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ABSTRACT With cloud storage services, users can store their data in the cloud and efficiently access the data
at any time and any location. However, when data are stored in the cloud, there is a risk of data loss because
users lose direct control over their data. To solve this problem, many cloud storage auditing techniques have
been studied. In 2019, Tian et al. proposed a public auditing scheme for shared data that supports data privacy,
identity traceability, and group dynamics. In this paper, we point out that their scheme is insecure against
tag forgery or proof forgery attacks, which means that, even if the cloud server has deleted some outsourced
data, it can still generate valid proof that the server had accurately stored the data. We then propose a new
scheme that provides the same functionalities and is secure against the above attacks. Moreover, we compare
the results with other schemes in terms of computation and communication costs.

INDEX TERMS Public auditing, privacy-preserving, shared data, group management.

I. INTRODUCTION
Cloud storage provides users with significant storage capacity
and advantages such as a cost reduction, scalability, and
convenient access to the stored data. Therefore, cloud storage
that is managed and maintained by professional cloud service
providers (CSPs) is widely used by many enterprises and
personal clients [1]. Once the data are stored in cloud storage,
the clients lose direct control over the stored files. Despite
this, the CSPs must ensure that the client data are placed in
cloud storage without any modification or substitution. The
simplest way to achieve this is by checking the integrity of
the stored data after downloading. When the capacity of the
stored data is large, it is quite inefficient, and thus many
methods for verifying the integrity of the data stored in the
cloud without a full download have been proposed [2]–[34].

These techniques are called cloud storage auditing and can
be classified into private auditing and public auditing accord-
ing to the subject of the integrity verification. In private audit-
ing, verification is achieved by users who have ownership of
the stored data. Public auditing is conducted by a third-party
auditor (TPA) on behalf of the users to reduce their burden,
and thus public auditing schemes are more widely employed
for cloud storage auditing. Public auditing schemes provide
various properties depending on the environment, such as
privacy preservation [5]–[9], data dynamics [10]–[13], and
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shared data [14]–[33]. Privacy-preserving auditing is used to
conduct an integrity verification while protecting data infor-
mation from the TPA, and dynamic data auditing is where
legitimate users are free to add, delete, or change the stored
data. Shared data auditing means freely sharing data within
a legitimate user group. In this case, a legitimate user group
should be defined, and user addition and revocation should be
carefully considered. Recently, schemes that satisfy identity
traceability, a concept that can trace the abnormal behavior
of legitimate users in shared data auditing, have also been
proposed.

Tian et al. [25] proposed a scheme that supports pri-
vacy preservation, data dynamics, and identity traceability
in shared data auditing. For efficient user enrollment and
revocation, the authors adopted the lazy revocation technique.
Moreover, to secure the design against collusion attacks
between the revoked user and server, they apply a technique in
which the group manager manages messages and tag blocks
generated by the revoked user to the scheme. Because the
lazy-revocation technique is applied to the scheme, even if
a user is revoked, no additional operation occurs until addi-
tional changes are made to the block.

In this paper, we show that Tian et al.’s scheme [25] is
insecure against two types of attacks, a tag forgery and a proof
forgery, and proposed a new scheme that provides the same
functionality and is secure against the above attacks. In this
scheme, a tag forgery is possible by exploiting the vulnera-
bility in which the tag is created in a malleable way, and a
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proof forgery is possible by exploiting the secret value being
exposed to the server when additional changes to the block
occur after the user is revoked. In general, the contributions
of this study can be summarized as follows:

1. We show that Tian et al.’s scheme [25] is insecure
against two types of attacks: tag and proof forgeries.
In tag forgery, we show that an attacker can create a
valid tag for the modified message without knowing
any secret values. In the proof forgery, we show that
an attacker can create a valid proof for the given chal-
lenged message even if some files stored on the cloud
have been deleted.

2. We design a new public auditing scheme that is secure
against the above attacks and has the same functional-
ities, such as privacy preservation, data dynamics, data
sharing, and identity traceability. We changed the tag
generation method to eliminate the malleable property
and the data proof generation method to enhance the
privacy preservation. We also changed the lazy revo-
cation process to protect the secret information from
the CSP and proposed an active revocation process to
flexibly apply the various environments.

3. We formally prove the security of the proposed scheme.
According to the theorems, the attacker cannot generate
a valid tag and proof without knowing the secret values
or the original messages, respectively. We also provide
comparison results with other schemes in terms of the
computation and communication costs.

The rest of this paper is organized as follows. In Section II,
we introduce the background, and in Section III, we review
Tian et al.’s scheme [25]. We present our detailed scheme for
public auditing in Section IV, and provide the security and
efficiency of our scheme in Section V. Finally, we conclude
this paper in Section VI.

A. RELATED WORK
Ateniese et al. [2] first introduced a provable data possession
scheme called PDP and provided two provably secure PDP
schemes using RSA-based homomorphic authenticators. This
supports public verification with lower communication and
computation costs. At the same time, Juels et al. [3] first
proposed the concept and a formal security model of proof of
retrievability (POR) and a sentinel-based POR scheme with
certain properties. Later, Shacham et al. [4] improved the
POR scheme and proposed a new public auditing scheme
that was built from the BLS signature [36] and is secure
in the random oracle model. In recent years, many studies
have been conducted on cloud storage auditing, supporting
various functionalities such as data privacy preservation, data
dynamics, and shared data.

Erway et al. [10] first proposed the PDP scheme using
a rank-based authenticated skip list to support data dynam-
ics. However, the scheme suffers from high computational
and communication costs, and to address this concern,
Wang et al. [11] proposed a new auditing scheme employing
the Merkle Hash Tree (MHT), which is much simpler.

