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ABSTRACT Learning accurate state transition dynamics model in a sample-efficient way is important to
predict the future states from the current states and actions of a system both accurately and efficiently in
model-based reinforcement learning for many robotic applications. This study proposes a sample-efficient
learning approach that can accurately learn a state transition dynamics model by fitting both the predicted
next states and their derivatives. The derivatives of the feedforward neural network output (next states) with
respect to the inputs (current states and actions) are computed using chain rules. In addition, the effect of the
activation functions on the learning derivatives are illustrated via sum of elementary sine functions example
and the values are compared with various other activation functions with respect to accuracy. The proposed
learning approach exhibits significant improvement in accuracy for both one-step and multi-step prediction
cases with a six-degree-of-freedom manipulation robot (UR-10) in both simulation and real environments.

INDEX TERMS Activation function, model-based reinforcement learning, neural network, state transition
dynamics model.

I. INTRODUCTION
In model-based reinforcement learning (MBRL) for robotic
applications [1], learning accurate state transition dynamics
model (STDM) or equations of motion (EOM) is important
to predict the future states from the current states and actions
of a system accurately. If a learned STDM is very accurate for
all states and actions, then well-established control strategies,
such as linear quadratic control for deterministic dynamics or
linear quadratic Gaussian for stochastic dynamics can be used
to obtain an optimal controller. If a learned dynamics model is
not accurate, the compounding error increases rapidly result-
ing in the use of replan strategy such as model predictive
control (MPC). The better the accuracy of STDM, the more
future steps can be accurately predicted, so the re-planning
can be more effective. In addition to the accuracy aspect of
learning, sample efficiency (e.g., the use of a smaller number
of training trajectories in training) of learning is an important
consideration because a safe and cost-effective collection
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of many meaningful datasets is often difficult in real-world
problems. Therefore, training accurate dynamics models with
low sample complexity is challenging.

Many MBRL algorithms use naïve black-box approaches
with a feedforward neural network (FNN) architecture
for learning STDM [2], [3] assuming the Markov deci-
sion process in which STDM can predict the next states
as outputs given the current states and actions as inputs
using supervised learning with a collected rollout dataset,
i.e., (s0, a0, s1, a1, . . . , sT , aT ). However, naïve black-box
STDM learning usually requires a large meaningful dataset
for accurate future state prediction.

Studies on improving accuracy in the naïve black-box
STDM are summarized in [4]. Most of these studies used
model ensemble methods that averaged the predicted states
of several learned neural networks, such as deterministic
models [5] or probabilistic models [6] to model the uncer-
tainty and improve accuracy. However, both the prediction
speed and memory size of ensemble methods are linearly
proportional to the number of models; hence, these methods
may not be suitable for real-time control.
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In contrast to the naïve black-box STDM approaches that
do not need any prior knowledge, the white-box approach
learns a known architecture such as the EOM, which can be
derived from physics laws. In one such approach, a neural
network (NN) may learn unknown dynamics terms [7], [8],
such as an inertia matrix, Coriolis matrix, or gravity vec-
tor. However, these white-box approaches need additional
post-processes to predict the next states. First, the current
accelerations must be obtained from the EOM resulting in the
NN becoming ill-posed [7]. Second, the accelerations must
be integrated numerically to obtain the next states, which
requires additional processing time. These post-processes
are time-consuming with higher degrees of freedom (DOF),
and thus may hinder real-time tasks. In another approach,
physical parameters (i.e., mass, length) in an EOM may be
learned [9]. However, this system identification approach
requires carefully designed suitable control input excitation
for good converged parameter identification [7], [10].

Meanwhile, to improve the accuracy of the function
approximation in NN theory, there have been studies in
which both the function values and derivatives have been
fitted simultaneously [11]–[13]. In this ‘‘derivative learning
approach,’’ the NN outputs are differentiated by the NN
inputs; then, the error between the ground truth of the deriva-
tives and differentiated values is minimized as an additional
loss term. For example, in fluid dynamics simulations, the NN
outputs are velocities whereas the inputs are temporal and
spatial variables (x, y, and z coordinates) [14]. In this case,
the derivatives of NN outputs with respect to the inputs are
directly computed by automatic differentiation [18].

