resources
with 0.0451%, 0.51%, 1.1%, 1.86%, and 0.59% for the
TRNG, Ed25519 base-point multiplication, Ed25519 sign,
SHA3-512, and AES-128/256 modules, respectively.

For the VLSI design, the TEE SoC is also synthesized by a
typical bulk process; the ROHM-180nm process library was
chosen, and Table 2 gives the results of the system together
with its submodules. The synthesis results are reported using
Cadence’s Genus tool version 18.13. According to the table,
the L2 cache costs the most die area with 48.55%, nearly
half of the chip, while consuming just 5.84% total power.
For the most power consumption, the BOOM tile, including
the core, two caches, and its floating-point unit, consumes
54.35%, more than half of the total power, while occupying
only 29.68% of the chip area. The Rocket tile has a fair
value of 10.57% and 15.66% for the total area and power
consumption, respectively. The IBex tile is relatively small,
with 4.18% and 2.14% for total size and power consumption.
Compared to the Rocket tile, the area and power overheads
of the whole isolated sub-system are 39.58% and 13.64%,
respectively.

B. COMPARISON AND DISCUSSION
For comparing cores, the Drystone test is conducted for both
IBex core and Rocket core, and Table 3 gives the experi-
mental results. Because the ISA of the IBex is RV32IMC,
the test on the Rocket core is repeated using the same
executable. The Dhrystone test is run 500 times, and the
average values are recorded. According to Table 3, the
Rocket core achieves 1.573 to 1.713-DMIPS/MHz, a good
result compared to an average processor [46]. The IBex core
scores 0.434-DMIPS/MHz, which falls into the mid-range
MCUs [47]. The DMIPS/MHz results of the Rocket core are
about 3.62× to 3.95× compared to that of the IBex core.

Table 4 shows the FPGA results compared to recent similar
implementations, and Table 5 gives the comparison regarding

the security features. For more details on ITUS, WorldGuard,
HECTOR-V, and CURE architectures, please refer to the
Section II.
In ITUS [28], [29], they tried to solve the secure boot

problem in TEE by a fixed hardware approach. The new hard-
ware modules were introduced, including CAU and KMU.
The KMU contains a PUF and a TRNG for key generation
and distribution. The CAU handles program authentication
by using an ECDSA and SHA-3 to sign and verify. Because
their solution is based solely on hardware, their approach is
not flexible. On the other hand, the IBex’s program in our
approach could do any cryptographic functions given in [29]
and [28]. The crypto-cores in our system are not necessary
for the secure boot; they just help accelerate the program.
In contrast, due to the complete hardware solution, ITUS
has to realize all cryptographic functions needed in the boot
process, thus increasing the resources significantly when the
complexity of those functions goes up. For the comparison in
Table 4, if the IBex sub-system is compared to CAU or KMU,
our work requires a smaller hardware cost. If the comparison
includes the crypto-cores, our resources are approximately
equal to ITUS with CAU+KMU.

In WorldGuard [30], a security scheme with IDs was
implemented for solid isolation between secure and non-
secure domains. The primary goal of the WorldGuard is to
strengthen the existing TEEs, not to provide a secure boot
process like our target. For the secure boot, WorldGuard
utilizes the conventional boot flow with a root key and the
first bootloader pre-stored in ROM at the time manufactured.
The bootloader then verifies and loads the SM into the main
working memory. Therefore, inWorldGuard, the RoT and the
boot program are still in the TEE domain; hence, the attack
surface still exists. Although WorldGuard opens its boot-
loader program, its hardware implementation is not opened
or reported. Thus, we cannot include WorldGuard’s size in
the comparison table.