However, this scheme does not provide data privacy; in
other words, it cannot protect data confidentiality from a
third-party auditor (TPA). Although Wang et al. [5] pro-
posed a privacy-preserving public auditing scheme, their
approach requires heavy communication and computation
costs in the audit and data update process. Zhu et al. [12]
also proposed a new scheme using another authenticated
data structure, called an index hash table (IHT), to support
data dynamics. Although this scheme succeeded in reduc-
ing the communication and computation costs, it did not
resolve the inefficient problem of lookup and updating oper-
ations. Shen et al. [13] proposed a new efficient scheme with
a doubly linked information table and location array. Tian et
al. [25] recently proposed a more efficient scheme using a
dynamic hash table (DHT), which has been proven to bemore
effective than IHT for data updating [12]. In terms of data
privacy, Wang et al. [5] first proposed a privacy-preserving
public auditing scheme to protect data privacy through ran-
dom masking, and many schemes for predicting data privacy
have been studied [6]–[9]. As a follow-up, many studies
that satisfy additional properties and data privacy have been
proposed. In particular, many studies have been conducted
on public auditing schemes for shared data. Wang et al. [14]
proposed an efficient public auditing scheme called Knox
for shared data. The scheme supports hiding the identity of
individual users based on a group signature, but does not
support a user revocation. In Oruta [15], a ring signature
is used to hide the identity of individual users; however,
the scheme also has a problem in that all user keys and
block tags must be regenerated to provide a user revoca-
tion. Wang et al. [16] also proposed a scheme that can
achieve a user revocation using a proxy re-signature. The
scheme utilizes a proxy for a resigning used to update the
tag generated by the revoked user; however, it is vulnerable
to collusion attacks between an invalid user and the cloud
server. In addition, Jiang et al. [17] proposed a new public
auditing scheme that combines a vector commitment [37] and
a verifier-local-revocation group signature [38]. During the
revocation phase, the computational costs are relatively high
because it is necessary to first find the tags generated by the
revoked user and regenerate them. Yu et al. [18], [19] also
proposed a new scheme using polynomial authentication tags
and proxy re-signatures. Although this scheme can reduce
the communication overhead during verification, it can suffer
from a collusion attack because the revoked user still has
a valid private key and might collude with the CSP. Sub-
sequently, another cloud storage auditing scheme for data
sharing based on group signatures was proposed [20]–[33].
Wu et al. [24] proposed an efficient threshold privacy-
preserving cloud storage auditing scheme, which does not
rely on a group or ring signature; therefore, it is more efficient
than other schemes using heavy cryptographic primitives.
Chang et al. [26] also proposed a new scheme with an
oblivious transfer and stateless lazy re-encryption to provide
an efficient user revocation. Most of these studies have a
problem in that it is possible to access sensitive informa-
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FIGURE 1. System Model.

tion of the data owner. To address this, Shen et al. [22] pro-
posed a practical identity-based shared data integrity auditing
scheme using a sanitizable signature [39]. However, it can
be vulnerable because the scheme needs a secure channel
between the data owner and the sanitizer, and any user can
access the shared data. Xu et al. [27] proposed a PP-CSA
scheme for data sharing, where only the authorized user can
access the data, and there is no need to establish a secure
channel between the data owner and the sanitizer. These
schemes provide a function to hide sensitive information but
have limitations in not providing user revocation or data
dynamics. In addition, the integrity auditing scheme [35]
using keywords in encrypted data and a more secure auditing
scheme [34] providing forward security have been recently
proposed, but these schemes are not suitable for our target
environment. Many schemes have been proposed, but none
of these schemes satisfy the above-mentioned security except
for the scheme proposed by Tian et al. [25]. We point out
the security issue of Tian et al.’s scheme [25] and propose an
improved scheme.

II. BACKGROUND
A. SYSTEM MODEL
The system model of our scheme consists of a cloud service
provider (CSP); a group of users, who can be divided into
legitimate users and a group manager (GM); and a third-party
auditor (TPA). The CSP manages many cloud servers and
provides cloud storage services to a group of users. A legit-
imate user can access and modify all shared data. They can
generate a block tag for a modified data block. The GMman-
ages a group of users, including user enrollment, revocation,
and tracing user operations. The TPA conducts an integrity
check for shared data on behalf of the group of users.

B. COMPLEXITY ASSUMPTIONS
COMPUTATIONALDIFFIE-HELLMAN (CDH)ASSUMPTION. An algo-
rithm A is given a tuple g, ga, gb ∈ G and tries to find
gab ∈ G. We assume that there is no algorithm A with a
non-negligible probability ε such that

Pr[A(g, ga, gb) = gab] ≥ ε,

where the probability is over the random choice of g ∈ G, the
random choice of a, b ∈ Z∗p, and the random bits of A.

C. REVOCATION
We can consider two types of user revocation: active and lazy
revocations. An active revocation means that when a certain
user is revoked, the user’s revocation process is applied by
immediately updating information related to the user. A lazy
revocation refers to a method of waiting for other legitimate
users to update the related information without immediately
updating information related to that user, even if a user is
revoked. This method is more efficient than an active revoca-
tion because it does not need to apply the revocation process
whenever the user is revoked. In this study, we designed both
revocation methods such that the revocation method can be
flexibly applied to various environments.

D. EXTENDED DYNAMIC HASH TABLE
To manage the data blocks handled by revoked users, we use
an extended dynamic hash table (EDHT) [25]. The table
consists of the index of the file (No), the identifier (ID)
of file F , and a pointer indicating its first block element,
and all block elements are implemented using a linked list.
Each block element contains five fields, namely, the current
version of the block vi,j, its time stamp ti,j, a revocation flag,
a revocation parameter λi,k , and a pointer indicating the next
node. The revocation flag can be recorded as true of false.
If true, it means that the block was most recently changed
by a revoked user; otherwise, it means that the data block
was changed by a legitimate user. The revocation parameter
is recorded only when the revocation flag is true, and the
value is generated by the groupmanager during the revocation
process.

E. MODIFICATION RECORD TABLE
The modification record table (MRT) is a table in which the
group manager records operations for each block to provide
identity traceability and is a two-dimensional data struc-
ture [25]. It records all modified blocks and related operation
information by managing two types of data: block items and
operation items. All block items are implemented using a
linked list, and each item contains its block identifier bi,
a pointer indicating the next block, and a pointer indicating
the first operation item. All operation items are implemented
using a linked stack in which the first recorded operation is
the latest operation, and each item contains the identifier ui,j
of the user who modified the data block, the operation opi,j,
and the timestamp ti,j. The MRT is maintained by the group
manager, and it should be updated when a user modifies some
data blocks.