Thus, this derivative learning approach may be used to
learn STDMs accurately if the ground truth derivatives
(velocities and accelerations) are obtainable in robot dynam-
ics and control problems. However, the derivative learning
approach in NN theory may not be directly applicable to
STDM learning. Unlike previous derivative learning research,
e.g., dynamics simulation of differential equations, the out-
puts of the NN are the next states (poses and velocities) in
the STDM whereas the inputs of the NN are the current
states and actions. Therefore, the derivatives of the outputs
(next states) from the NN with respect to the inputs (cur-
rent states and actions) are not velocities and accelerations,
respectively. However, the ground truth of derivatives that
we can utilize are velocities and accelerations obtained by
time differentiation of the poses and velocities. Therefore,
this derivative mismatch problem should be solved using the
derivative learning approach. Moreover, the type of activation
function plays an important role in the derivative learning
process in terms of accuracy and convergence because some
activation functions cannot produce a large target derivative
value. However, the effects of various activation functions on
derivative learning of NNs have never been investigated in the
existing derivative learning approaches.

To solve the above-mentioned problems with the existing
derivative learning approaches, this study proposes a novel

STDM learning approach that uses derivative information
to improve the accuracy of the naïve black-box STDM
approaches. To deal with the derivative mismatch problem,
the proposed approach uses chain rule to obtain the deriva-
tives of the predicted next states. In addition, we have inves-
tigated the effects of the activation functions in the learning
process of the derivatives because the activation functions can
significantly influence the accuracy and sample efficiency of
STDM learning.

To the best of our knowledge, the concept of derivative
learning applied to STDM learning has been discussed in this
study for the first time. The main contributions of this study
can be summarized as follows:

1) To improve the accuracy and sample efficiency of the
naïve black-box STDM approaches, we have proposed a
novel STDM learning approach in which the chain rule is
used to compute the derivatives of the FNN output (next
states) with respect to the inputs (current states and actions)
to overcome the derivative mismatch problem. Then, both the
function and derivative values are used as loss functions.

2) There are no investigations about the effect of activation
functions in previous studies on derivative learning. We have
assessed the effect of activation functions on derivative learn-
ing and empirically compared several activation functions
with respect to accuracy.

3) In addition, most of the experiments in previous stud-
ies are only demonstrated in simulation. However, we have
demonstrated the effectiveness of the proposed approach
by learning a real 6-DOF robot STDM while approximat-
ing the real accelerations with the desired planned smooth
accelerations.

The remainder of this paper is organized as follows:
Section II briefly explains the basic concept of fitting deriva-
tives using the Taylor expansion theory. Section III analyzes
the effect of activation functions on the derivatives of the
NN and compares the performance of various activation func-
tions for an example case of a sum of elementary sine func-
tions. Section IV introduces the proposed derivative learning
approach for robot STDM learning. Section V presents the
experimental results of the proposed learning approach for
the UR-10 manipulator example. The effectiveness of the
proposed approach is shown by comparing both one-step
and multi-step prediction accuracies with those of the naïve
black-box approaches. Finally, Section VI summarizes the
conclusions of the study along with future works.

II. BASIC CONCEPT OF DERIVATIVE LEARNING
In this section, we have briefly explained the basic concept
of fitting both the function values and derivatives using the
Taylor expansion theory to enhance the sample efficiency and
accuracy compared to those achievable using the naïve black-
box approach. Here, the derivatives of FNN are obtained by
differentiating the predicted outputs from theNNwith respect
to the NN inputs. Using the Taylor expansion, an arbitrary
analytic function f (x) can be approximated as a sum of the
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power series at a local point ai ∈ x (i = 1, . . . , n):

f (x) ≈ f (ai)+
∂f (x)
∂x

∣∣∣∣
ai

(x − ai)+ High order term.

(1)

In approximating f (x) by NN(x), naïve black-box approaches
use only function values (f (ai)) as training data, which mini-
mizes only the zeroth-order term error (NN(ai) – f (ai)) in (1).
This learning usually requires lots of training data for accu-
rate approximation. However, if the ground truth derivatives

( ∂f (x)
∂x

∣∣∣
ai
) are available, the NN can also reduce the first-order

term error ( ∂NN (x)
∂x

∣∣∣
ai
– f ′(ai)) by fitting the derivatives of

the NN having the slope information at the training data ai.
Fitting both the zeroth-order and first-order terms of the exact
function f (x) can enable more accurate function approxima-
tion. Therefore, this derivative learning approach can learn
more accurate NN models with the same number of training
data (trajectory), thus resulting in higher sample efficiency.

