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ABSTRACT The investigation of stochastic optimal power flow (SOPF) is to seek the optimal solution
of static stability constrained optimal power flow considering the uncertainty of parameters in power
systems. To solve the problem, this paper proposes an approach based on the stochastic collocation
method (SCM) and Gram-Charlier expansion to obtain the optimal solution of SOPF. Firstly, the SOPF
model to simultaneously consider uncertainties and static stability is formulated. Then, probabilistic chance
constraints are reformulated as a set of deterministic constraints using polynomial approximation, which
explicitly describe the relationship between the probability of chance constraints and control variables.
By applying the primal-dual interior point method to the reformulated SOPF model, the optimal solution
can be efficiently obtained. The proposed SCM-based approach has been thoroughly tested on a modified
3-machine 9-bus system and IEEE 118-bus system, which verifies the effectiveness and accuracy of the
proposed method.

INDEX TERMS Stochastic optimal power flow, wind farms, uncertain parameters, stochastic collocation
method, Gram-Charlier expansion.

I. INTRODUCTION
The optimal power flow (OPF) problem [1], [2] is one of
the most important tools for power system planning and
operation. Since the modern interior point method has been
applied to power system optimization calculation [3]–[6], the
solution of OPF problems for large-scale power systems has
been successfully realized. The traditional OPF problem is
based on a deterministic model, which ignores the stochastic
factors in the system.However, due to the errors in the process
of power system state measurement and data transmission,
the system load level and network state are not deterministic
quantities. In addition, in recent years, in order to realize
the cleanliness of the power side of the smart grid, large-
scale renewable energy (such as wind power, solar power,
etc.) is connected to the power system in the form of
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centralized or distributed power generation, and the power
output of these renewable energy plants is strongly random
and intermittent with the influence of natural conditions (such
as wind speed, light intensity and time, etc.), which makes
the solution of the OPF problem need to face more uncertain
factors.

Generally, the OPF problem under uncertainty is formu-
lated as an nonlinear algebraic programming (NLP). There
are three main methods to consider the uncertain parameters
in OPF: 1) the robust OPF [7]–[13], which makes the
system robust stable to the random variations of parameters.
It only requires knowledge of the variation range of uncertain
parameters, and is therefore more computationally efficient.
However, since it ignores the statistic characteristics of
uncertain parameters, it usually results in the worst-case
scenario and conservative solutions; 2)the probabilistic OPF
(POPF) [14]–[19], which is a stochastic analysis problem in
which information on the probability distribution of several
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state variables (such as the objective function of the OPF, the
output of each generator, the output of the reactive power
source, the bus voltage amplitude, etc.) is obtained based
on the probability distribution of known random variables.
3) the stochastic OPF (SOPF), which limits the probability
of constraints’ violation affected by uncertain parameters to
an assigned value. Many methods have been proposed to
solve the SOPF, for example, in reference [20], the Benders
decomposition was used to solve the security-constrained
unit commitment problem considering the intermittencywind
power generation, where possible scenarios are simulated
for representing the wind power volatility. In reference [21],
random disturbances are modeled as scenario trees using
the Monte Carlo simulation method and the optimiza-
tion problem is decomposed into deterministic long term
security-constrained unit commitment subproblems. In ref-
erence [22], [23], the problem is formulated as a chance-
constrained two-stage stochastic program and algorithms are
developed to solve the model effectively. The POPF and
SOPF rely on a presumed probability density function (PDF)
of uncertain parameters, and they usually need a huge number
of sampling scenarios. The difficulty in solving SOPF lies
in the treatment of chance constraints. Generally, heuristic
optimization methods or transformation of the stochastic
optimization model into a deterministic optimization model
can be used to solve the problem, which requiring repeated
iterative solutions. To avoid this, we propose a stochastic
Collocation method (SCM)-based approach to solve SOPF in
this paper, which aims to transform the stochastic optimiza-
tion model into a deterministic optimization model under the
premise of fewer samplings. The advantage of the proposed
method is that the obtained polynomial approximation
can avoid large random sampling of the power system,
thus it can improve the computational efficiency of the
optimal solution while ensuring the reliability of the optimal
solution.

To reformulate the SOPF model, the effect of uncertain
parameters and control variables on static stability needs to be
thoroughly quantified at first. The Monte Carlo method [25]
is a straightforward method adopted to estimate the statistical
characteristic of the static states according to the probability
distribution of uncertain parameters, which requires a large
number of sample data and repeated dynamic simulation, thus
this method can become time-consuming.

To improve computation efficiency, polynomial chaos
expansion (PCE) methods have been widely researched
in probabilistic studies [26], [27], and has been applied
to all kinds of static or dynamic problems in many
engineering fields, e.g. electrical power systems [28]–[31],
electric circuits [32], fluid dynamics [33] and control
engineering [34]. PCE methods are based on the polynomial
approximation theory, i.e., use a linear combination of
a set of polynomial basis functions with undetermined
coefficients to approximate the relationship between the
desired system outputs and uncertain parameters explicitly
(called polynomial approximation), and then calculate the

probability distributions of system outputs by this polynomial
approximation.