III. REVIEW TIAN et al.’s SCHEME
A. TIAN et al.’s SCHEME
Let groups G1 and GT be multiplicative cyclic groups of a
large prime order p, i.e., g and g1, and µ be the generators of
group G1. A bilinear map is defined as e : G1 × G1→ GT .
Here,H is a secure hash function such thatH : {0, 1}∗→ Z∗p,
and F = {m1, . . . ,mn} is the shared data file divided into
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TABLE 1. Definitions and notations.

n blocks. In the data sharing group U = {u1, u2, . . . , uw},
there are w users, where u1 is the data owner and also acts as
the group manager, with the others being valid group users.
Tian et al.’s scheme [25] consists of five algorithms:KeyGen,
TagGen, Challenge, ProofGen, and Verify.
KeyGen. The group manager randomly chooses a1← Z∗p

and calculates y1 = ga1 as his secret/public key pair and
randomly chooses ai ← Z∗p as ui’s secret key and calculates
yi = y11/ai as ui’s public key.

TagGen. For each block mi, user uj generates a signature
σi on his secret key skj = aj as

σi = (µH (vi||ti) · g1mi )aj , (1)

where vi is the version number, and ti is the time stamp of
block mi. User uj uploads {mi, σi} to the CSP, and records
additional information to the EDHT. When a data block is
modified, the group manager adds the operation information
into the MRT and asks the TPA to update the additional
information of the block in the EDHT. The group manager
also computes a file tag δ = ID||SIG(sk1, ID) to ensure the
integrity of the ID, where SIG(sk1, ID) is the signature on ID
under the private key sk1 and sends it to the CSP.
Challenge. The TPA first retrieves the file tag δ and ver-

ifies the signature SIG(sk1, ID) using the public key pk1 of
the group manager. If the verification fails, the TPA directly
quits the verification by emitting a FALSE; otherwise, it gen-
erates challenge information as follows: (1) The TPA selects
c random data blocks, which are not modified by the revoked
users, and generates a challenge block set IDX = {idxi|1 ≤
i ≤ c, c ≤ n} and chooses a set S = {si|i ∈ IDX}, where
si ∈ Z∗p. (2) Let RU-blocks be the data blocks modified by the
revoked users, and D be the index set of all the RU-blocks.

For each i ∈ D, the TPA calculates βi = λi/η, where η is
a random number, and λi is the revocation parameter of the
i-th block. (3) Letting the set of all legal users in the group
be UL and the set of all revoked users in the group be UR
for each i ∈ UL , the TPA computes γi = yiw = gw·a1/ai ,
and for each i ∈ UR, it computes τi = yiw/ε = gw/ε·a1/ai ,
where ε ∈ Z∗p and w ∈ Z∗p are two random numbers. The
TPA then sends the challenge values chal = (IDX , S, {βi|i ∈
D}, {γi|i ∈ UL}, {τi|i ∈ UR}) to the CSP.

ProofGen. After receiving the challenge message chal =
(IDX , S, {βi|i ∈ D}, {γi|i ∈ UL}, {τi|i ∈ UR}), the CSP
provides proof for the challenged blocks. For the challenged
blocks, the CSP calculates the tag proof 8 as

8 =
∏
i∈IDX

e(σi, γj)si , (2)

where j ∈ UL , and the i-th block is last modified by the jth
user. The CSP then calculates the data proof �1 as

�1 =
∑
i∈IDX

mi · si + r, (3)

where r ∈ Z∗p is a random number that is used to protect data
privacy against TPA.

For all RU-blocks, the CSP calculates the tag proof T as
follows:

T =
∏
i∈D

e(σi, τj)βi , (4)

where j ∈ UR, and the i-th block is last modified by the jth
user. The CSP then calculates the data proof �2 as

�2 =
∑
i∈D

mi · βi + r . (5)

During a user revocation, the group manager produces
the post-revocation authenticator 3, which is maintained by
the CSP. Moreover, the CSP computes the auxiliary auditing
factor as

2 = e(g1, y1)−r . (6)

Finally, the CSP sends the proof P = {8,T , �1, �2,3,2}

to the TPA.
Verify. With the proof that P = {8,T , �1, �2,3,2},

the TPA verifies the integrity of the chosen blocks. If there
is no revoked user or all RU-blocks have been modified by
the other users in UL , the TPA can verify the correctness of
the data file; otherwise, the TPA verifies the post-revocation
authenticator by computing the following equation:

3 = T η·ε/w. (7)

If (7) does not hold, the TPA outputs Reject; otherwise, the
TPA can be verified as

8 · T η·ε = e(µ1B · g1�, y1)w ·2w·(η+1), (8)

where Bi = H (vi||ti), 1B =
∏

i∈IDX Bisi +
∏

k∈D Bkλk , and
� = �1 + �2 · η. If (8) holds, the TPA outputs Accept;
otherwise, it outputs Reject .
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Revocation. When user ux needs to be revoked, the group
manager sends revocation messages to the CSP as follows:

9 = {yqx , {θi|i ∈ D}}, (9)

whereD is the index set of the blocksmodified by the revoked
user ux , and q ∈ Z∗p and θi ∈ Z∗p(i ∈ D) are random numbers.
Upon receiving the revocation message, the CSP aggregates
the tags corresponding to index set D as

3′ =
∏
i∈D

e(σi, yqx)
θi , (10)

and sends 3′ to the group manager. The group manager
then generates the post-revocation authenticator 3 and its
parameter λi as

3 = 3′ρ, (11)

λi = q · ρ · θi, i ∈ D, (12)

where ρ is a random number. Finally, the group manager
sends (R, {λi|i ∈ D}), where R is the index set of the
RU-blocks to the TPA.

When a data block mi handled by the revoked user ux
is modified by another legal user, the CSP first retrieves
the revocation parameter λi from the TPA and updates the
post-revocation authenticator as

3 = 3/e(σi, yx)λi . (13)

B. TAG FORGERY ATTACK
In Tian et al.’s scheme [25], they provide the security anal-
ysis for the forging attacks, but it does not include our
attacks because the tag generation method using a homo-
morphic verifiable authenticator (HVA) is not well designed.
They claimed their tag generation method satisfies the non-
malleability property, but the tag can be forged by malleable
property because the same base µ is used for each message
when generating a tag (HVA). We show that it is possi-
ble to generate valid tags for the modified messages using
valid messages and tag pairs with publicly known values in
Tian et al.’s scheme [25].
We assume that σ1 and σ2 are the valid tags generated by

the data owner u1 for the messages m1 and m2, respectively,
where σ1 = (µH (v1||t1) · gm1

1 )a1 and σ2 = (µH (v2||t2) · gm2
1 )a1 .

