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ABSTRACT This paper proposes a novel approach for designing a decentralized controller to stabilize the
large-scale nonlinear system. Unlike the previous studies, the polynomial system framework is employed
to model the nonlinear large-scale system to decrease not only the modeling error but also the complexity
and computational load significantly. Especially, in case the large-scale nonlinear systems consist of non-
polynomial forms (such as sine, cosine, and so on), synthesizing the controller for this system becomes
much more challenging. By putting non-polynomial terms inside the matrices, a new approach for designing
a decentralized polynomial controller is presented to eliminate the impacts of nonlinear terms and stabilize
the system. Based on Lyapunov methodology, the conditions for synthesizing a decentralized polynomial
controller expressed under the framework of Sum-of-Square (SOS) are derived in the main theorems. Finally,
the effectiveness and superiority of the proposed method are demonstrated in two illustrative examples.

INDEX TERMS Large-scale nonlinear system, polynomial system, polynomial decentralized controller
design, SOS.

I. INTRODUCTION
In recent years, it is witnessing the rapid development
of modern technology, therefore, the physical systems in
practice increasingly become large and complex. A com-
plicated system with a large size is called a ‘‘large-scale
system’’ [1], [2]. In general, a large-scale system is a
combination of a set of interconnection subsystems that
interact together. There exist a wide range of applications of
the large-scale system in reality such as biological systems,
energy systems, automated highway systems, and so on. Due
to the popularity in the reality of the large-scale system,
for the past decades, there were a lot of studies paying
attention to solving the problems of these systems [3]–[16].
For example, an approach to design a decentralized controller
for a large-scale nonlinear system with uncertainties was
proposed in [4], in which an observer was synthesized to
estimate the unmeasurable states. In paper [5], an approach
for controller design based on the backstepping control
strategy was proposed. However, the limitations of the
method in paper [5] are that the backstepping controller
in [5] was merely applied for a large-scale nonlinear system
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with a strict feedback form, otherwise, this method was
failed. Additionally, the interconnected terms in this work
must satisfy the bounded constraint (see Assumption 3 [5]).
In paper [6], the distributed controller was synthesized
for the discrete-time networked large-scale system where
the communication between the sensor and controller has
an issue. Moreover, an observer-based on the sliding-
mode technique was synthesized for large-scale nonlinear
systems in [7], where the interconnection terms were known,
and the uncertainties are bounded. The predictive control
combinedwith an observer was designed for the discrete-time
networked large-scale linear system in [8]. The subsystems
of large-scale systems in [8] are connected to others via the
interconnection parts with the time-delay communication.
In paper [13], the large-scale nonlinear system was modeled
by decomposing this system into coupled lower-order subsys-
tems in which the computational load was reduced. Besides,
the methods to design the adaptive robust fault-tolerant
control and observer-based adaptive fault-tolerant control
for the large-scale nonlinear system were investigated in
papers [14] and [15], respectively to make the error tracking
of the system approach to a small region of zero. An event-
triggered fault-tolerant adaptive controller was studied for the
strict-feedback discrete-time multi-agent systems [16].
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It is noted that directly designing a nonlinear controller
for a large-scale nonlinear system is complicated and much
more challenging. To overcome this difficulty, the large-
scale nonlinear systems are linearized to the large-scale
linear system [8], [17], [18]. For example, in paper [18],
a decentralized controller was designed for the large-scale
power system in which this system was linearized to
the large-scale linear systems. Besides, to deal with the
complexity of the nonlinear system, an approach called
‘‘model reduction’’ method has been introduced to represent
the nonlinear system [19]–[21]. However, the drawbacks of
these modeling methods are that the obtained large-scale
linear systems are approximate to the original large-scale
nonlinear system and there exist modeling errors between
the obtained system and the original system. These modeling
errors will impact the performance of the system.

Nowadays, Takagi-Sugeno (T-S) fuzzy model [22] has
increasingly become one of the most popular methods for
modeling nonlinear systems. Based on the nonlinearity sector
and linearization in [23] and [24], the nonlinear system is
transformed into a T-S fuzzy system which composes of a set
of linear subsystems and IF-THEN fuzzy rules. Furthermore,
there has been increasing interest in applying the T-S fuzzy
model to model a large-scale nonlinear system. Numerous
studies [25]–[37] concentrating on controller design for large-
scale T-S fuzzy systems have been developed in the past few
years. For example, a decentralized controller was studied for
a large-scale T-S fuzzy system [26] where the interconnection
parts had to fulfill both the matching conditions and bounded
constraints. Additionally, in [29], an approach based on
the technique to synthesize the decentralized controller
was investigated for a large-scale T-S fuzzy system with
uncertainties and disturbances. In [30], a fuzzy filter was
designed for a large-scale T-S fuzzy system in which the
premise variables of the system and filter were different.
The robust observer has been designed for the large-scale
T-S fuzzy system to estimate the unknown states as well as
eliminate the impact of the uncertainties. However, there exist
limitations for modeling the large-scale nonlinear system
under the framework of the large-scale T-S fuzzy system
are that if the number of nonlinear terms of the system
and/or the number of subsystems increase then the numbers
of fuzzy rules and the number of conditions that need to
satisfy for the observer/controller synthesis will consider-
ably grow up. This issue considered as ‘‘rule-explosion’’
problem [45, p.273]. That leads to the computational load
burden, and the complexity of the previous methods will
significantly increase. The controller synthesis for the T-S
large-scale nonlinear system with the existence of fault and
Denial of Service (DoS) was investigated in [36] and [37],
respectively.

Besides, recently, a new approach for modeling the
nonlinear system called ‘‘polynomial system’’ was proposed
in [38] and [39]. The polynomial system can represent the
original nonlinear system under the framework of the linear
system; however, the system matrices are expressed in terms

of the polynomial form instead of the constant matrices in
the linear system. In other words, a polynomial system is
an extended form of a linear system. The advantage of the
polynomial system is that the nonlinear terms which need to
linearize are put inside the system matrices, therefore, it is
unnecessary to linearize the nonlinear system. Nowadays,
with the support of SOS tools [40], the polynomial system
increasingly plays an important role in resolving the problems
of nonlinear systems. Several papers studied the polynomial
system [41]–[43] in past few years. For instance, the
controllers were synthesized for a discrete-time polynomial
system with disturbance and the continuous polynomial with
uncertainties in [44] and [45], respectively. Unfortunately,
relied on our best knowledge, there is not any previous paper
employing the polynomial system for modeling large-scale
nonlinear systems.

With the aforementioned discussions, it is seen that the
large-scale nonlinear system consists of a large number of
nonlinear terms and subsystems. Therefore, if we apply the
methods in [8], [17], [18] to linearize the nonlinear terms
then the modeling errors become large. Additionally, when
the T-S fuzzy model is employed to model the large-scale
nonlinear system [25]–[37], the number of fuzzy rules
will exponentially increase and the controller procedure
becomes much more complicated and the computational load
also significantly increase. Due to these reasons, we are
inspired to propose a method to synthesize a decentralized
polynomial controller for the large-scale polynomial system.
The contributions of this paper are emphasized in the
following threefold:
1) Firstly, the polynomial framework is employed to

represent the nonlinear large-scale system that has not
been considered in any previous paper. This approach
will let us directly apply the powerful methodologies
of the linear system to synthesize the controller for
the nonlinear large-scale system instead of using the
complicated nonlinear methods.