Fig. 1 illustrates the learning process of the derivative
learning approach for a fifth-order polynomial function
(f (x)). This figure compares the function-only learning (blue
line) with the derivative learning (orange line) processes. The
blue line approximates only the ground truth function values
on the training data, whereas the orange line approximates
both the ground truth function values and derivatives on the
training data. As training progresses (as the number of epochs
increases), the derivative learning NN approaches the ground
truth curve (dotted line), whereas the naïveNN (function-only
learning) is still far from the ground truth curve. Therefore,
the derivative learning approach can make more accurate
predictions.

FIGURE 1. Learning processes of a polynomial function using the
function-only learning approach (blue) and proposed derivative learning
approach (orange) with same number of training data points.

III. EFFECT OF ACTIVATION FUNCTION ON THE
DERIVATIVES OF A NEURAL NETWORK
A. EFFECT OF ACTIVATION FUNCTION ON THE
DERIVATIVES OF A NEURAL NETWORK
When the derivatives of a NN are used for the training pro-
cess, the effect of activation functions on those derivatives
need to be investigated because NN is a function of the
activation function, weight, and bias. In this study, we have
used the simple FNN architecture shown in Fig. 2 for basic
investigation in which x is the input, ŷ is the predicted output,
(y, y′) are the ground truth function and derivative values,

respectively, b is the bias, w is the weight, and g is an
activation function.

FIGURE 2. Simple FNN architecture.

The predicted function value (ŷ) is represented as

ŷ = g (h) = g (wx + b), where h = wx + b. (2)

Then, the derivative ( ∂ ŷ
∂x ) of FNN is represented as

∂ ŷ
∂x
=
∂g (h)
∂h

∂h
∂x
=
∂g (h)
∂h

w. (3)

The derivative loss function (Lderivative) is defined as the mean
squared error (MSE) given by

Lderivative =
1
2

(
∂ ŷ
∂x
− y′

)2

. (4)

Note that the derivative of FNN is decomposed into the
derivative of activation function ( ∂g(h)

∂h ) and weight parame-
ter (w). To illustrate the effect of activation function on the
derivative of FNN, consider a specific activation function
such as hyperbolic tangent function Tanh, which is com-
monly used in fully connected layers. This activation function
may not fit effectively for the large derivatives since the
slope of Tanh (wx + b) for a range of weight w and input
x (with b = 0) asymptotically converges to zero when the
weight w and input x go to infinity as shown in Fig. 3. This
behavior is mainly due to the exponential decay of ∂g(h)

∂h
as shown in Fig. 4. (b). Therefore, a large weight w alone
cannot produce a large value of the derivative of Tanh. This
behavior may prevent the derivative loss shown in (4) from
being minimized to zero if the target derivatives are large.
This problem had been pointed out in derivative learning [12]
with respect to large target derivatives even though the Tanh
activation function has been successfully employed to fit
functions and their derivatives (e.g., [12]) for years.

On the contrary, if the derivative of an activation function
( ∂g(h)
∂h ) converges to 1, then the derivative of FNN ( ∂g(h)

∂h w)
can fit an arbitrary target derivative y′ by updating the weight
w by the learning process. Therefore, the effects of various
activation functions need to be investigated in-depth in the
derivative learning of STDMwhere the target derivatives may
be large.

We have investigated three groups of activation func-
tions: (1) sigmoid-like group (Sigmoid, Tanh), (2) piecewise-
linear group (ReLU and Leaky ReLU), and (3) nonlinear
group (Swish, SeLU, ELU, Softplus, and GeLU). Each acti-
vation function and its derivative are shown in Fig. 4.
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FIGURE 3. Derivative of Tanh(wx + b), x, w ∈ [−10, 10].

Although sigmoid-like group is also a nonlinear function,
we have distinguished these nonlinear activation functions
into sigmoid-like groups and nonlinear groups.

FIGURE 4. (a) Activation functions and (b) their derivatives.

From these function and derivative behaviors, both the
Sigmoid and Tanh activation functions have similar effects,
as discussed previously. The piecewise-linear group (ReLU
and Leaky ReLU), which was proposed to solve the gradient
vanishing problem in deep layers, shows that the derivative
converges to 1 in the positive region. However, the piecewise
linear function (in particular, ReLU) has a weak expressive
capability in a shallow FNN [15]. Thus, it may not approx-
imate functions appropriately in a shallow FNN, which is
typically used in STDM learning. In contrast, the nonlinear
group (Swish, SeLU, ELU, Softplus, and GeLU) the functions
are nonlinear and their derivatives also converge to 1. Among
these, Swish, Softplus, and GeLU activation functions are
smooth even in the first order derivative, which is a desirable
property in fitting the derivative in derivative learning.