For HECTOR-V [31], the ultimate goal was to separate
REE and TEE domains by introducing an SCA-resilience
processor exclusively for TEE. The secure boot process is
done using the TEE core. Therefore, HECTOR-V’s boot
program is flexible like our approach. However, similar to
WorldGuard, the secure storage that contains the boot pro-
gram and root key is still visible in the eyes of the TEE
processor after boot. Thus, potential threats from malicious
TEE software stacks could be realized in the future. Although
HECTOR-V’s set goal is different, we could still compare the
secure boot’s hardware requirements. Because HECTOR-V
uses the exclusive TEE processor for the boot with no cryp-
tographic accelerations, the cost of its resources will be com-
pared with ours that includes only the isolated sub-system.
The REE processor in HECTOR-V is a typical RV64GC
Rocket core, while the 32-bit TEE processor could be a
RI5CY, a REMUS, or a Frankenstein core. According to
Table 4, our implementation consumes a lower cost compared
to HECTOR-V with Remus or Frankenstein but a higher cost
compared to HECTOR-V with RI5CY.

VOLUME 10, 2022 46023



T.-T. Hoang et al.: TEE Hardware by Isolated Heterogeneous Architecture for Key Scheduling

TABLE 4. Hardware overhead of the proposed TEE SoC in Virtex-7 XC7VX485T.

TABLE 5. Comparison with recent security-driven RISC-V-based TEE SoCs, regarding the security features. , , and rank the performance from best to
worst, respectively.

In CURE [18], a new TEE model was proposed together
with new hardware primitives for fine-tuning the security
strength. The main goal of the CURE is a TEE model that
can support multi-type of enclaves while maintaining strong
isolation between them. To achieve that, new hardware mod-
ifications were added across the system at many architec-
tural levels, such as registers in the core, access controller
in the system bus, and way-based partitioning in the shared
cache. Although CURE tailors the hardware for its proposed
TEE, it considers the secure boot with RoT out of scope.
In CURE, the RoT is assumed at reset, and the secure boot
process is provided beforehand. As a result, besides security
features, we cannot include the cost of the CURE in the area
comparison Table 4.

Regarding the security-related features, Table 5 gives the
comparison with recent security-driven RISC-V-based TEE
SoCs. The comparison criteria are:
• Secure boot with RoT. Has a clear secure boot process
with RoT.

• Flexible boot process. The boot process is flexible, and
the boot program can be updated.

• TEE and secure boot isolation. The secure boot proce-
dure is done by another party, not by the TEE processors.
And the RoT is isolated from the TEE domain after boot.

• Exclusive TEE processor. TEE is executed by a dedi-
cated processor, separated from the REE domain.

• Exclusive secure storage. The proposed system has
an exclusive place to store the root key and the boot
program.

• Cryptographic accelerators. Hardware accelerators
for cryptographic functions are provided in the
system.

• SCA resilience. The ability to prevent some SCAs.
• Hardware cost. The amount of resources the proposed
architecture needs in terms of overhead ratio. Low is
∼5-10%, medium is ∼20%-25%, and high is ∼50%.

• Low porting effort. The development effort for adapt-
ing/porting the proposed design.

According to Table 5, the proposed architecture in this
paper achieves a secure and flexible boot process with
RoT that is completely isolated from the TEE domain.
Furthermore, exclusive secure storage and cryptographic
accelerators are also supported. Because the primary goal
of this paper focuses on the secure boot procedure, the
TEE-related security issues are considered out of scope. As a
result, the proposed implementation lacks SCA resilience
or exclusive TEE processor features, as shown in the
table.

46024 VOLUME 10, 2022



T.-T. Hoang et al.: TEE Hardware by Isolated Heterogeneous Architecture for Key Scheduling

VII. LIMITATIONS AND FUTURE WORK
First of all, because the main focus of this paper is the secure
boot process with isolated RoT, the TEE security-related
issues such as SCAs are out of scope for this current version.
Therefore, it is a natural development for this paper to com-
bine with an SCA-focused implementation such as CURE or
HECTOR-V. Then, the next version has not only a hidden
MCU for the secure boot process but also SCA-resilence
hardware primitives for strengthening TEEs.

The second update is also related to SCA. By using only
TRNG for seeding the key generation, as shown in Figure 4,
the system is subjected to certain TRNG fault attacks [48].
To overcome the issue, combining TRNG with a PUF could
increase the security level [49]. Moreover, introducing a PUF
to the systemmeans adding more options for developers, thus
making the overall architecture more versatile.