2) Unlike previous studies [8], [17], [18], the nonlinear
terms of the nonlinear large-scale system in this work
do not need to linearize. It leads to reduce the modeling
error significantly. In addition, the proposed method
in this paper also assists to decrease the complexity
and computational load with respect to the methods
in [25]–[37] when applying the T-S fuzzy framework
to model the large-scale nonlinear system.

3) Especially, when the nonlinear large-scale system
consists of the non-polynomial terms sin(x), cos(x),
tang(x), square root, and so on, it is not able to apply the
polynomial system to present the nonlinear large-scale
system because we cannot put the non-polynomial
terms sin(x), cos(x), tang(x), square roots and so
on inside the system matrices. These non-polynomial
terms will make the controller design processing much
more challenging. To overcome this difficulty, in this
work, the non-polynomial terms will be grouped in
the time-varying matrices and then a new approach is
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FIGURE 1. Structure of the large-scale nonlinear system.

proposed to synthesize a controller for eliminating the
effects of these terms and stabilizing the system.

The remainder of this paper is organized as follows. The
system model is described in Section 1 and the considered
problems are pointed out in this section as well. The proposed
method to design a polynomial controller for a large-scale
nonlinear system with and without non-polynomial terms
is presented in Section 3 and Section 4, respectively. The
illustrative examples are shown in Section 5. Finally, the
conclusions are presented in Section 6.
Notations: In this paper,2−1 and2T stand for inverse and

transpose matrix 2, respectively. 2 > 0 (2 < 0) infers
that the matrix 2 is the positive (negative) definite matrix.
I indicates the identity matrix. The symbol ‖•‖ stands for
Euclidean Norm and<nl×ml denotes a set of nl×ml matrices.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT
A. SYSTEM DESCRIPTION
Considered a class of nonlinear systems expressed under
the framework of the large-scale nonlinear system with N
interconnection subsystems illustrated in Fig. 1 as follows.

ẋ1 = f1(x1)x1 + g1(x1)u1 + h1(x)
...

ẋl = fl(xl)xl + gl(xl)ul + hl(x)
...

ẋN = fN (xN )xN + gN (xN )uN + hN (x)

The general framework of the l th subsystem is presented in
the following equation:

ẋl = fl(xl)xl + gl(xl)ul + hl(x) l = 1, 2, . . . ,N . (1)

where xl ∈ <
nl and ul(t) ∈ <

ml are the vectors
of state variables and inputs of the l th subsystem. x =
[x1, x2, . . . , xN ]T is the state variable vector which consists
of all state variables xl . fl(xl) and gl(xl) are the system and
input nonlinear functions, respectively. hl(x) is the nonlinear
function of interconnection parts. There are two scenarios for
the nonlinear large-scale system (1).
Scenario 1: The functions fl(x), gl(x), and hl(x) merely

contain the polynomial terms in xl , then the system (1) is
modeled under the framework of the polynomial large-scale
system as follows,

ẋl = Al(xl)xl + Bl(xl)ul(t)+
N∑

m=1,m 6=l

M lm(xl)xm

l,m = 1, 2, . . . ,N . (2)

in which xm is the states of mth subsystem, l 6= m, which
impacts on the l th subsystem. Al(xl) ∈ <nl×nl and Bl(xl) ∈
<
nl×ml are the polynomial system and input matrices,

respectively.
N∑

m=1,m6=l
M lm(xl)xm is the interconnection terms

that express the interaction of l th subsystem with other
subsystems.
Scenario 2: In practice, however, in many large-scale

nonlinear systems, the nonlinear function fl(x) and gl(x) are
not only dependent on the polynomial form of xl but also
include the non-polynomial form of xl such as sin(xl), cos(xl),
and so on. Hence, in that case, it is impossible to represent
the system (1) under the format of the polynomial large-scale
system (2). In this case, system (1) is modeled as follows

ẋl = [Al(xl)+ Ãl(xl)]xl + [Bl(xl)+ B̃l(xl)]ul(t)

+

N∑
m=1,m6=l

M lm(xl)xm, l = 1, 2, . . . ,N . (3)

where Ãl(xl) and B̃l(xl) consist of the non-polynomial terms
such as sin(xl), cos(xl), and so on.

B. PROBLEM STATEMENT
Suppose that the system (1) is unstable, the objective of
this paper is to synthesize a controller to stabilize the
system (1). To design a controller for a large-scale nonlinear
system (1), many papers directly synthesize controllers for
the nonlinear framework [3]–[15]. However, the methods
in these works were complicated and the controller merely
applied for a specific nonlinear form such as the method
in [5] is only applied for the strict feedback nonlinear system.
Somemethods apply the linearization approach [8], [17], [18]
to convert to a large-scale linear system. But this approach
will cause modeling errors. Furthermore, in several previous
studies, system (1) is modeled under a large-scale T-S fuzzy
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system [24]–[37]. However, when the number of subsystems
and nonlinear terms increases, the number of fuzzy rules will
exponentially grow up and it will cause the ‘‘rule explosion’’
problem [45, p.273]. To overcome these challenges, in this
study, system (1) is represented under the framework of the
polynomial large-scale system (2) and (3) in Scenarios 1 and
2, respectively. Therefore, in this paper, we will propose
two methods to synthesize the controller for stabilizing the
system (2) and (3) instead of the original large-scale nonlinear
system (1) in the next sections.

To design the controller, the following lemmas and
propositions are needed for proof of the controller procedure
in the consequent sections.
Lemma 1 ( [29]): With an arbitrary vector Ti ∈ <n, the

following Tchebychev’s inequality satisfy[
N∑
i=1

Ti

]T [ N∑
i=1

Ti

]
≤ N ×

N∑
i=1

(Ti)TTi

Lemma 2 (S- Procedure Lemma [44]): Taken into considera-
tion two arbitrary quadratic forms5(x) ∈ <n and1(x) ∈ <n,
then5(x) < 0 for all x ∈ <n−{0}with1(x) ≤ 0 if and only
if there exists λ ≥ 0 such that