Next, consider the gradient of the derivative loss with
respect to the weights in (5):

∂Lderivative
∂w

=

(
∂ ŷ
∂x
− y′

)
(
∂

∂w
(
∂ ŷ
∂x
− y′))

=

(
∂g (h)
∂h

w− y′
) (

∂

∂w
(
∂g (h)
∂h

w)
)

=

(
∂g (h)
∂h

w− y′
) (

∂

∂w

(
∂g (h)
∂h

)
w+

∂

∂w
(w)

∂g (h)
∂h

)
=

(
∂g (h)
∂h

w− y′
) (

∂

∂w

(
∂g (h)
∂h

)
w+

∂g (h)
∂h

)
= (error of derivatives) ∗ B(w, h), (5)

where
error of derivatives = ∂g(h)

∂h w− y′

B(w, h) = ∂
∂w

(
∂g(h)
∂h

)
w+ ∂g(h)

∂h .

This gradient information is used to update the weight
through backpropagation. Note that the error of the deriva-
tive loss in (5) may not be reflected in the backpropagation
process when B(w, h) converges to zero (i.e., the gradient
vanishing problem) for some activation functions, such as
Tanh and Sigmoid as shown in Fig. 5. The values of B(w, h)
are also shown for other types of activation functions. This
figure shows that the weights cannot be updated when h goes
to infinity for sigmoid-like activation functions, whereas the
weights can be updated in certain negative regions as well as
in the whole positive region for the nonlinear group. These
behaviors demonstrate that the term B(w, h) can affect the
performance of derivative learning.

FIGURE 5. B(w, h) for various activation functions.

For deep networks, analysis of the effects of activation
functions on the derivative of FNN is complex. Therefore, the
next subsection shows the numerical behavior of various acti-
vation functions in sum of elementary sine functions example
to highlight the effect of activation functions with FNN.

B. NUMERICAL EXAMPLE
To understand and compare the effects of the activation
function on the performance of naïve and derivative learning
approaches, we have compared the performance of various
activation functions (Tanh, Sigmoid, ReLU, Leaky ReLU,
Softplus, SeLU, ELU, GeLU, and Swish) with the sum of
elementary sine functions given in (6) as a ground truth
function. This example function is chosen to illustrate how
derivative learning can fit even a very complex function in a
sample-efficient way. For a less complex function like robot
motions, see section V.

y = sin (x)+ sin (0.5x)+ sin (0.1x);

where x ∈ [−30 pi ∼ 30 pi]. (6)
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For simplicity of comparison, the FNN model considered
here is a FNN with 100 nodes in each hidden layer. MSE
was chosen as the performance metric and was compared for
the number of hidden layers (1, 3, and 5). The FNN model
was trained five times with randomly initialized weights
using the Xavier initialization. Then, the best model was
selected with the lowest validation loss and was tested
using the test data. The dataset (x, y, y′) was gathered
from (6) by uniform interval sampling from the function
domain x ∈

[
−30 pi ∼ 30 pi

]
. The training, validation,

and test data corresponded to 100, 1000, and 4000 points,
respectively. We intentionally used a small number of train-
ing data (only 100) to show the sample efficiency of the
proposed approach because a large training dataset may not
exhibit the effectiveness of the proposed approach in general.
In addition, we have set the derivative loss weight parameter
α to 0.001, which is found by trial and error in the range
of [0.1,0.01,0.001,0.0001]. Very small parameters have no
effect on derivative learning, whereas very large parameters
hinder the training of original loss (function value).

FIGURE 6. MSE vs activation function for (a) naïve and (b) derivative
learning.

For the sum of elementary sine functions example,
Fig. 6 shows the 5-average MSE for both naïve and deriva-
tive learning results versus several activation functions. The
activation function significantly affects derivative learning.
In addition, the effect is more significant for deeper layers.

Note that the MSE could not be converged with ELU and
SeLU activation functions in derivative learning. We guess
this is because the slopes (blue and red lines) at the zero h
change abruptly (not smooth) as shown in Fig. 4. (b) (right-
most figure).

From Fig. 6, the Swish function exhibits the best accuracy
(GeLU and Softplus are the next best) among all the activation
functions used in the derivative learning. This is because of
the similar smooth derivative shapes of these three activation
functions, as seen in Fig. 4. (b) (rightmost figure).