The next issue is about crypto-core options. Currently,
the available crypto-cores are SHA3-512, AES-128/256,
Ed25519, and TRNG. They are the minimum requirement for
a crypto-system towork. Hence, more crypto-cores need to be
developed in the near future to extend the options for devel-
opers, from the legacy crypto-functions, such as RSA [45]
and Hashed Message Authentication Code (HMAC) [50],
to the latest crypto-functions, such as ChaCha20 [51],
Poly1305 [52], and Authenticated Encryption with Associ-
ated Data (AEAD) [53].

Finally, using an on-chip ROM to store the root key
could limit the application’s range. Therefore, if we could
replace the on-chip ROM with an on-chip flash or One-Time
Programmable (OTP) memory devices, the versatility of the
proposed architecture would increase. For example, using
OTP memory can program the SD and PR keys after taped-
out, thus leading to unique keys for each chip. Similarly,
using on-chip flashmemory can re-program the keys for other
purposes. The flash and OTP memories are just for adding
options to the framework, not for security reasons.

VIII. CONCLUSION
In this paper, a TEE hardware implementation with an iso-
lated sub-system was presented. The heterogeneous archi-
tecture was tested on a Virtex-7 XC7VX485T Xilinx FPGA
and also synthesized with the ROHM-180nm process library.
The chosen isolated core is the RV32IMC IBex with the
anti-tampering feature. The isolated architecture contains a
boot ROM, RAM, and another ROM for storing the root
key. The connection from the isolated bus to the conventional
systems bus is amaster-only TileLink protocol. Therefore, the
IBex core can use all of the modules in the system, but the
TEE processors cannot access the isolated bus’ peripherals.
SHA3-512, AES-128/256, Ed25519, and TRNGmodules are
attached to the peripheral bus in the TEE domain. To satisfy
the NIST standard, the TRNG’s peripheral has two inter-
faces for the system and isolated buses. Via the isolated
bus, the IBex core has direct access to the TRNG module
with a higher priority. The FPGA implementation of the
proposed SoC costs 249,176 slices with 9,793 slices for the

isolated sub-system; the area overhead is 3.93%. For VLSI
design, the ROHM-180nm synthesis results in 63.16-mm2

and 2.12-W with 2.64-mm2 and 45.29-µW for the isolated
sub-system; the area and power overheads are 4.18% and
2.14%, respectively.

A complete key management scheme was also presented in
this paper. The device or chip will have its RoT pre-signed by
a trusted manufacturer at the time of fabrication, thus allow-
ing the end-user to attest device integrity down to the silicon
level. A complete boot flow was realized with the proposed
keys scheduling scheme. At reset, the isolated processor goes
first and does the first authentication to verify and load the
ZSBL. Then, ZSBL loads the FSBL to the TEE’s working
memory, creates the FSBL’s signature, and prepares the envi-
ronment for the TEE processors. Finally, the isolated pro-
cessor wakes up TEE processors to follow the conventional
TEE boot flow. The proposed design achieved a secure boot
process with isolated RoT. Furthermore, exclusive secure
storage and cryptographic accelerators are available in the
system, the boot flow is flexible, and the boot program can
be updated for future attack models.

ACKNOWLEDGMENT
This work was supported through the activities of VDEC, The
University of Tokyo, in collaboration with Cadence Design
Systems and Mentor Graphics.

REFERENCES
[1] M. Sabt, M. Achemlal, and A. Bouabdallah, ‘‘Trusted execution envi-

ronment: What it is, and what it is not,’’ in Proc. IEEE Trust-
com/BigDataSE/ISPA, vol. 1, Aug. 2015, pp. 57–64.

[2] S. Sau, J. Haj-Yahya, M. M. Wong, K. Y. Lam, and A. Chattopad-
hyay, ‘‘Survey of secure processors,’’ in Proc. Int. Conf. Embedded
Comput. Syst., Architectures, Modeling, Simulation (SAMOS), Jul. 2017,
pp. 253–260.