5(x)− λ1(x) < 0

Proposition 1 ( [39]): Taking into consideration the function
h(x(t)). The function h(x(t)) is called Sum-Of-Square (SOS)

if it can be expressed in the form h(x(t)) =
n∑
i=1

[ci(x(t))]2 in

which ci(x(t)) is the polynomial form in x(t). If h(x(t)) is a
SOS then it infers that h(x(t)) ≥ 0.
Proposition 2 ( [39]): Consider a polynomial matrix 0(x)

in x, and the vector v is independent on x. If vT0(x)v is a SOS
then it concludes that 0(x) ≥ 0.
Remark 1: The nonlinear large-scale system with poly-

nomial forms that merely contains the non-negative integer
exponentiation of variables such as x2, x3, x4 . . .. While
the nonlinear large-scale system with non-polynomial forms
that consist of not only the polynomial terms but also
the non-polynomial terms such as sin (x) , cos (x) , tang (x),
square roots of the variables, and so on. With the existence
of the non-polynomial terms, it is unable to apply the
linear polynomial system framework to model the nonlinear
large-scale system as in Eq. (2). Thus, in this paper, the non-
polynomial terms are put in time-varying non-polynomial
matrices Ãl (xl) and B̃l (xl) and then the new approach
for designing a controller to eliminate the effects of these
matrices is proposed in the consequent sections.
Remark 2: It should be noted that the nonlinear large-scale

system is complex. There exists the method only applied
for the large-scale nonlinear system with strick feedback
form [5], otherwise, it is failed to synthesize to design
a controller for this system. Several methods apply the
linearization methods [8], [17], [18] to transform into a
large-scale linear system. However, linearizing the nonlinear
large-scale system will cause modeling errors that lead to

reduce the accuracy of the control system. Another method
proposed in papers [25]–[37] is that the nonlinear large-scale
system is represented by a large-scale T-S fuzzy system.
But the drawback of this method is that if the number of
subsystems of the large-scale nonlinear system increase, then
the number of fuzzy rules will exponentially grow up. Thus,
both complexity and computational load will considerably
increase.

III. CONTROLLER SYNTHESIS FOR THE LARGE–SCALE
NONLINEAR SYSTEM WITHOUT NON-POLYNOMIAL
TERMS
In this section, a decentralized polynomial controller will
be designed for the nonlinear large-scale system in scenario
1 which is modeled in the system (2).

Consider the decentralized polynomial controller form for
the system (2) as follows

ul(t) = −K l(xl)xl (4)

Substituting (4) into (2), the closed-loop polynomial large-
scale system is obtained

ẋl = Al(xl)xl − Bl(xl)K l(xl)xl +
N∑

m=1,m 6=l

M lm(xl)xm} (5)

Theorem 1: The system (2) with the controller (4) is stabilized
if there exists the symmetric matrix Pl , polynomial matrix
K l(xl), and constant αl satisfying the following conditions:

vT1l {Pl − ε1lI } v1l is SOS (6)

−vT2l {4l(xl)+ ε2l(xl)I } v2l is SOS (7)

where

4l(xl)

=

ϒl(xl)+ αl
(

N∑
m=1,m 6=l

(N − 1)(Mml(xl))TMml(xl)

)
Pl

×
Pl
−αlI

]
(8)

ϒl = (Al(xl))TPl + PlAl(xl)− (K l(xl))T (Bl(xl))TPl
−PlBl(xl)K l(xl) (9)

v1l , v2l are the vector dependent on xl , ε1l > 0 is constant,
and ε2l(xl) > 0.

Proof: Choose the Lyapunov function as follows

V (t) =
N∑
l=1

Vl(t) =
N∑
l=1

xTl Plxl (10)

Condition (6) of Theorem 1 implies that Pl > 0, hence,
V (t) > 0.
Taking the derivative of (10) yields

V̇ (t) =
N∑
l=1

V̇l(t) =
N∑
l=1

[ẋTl Plxl + x
T
l Pl ẋl] (11)
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Substituting (5) into (11) obtains

V̇ (t) =
N∑
l=1

{[Al(xl)xl − Bl(xl)K l(xl)xl

+

N∑
m=1,m6=l

M lm(xl)xm]T

×Plxl + xTl Pl[A
l(xl)xl − Bl(xl)K l(xl)xl

+

N∑
m=1,m 6=l

M lm(xl)xm]} (12)

V̇ (t) =
N∑
l=1

{xTl [((A
l(xl))TPl + PlAl(xl))

− (K l(xl))T (Bl(xl))TPl − PlBl(xl)K l(xl))]xl

+

N∑
l=1

{[
N∑

m=1,m 6=l

M lm(xl)xm]TPlxl

+ xTl Pl[
N∑

m=1,m 6=l

M lm(xl)xm]} (13)

Let us define

δl(◦) =
N∑

m=1,m 6=l

M l(xl)xm (14)

From (13) and (14), it infers that

V̇ (t) =
N∑
l=1

{[xTl [((A
l(xl))TPl+PlAl(xl))−(K l(xl))T(Bl(xl))T

×Pl−PlBl(xl)K l(xl)]xl+δTl (x)Plxl+x
T
l Plδl(x)}

=

N∑
l=1

{

[
xl
δl(◦)

]T
4l(xl)

[
xl
δl(◦)

]
} (15)

where

4l(xl) =
[
ϒl(xl) Pl
Pl 0

]
ϒl(xl) = (Al(xl))TPl + PlAl(xl)− (K l(xl))T (Bl(xl))TPl

−PlBl(xl)K l(xl)

From (15), it is seen that if condition (7) of Theorem 1 holds,
then V̇ (t) < 0. However, because there exists element zero in
the right bottom corners of 4l(xl), it means that 4l(xl) could
not be a negative definite matrix. In order to cope with this
difficulty, the following steps are needed.
From (14), we have

N∑
l=1

δTl (◦)δl(◦)

=

N∑
l=1


 N∑
m=1,m6=l

M lm(xl)xm

T  N∑
m=1,m 6=l

M lm(xl)xm



=

N∑
l=1


 N∑
m=1,m 6=l

Mml(xl)xl

T  N∑
m=1,m 6=l

Mml(xl)xl


(16)

Based on Lemma 1, (16) becomes
N∑
l=1

δTl (◦)δl(◦)

≤

N∑
l=1

xTl
(N − 1)

N∑
m=1,m 6=l

(Mml(xl))T (Mml(xl))

 xl


(17)

From (17), it infers that
N∑
l=1

δTl (◦)δl(◦)

−

N∑
l=1

xTl
(N − 1)

N∑
m=1,m 6=l

(Mml(xl))T (Mml(xl))

 xl


=

N∑
l=1

{{[
xl
δl(◦)

]T
�l(xl)

[
xl
δl(◦)

]}
≤ 0 (18)

where

�l(xl) =

−
(
(N − 1)

N∑
m=1,m6=l

(Mml(xl))T (Mml(xl))

)
0

0 I


From (15) and (18), on the basis of Lemma 2 (S-Procedure),
if there exists a positive constant αl satisfying
N∑
l=1

{

[
xl
δl(◦)

]T [
ϒl(xl) Pl
Pl 0

] [
xl
δl(◦)

]
}

−αl

N∑
l=1

{[
xl
δl(◦)

]T
�l(xl)

×

[
xl
δl(◦)

]}
=

N∑
l=1

{

[
xl
δl(◦)