With the public parameters (µ, g1), (vi, ti) values in the
EDHT, and the original messages m1,m2, the server
computes

σ1

σ2
= µ1H ·a1 · g(m1−m2)·a1

1 ,

(
σ1

σ2
)

1
1H = µa1 · g

(m1−m2
1H )·a1

1 ,

(
σ1

σ2
)
H (v1||t1)
1H = µH (v1||t1)·a1 · g

H (v1||t1)·(
m1−m2
1H )a1

1 ,

σ ∗1 = µ
H (v1||t1)·a1 · g

m∗1·a1
1 ,

σ ∗1 = (µH (v1||t1) · g
m∗1
1 )

a1
,

where 1H = H (v1||t1)− H (v2||t2) and m∗1 = H (v1||t1) ·
(m1−m2
1H ). The value σ ∗1 is then a valid tag for the modified

message m∗1. We show that a valid tag can be generated
without changing any values in the public tables and knowing
the secret value a1. Note that the TPA verifies the proof of
challenge messages with publicly known values in public
auditing. Tian et al.’s scheme [25] satisfies public auditing,
and the TPA in their scheme applies the verification stage
using the values vi, ti; therefore, these values are considered
as public values but cannot be revised without the permission
of the group manager.

C. PROOF OF FORGERY ATTACK
In Tian et al.’s scheme [25], they prove that each elements
in proof P was unforgeable. However, they omit some of the
information that the attacker can obtain and prove under false
assumption that 2 is unforgeable without any proof. In our
attack, we show that the attacker can make a forged proof
that passes the verification even when some data are deleted.

When a data block mi generated by a revoked user ux is
modified by another user, the CSP first retrieves the revo-
cation parameter λi from the TPA and updates the post-
authenticator as

3 = 3/e(σi, yx)λi . (14)
The revocation parameter λi is generated by the group man-
ager and is managed by the TPA. For the security of the
scheme, λi should not be known to the CSP; however, as men-
tioned above, λi is exposed to the CSP to update the post-
authenticator. The malicious CSP can extract the random
number η through λi and challenge values βi. Using η, the
malicious CSP can generate a valid proof that passes the
verification even when some data are deleted.

In the following, we describe a proof forgery attack on
the scheme in [25], where a malicious CSP can collude with
a revoked user to make a valid proof given the challenge
message even if some data stored on the cloud have been
deleted.

Given the challenge information chal = (IDX , S, {βi|i ∈
D}, {γi|i ∈ UL}, {τi|i ∈ UR}), we assume that D = Dd ∪ Do,
where Dd is a block set deleted by the CSP, Do is a block set
stored on the cloud, and IDX = IDXd ∪ IDXo, where IDXd is
a block set deleted by the CSP, and IDXo is a block set stored
on the cloud.
• After receiving the challenge information chal =
(IDX , S, {βi|i ∈ D}, {γi|i ∈ UL}, {τi|i ∈ UR}), the CSP
computes η = βi−1 · λi.

• Using η, the CSP computes λi = βi · η for all i ∈ D.
• For the challenged blocks, the CSP generates the tag
proof 8 =

∏
i∈IDXo (e(σi, γj))

si and the data proof �1 =∑
i∈IDXo mi · si + r . The CSP also generates a tag proof

for the RU-blocks T ∗ =
∏

i∈Do e(σi, τj)
βi and the data

proof �2 =
∑

i∈Do mi · βi + r .
• The CSP calculates the auxiliary auditing factor as

2∗ = e(g1, y1)−r · e(µ−1Bd , y1)
1
η+1 , (15)

where 1Bd =
∑

i∈IDXd Bisi +
∑

i∈Dd Biλi.
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Then, the forged proof P∗ = {8,T ∗, �1, �2,3,2
∗
} is a

valid proof for the challenge information chal because it can
pass the Verify algorithm as follows:

8 · T ∗η·ε = e(µ1B · g1�, y1)w ·2∗w·(η+1), (16)

where 1B =
∑

i∈IDX Bisi +
∑

k∈D Bkλk and 1Bo = 1B −
1Bd =

∑
i∈IDXo Bisi +

∑
k∈Do Bkλk .

The left side of (16) can be written as follows:

8 · T ∗η·ε

=

∏
i∈IDXo

e(σi, γj)si ·
∏
k∈Do

e(σk , τj)βk ·η·ε,

=

∏
i∈IDXo

e((µBi · gmi1 )aj , gw·a1/aj )si

·

∏
k∈Do

e((µBk · gmk1 )aj , gw/ε·a1/aj )λk ·ε

=

∏
i∈IDXo

e(µBi · gmi1 , y1)
wsi ·

∏
k∈Do

e(µBk · gmk1 , y1)
λkw

= e(
∏

i∈IDXo

µBisi · g
∑

i∈IDXo misi
1 , y1)w

· e(
∏
k∈Do

µBkλk · g
∑

k∈Do mkλk
1 , y1)w

= e(µ
∑

i∈IDXo Bisi · g�1−r
1 , y1)w

· e(µ
∑

k∈Do Bkλk · g(�2−r)·η
1 , y1)w

= e(µ
∑

i∈IDXo Bisi+
∑

k∈Do Bkλk · g�1−r+(�2−r)·η
1 , y1)w

= e(µ
∑

i∈IDXo Bisi+
∑

k∈Do Bkλk · g�1+�2·η−(1+η)r
1 , y1)w

= e(µ
∑

i∈IDXo Bisi+
∑

k∈Do Bkλk · g�1 , y1)
w

· e(g1, y1)−w(η+1)r

= e(µ1Bo · g�1 , y1)
w
· e(g1, y1)−w(η+1)r .