[3] Intel Corporation. Intel Software Guard Extensions (Intel SGX) Developer
Guide. Accessed: Apr. 17, 2022. [Online]. Available: https://download.
01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf

[4] V. Costan and S. Devadas, ‘‘Intel SGX explained,’’ Cryptol. ePrint Arch.,
MIT Comput. Sci. Artif. Intell. Lab., 32 Vassar St, Cambridge, MA,
USA, Tech. Rep., 2016/086, Jan. 2016. [Online]. Available: https://eprint.
iacr.org/2016/086.pdf

[5] V. Costan, I. Lebedev, and S. Devadas, Secure Processors Part I: Back-
ground, Taxonomy for Secure Enclaves and Intel SGX Architecture.
La Habra, CA, USA: Now Foundations and Trends, Jul. 2017.

[6] C. Victor, L. Ilia, and D. Srinivas, Secure Processors Part II: Intel
SGX Security Analysis and MIT Sanctum Architecture. La Habra, CA,
USA: Now Foundations and Trends, Jul. 2017. [Online]. Available:
https://people.csail.mit.edu/devadas/pubs/part_2.pdf

[7] A. Baumann, M. Peinado, and G. Hunt, ‘‘Shielding applications from
an untrusted cloud with haven,’’ in Proc. USENIX Symp. Operating
Syst. Design Implement. (OSDI), Broomfield, CO, USA, Oct. 2014,
pp. 267–283.

[8] ARM Security Technology: Building a Secure System using
TrustZone Technology, document PRD29-GENC-009492C, ARM,
Apr. 2009. [Online]. Available: https://documentation-service.arm.
com/static/5f212796500e883ab8e74531?token=

[9] S. Pinto and N. Santos, ‘‘Demystifying arm TrustZone: A comprehensive
survey,’’ ACM Comput. Surv., vol. 51, no. 6, pp. 1–36, Nov. 2019.

[10] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, ‘‘Komodo: Using
verification to disentangle secure-enclave hardware from software,’’ in
Proc. Symp. Operating Syst. Princ. (SOSP), Shanghai, China, Oct. 2017,
pp. 287–305.

[11] R. Buhren, C. Werling, and J.-P. Seifert, ‘‘Insecure until proven updated:
Analyzing AMD SEV’s remote attestation,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., London, U.K., Nov. 2019, pp. 1087–1099.

VOLUME 10, 2022 46025



T.-T. Hoang et al.: TEE Hardware by Isolated Heterogeneous Architecture for Key Scheduling

[12] D. Kaplan. (Feb. 2017). Protecting VM Register State With SEV-
ES. [Online]. Available: https://www.amd.com/system/files/TechDocs/
Protecting%20VM%20Register%20%State%20with%20SEV-ES.pdf

[13] (Jan. 2020). AMD SEV-SNP: Strengthening VM Isolation with
Integrity Protection and More. [Online]. Available: https://www.amd.
com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-
integrity-protection-and-more.pdf

[14] Hex Five Security.MultiZone Hex-Five Security. Accessed: Apr. 17, 2022.
[Online]. Available: https://hex-five.com/

[15] V. Costan, I. Lebedev, and S. Devadas, ‘‘Sanctum: Minimal hardware
extensions for strong software isolation,’’ in Proc. 25th USENIX Secur.
Symp. (USENIX Security), Aug. 2016, pp. 857–874.

[16] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and
A.-R. Sadeghi, ‘‘TIMBER-V: Tag-isolated memory bringing fine-grained
enclaves to RISC-V,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., San Diego,
CA, USA, Feb. 2019, pp. 1–15.

[17] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song,
‘‘Keystone: An open framework for architecting trusted execution envi-
ronments,’’ in Proc. 15th Eur. Conf. Comput. Syst. (EuroSys), Apr. 2020,
pp. 1–16.

[18] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek,
A.-R. Sadeghi, and E. Stapf, ‘‘CURE: A security architecture with cus-
tomizable and resilient enclaves,’’ in Proc. USENIX Secur. Symp. (USENIX
Security), Aug. 2021, pp. 1073–1090.

[19] J. Noorman, J. V. Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel,
I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling, ‘‘Sancus 2.0:
A low-cost security architecture for IoT devices,’’ ACM Trans. Privacy
Secur., vol. 20, no. 3, pp. 1–33, Aug. 2017.