]T

×

ϒl(xl)+ αl
(

N∑
m=1,m6=l

(N − 1)(Mml(xl))TMml(xl)

)
Pl

×
Pl
−αlI

] [
xl
δl(◦)

]}
< 0 (19)

then

V̇ (t) ≤
N∑
l=1

{

[
xl
δl(◦)

]T [
ϒl(xl) Pl
Pl 0

] [
xl
δl(◦)

]
} < 0 (20)

From (19), it is obvious that if the condition (7) of Theorem 1
holds, then (19) is ensured, it means that (20) is guaranteed
and V̇ (t) < 0. Hence, the proof is completed.
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It should be noted that condition (7) of Theorem 1 is PBMI
(Polynomial Bilinear Matrix Inequality) which is difficult
to solve in Matlab. Therefore, it must be transformed into
PLMI (Polynomial LinearMatrix Inequality) in the following
theorem.
Theorem 2: The system (2) with the controller (4) is

stabilized if there exist the symmetric Pl , polynomial matrix
Kl(xl) and constant αl such that the following conditions hold

vT1l {Wl − ε1lI } v1l is SOS (21)

−vT2l {1l(xl)+ ε2l(xl)I } v2l is SOS (22)

where

1l(xl) =

 8l(xl) Wl(M̄ l(xl))T ρlI
M̄ l(xl)Wl −ρlI 0
ρlI 0 −ρlI

 (23)

8l(xl) = Wl(Al(xl))T + Al(xl)Wl

− (Rl(xl))T (Bl(xl))T − Bl(xl)Rl(xl) (24)

M̄ l(xl) =
[√

(N − 1)M1l(xl)
√
(N − 1)M2l(xl) . . .

×
√
(N − 1)Mml(xl) . . .

√
(N − 1)MNl(xl)

]T
(25)

ρl =
1/
αl

(26)

Wl = P−1l (27)

v1l , v2l are the vector dependent on xl , ε1l > 0 is constant,
and ε2l(xl) > 0.
The controller gains are computed as follows

Kl(xl) = Rl(xl)Pl (28)

Proof: From (7), it infers thatϒl(xl)+αl
(

N∑
m=1,m6=l

(N−1)(Mml(xl))TMml(xl)

)
Pl

Pl −αlI


< 0 (29)

where

ϒl(xl) = (Al(xl))TPl + PlAl(xl)− (K l(xl))T (Bl(xl))TPl
−PlBl(xl)K l(xl)

Define Wl = P−1l .

Pre and post-multiplying (29) with
[
Wl 0
0 I

]
yields

Wlϒl (xl )Wl+αlWl

 N∑
m=1,m 6=l

(N−1)×(Mml (xl ))TMml (xl )

Wl

WlPl

×
PlWl
−αl I

]
< 0 (30)

Because Wl = P−1l then (30) becomes[
8l(xl)+ αlWl

(
(M̄ l(xl))T M̄ l(xl)

)
Wl I

I −αlI

]
< 0 (31)

where

8l(xl) = Wlϒl(xl)Wl

= Wl(Al(xl))T + Al(xl)Wl −Wl(K l(xl))T (Bl(xl))T

−Bl(xl)K l(xl)Wl

M̄ l(xl) =
[√

(N − 1)M1l(xl)
√
(N − 1)M2l(xl) . . .

×
√
(N − 1)Mml(xl) . . .

√
(N − 1)MNl(xl)

]T
(32)

Pre and post-multiplying (31) with

[
I 0
0 1/

αl

]
results in

[
8l(xl)+ αlWl

(
(M̄ l(xl))T M̄ l(xl)

)
Wl

1/
αl
I

1/
αl
I −1

/
αl
I

]
< 0 (33)

Define

Rl(xl) = K l(xl)Wl (34)

Substituting (34) into (32) yields

8l(xl) = Wl(Al(xl))T + Al(xl)Wl − (Rl(xl))T (Bl(xl))T

−Bl(xl)Rl(xl) (35)

Employing Schur complement for (33), it is rewritten as
follows  8l(xl) Wl(M̄ l(xl))T 1/

αl
I

M̄ l(xl)Wl −1
/
αl
I 0

1/
αl
I 0 −1

/
αl
I

 < 0 (36)

where

8l(xl) = Wl(Al(xl))T + Al(xl)Wl − (Rl(xl))T (Bl(xl))T

−Bl(xl)Rl(xl)

Let us denote ρl = 1/
αl
, then (36) becomes 8l(xl) Wl(M̄ l(xl))T ρlI

M̄ l(xl)Wl −ρlI 0
ρlI 0 −ρlI

 < 0 (37)

where

8l(xl) = Wl(Al(xl))T + Al(xl)Wl − (Rl(xl))T (Bl(xl))T

−Bl(xl)Rl(xl)

It is seen that (37) is equivalent to the condition (22) of
Theorem 2 and they are the PLMI, therefore, it is successful to
transform PBMI (7) of Theorem 1 into PLMI (22) of Theorem
2. Thus, the proof is completed.

IV. CONTROLER SYNTHESIS FOR THE LARGE-SCALE
SYSTEM WITH NON-POLYNOMIAL TERMS
In this section, a controller is synthesized for the nonlinear
large-scale system which is mentioned in Scenario 2. The
nonlinear system (1) is modeled under the framework of the
large-scale polynomial system (3), therefore, we will design
the controller for system (3) instead of the system (1).
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To synthesize the polynomial controller for the system (3),
the following assumption is necessary.
Assumption 1 ( [46]): Assume that the non-polynomial

terms of a system (3) satisfy the matching condition Ãl(xl) =
E la(xl)a

l(xl)F la(xl), B̃
l
b(xl) = E lb(xl)b

l(xl)F lb(xl), where a
l(xl)

and bl(xl) compose of the non-polynomial terms and fulfill
the bounded constraint

∥∥al(xl)∥∥ ≤ γ la(xl), ∥∥bl(xl)∥∥ ≤ γ lb(xl).
The decentralized polynomial controller for the system (3)

is expressed as follows

ul(t) = −K l(xl)xl (38)

Under Assumption 1, substituting (38) into (3) obtains

ẋl = [Al(xl)+ E la(xl)a
l(xl)F la(xl)]xl

− [Blb(xl)+ E
l
b(xl)b

l(xl)F lb(xl)]K
l(xl)xl

+

N∑
m=1,m 6=l

M lm(xl)xm} (39)

Theorem 3 : The system (3)with the controller (38) is stable
if there exist the symmetricQl , polynomial matrixK l(xl), and
constant scalar βl such that the following conditions hold

vT1l {Ql − ε1lI } v1l is SOS (40)

−vT2l
{
9 l(xl)+ ε2l(xl)I

}
v2l is SOS (41)

where

9 l(xl) =
[
�l(xl)+ βl0l(xl) Ql

Ql −βlI

]
(42)

�l(xl) = (Al(xl))TQl + QlAl(xl)− (K l(xl))T (Bl(xl))TQl
−QlBl(xl)K l(xl)+ QlE la(xl)(E

l
a(xl))