The right side of (16) can be written as

e(µ1B · g�1 , y1)
w
·2∗w(η+1)

= e(µ1Bo+1Bd · g�1 , y1)
w
·2∗w(η+1)

= e(µ1Bo+1Bd · g�1 , y1)
w

· (e(g1, y1)−r · e(µ−1Bd , y1)
1
η+1 )w(η+1)

= e(µ1Bo+1Bd · g�1 , y1)
w
· e(g1, y1)−r(η+1)w

· e(µ−1Bd , y1)w

= e(µ1Bo · g�1 , y1)
w
· e(g1, y1)−r(η+1)w.

Therefore, the forged proof P∗ = {8,T ∗, �1, �2,3,2
∗
}

can pass the verification algorithm. In other words, the cloud
server can deceive the TPA to believe that the data have been
completely stored even though they have been deleted.

IV. OUR PROPOSED SCHEME
Let groups G1 and GT be multiplicative cyclic groups with
prime order p, and let e : G1 × G1 → GT be a bilinear
map. In addition, g and u are the generators ofG1. Moreover,
H1 : {0, 1}∗→ G1 andH2 : GT → Z∗p are collision-resistant
hash functions. Assume that a file F is divided into n data

blocks F = {m1, . . . ,mn} and there are w users in the user
groupU = {u1, u2, . . . , uw}, where the user u1 acts as a group
manager (GM) and the others are common users. Let UL be
the set of all legal users, andUR be the set of all revoked users
in the group. Our proposed scheme consists of six probabilis-
tic polynomial-time algorithms: KeyGen, TagGen, Update,
Challenge, Prove, Verify, and Revocation.

KeyGen. The group manager randomly chooses a1← Z∗p
and calculates y1 = ga1 as the manager’s secret/public key
pair and randomly chooses ai ← Z∗p as the secret key of ui
and calculates yi = y11/ai as the public key of ui.
TagGen. User uj generates an authenticated tag σi on the

message block mi of F as

σi = (hi,j · umi )aj , (17)

where hi,j = H1(ID||i||j||vi||ti), ID is the file identifier ofF , vi
is the version number, and ti is the time stamp. User uj uploads
{mi, σi} to the CSP, and records additional information to the
EDHT. When a data block is modified, the group manager
adds the operation information into the MRT and asks the
TPA to update the additional information of the block in
the EDHT.

Update. Suppose that the valid group user uk modifies the
i-th block mi to m′i. Then, uk computes the authenticated tag
σ ′i on the modified block m′i as

σ ′i = (hi,k · um
′
i )ak , (18)

where hi,k = H1(ID||i||k||v′i||t
′
i ), and v′i and t ′i denote the

updated version number and time stamp, respectively. User
uk uploads (m′i, σ

′
i ) to the CSP and asks the group manager to

update the additional information of the block in the EDHT
and MRT.

Challenge. Because the challenge process is the same as
that of Tian et al.’s scheme [25], a detailed description is
omitted here.

Prove. After receiving the challenge message chal =
(IDX , S, {βi|i ∈ D}, {γi|i ∈ UL}, {τi|i ∈ UR}), the CSP
provides proof for the challenged blocks. For the challenge
blocks, the CSP calculates the tag proof 8 as

8 =
∏
i∈IDX

e(σi, γj)si , (19)

where j ∈ UL and the i-th block is modified by the j-th user.
The CSP then calculates the data proof ν1 as

ν1 =
∑
i∈IDX

mi · si · H2(21)+ r1, (20)

where r1 ∈ Z∗p is a random number, and 21 = e(u, y1)r1 .
These values are used to protect data privacy against the TPA.
For all RU-blocks, the CSP calculates the tag proof T as

follows:

T =
∏
i∈D

(e(σi, τj))βi , (21)
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FIGURE 2. Data upload and audit process.

where j ∈ UR and the i-th block is modified by the j-th user.
The CSP then calculates the data proof ν2 as

ν2 =
∑
i∈D

mi · βi · H2(22)+ r2, (22)

where r2 ∈ Z∗p is a random number, and 22 = e(u, y1)r2 .
These values are used to protect data privacy against the TPA.

Finally, the CSP sends the proof P = {8,T ,3, ν1, ν2,21,
22} to the TPA.
Verify. With the proof that P = {8,T ,3, ν1, ν2,21,22},

the TPA verifies the integrity of the chosen blocks. If there is
no revoked user or all RU-blocks have been modified by the
other users in UL , the TPA can then verify the correctness of
the data file; otherwise, the TPA verifies the post-revocation
authenticator by computing the following equation:

3 = T η·ε/w. (23)

If (23) does not hold, the TPAoutputsReject; otherwise, it can
be verified as

21
w
·8H2(21) = e(

∏
i∈IDX

hsi·H2(21)
i,j · uν1 , y1)w, (24)

22
η·w
· T η·ε·H2(22) = e(

∏
i∈D

hλi·H2(22)
i,j · uν2·η, y1)w, (25)

where hi,j = H1(ID||i||j||vi||ti). If (24) and (25) hold, the TPA
outputs Accept; otherwise, it outputs Reject .

Revocation. Our scheme provides two types of revocation:
lazy revocation (LR) and active revocation (AR).With the LR
method, when user uk needs to be revoked, the groupmanager
sends a revocation message to the CSP as follows:

9 = {yk q, {θi|i ∈ D}}, (26)

whereD is the index set of the blocksmodified by the revoked
user uk , and q ∈ Z∗q and θi ∈ Z∗q(i ∈ D) are random numbers.

Upon receiving the revocation message, the CSP aggregates
the tags corresponding to index set D as

3′ =
∏
i∈D

e(σi, y
q
k )
θi , (27)

and sends 3′ to the group manager. The group manager
then generates the post-revocation authenticator 3 and its
parameter λi as

3 = 3′ρ, (28)

λi = q · ρ · θi, i ∈ D, (29)

where ρ is a random number. Finally, the group manager
sends (R, {λi|i ∈ D}), where R is the index set of the
RU-blocks to the TPA.