Fig. 7 shows the typical results of one of the activa-
tion functions groups (Tanh, ReLU, Swish) with five hidden
layers. This figure clearly indicates that the prediction of
derivative learning is more accurate than that of the naïve
(black-box) learning. Specifically, derivative learning with
Swish activation function almost perfectly approximates the
ground truth values.

FIGURE 7. Prediction results of the naïve and proposed approaches for
different activation functions.

In addition to illustrating matching effects between loss
functions for regression (mean squared error (MSE), mean
absolute error (MAE), Huber loss) and activation functions in
derivative learning, we have also provided simulation results
for various combinations between loss and activation func-
tions for the sum of elementary sine functions example with
five hidden layers in Table 1, which shows that MSE is the
best compared to MAE, MSE, and Huber.

Fig. 8 shows the loss convergence behavior of five ran-
domly initialized weight models with five hidden layers and
Swish activation function. This figure shows the following.
(1) The training and validation losses of the naïve FNN are
minimized more slowly compared to those of the proposed
approach. (2) The validation loss of the naïve FNN converges

44252 VOLUME 10, 2022



Y. Kim et al.: Learning Accurate STDM by Fitting Both Function and Its Derivative

TABLE 1. Loss functions vs activation functions in derivative learning.

to a higher value (approximately 10E−1) whereas that of the
proposed approach converges to a lower value (approximately
10E−2), (3) More importantly, the generalization gap [17],
difference between training and validation losses is quite
small (10E−1 vs. 10E−2) for the proposed approach indicat-
ing that it has low variance. In addition, a low training loss
means low bias. Therefore, the proposed approach exhibits
both low bias and low variance.

FIGURE 8. Learning curves for naïve and proposed approaches with
Swish activation function.

IV. STATE TRANSITION DYNAMICS MODEL LEARNING
WITH DERIVATIVE OPTIMIZATION
This section presents the proposed derivative learning
approach applied to robot STDM learning for which the target
derivatives (ground truth data) must be available. For robot
state transition dynamics, the target derivatives are the time
derivatives of pose and velocity (i.e., velocity and accelera-

tion: ( dqt+1dt ,
dq̇t+1
dt )). However, the derivatives of the network

output (q̂t+1 & ˆ̇qt+1) with respect to the input (position qt ,
velocity q̇t , and action at ) are

∂ q̂t+1
∂qt

,
∂ q̂t+1
∂ q̇t

,
∂ q̂t+1
∂at

, ∂
ˆ̇qt+1
∂qt

,
∂ ˆ̇qt+1
∂ q̇t

,

and ∂ ˆ̇qt+1
∂at

, which are different from the time derivatives.
Therefore, the time derivatives need to be computed using
the chain rule as derived in (7) and (8) where the subscript t
denotes the time variable.

∂ q̂t+1
∂t
=
∂ q̂t+1
∂qt

∂qt
∂t
+
∂ q̂t+1
∂ q̇t

∂ q̇t
∂t
+
∂ q̂t+1
∂at

∂at
∂t

=
∂ q̂t+1
∂qt

q̇t +
∂ q̂t+1
∂ q̇t

q̈t +
∂ q̂t+1
∂at

∂at
∂t

≈
∂ q̂t+1
∂qt

q̇t +
∂ q̂t+1
∂ q̇t

q̈t +
∂ q̂t+1
∂at

1at
1t

(7)

∂ ˆ̇qt+1
∂t
=
∂ ˆ̇qt+1
∂qt

∂qt
∂t
+
∂ ˙̂qt+1
∂ q̇t

∂ q̇t
∂t
+
∂ ˆ̇qt+1
∂at

∂at
∂t

=
∂ ˆ̇qt+1
∂qt

q̇t +
∂ ˆ̇qt+1
∂ q̇t

q̈t +
∂ ˆ̇qt+1
∂at

∂at
∂t

≈
∂ ˆ̇qt+1
∂qt

q̇t +
∂ ˆ̇qt+1
∂ q̇t

q̈t +
∂ ˆ̇qt+1
∂at

1at
1t

. (8)

The partial derivatives in (7) and (8) can be computed using
automatic differentiation [18]. The measured or approxi-
mated target derivatives are used to train each derivative of
FNN in the STDM. Note that (q̇t , q̈t ) is given (i.e., measured
or approximated). However, the action derivatives ( ∂at

∂t ) are
not available (not given or measurable). Therefore, these
values need to be approximated by numerical differentiation
( ∂at
∂t ≈

1at
1t ). Then, the derivative loss is defined as the MSE

between the target derivatives (q̇t+1, q̈t+1) and derivatives of
STDM computed in (7) and (8).