TQl
+ γ la(xl)(F

l
a(xl))

TF la(xl)+ QlE
l
b(xl)(E

l
b(xl))

TQl
+ γ lb(xl)(K

l(xl))T (F lb(xl))
TF lb(xl)K

l(xl) (43)

0l(xl) =

 N∑
m=1,m 6=l

(N − 1)(Mml(xl))TMml(xl)

 (44)

v1l , v2l are the vectors which are independent on xl , ε1l > 0 is
constant, and ε2l(xl) > 0, i, j = 1, 2, . . . , rl , l = 1, 2, . . . ,N

Proof:
The Lyapunov function is chosen as follows

V (t) =
N∑
l=1

Vl(t) =
N∑
l=1

xTl Qlxl (45)

From (40), it implies that Ql > 0, it means that V (t) > 0.
Taking the derivative of (45), we have

V̇ (t) =
N∑
l=1

V̇l(t) =
N∑
l=1

[ẋTl Qlxl + x
T
l Ql ẋl] (46)

Substituting (39) into (46), one obtains

V̇ (t) =
N∑
l=1

{Al(xl)xl + E la(xl)a
l(xl)

×F la(xl)xl − B
l(xl)K l(xl)xl

−E lb(xl)b
l(xl)F lb(xl)K

l(xl)xl

+

N∑
m=1,m 6=l

M lm(xl)xm]TQlxl + xTl Ql[A
l(xl)xl

+E la(xl)a
l(xl)F la(xl)xl − B

l(xl)K l(xl)xl

−E lb(xl)b
l(xl)F lb(xl)K

l(xl)xl +
N∑

m=1,m 6=l

M lm(xl)xm]}

=

N∑
l=1

{xTl [((A
l(xl))TQl + QlAl(xl))

− ((K l(xl))T (Bl(xl))TQl + QlBl(xl)K l(xl))

+ ((F la(xl))
T (al(xl))T (E la(xl))

TQl
+QlE la(xl)a

l(xl)F la(xl))− ((K l(xl))T (F lb(xl))
T

× (bl(xl))T (E lb(xl))
TQl + QlE lb(xl)b

l(xl)

×F lb(xl)K
l(xl))]}xl

+

N∑
l=1

{[
N∑

m=1,m 6=l

M lm(xl)xm]TQlxl

+ xTl Ql[
N∑

m=1,m6=l

M lm(xl)xm]} (47)

Employing Lemma 1 and Assumption 1, it can be found that

(F la(xl))
T (al(t))T (E la(xl))

TQl + QlE la(xl)a
l(t)F la(xl)

≤ QlE la(xl)(E
l
a(xl))

TQl + (F la(xl))
T (al(xl))T al(xl)F la(xl)

≤ QlE la(xl)(E
l
a(xl))

TQl + γ la(xl)(F
l
a(xl))

TF la(xl) (48)

−(K l(xl))T (F lb(xl))
T (bl(xl))T (F lb(xl))

TQl − QlE lb(xl)b
l(xl)

×F lb(xl)K
l(xl) ≤ QlE lb(xl)(E

l
b(xl))

TQl
+ (K l(xl))T (F lb(xl))

T

× (bl(xl))T bl(xl)F lb(xl)K
l(xl)

≤ QlE lb(xl)(E
l
b(xl))

TQl + γ lb(xl)(K
l(xl))T (F lb(xl))

T

×F lb(xl)K
l(xl) (49)

Let us denote

δl(◦) =
N∑

m=1,m 6=l

M lm(xl)xm (50)

Combining (47), (48), (49) and (50), (47) is equivalent to

V̇ (t) ≤
N∑
l=1

{xTl [((A
l(xl))TQl + QlAl(xl))− (K l(xl))T

× (Bl(xl))TQl − QlBl(xl)K l(xl)

+QlE la(xl)(E
l
a(xl))

TQl
+ γ la(xl)(F

l
a(xl))

TF la(xl)+ QlE
l
b(xl)(E

l
b(xl))

TQl
+ γ lb(xl)

× (K l(xl))T (F lb(xl))
TF lb(xl)K

l(xl)]xl + δTl (◦)Qlxl
+ xTl Qlδ(◦)}

=

N∑
l=1

{

[
xl
δl(◦)

]T [
�l(xl) Ql
Ql 0

] [
xl
δl(◦)

]
} (51)
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where

�l(xl)= (Al(xl))TQl+QlAl(xl)−(K l(xl))T (Bl(xl))TQl−Ql
×Bl(xl)K l(xl)+ QlE la(xl)(E

l
a(xl))

TQl
+ γ la(xl)(F

l
a(xl))

TF la(xl)

+QlE lb(xl)(E
l
b(xl))

TQl + γ lb(xl)(K
l(xl))T

× (F lb(xl))
TF lb(xl)K

l(xl) (52)

From (51), it is obvious that V̇ (t) < 0 if only if

2l(xl) =
[
�l(xl) Ql
Ql 0

]
< 0 (53)

However, similarly to the problem in Section 3, the right
bottom corner of (53) also consists of zero elements, hence,
it is infeasible to obtain the suitable polynomial matrices
K l(xl) and symmetric positive matrix Ql when solving (53).
Hence, we need further steps as below to transform (53) to
other forms which can be solved in SOS tools easily.

Similar steps (16)-(17) in Section 3, one obtains

N∑
l=1

δTl (◦)δl(◦)−
N∑
l=1

{
xTl [(N − 1)

×

N∑
m=1,m 6=l

(Mml(xl))TMml(xl)xm]xl}

=

N∑
l=1

{

[
xl
δl(◦)

]T
4(xl)

[
xl
δl(◦)

]
} ≤ 0 (54)

where

4l(xl) =

−
(
(N − 1)

N∑
m=1,m6=l

(Mml(xl))TMml(xl)

)
0

0 I


Relied on S-Procedure in Lemma 3, and combining (53)

and (54), if there exist a positive constant β1 such that the
following condition holds

N∑
l=1

{

[
xl
δl(◦)

]T [
�l(xl) Ql
Ql 0

] [
xl
δl(◦)

]
} − βl

N∑
l=1

{[
xl
δl(◦)

]T

×

−
(

N∑
m=1,m 6=l

(N − 1)(Mml(xl))TMml(xl)

)
0

0 I


×

[
xl
δl(◦)

]}
=

N∑
l=1

{

[
xl
δl(◦)

]T [
�l(xl)+ βl0l(xl) Ql

Ql −βlI

] [
xl
δl(◦)

]
}

=

N∑
l=1

{

[
xl
δl(◦)

]T
9 l(xl)

[
xl
δl(◦)

]
} < 0 (55)

where

9 l(xl) =
[
�l(xl)+ βl0l(xl) Ql

Ql −βlI

]
0l(xl)

=

 N∑
m=1,m 6=l

(N − 1)(Mml(xl))TMml(xl)


then, we can conclude that

V̇ (t) ≤
N∑
l=1

{

[
xl
δl(◦)