When a data block mi modified by the revoked user uk
is modified by another legal user, the TPA updates the
post-revocation authenticator as

3 = 3/e(σi, yk )λi . (30)

Finally, the TPA sends the post-authenticator 3 to the CSP.
With the AR method, when user uk needs to be revoked,

the process of creating the post-revocation authenticator 3
is the same as in the LR method, but the subsequent process
is different. First, the group manager chooses the revocation
parameters z0i, z1i for all i ∈ D, computes the revocation
factor zi as zi = z0i/z1i, and updates the public key yk
of user uk as yz1ik . The group manager also generates the
challenge message chal and sends all revocation factors zi
with the challenge message chal to the CSP. Then, the CSP
re-computes the tag for the data block handled by the revoked
user σi = σ

zi
i and the proof P for the challenge message chal,

and sends the proof P to the group manager. With proof P,
the group manager verifies the integrity of the chosen blocks.
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FIGURE 3. Lazy revocation (LR) and active revocation (AR) processes.

If it is valid, the group manager sends the revocation factor
z0i to the TPA. The TPA then updates the revocation factor in
the EDHT and the post-authenticator 3 as

3 = 3/
∏
i∈D

e(σi, yk )λi/z0i . (31)

Finally, the TPA sends the post-authenticator 3 to the CSP.

A. CORRECTNESS
The correctness of our scheme can be proved as follows:

21
w
·8H2(21)

= e(u, y1)r1w ·
∏
i∈IDX

((e(σi, γj))si )H2(21),

= e(u, y1)r1w ·
∏
i∈IDX

e((hi,j · umi )aj , gw·a1/aj )siH2(21)

= e(u, y1)r1w ·
∏
i∈IDX

e((hi,j · umi ), y1w)siH2(21),

= e(u, y1)r1w · (
∏
i∈IDX

e(hi,j, y1w)siH2(21)),

·

∏
i∈IDX

e(umisiH2(21), y1w)

= (
∏
i∈IDX

e(hsiH2(21)
i,j , y1w)) · e(u6misiH2(21), y1w)

· e(ur1 , y1w)

= (
∏
i∈IDX

e(hsiH2(21)
i,j , y1w)) · e(u6misiH2(21)+r1 , y1w)

= (
∏
i∈IDX

e(hsiH2(21)
i,j , y1w)) · e(uν1 , y1)w

= e(
∏
i∈IDX

hsiH2(21)
i,j · uν1 , y1)w

22
η·w
· T η·ε·H2(22)

= e(u, y1)r2·η·w ·
∏
i∈D

((e(σi, τj))βi )η·ε·H2(22)

= e(u, y1)r2·η·w

·

∏
i∈D

e((hi,j · umi )aj , g(w·a1)/(aj·ε))βi·η·ε·H2(22)

= e(u, y1)r2·η·w ·
∏
i∈D

e((hi,j · umi ), y1w)βi·η·H2(22)

= e(u, y1)r2·η·w · (
∏
i∈D

e(hi,j, y1w)βi·η·H2(22))

·

∏
i∈D

e(umi·βi·η·H2(22), y1w)

= e(u, y1)r2·η·w · (
∏
i∈D

e(hi,j, y1w)λiH2(22)),

·

∏
i∈D

e(umi·βi·η·H2(22), y1w)

= (
∏
i∈D

e(hλiH2(22)
i,j , y1w)) · e(u6miβiH2(22), y1w)η

· e(u, y1)r2·η·w

= (
∏
i∈D

e(hλiH2(22)
i,j , y1w)) · e(u6miβiH2(22)+r2 , y1ηw)
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= (
∏
i∈D

e(hλiH2(22)
i,j , y1w)) · e(uν2·η, y1)w

= e(
∏
i∈D

hλiH2(22)
i,j · uν2·η, y1)w

V. ANALYSIS
A. SECURITY ANALYSIS
We need to show that the CSP cannot generate a valid proof
for the challenge query of the TPA without faithfully storing
the message blocks. We also need to show that CSP cannot
generate a valid tag for the message without any secret infor-
mation. These security notions can be guaranteed by proving
the following theorems:
Theorem 5.1: If the CDH assumption holds in G1, our

public auditing scheme satisfies tag-unforgeability under the
random oracle model.

Proof of Theorem 5.1. Suppose A is a forger that
(t, qh, qt , qu, qk , ε)-breaks our public auditing scheme by
generating a valid message and tag pair under the secret key
ak of the user uk . We can then construct an algorithm B that
solves the CDH problem on G1.
The algorithm B is given by (g, ga, gb) ∈ G1 as an input of

the CDH problem. The algorithm B simulates the challenger
and interacts with the forgerA in the tag-unforgeability game.

1. The forger A outputs a user u∗k , where it wishes to be
forged.

2. The algorithm B sets y1 = (gb)a1 as the public key of
user u1 and computes the public key of other users as
yk = (gb·a1 )1/ak 1≤k<k∗,k∗<k≤K−1, where a1, ak ← Z∗p
are random number. The algorithm B maintains the
tuple (k, uk , ak , yk ) in Tab1. The algorithmB computes
u = gd , where d ← Z∗p is a random number, and sets
y∗k = ga1 v as the public key of user u∗k , where v← Z∗p .
The algorithm B sends PK to forger A.

3. Algorithm B simulates the HASH, TAGGEN, UPDATE, and
KEYEXT oracles as follows:
(For HASH oracle) At any time the forger A can
query the random hash oracle H1 for (ID||i||k||vi||ti).
To respond to hash queries, the algorithm B main-
tains the tuple (i, δi, ξi, ci, k, vi, ti) in Tab2 as generated
below. Tab2 was initially empty. When the forger A
makes a query (i, δi, ξi, ci, k, vi, ti), the algorithm B
responds as follows:

a) If i 6∈ Tab2, the algorithm B flips a random coin
ci ∈ {0, 1} such that Pr[ci = 0] = 1/(qt + 1),
where qt is the maximum number of TAGGEN

queries. The algorithm B chooses a random num-
ber δi ∈ Z∗p and computes ξi = (ga)(1−ci) · gδi as
the hash value. The algorithm B then stores the
tuple (i, δi, ξi, ci, k, ∗, ∗) in Tab2 and responds to
forger A by setting H1(·) = ξi.

b) If i ∈ Tab2, the algorithm B responds with
H1(·) = ξi in Tab2.