The total loss in (9) is then the sum of the two losses
(state and derivative losses) with the optimization weight
parameter α. Then, the total loss is optimized using Adam
optimizer with 0.001 learning rate. The overall architecture
of the proposed training framework is summarized in Fig. 9.

Loss = Lossstate + αLossderivative (9)

FIGURE 9. Proposed training framework for STDM using derivative
learning.

V. ROBOT EXAMPLE
To demonstrate the effectiveness of the proposed STDM
learning approach, we conducted a series of experiments not
only with the simulated 6-DOF UR-10 manipulator to check
the feasibility but also with the real 6-DOF UR-10 manipula-
tor to show the practicality of the proposed approach.

A. SIMULATED ROBOT EXPERIMENTS
1) MODEL
The FNNs used for the naïve and proposed approaches con-
sisted of three hidden layers with 100 nodes each, and weight
parameter for the derivative loss α was set to 0.001. This
FNNmodel was optimized by trial and error considering both
training time and accuracy. The Swish activation functionwas
used in each hidden layer as discussed in the previous section.
In addition, all the results were averaged by five randomly
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initialized models using the Xavier initialization method to
neglect initial weight effects.

2) DATA COLLECTION
To check the feasibility of the proposed approach, a nominal
robot dynamics model was used in the simulation fromwhich
the motion trajectory data (joint angle, angular velocity, and
angular acceleration) and action data (joint torque) could be
acquired easily. A total of 200 trajectories were generated in
joint space by applying joint torques generated by random
sine functions as in (10) for 50-time steps using a UR-10
model in MATLAB Simulink. The 200 trajectories with
50-time steps per trajectory were split into three categories:
10, 20, and 40 trajectories (500, 1000, and 2000 data, respec-
tively) for training, 40 trajectories (2000 data) for validation,
and 120 trajectories (6000 data) for testing.

τi = Aisin (fit + ∅i)+ Bi (i = 1, . . . , 6), (10)

where

Ai = [0, 0.3], fi = [1, 10], Bi = [−1, 1], ∅i = [−1, 1].

Fig. 10 shows an example of 20 translational (left) and rota-
tional (right) trajectories of training data (blue line) and 120
trajectories of test data (orange line). This figure shows that
the large number of test trajectories can cover the end-effector
workspace in the task space almost completely.

The prediction performance was evaluated with the best
network model having the lowest validation loss of MSE.

FIGURE 10. Samples of end-effector translational (left) and rotational
(right) trajectories in task space.

3) RESULTS
Firstly, we have highlighted the effects of the activation func-
tion on prediction error. Fig. 11 shows the one-step prediction
errors of joint angles (in radian) and joint angular velocities
(in rad/sec) in terms of the average MSE of five trained
models for various activation functions when 40 training
trajectories and three hidden layers were used. Here, the num-
bers above the bar graph represent accuracy improvement,

which is defined as MSEnaive−MSEproposed
MSEproposed

× 100. Fig. 11 shows

that the proposed derivative learning significantly improves
(3-7 times) the prediction accuracy of STDM. This result
demonstrates that the proposed approach can significantly

improve the prediction accuracy of all the activation functions
for a robot like UR-10. This result is qualitatively similar
to that for the sum of elementary sine functions presented
in Fig. 6. Note that the MSE could not be converged for
derivative learning with ELU and SeLU activation functions
as discussed in section III. B.

FIGURE 11. MSE vs. activation functions in simulated robot example.

Secondly, we have shown the sample efficiency of
the proposed approach through one-step prediction error.
Fig. 12 highlights the MSEs (both joint angle and joint angu-
lar velocity) of the predicted next states of the naïve and
proposed approaches. Although the prediction error of both
approaches decreases with an increase in the number of train-
ing data, the prediction accuracy of the proposed approach is
significantly improved from that of the naïve approach.