]T [
�l(xl) Ql
Ql 0

] [
xl
δl(◦)

]
} < 0 (56)

It is seen that if the condition (41) of Theorem 3 holds,
then (55) is satisfied, this means that the equation (56) holds
and V̇ (t) < 0 The proof is completed.
However, condition (41) of Theorem 3 is PBMI which

is hard to resolve in Matlab. Thus, Theorem 4 is necessary
to convert PBMI (41) to PLMI which can easily obtain the
solutions by using the SOS tool of Matlab.
Theorem 4: The system (2) with the controller (3) is

stabilized if there exist the symmetricWl , polynomial matrix
K l(xl), and constant βl such that the following conditions
hold

vT3l {Wl − ε1lI } v3l is SOS (57)

−vT4l
{
0l(xl)+ ε2l(xl)I

}
v4l is SOS (58)

where

0l(xl)

=



5l(xl) γ la(xl)Wl(F la(xl))
T

F la(xl)Wl −I

F lb(xl)R
l(xl) 0

M̄ l(xl)Wl 0

λlI 0

×

γ lb(xl)(R
l(xl))T (F lb(xl))

T Wl(M̄ l(xl))T λlI

0 0 0

−I 0 0

0 −λlI 0

0 0 −λlI


(59)

5l(xl)

= Wl(Al(xl))T + Al(xl)Wl − (Rl(xl))T (Bl(xl))T

−Bl(xl)Rl(xl)

+E la(xl)(E
l
a(xl))

T
+ E lb(xl)(E

l
b(xl))

T (60)

M̄ l(xl) =
[√

(N − 1)M1l(xl)
√
(N − 1)M2l(xl) . . .

×
√
(N − 1)Mml(xl) . . .

√
(N − 1)MNl(xl)

]T
(61)

λl =
1/
βl

(62)

Wl = Q−1l (63)

v3l , v4l are the vectors which are independent of xl , ε1l > 0 is
constant, and ε2l(xl) > 0.

The controller gains are computed as follows

K l(xl) = Rl(xl)Ql . (64)
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Proof:
From (57), it implies that[

�l(xl)+ βl0l(xl) Ql
Ql −βlI

]
< 0 (65)

where

�l(xl)= (Al(xl))TQl + QlAl(xl)

− (K l(xl))T (Bl(xl))TQl − Ql
×Bl(xl)K l(xl)+ QlE la(xl)(E

l
a(xl))

TQl
+ γ la(xl)(F

l
a(xl))

TF la(xl)

+QlE lb(xl)(E
l
b(xl))

TQl + γ lb(xl)(K
l(xl))T

× (F lb(xl))
TF lb(xl)K

l(xl)

0l(xl) =

(N − 1)
N∑

m=1,m 6=l

(Mml(xl))TMml(xl)


Let us define Wl = Q−1l and pre and post-multiplying (65)

with
[
Wl 0
0 I

]
yields[

Wl 0
0 I

] [
�l(xl)+ βl0l(xl) Ql

Ql −βlI

] [
Wl 0
0 I

]
=

[
Wl�

l(xl)Wl + βlWl0
l(xl)Wl QlWl

WlQl −βlI

]
< 0 (66)

Due to Wl = Q−1l , (66) is rewritten[
6l(xl)+ βlWl0

l(xl)Wl I
I −βlI

]
< 0 (67)

in which

6l(xl) = Wl�
l(xl)Wl

= Wl(Al(xl))TQlWl +WlQlAl(xl)Wl

−Wl(K l(xl))T (Bl(xl))TQlWl

−WlQlBl(xl)K l(xl)Wl +WlQlE la(xl)

× (E la(xl))
TQlWl

+ γ la(xl)Wl(F la(xl))
TF la(xl)Wl

+WlQlE lb(xl)(E
l
b(xl))

TQlWl

+ γ lb(xl)Wl(K l(xl))T (F lb(xl))
TF lb(xl)K

l(xl)Wl

= Wl(Al(xl))T + Al(xl)Wl −Wl(K l(xl))T (Bl(xl))T

−Bl(xl)K l(xl)

×Wl + E la(xl)(E
l
a(xl))

T
+ γ la(xl)Wl(F la(xl))

T

×F la(xl)Wl + E lb(xl)

× (E lb(xl))
T
+ γ lb(xl)Wl(K l(xl))T (F lb(xl))

T

×F lb(xl)K
l(xl)Wl (68)

Let us define

M̄ l(xl) =
[√

(N − 1)M1l(xl)
√
(N − 1)M2l(xl) . . .

×
√
(N − 1)Mml(xl) . . .

√
(N − 1)MNl(xl)

]T
Then (68) is equivalent to[

6l(xl)+ βlWl
(
(M̄ l(xl))T M̄ l(xl)

)
Wl I

I −βlI

]
< 0 (69)

Pre and post-multiplying (69) with

[
I 0
0 1/

βl

]
yields

[
6l(xl)+ βlWl

(
(M̄ l(xl))T M̄ l(xl)

)
Wl

1/
βl
I

1/
βl
I −1

/
βl
I

]
< 0 (70)

Let us denote

Rl(xl) = K l(xl)Wl (71)

Substituting (71) into (70) yields

6l(xl)

=Wl(Al(xl))T + Al(xl)Wl − (Rl(xl))T (Bl(xl))T − Bl(xl)

×Rl(xl)+ E la(xl)(E
l
a(xl))

T
+γ la(xl)Wl(F la(xl))

TF la(xl)Wl

+E lb(xl)(E
l
b(xl))

T
+γ lb(xl)(R

l(xl))T (F lb(xl))
TF lb(xl)R

l(xl)

(72)

Applying Schur complement for (72) and denoting λl = 1/
βl
,

(72) is equivalent to

8l(xl)

=



5l(xl) γ la(xl)Wl(F la(xl))
T

F la(xl)Wl −I

F lb(xl)R
l(xl) 0

M̄ l(xl)Wl 0

λlI 0

×

γ lb(xl)(R
l(xl))T (F lb(xl))

T Wl(M̄ l(xl))T λlI

0 0 0

−I 0 0

0 −λlI 0

0 0 −λlI


(73)

where

5l(xl) = Wl(Al(xl))T + Al(xl)Wl − (Rl(xl))T (Bl(xl))T

−Bl(xl)Rl(xl)+E la(xl)(E
l
a(xl))

T
+E lb(xl)(E

l
b(xl))

T

It is obvious that (40) is equivalent to the condition (25)
and this is a PLMI that can be solved easily in Matlab by
SOS TOOL. Thus, the PBMI (6) of Theorem 1 has been
transformed into PLMI (25) of Theorem

V. RESULTS AND DISCUSSION
In this section, two numerical examples are provided to
illustrate the successes of the proposed methods. In Example
1, a decentralized polynomial controller is synthesized for
the nonlinear large-scale system which does not consist
of non-polynomial terms. While designing a decentralized
polynomial controller for the large-scale nonlinear system
which includes the non-polynomial terms is presented in
Example 2.
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Example 1: Consider the large-scale nonlinear system with
three interconnection terms as follows