[20] S. Zhao, Q. Zhang, G. Hu, Y. Qin, and D. Feng, ‘‘Providing
root of trust for ARM TrustZone using on-chip SRAM,’’ in Proc.
4th Int. Workshop Trustworthy Embedded Devices (TrustED), 2014,
pp. 25–36.

[21] Y. Qin, J. Liu, S. Zhao, D. Feng, and W. Feng, ‘‘RIPTE: Runtime integrity
protection based on trusted execution for IoT device,’’ Secur. Commun.
Netw., vol. 2020, pp. 1–14, Sep. 2020.

[22] E. M. Benhani, L. Bossuet, and A. Aubert, ‘‘The security of ARM
TrustZone in a FPGA-based SoC,’’ IEEE Trans. Comput., vol. 68, no. 8,
pp. 1238–1248, Aug. 2019.

[23] Intel Corporation. Intel ActiveManagement Technology (AMT) Developers
Guide. Accessed: Apr. 17, 2022. [Online]. Available: https://www.intel.
com/content/www/us/en/develop/documentation/amt-developer-guide/
top.html

[24] ARM. ARM Security IP: CryptoCell-700 Family. Accessed: Apr. 17, 2022.
[Online]. Available: https://developer.arm.com/ip-products/security-ip/
cryptocell-700-family

[25] Inside a Deeply Embedded Security Processor. Accessed: Apr. 17, 2022.
[Online]. Available: https://i.blackhat.com/USA-20/Wednesday/us-20-
Buhren-All-You-Ever-Wanted-To-Know-About-The-AMD-Platform-
Security-Processor-And-Were-Afraid-To-Emulate.pdf

[26] Rambus. Security CryptoManager Provisioning. Accessed: Apr. 17, 2022.
[Online]. Available: https://www.rambus.com/security/provisioning-and-
key-management/cryptomanager-infrastructure/

[27] LowRISC CIC. (2020). OpenTitan. [Online]. Available: https://github.
com/lowRISC/opentitan

[28] V. B. Y. Kumar, A. Chattopadhyay, J. Haj-Yahya, and A. Mendelson,
‘‘ITUS: A secure RISC-V system-on-chip,’’ in Proc. 32nd IEEE Int. Syst.-
on-Chip Conf. (SOCC), Sep. 2019, pp. 418–423.

[29] J. Haj-Yahya, M. M. Wong, V. Pudi, S. Bhasin, and A. Chattopadhyay,
‘‘Lightweight secure-boot architecture for RISC-V System-on-Chip,’’ in
Proc. 20th Int. Symp. Quality Electron. Design (ISQED), Mar. 2019,
pp. 216–223.

[30] SiFive. Securing the RISC-V Revolution. Accessed: Apr. 17, 2022.
[Online]. Available: https://www.sifive.com/technology/shield-soc-
security

[31] P. Nasahl, R. Schilling, M. Werner, and S. Mangard, ‘‘HECTOR-V: A
heterogeneous CPU architecture for a secure RISC-V execution envi-
ronment,’’ in Proc. ACM Asia Conf. Comput. Commun. Secur. New
York, NY, USA: Association for Computing Machinery, May 2021,
pp. 187–199.

[32] T.-T. Hoang, C. Duran, D.-T. Nguyen-Hoang, D.-H. Le, A. Tsukamoto,
K. Suzaki, and C.-K. Pham, ‘‘Quick boot of trusted execution environment
with hardware accelerators,’’ IEEE Access, vol. 8, pp. 74015–74023, 2020.

[33] SiFive. (Aug. 2019). SiFive TileLink Specication. [Online]. Available:
https://www.sifive.com/documentation/tilelink/tilelink-spec/

[34] R. Serrano, C. Duran, T.-T. Hoang, M. Sarmiento, K.-D. Nguyen,
A. Tsukamoto, K. Suzaki, and C.-K. Pham, ‘‘A fully digital true random
number generator with entropy source based in frequency collapse,’’ IEEE
Access, vol. 9, pp. 105748–105755, 2021.