Fig. 12 shows that the prediction accuracy of the proposed
approach has improved by approximately 11, 5, and 9 times
for joint angles and 3, 5, and 6 times for joint angular veloc-
ity for 10, 20, and 40 trajectories, respectively. Moreover,
the smaller standard deviation of the proposed approach in
Fig. 12 indicates that the proposed approach has amore robust
prediction capability than the naïve approach. In addition, the
validation loss of the proposed approach converges to a lower
value than that of the naïve approach, as shown in Fig. 13.
This low validation loss also demonstrates that the trained
model with a small number (i.e., 40 trajectories) of training
data in the proposed approach can generalize to unseen test
data (i.e., 120 trajectories) better than the naïve approach.
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FIGURE 12. MSE vs. number of training data in simulated UR-10.

FIGURE 13. Loss behavior vs. training epoch (40 trajectories (2000 data)).

B. REAL ROBOT EXPERIMENTS
The proposed approach requires real acceleration data as the
target derivatives in the training process. However, direct
measurement of acceleration in the real world is expensive,
and the numerical differentiation of velocity is also noisy.
To overcome this problem, we have used the accelerations
approximated by the desired acceleration planned in the plan-
ning stage [19].

1) DATA COLLECTION
In real robots, the training and testing trajectories (qt , q̇t , q̈t )
in joint space should be generated considering potential self-
collisions and/or singularity inside workspaces. Moreover,
the data should cover the robot workspace asmuch as possible
for generalization capability. Then, once the STDM is learned
over the robot workspace, it can be applied in any trajectories.
To satisfy these requirements, 100 desired trajectories in a
task space for 100 time-steps (thus 100× 100= 10,000 data)
were pre-planned in a safe zone using a quintic function with
four predefined initial poses and 25 random final poses near
each initial state (100 trajectories= 4 initial states multiplied
by 25 final states). In this planning, initial and final velocities
of 0 along with small magnitude of accelerations were used
for quintic function to avoid jerk motions that could induce
large errors between the desired and actual accelerations.
Fig. 14 shows the planned trajectories.

FIGURE 14. Example of end-effector translational (left) and rotational
(right) trajectories generated by desired trajectory in a real robot.

To ensure that the real robot follows the planned desired
trajectories, a PID controller in the MoveIt ROS package [20]
was tuned for small tracking error (MSE of joint angle:
1.818E–5, MSE of joint angular velocity: 0.029). With this
setting, the actual states (joint angles and angular velocities)
and actions (motor torques) were acquired in a joint space.
Fig. 15 shows an example of the actual joint angle (left) and
joint angular velocity (right) trajectories of the elbow joint for
the planned trajectories with a quintic function in a task space
with the real UR10 robot. These trajectories were used along
with the desired accelerations to train a NN model. Here,
we used an average filter for the measured angular velocity
to reduce the noise.

FIGURE 15. Example of desired and actual trajectories of angle (left) and
angular velocity (right) of the elbow joint in a real environment.

2) ONE-STEP PREDICTION EXPERIMENT
In this experiment, we used the same network setup as in the
simulated robot experiment both for the naïve and proposed
approaches with the optimally selected weight parameter
α = 0.001. Similar to the simulation case, we selected
three groups of activation functions such as sigmoid-like,
piecewise, and non-linear groups to show the effect of activa-
tion functions. In addition, we selected three different small
number of training trajectories (4, 12, and 20 trajectories from
a total of 100 trajectories) randomly from each of the four
initial states (e.g., 1 of 25 trajectories from each initial state
for the case of 4 training trajectories) to show the sample effi-
ciency in terms of the number of trajectories in the proposed
approach. More specifically, from each of the four initial
states, 1, 3, and 5 trajectories were randomly sampled for the
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training dataset, 5 trajectories for the validation dataset, and
the remaining 15 trajectories for the test dataset.

3) MULTI-STEP PREDICTION EXPERIMENT
Multi-step prediction performance is also important for
downstream reinforcement learning performance because,
for example, if the accuracy of multi-step prediction is high,
then future rewards can be known in advance, thus improving
the efficiency of reinforcement learning. Therefore, we com-
pared the multi-step performance against state-of-the-art
MBRL method [6]. To compare the multi-step prediction
accuracy with that of other black-box approaches [6] for
UR-10 robot case, we considered four model types (D: deter-
ministic model (naïve FNN), P: probabilistic model, DE:
deterministic ensemble model, and PE: probabilistic ensem-
ble model) that have the same notations and model training
cases appearing in [6] with five models for the ensemble
approach. The proposed approach uses four additional model
types (DD: deterministic model with derivative learning, PD:
probabilistic model with derivative learning,DED: determin-
istic ensemble model with derivative learning, PED: prob-
abilistic ensemble model with derivative learning). In this
multi-step experiment, we used 20 trajectories of training
data, 20 trajectories of validation data, and 60 trajectories of
test data. For a fair comparison, we used the same network
size (3 hidden layers, 100 nodes) and Swish activation func-
tions for all models.