(For the TAGGEN oracle) At any time, the forger A can
query (i,mi) to the TAGGEN oracle. When the forger A

queries (i,mi) to the TAGGEN oracle, the algorithm B
responds as follows:
a) If i 6∈ Tab2, the algorithm B picks a ran-

dom number δi and computes ξi = gδi and
σi = (gb)(δi+d ·mi)/v = (gδi · gd ·mi )b/v. The algo-
rithm B responds with σi and stores the tuple
(i, δi, ξi, ∗,mi, σi) in Tab3.

b) If i ∈ Tab2, the algorithm B retrieves the
tuple (i, δi, ξi, ci, k, vi, ti). If ci = 0, then the
algorithm B reports a failure and terminates.
If ci = 1, the algorithm B computes σi =
(gb)(δi+d ·mi)/v = (gδi · gd ·mi )b/v with δi and mi.
The algorithm B responds with σi and stores the
tuple (i, δi, ξi, ci,mi, σi) in Tab3.

If uk 6= u∗k , the algorithm B retrieves the tuple (uk , ak )
and responds with σi = (gδi · gd ·mi )ak as in UPDATE

oracle.
(For the UPDATE oracle) At any time, the forger A
can query the UPDATE oracle. When the algorithm A
queries (i,mi′, uk ) to the UPDATE oracle, the algorithm
B responds as follows:
a) If uk 6= u∗k and i 6∈ Tab3, the algorithm B picks

a random number δi ∈ Z∗p , and computes σ ′i =
(gδi · gd ·mi

′

)ak with δi, mi′, and the secret key ak
of user uk . The adversary B responds with σi′ and
stores the tuple (i, δi, ξi, ∗,mi′, σi′, uk ) in Tab4.

b) If uk 6= u∗k and i ∈ Tab3, the algorithmB retrieves
the tuple (i, δi, ξi, ci, ,mi, σi) and computes σ ′i =
(gδi ·gd ·mi

′

)ak with δi,mi′, and the secret key ak of
the user uk . The adversaryB respondswith σi′ and
stores the tuple (i, δi, ξi, ci,mi′, σi′, uk ) in Tab4.

c) If uk = u∗k and i 6∈ Tab3, the algorithm B
picks a random number δi ∈ Z∗p , and computes
σ ′i = (gb)(δi+d ·mi

′)/v with δi and mi′. The adver-
sary B responds with σi′ and stores the tuple
(i, δi, ξi, ∗,mi′, σi′, uk ) in Tab4.

d) If uk = u∗k and i ∈ Tab3, the algorithm B
retrieves the tuple (i, δi,@i, ci,mi, σi). If ci = 0,
the algorithm B then reports a failure and ter-
minates. If ci = 1, the algorithm B computes
σ ′i = (gb)(δi+d ·mi

′)/v with δi and m′i. The adver-
sary B responds with σi′ and stores the tuple
(i, δi, ξi, ci,mi′, σi′, uk ) in Tab4.

(For the KEYEXT oracle) At any time the forger A
can query the KEYEXT oracle. When the algorithm
A queries uk to the KEYEXT oracle, the algorithm B
responds as follows:
a) If uk = u∗k , the algorithm B reports a failure and

terminates.
b) If uk 6= u∗k , the algorithm B retrieves the tuple

(uk , ak ) and responds with ak .
4. Finally, the forger A outputs (u∗k , i,m

∗
i , σ
∗
i ) as the

forged message and tag pair such that no TAGGEN and
UPDATE query were issued form∗i , and no KeyExt query
was issued for u∗k . Here, B checks whether the pair
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(m∗i , σ
∗
i ) is valid under the given public key. If (m

∗
i , σ
∗
i )

is invalid, then the algorithm B aborts. If i ∈ Tab3 and
ci = 0, σ ∗i satisfies the following equation

σ ∗i = ((ga+δi ) · gt·mi )b/v

= (ga+δi )b/v · g(t·mi)·b/v

= gab/v · (gb)δi/v · (gb)(t·mi)/v,

then the algorithm B outputs

gab = (σ ∗i )
v/((gb)δi · (gb)(t·mi)).

We refer to the technique in [36] for probability analysis.
To succeed in the above game, the algorithm B does not abort
during the TAGGEN queries of forger A, the UPDATE queries
and the KEYEXT queries, and the forger A outputs a valid
message and tag pair under the condition that the algorithm B
does not abort. In addition, the forger A outputs a valid
message and tag pair when ci = 0 for the tuple containing i
in Tab3. The probability that algorithm B will not abort in the
TAGGEN queries of forgerA, the UPDATE queries and KEYEXT

queries is at least 1/e3, where e is a mathematical constant
and is the base of the natural logarithm. The probability that
the forger A outputs a valid message and tag pair under the
condition that the algorithm B does not abort is at least ε,
and the probability that the forger A outputs a valid message
and tag pair when ci = 0 for the tuple containing i on
Tab3 is at least 1/(qs+1). Therefore, the algorithm B outputs
a correct answer with probability ε/(e3 · (qs + 1)). Thus,
if the CDH assumption holds, no algorithm exists that breaks
the tag-unforgeability of our scheme with a non-negligible
probability.
Theorem 5.2: Outputting Accept of the verification algo-

rithm implies that the CSP must possess the uncompromised
selected data, as expected by the user.

Proof of Theorem 5.2. The proof can be completed by
showing the existence of an extractor of

∑
i∈IDX mi · si and∑

j∈D mj · βj in the random oracle model. With this proof,
we can show that our scheme is secure against a proof forgery
attack because only the CSP, which possesses the uncompro-
mised selected data, can pass the verification process. Our
proof technique follows from [8]. Here, the extractor and
H2 can be modeled as an adversary and a random oracle,
respectively. For H2(21) = h1, CSP returns valid 8 and
ν1 such that the following equation holds:

21
w
·8h1 =

∏
i∈IDX

e(hsi·h1i,j · u
ν1 , y1)w. (32)

The extractor can rewind the challenge-proof protocol to
the point just before 21 is queried to H2. The extractor then
sets H2(21) to h′1 6= h1. CSP returns a valid 8 and ν′1 such
that the following equation holds:

21
w
·8h′1 =

∏
i∈IDX

e(h
si·h′1
i,j · u

ν′1 , y1)w. (33)

We have the following equations by dividing (32) by (33).
Recall that 8 =

∏
i∈IDX (e(σi, γj))

si .