[35] E. Barker, A. Roginsky, and R. Davis, ‘‘Recommendation for cryp-
tographic key generation,’’ Nat. Inst. Standards Technol. (NIST),
Gaithersburg, MD, USA, Tech. Rep. NIST.SP.800-133r2, 2020. [Online].
Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-133r2.pdf, doi: 10.6028/NIST.SP.800-133r2.

[36] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, ‘‘Chisel: Constructing hardware in a scala
embedded language,’’ in Proc. Design Autom. Conf. (DAC), Jun. 2012,
pp. 1212–1221.

[37] University of California at Berkeley. (2020). Chipyard: An Agile RISC-
V SoC Design Framework With in-Order Cores, Out-of-Order Cores,
Accelerators, and More. [Online]. Available: https://github.com/ucb-
bar/chipyard

[38] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, ‘‘Reusability is FIR-
RTL ground: Hardware construction languages, compiler frameworks, and
transformations,’’ in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2017, pp. 209–216.

[39] P. S. Li, A. M. Izraelevitz, and J. Bachrach, ‘‘Specification for
the FIRRTL language,’’ Dept. EECS, Univ. California, Berkeley,
Berkeley, CA, USA, Tech. Rep. UCB/EECS-2016-9, Feb. 2016.
[Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/
EECS-2016-9.html

[40] RISC-V Foundation. (2019). Rocket Chip Generator. [Online]. Available:
https://github.com/chipsalliance/rocket-chip

[41] J. Zhao, B. Korpan, A. Gonzalez, andK. Asanovic, ‘‘SonicBOOM: The 3rd
generation Berkeley out-of-order machine,’’ in Proc. Workshop Comput.
Arch. Res. RISC-V, May 2020, pp. 1–7.

[42] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, ‘‘The
RISC-V instruction set manual, volume I: User-level ISA, version
2.0,’’ Dept. EECS, Univ. California, Berkeley, Berkeley, CA, USA,
Tech. Rep. UCB/EECS-2014-54, May 2014. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[43] AMBA AXI and ACE Protocol Specification, document ARM IHI 0022D,
ARM, 2013. [Online]. Available: https://developer.arm.com/architectures/
system-architectures/amba/specifications

[44] LowRISC CIC. (2020). Ibex RISC-V Core. [Online]. Available:
https://github.com/lowRISC/ibex

[45] R. L. Rivest, A. Shamir, and L. Adleman, ‘‘A method for obtaining digital
signatures and public-key cryptosystems,’’ Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[46] R. Longbottom. (Oct. 2021). Dhrystone Benchmark Results On PCs.
[Online]. Available: http://www.roylongbottom.org.uk/dhrystone
%20results.htm

[47] Stratify Labs. (May 20, 2019). Dhrystone Benchmarking on MCUs.
[Online]. Available: https://blog.stratifylabs.co/device/2019-05-20-
Dhrystone-Benchmarking-on-MCUs/

[48] H. Martín, T. Korak, E. S. Millán, and M. Hutter, ‘‘Fault attacks on
STRNGs: Impact of glitches, temperature, and underpowering on random-
ness,’’ IEEE Trans. Inf. Forensics Security, vol. 10, no. 2, pp. 266–277,
Feb. 2015.

[49] S. Larimian, M. R. Mahmoodi, and D. B. Strukov, ‘‘Lightweight inte-
grated design of PUF and TRNG security primitives based on eFlash
memory in 55-nm CMOS,’’ IEEE Trans. Electron Devices, vol. 67, no. 4,
pp. 1586–1592, Apr. 2020.

[50] H. Krawczyk, M. Bellare, and R. Canetti,HMAC: Keyed-Hashing for Mes-
sage Authentication, document RFC2104, Feb. 1997. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc2104

[51] D. J. Bernstein. (Jan. 2008). ChaCha, a Variant of Salsa20. [Online].
Available: https://cr.yp.to/chacha/chacha-20080128.pdf

[52] D. J. Bernstein, ‘‘The Poly1305-AES message-authentication code,’’
in Proc. Int. Conf. Fast Softw. Encryption (FSE), Feb. 2005,
pp. 32–49.