S1 :

{
ẋ11=−3x11 + (x21)2 + 0.1x12 + 0.3x13 + u
ẋ21=4x11x21 − 2x21 + 0.3x12x21 + 0.1x21x13 + u

(74)

S2 :

{
ẋ12=−2x12 + (x22)2 + 0.4x11 + 0.1x13 + u
ẋ22=4x12 − x22 + 0.06x22x11 − 0.2x22x13 + u

(75)

S3 :

{
ẋ13=−2x23x13 + x23 + 0.1x11 + 0.1x23x12 + u
ẋ23=5x13x23 − 3x23 + 0.03x11x23+0.03x12x23+u

(76)

The large-scale nonlinear system (74)-(76) is represented
under the framework of the large-scale polynomial linear
system as follows

ẋl = Al(xl)xl + Bl(xl)ul(t)+
N∑

m=1,m6=l

M lm(xl)xm

l,m = 1, 2, 3. (77)

where

x1 =
[
x11
x21

]
, x2 =

[
x12
x22

]
, x3 =

[
x13
x23

]
A1(x1) =

[
−3 x21
4x21 −2

]
B1(x1) =

[
1
1

]
,

M12(x1) =
[

0.1 0
0.3x21 0

]
, A2(x2) =

[
−2 x22
3 −1

]
M13(x1) =

[
0.3 0

0.1x21 0

]
, B2(x2) =

[
1
1

]
,

M21(x2) =
[

0.4 0
0.06x22 0

]
, M23(x2) =

[
0.1 0
−0.2x22 0

]
,

A3(x3) =
[
−2x23 1
5x23 −3

]
, B3(x3) =

[
1
1

]
,

M31(x3) =
[

0.1 0
0.03x23 0

]
, M32(x2) =

[
0.1x23 0
0.03x23 0

]
Solving the conditions of Theorem 2 by the SOS tool

obtains the controller gains as follows

K 1(x1) =
[
K11(x1) K12(x1)

]
K11(x1) = 457.436x221 + 40.888x21 + 633.7616

K12(x1) = 114.322x221 + 30.413x21 − 113.232

K 2(x2) =
[
K21(x2) K22(x2)

]
K21(x2) = 1.464x222 + 50.838x22 + 82.312

K22(x2) = 518.944x222 − 58.692x22 + 722.127

K 3(x3) =
[
K31(x2) K32(x2)

]
K31(x2) = 791.772x223 − 4.957x23 + 2943.981

K32(x2) = 0.0012x223 + 0.0245x23 − 2.666

Simulating the system in Simulink of Matlab, the simula-
tion results are obtained in Figs. 2-7 as follows.

FIGURE 2. States x11(t) and x21(t) without the controller.

FIGURE 3. States x12(t) and x22(t) without the controller.

FIGURE 4. States x13(t) and x23(t) without the controller.

FIGURE 5. States x11(t) and x21(t) with the controller.

The simulation results are illustrated in Figs. 2-10.
Figs. 2-4 demonstrate the state response of the open-loop
system, Figs. 5-7 show the state variables of the closed-
loop system and Figs. 8-10 present the control signals of
the three decentralized controllers. From Figs. 2-3, it is
easily seen that all states x11, x21, x12, x22, x13, and x23 of
the open-loop system (2) are divergent, it means that the
system (2) is unstable when the controller is not used. When
the proposed controller is synthesized for the system (2), the
responses of all states are demonstrated in Figs. 4-7. The
simulation results in Figs. 4-7 show that all states x11, x21,
x12, x22, x13, and x23 approach zero asymptotically. Therefore,
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we can conclude that the proposed method in this work
is successful to synthesize a controller for stabilizing the
system (2).
Remark 3: It is seen that the large-scale nonlinear system

consists of three nonlinear terms: x21, x22, and x23. If we
apply the controller design methods in [8], [17], [18],
these nonlinear terms must be linearized to transform the
nonlinear subsystems into the linear subsystems. However,
it is obvious that when the linearization is carried out,
there exists a modeling error between the new model and
the original nonlinear large-scale system. This modeling
error will degrade the performance of the nonlinear large-
scale system. While, in this paper, the polynomial system
is employed to represent the nonlinear large-scale system
in which the nonlinear terms are put inside the system
matrices, thus, the modeling error does not exist in this
work.
Example 2: Consider the large-scale nonlinear system with

three interconnection terms as follows

S1 :



ẋ11 = −2(x21 + 1)x11 + 0.5x11x21
+ 1.05x11x21 sin(2x11)
− 0.105x221 sin(2x11)+ x12
+ x13 + (1− 0.02x21 cos(x21))u

×ẋ21 = x11x21 − 0.575x21 + 0.1x11 sin(2x11)
− 0.01x21 sin(2x11)+ 0.5x12x21
+ 0.5x21x13 + (1+ 0.02 cos(x21))u

(78)

S2 :



ẋ12 = −2x212 + 0.75(x22)2

+ 0.015x12x22 cos(0.5x22)
+ 0.005(x22)2 cos(0.5x22)+ 0.4x11x22
+ 0.4x13x22
+ (1+ 0.012x22 sin(2x12))u

ẋ22 = 0.5x12 − 0.8x222 + 0.063x12 cos(0.5x22)
+ 0.021x22
× cos(0.5x22)+ 0.6x22x11 + 0.6x21x23
+ (1+ 0.06 sin(2x12)u

(79)

S3 :



ẋ13 = −x213 + 0.3x223 + (0.008x13x23
+ 0.04x223) sin(x13)
× cos(2x23)+ 0.2x11 + 0.2x12
+ (1+ 0.036x23 cos(x23))u

ẋ23 = x13 − 0.775x223 + (0.02x13
+ 0.1x23) sin(x13) cos(2x23)
+ 0.05x21x23 + 0.05x22x23
+ (1+ 0.06 cos(x23))u

(80)

It should be noted that the large-scale nonlinear system
(78)-(80) contains non-polynomial terms such as cosine and
sine terms, therefore, it is unable to model this system
under the polynomial system (2) and apply the method in
Section 3 to design a controller for the system (78)-(80).
To overcome this challenge, the nonlinear large-scale

system (78)-(80) is represented under the form in (3).