8h1−h′1 =
∏
i∈IDX

e(h
si·(h1−h′1)
i,j · uν1−ν

′

1 , y1)w

(⇔)
∏
i∈IDX

e(σi, γj)si·(h1−h
′

1)

=

∏
i∈IDX

e(h
si·(h1−h′1)
i,j · uν1−ν

′

1 , y1)w

(⇔)
∏
i∈IDX

e(hi,j · umi , yw1 )
si·(h1−h′1),

=

∏
i∈IDX

e(h
si·(h1−h′1)
i,j · uν1−ν

′

1 , yw1 )

(⇔)
∏
i∈IDX

h
si·(h1−h′1)
i,j · uni·si·(h1−h

′

1),

=

∏
i∈IDX

h
si·(h1−h′1)
i,j · uν1−ν

′

1

(⇔)
∏
i∈IDX

umi·si·(h1−h
′

1) = uν1−ν
′

1 ,

(⇔) (h1 − h′1) ·
∑
i∈IDX

mi · si = ν1 − ν′1,

(⇔)
∑
i∈IDX

mi · si = (ν1 − ν′1)/(h1 − h
′

1),

Similarly, we can obtain the following equations from a
valid T and ν2.

T η·ε·(h2−h
′

2) =
∏
i∈D

e(h
λi·(h2−h′2)
i,j · u(ν2−ν

′

2)·η, y1)w

(⇔)
∏
i∈D

e(σi, τj)βi·η·ε·(h2−h
′

2),

=

∏
i∈D

e(h
λi·(h2−h′2)
i,j · u(ν2−ν

′

2)·η, y1)w

(⇔)
∏
i∈D

e(hi,j · umi , yw1 )
βi·η ·(h2−h′2),

=

∏
i∈D

e(h
λi·(h2−h′2)
i,j · u(ν2−ν

′

2)·η, yw1 )

(⇔)
∏
i∈D

h
βi·η·(h2−h′2)
i,j · umi·βi·η·(h2−h

′

2),

=

∏
i∈D

h
λi·(h2−h′2)
i,j · u(ν2−ν

′

2)·η

(⇔)
∏
i∈D

umi·βi·η·(h2−h
′

2) = u(ν2−ν
′

2)·η,

(⇔) (h2 − h′2) ·
∑
i∈D

mi · βi · η = (ν2 − ν′2) · η,

(⇔)
∑
i∈D

mi · βi = (ν2 − ν′2)/(h2 − h
′

2),

Then, the extractor obtains
∑

i∈IDX mi · si and
∑

j∈D mj ·βj
as a valid response of the proof system.
Theorem 5.3: The TPA cannot obtain any information on

the challenged messages from the proof of the CSP.
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TABLE 2. Comparisons of computation cost.

TABLE 3. Comparisons of communication cost.

Proof of Theorem 5.3. To prove the theorem, it is suf-
ficient to show that a valid poof can be simulated without
any message block information in the random oracle model.
In this proof, the TPA andH2 can be modeled as an adversary
and a random oracle, respectively. Given a valid8 and T from
the CSP, the TPA randomly chooses h∗i , ν

∗
i ← Z∗p and sets2∗i

as follows: (i ∈ 1, 2)

2∗1 = e(
∏
i∈IDX

h
si·h∗1
i,j · u

ν∗1 , y1)/8−h
∗

1·w (34)

2∗2 = e(
∏
i∈D

h
λi·h∗2
i,j · u

ν∗2 ·η, y1)−η/T−w·ε·h
∗

2 . (35)

Finally, the random oracleH2 is programmed asH2(2∗1) =
h∗1 and H2(2∗2) = h∗2. We can easily check the validity of
P∗ = {8,T , ν∗1 , ν

∗

2 ,2
∗

1,2
∗

2}.

B. EFFICIENCY ANALYSIS
In this section, we compare our proposed scheme with Panda
[16]–[19] and Tian et al.’s scheme (PASCD) [25] in terms of
the computation and communication costs.

1) COMPUTATION COST
We first compare the computational complexity of all four
schemes in the tag generation and proof verification phases.
In the tag generation phase, from Table 2, [19] has the highest
computation costs, which is sMulG1 + (s+2)ExpG1 +1hash.
PASCD [25] and our scheme have lower computation costs
than Panda [16] because they do not require pairing oper-
ations. During the proof verification phase, Panda [16] has
the highest computation costs, i.e., (c + 2d)MulG1 + (c +
d)ExpG1 + chashG1 + dMulGT + (d + 1)Pair , as d increases,
whereas PASCD [25] and our scheme perform a constant
pairing operation regardless of the size of d . Comparing our
scheme with [19] and PACSD [25], our scheme has a slightly

higher computation cost; however, meaningfully, it solves
the security problem of PASCD [25] with almost the same
computational cost.

2) COMMUNICATION COST
Table 3 compares the communication complexity of all four
schemes in the challenge and response phases. In the chal-
lenge phase, Panda [16] is affected only by the number of
challenged blocks, c, whereas [19], PACSD [25] and our
scheme are affected not only by c, but also by the total number
of users. Conversely, during the response phase of delivering
the generated proof to the TPA, Panda [16] increases the
communication cost according to the sizes of d and c, and
PACSD [25] and our scheme both have a constant computa-
tion cost regardless of the sizes of d and c. Even though [19]
has a lower computation cost, it does not provide the identity
traceability and does not guarantee the security against the
collusion attack. Comparing our scheme with PACSD [25],
our scheme provides similar communication costs while pro-
viding higher security.

VI. CONCLUSION
Cloud storage auditing is an extremely important technique
for resolving the problem of ensuring the integrity of stored
data in cloud storage. Because the need for the concept
is shared, many schemes providing different functions and
security levels have been proposed. In 2019, Tian et al. [25]
proposed a scheme that supports data privacy, identity trace-
ability, and group dynamics and claimed that their scheme
is secure against collusion attacks between the CSPs and
revoked users. In this paper, we showed in their scheme that
a tag can be forged from a valid message and tag pair without
knowing any secret values. We also showed that a proof can
be forged by a collusion attack, even if some challenged
messages have been deleted. We then proposed a new scheme
that is secure against the above attacks while providing the
same functionality as their approach.We also provided formal
security proofs and an analysis of the computation costs of
both schemes.
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