[53] Y. Nir and A. Langley, ChaCha20 and Poly1305 for IETF Protocols,
document RFC8439, Jun. 2018. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc8439

46026 VOLUME 10, 2022

http://dx.doi.org/10.6028/NIST.SP.800-133r2


T.-T. Hoang et al.: TEE Hardware by Isolated Heterogeneous Architecture for Key Scheduling

TRONG-THUC HOANG (Member, IEEE) received
the B.Sc. and M.S. degrees in electronic engi-
neering from the Ho Chi Minh University of
Science (HCMUS), HoChiMinh City, Vietnam, in
2012 and 2017, respectively, and the Ph.D. degree
in engineering from The University of Electro-
Communications (UEC), Tokyo, Japan, in 2022.
From 2012 to 2017, he was a Lecturer Assistant
with HCMUS. From 2019 to 2020, he was a
Research Assistant with UEC. From 2019 to 2022,

he was a Research Assistant with the Cyber-Physical Security Research
Center (CPSEC), National Institute of Advanced Industrial Science and
Technology (AIST), Tokyo. Since April 2022, he has been an Assistant
Professor with the Department of Computer and Network Engineering,
UEC. His research interests include digital signal processing, computer
architecture, cyber-security, and ultra-low power system-on-a-chip.

CKRISTIAN DURAN (Graduate Student Member,
IEEE) received the B.Sc. degree in electron-
ics and the M.S. degree in telecommunications
from the Universidad Industrial de Santander
(UIS), Bucaramanga, Colombia, in 2014 and 2017,
respectively, where he is currently the Ph.D.
degree in electronics engineering. He is also a
Research Assistant at The University of Electro-
Communications (UEC), Tokyo, Japan.

RONALDO SERRANO (Student Member, IEEE)
received the B.Sc. degree in electronics from
the Universidad Industrial de Santander (UIS),
Bucaramanga, Colombia, in 2020. He is cur-
rently a Research Assistant with The University
of Electro-Communications (UEC), Tokyo, Japan.
His research interests include computer architec-
ture, high-speed digital interfaces, and hardware
for security.

MARCO SARMIENTO (Graduate Student
Member, IEEE) received the B.Sc. degree
in electronics from the Universidad Industrial
de Santander (UIS), Bucaramanga, Colombia,
in 2020. He is currently a Research Assistant
with The University of Electro-Communications
(UEC), Tokyo, Japan. His research interests
include debugging and security for integrated
systems.

KHAI-DUY NGUYEN (Student Member, IEEE)
received the B.Sc. degree in electronics from
the University of Science and Technology, The
University of Danang, Danang, Vietnam. He is
currently a ResearchAssistant with TheUniversity
of Electro-Communications (UEC), Tokyo, Japan.
His research interests include computer architec-
ture and digital design.

AKIRA TSUKAMOTO received theM.S. degree in
computer science from Columbia University, New
York, USA. He currently works at the National
Institute of Advanced Industrial Science and Tech-
nology (AIST). He has worked on products based
on cell/B.E. and ARM. His main areas of inter-
est include software engineering on a networks,
operating systems, and system security, and he is
enthusiastic regarding any technical development.

KUNIYASU SUZAKI (Member, IEEE) received
the B.E. and M.E. degrees in computer science
from the Tokyo University of Agriculture and
Technology and the Ph.D. degree in computer
science from The University of Tokyo, Tokyo,
Japan. He is currently a Senior Researcher with the
National Institute of Advanced Industrial Science
and Technology (AIST) and a Researcher with the
Technology Research Association of Secure IoT
Edge Application Based on RISC-V Open Archi-

tecture (TRASIO). His research interests include security on CPU, operating
systems, and hypervisor.

CONG-KHA PHAM (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in electronics
engineering fromSophia University, Tokyo, Japan.
He is currently a Professor with the Department of
Information and Network Engineering, The Uni-
versity of Electro-Communications (UEC), Tokyo.
His research interests include the design of analog
and digital systems using integrated circuits.

VOLUME 10, 2022 46027