ẋl = [Al(xl)+ Ãl(xl)]xl + [Bl(xl)+ B̃l(xl)]ul(t)

+

N∑
m=1,m 6=l

M lm(xl)xm, l = 1, 2, 3. (81)

where the equation can be derived, as shown at the bottom of
next page.
Under Assumption 1, Ã1(x1), Ã2(x2), Ã3(x3), B̃1(x1),

B̃2(x2), and B̃3(x3) are decomposed and we obtain the
following polynomial matrices:

E1
a (x1) =

[
1.05x21
0.1

]
, F1

a (x1) =
[
1 −0.1

]
, γ 1

a (x1) = 1

E1
b (x1) =

[
−0.1x21

0.1

]
, F1

b (x1) = 0.2, γ 1
b (x1) = 1

E2
a (x2) =

[
0.05x22
0.21

]
, F2

a (x2) =
[
0.3 0.1

]
, γ 2

a (x2) = 1

E2
b (x2) =

[
0.04x22
0.21

]
, F2

b (x2) = 0.3, γ 2
b (x2) = 1

E3
a (x3) =

[
0.04x23
0.1

]
, F3

a (x3) =
[
0.2 0.1

]
, γ 3

a (x3) = 1

E3
b (x3) =

[
0.06x23
0.1

]
, F3

b (x3) = 0.6, γ 3
b (x3) = 1

Solving the conditions in Theorem 4 by employing the
SOS tool of Matlab, the controller gains are obtained as
follows

K 1(x1) =
[
K11(x1) K12(x1)

]
,

K 2(x2) =
[
K21(x2) K22(x2)

]
,

K 3(x3) =
[
K31(x3) K32(x3)

]
,

where

K11(x1) = 14.45x211 + 0.074x11x21 − 0.163x11 + 14.25x221
+ 0.155x21 + 46.97

K12(x1) = 0.552x211 − 0.011x11x21 − 0.122x11
+ 0.60x221 − 0.079x21 + 2.00

K21(x2) = 2.04x212 + 0.038x12x22 + 0.937x12 + 1.945x222
− 0.597x22 + 6.945

K22(x2) = 5.152x212 − 0.047x12x22 − 0.749x12 + 5.25x222
+ 0.649x22 + 16.77

K31(x3) = 1.150x213 − 0.0014x13x23 + 0.255x13
+ 1.1388x223 − 0.043x23 + 3.933

K32(x3) = 2.7688x213 − 0.0065x13x23 − 0.1422x13
+ 2.782x223 + 0.1564x23 + 9.437

With the above controller gains, carrying simulation in
Simulink of Matlab, the obtained results are shown in
Figs. 8-13.
Firstly, we simulate the large-scale nonlinear system

(78)-(80) without the controller and the responses of the states
x11, x21, x12, x22, x13, and x23 are illustrated in Figs. 11-13.
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FIGURE 6. States x12(t) and x22(t) with the controller.

FIGURE 7. States x13(t) and x23(t) with the controller.

From these figures, it is seen that all states of the system are
divergent, it means that the system is unstable. After that,
we apply the method in Section IV to design the controller for

FIGURE 8. Control signal u1(t).

FIGURE 9. Control signal u2(t).

this system and carry out simulating in Matlab; the obtained
results are shown in Figs. 14-16. These figures show that,
with a controller, all states of the system are approach zero
asymptotically. The control signals u1(t), u2(t), and u3(t),

x1 =
[
x11
x21

]
, x2 =

[
x12
x22

]
, x3 =

[
x13
x23

]
,

B2(x2) =
[
1
1

]
,

A1(x1) =
[
−2(x21 + 1) 0.5x11

x21 −0.575

]
, B1(x1) =

[
1
1

]
,

B3(x3) =
[
1
1

]
Ã1(x1) =

[
1.05x21 sin(2x11) −0.105x21 sin(2x11)
0.1 sin(2x11) −0.01 sin(2x11)

]
,

B̃1(x1) =
[
−0.02x21 cos(x21)

0.02 cos(x21)

]
, M12(x1) =

[
1 0

0.5x21 0

]
M13(x1) =

[
1 0

0.5x21 0

]
, A2(x2) =

[
−2x12 0.75x22
0.5 −0.8x22

]
,

Ã2(x2) =
[
0.015x22 cos(0.5x22) 0.005x22 cos(0.5x22)
0.063x12 cos(0.5x22) 0.021x22 cos(0.5x22)

]
B̃2(x2) =

[
0.012x22 sin(2x12)
0.06 sin(2x12)

]
, M21(x2) =

[
0.4x22 0
0.6x22 0

]
M23(x2) =

[
0.4x22 0
0.6x22 0

]
, A3(x3) =

[
−x13 0.3x23
1 −0.775x23

]
Ã3(x3) =

[
0.008x23 sin(x13) cos(x23) 0.04x23 sin(x13) cos(x23)
0.02 sin(x13) cos(x23) 0.1 sin(x13) cos(x23)

]
B̃3(x3) =

[
0.036x23 cos(x23)
0.06 cos(x23)

]
M31(x3) =

[
0.2 0

0.05x23 0

]
, M32(x3) =

[
0.2 0

0.05x23 0

]
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FIGURE 10. Control signal u3(t).

FIGURE 11. States x11(t) and x21(t) without the controller.

FIGURE 12. States x12(t) and x22(t) without the controller.

FIGURE 13. States x13(t) and x23(t) without the controller.

are shown in Fig. 17, 18, and 19, respectively. With these
simulation results, it concludes that the proposed method in
this paper is successful to synthesize the controller for the
nonlinear large-scale system (78)-(80).
Remark 4: It is obvious that in Example 2, there exist the 12

nonlinear terms in the large-scale nonlinear system (78)-(90).
Therefore, if the previous methods in papers [8], [17], [18]
are employed to design the controller, we have to linearize
many nonlinear terms such as x11, x21, sin(2x21), cos(x21),
x12, x22, cos(0.5x22), cos(x21), x13, x23, sin(x13), cos(x23) that

FIGURE 14. States x11(t) and x21(t) with the controller.

FIGURE 15. States x12(t) and x22(t) with the controller.

FIGURE 16. States x13(t) and x23(t) with the controller.

FIGURE 17. Control signal u1(t).

FIGURE 18. Control signal u2(t).

will cause the modeling error and make the performance of
the control system degrade. Moreover, if we apply the T-S
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FIGURE 19. Control signal u3(t).

fuzzy model in [25]–[37] to model the large-scale nonlinear
system (78)-(80) then the number of the fuzzy rule are
212 rules that will make the controller design procedure much
more complicated and the computational burden significantly
increase. While, with the proposed method, the controller
gain can be obtained easily by solving the conditions in
Theorem 2 by using the SOS tool of Matlab.

VI. CONCLUSION
This paper studies the method to design the decentralized
polynomial controller for the nonlinear large-scale system.
The large-scale nonlinear system in this work is modeled
in terms of the polynomial system. The advantage of the
proposed method is that the nonlinear terms of the large-scale
nonlinear system are put inside the system matrices and
unnecessary to linearize, therefore the complexity and
computational load are significantly reduced in comparison
with previous studies. Both large-scale nonlinear systems
with non-polynomial and polynomial terms are considered in
this paper. By resolving SOS conditions in themain theorems,
the parameters of the controller are obtained. The simulation
results of two illustrative examples show the success of the
proposedmethod. However, there still exist many problems of
designing decentralized controller for this system such as the
systemwith the existence of the faults, uncertainties, or signal
dropout and so on. Thus, these issues will be investigated in
my future work.
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