4) RESULTS
Fig. 16 shows the one-step prediction errors of joint angles
(in radian) and joint angular velocities (in rad/ sec) in terms
of average MSE of 5 trained models for the activation func-
tions when 20 training trajectories and 3 hidden layers were
used. Fig. 16 shows that the proposed derivative learning still
improves the prediction accuracy for most of the activation
functions even though the amount of improvement is less
than that in simulation. Specifically, Tanh activation function
degraded the prediction accuracy for joint angles whereas
Swish activation function improved the prediction accuracy
the most by approximately 60% for joint angle and 80%
for joint angular velocity. This result was anticipated in the
analysis of activation function and simulated robot example.
In addition, this result shows that the use of target (desired)
derivatives in a real robot instead of true derivatives is effec-
tive too.

Fig. 17 shows the sample efficiency and robustness of the
proposed approach when Swish activation function is used.
Even though the improvement is not significant compared to
the simulation case, this figure still shows that the prediction
accuracy of the proposed approach has improved by approx-
imately 17, 7, and 56% for joint angle and 54, 47, and 77%
for joint angular velocity for 3 training datasets, respectively
(4, 12, and 20 trajectories). Note that the amount of accuracy
improvement depends on the number of samples; however,
it is always better than that of naïve FNN.

FIGURE 16. MSE vs. activation function in real robot example.

FIGURE 17. One-step prediction vs. number of training data in real robot
example.

FIGURE 18. (left) Multi-step (up to 100 steps) prediction (angle). (right)
Multi-step (up to 100 steps) prediction (angular velocity).

Fig. 18 shows the multi-step (up to 100 steps) prediction
accuracy of the abovementioned eight model cases when
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FIGURE 19. (a) Multi-step (up to 20 steps) prediction (angle).
(b) Multi-step (up to 20 steps) prediction (angular velocity).

only initial state and action trajectories are given. The solid
lines represent the naïve black-box approach (D, DE, P,
and PE) whereas the dashed lines represent the proposed
approach (DD, DED, PD, and PED), i.e., the derivative loss of
the proposed approach is additionally considered in training
the naïve black-box approaches. The centerline represents the
average MSE, whereas the shaded area represents the stan-
dard deviation of 60 test trajectories at each time step. More
specifically, Fig. 18 (100-time steps) shows that for very
long horizon prediction cases of single models (D and P), the
proposed derivative learning approaches (DD: blue dashed
line, PD: green dashed line) achieve more stable prediction
with small MSEs than the other naive approaches (D: blue
solid line, P: green solid line). On the contrary, for the
ensemble models, both the proposed (DED, PED) and other
approaches (DE, PE) show similar behaviors. However, the
computation time of the proposed approach is far less (0.15 s
for the five ensemble cases (DE, PE, DED, and PED) vs.
0.033 s for the single model cases (D, P, DD, and PD) for
100-time steps) than that of the ensemble methods because
the ensemble methods use multiple models. Therefore, the

proposed approach can predict the long-term future accu-
rately with the same inference speed as the single-model
approaches (D, P).

To demonstrate the shorter horizon behavior typically used
in MPC, MSEs of the angle and angular velocity for 20-time
steps are shown in Fig. 19. The angle and angular velocity
accuracies of the proposed approach are consistently better
than those of the other approaches even though the PE and
PED show very similar behaviors.

VI. CONCLUSION
In this study, we proposed a novel STDM learning approach
by learning both the function values and its derivatives to
improve the STDM accuracy. Additionally, we investigated
the effects of the activation functions on the fitting derivatives
when a NN learns the derivatives using the proposed deriva-
tive learning. We found that the derivative characteristics of
the activation functions play an important role in the learn-
ing process. For example, the non-linear activation function
group, specifically swish-like, whose derivative converges to
one was suitable for derivative learning. The proposed STDM
learning method achieved better accuracy in not only one-
step prediction but also multi-step prediction than the naïve
black-box approaches for both simulated and real UR-10
manipulators.

In future studies, we will investigate the effect of accuracy
of STDM on learning the optimal policy in reinforcement
learning settings. A more accurate STDM improves the effi-
ciency of reinforcement learning process.
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