The SCM [26]–[28] is an effective way to solve unde-
termined coefficients in PCE. It is a non-intrusive PCE
method that treats the system model as a black box and
only needs to acquire values of parameter-output function
at the collocation points from the system model. Therefore,
the SCM’s solvability only relies on the solvability of the
existing system program, and has nothing to do with the
system size and parameter number. Inspired by this, in this
paper, we adopt the SCMmethod to analyze the static stability
by constructing the polynomial approximation of static states
concerning parameters.

Since static states have been approximated by polyno-
mials, the moments of static states can be easily obtained.
Then, by the SCM and the Gram-Charlier expansion, the
relationship between the control variables and the probability
of chance constraints can be expressed by a set of poly-
nomials. Therefore, the initial probabilistic algebraic NLP
of SOPF can be reformulated as a deterministic algebraic
NLP. By applying the classic primal-dual interior point
method (PDIPM) [5] to the reformulated SOPF model, the
optimal solution can be efficiently obtained. In this paper,
the proposed approach is thoroughly tested and evaluated
using the 3-machine 9-bus system and the IEEE 118-bus
system.

The main contributions of this paper include: 1) the pro-
posed SCM-based approach can efficiently solve the SOPF
problem, which can obtain optimal control scheme without
large amount of sampling; 2) the proposed SCM-based
approach can construct the quantitive relationship between
the static states and random parameters, through which the
effect of uncertain parameters on the static stability can
be analyzed. 3) the proposed method for SOPF problem is
general and flexible to be cooperated with existing system
programs, and its solvability will not be limited by system
size and parameter number.

The rest of this paper is organized as follows. The
model of the SOPF problem is first introduced in Section II.
In Section III, the SCM-based algorithm is formed to
reformulate the SOPF model and solve the OPF problem.
Section IV summerizes the procedures of the proposed
method and Section V validates this method on the 3-machine
9-bus system and IEEE 118-bus system. Conclusions and
future work are given in the last Section.

II. FORMULATION OF PROBABILISTIC TRANSIENT
STABILITY CONSTRAINED OPTIMAL POWER FLOW
A. GENERAL MATHEMATICAL MODEL OF SOPF
Aiming to adjust control variables to make the system stable
with a satisfactory security level, the SOPF is formulated as
the following algebraic NLP problem:

minE{c(y,u,p)} (1)

Subject to :

0 = g(y,u,p) (2)
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P{H(y,u,p) ≤ Hmax} ≥ β (3)

where y ∈ Rny denotes the algebraic variables such as the bus
voltage and injection current; u ∈ Rnu denotes the control
variables with lower and upper limits, such as the generator
active power and terminal voltage; p = (p1, . . . , pnp ) ∈
D = (D1, . . . ,Dnp ) denotes the uncertain parameters, such
as nodal load and the injected power by energy sources. E {∗}
in (2) stands for the expectation calculation, and the objective
function c : Rny × Rnu × Rnp → R can be expressed as
the fuel cost, network loss, or the interface transfer capability
etc.. g : Rny × Rnu × Rnp → Rny is the vector of functions
corresponding to the algebraic part of power system model,
which included the models of network and energy sources.
(2) is the steady-state equality constraints including power
flow balances, which are the steady-state equality constraints.
P{∗} in (3) stands for the probability calculation, and
(3) requires the chance constraints for steady-state variables
above a fixed risk security level β0, which includes limits on
bus voltage magnitude, generator active and reactive power
outputs, etc.

B. EXPLICIT FORMULATION OF SOPF PROBLEM
CONSIDERING WIND GENERATION
While the general form of SOPF model is presented in
Section II-A, here a representative SOPF model used in
the case study is explicitly given with brief descriptions
on how various uncertain variables could be considered
in SOPF. In this paper, only load injections and wind
generations are considered in the SOPF problem, while other
common uncertain factors could be easily tackled in a similar
way.

1) OBJECTIVE FUNCTION
Usually, slack bus generator is used to keep the power
balance in the system. However, the uncertainties of random
input variables would cause the slack bus generation become
probabilistic. Therefore, the system state variables and
concerned objectives will be probabilistic too. In this paper,
the expected total generation fuel cost [24] is adopted as the
objective of the SOPF model

E{
nG∑
i=1

(aiP2Gi + biPGi + ci)} (4)

where E{·} is the is the expectation calculation operator,
PGi is active power of the ith generator, ai, bi and ci are
the fuel coefficients corresponding to the different order
terms of generator i respectively and nG is total number
of traditional generators. It shall be noted that there is
no limitation on the formulation of the SOPF objective,
and many other targets, such as expected minimum power
loss, expected participants’ bids in power market, could be
similarly designed as the objective of SOPF or even extended
to form a multiple-objective SOPF model.

2) STATIC EQUALITY CONSTRAINTS
The static equality constraint (2) is explicitly described by the
power flow equations as 0=PGi+Pw−PDi−Vi

∑nb

j=1
Vj(Gij cos θij+Bij sin θij)

0=QGi+Qw−QDi−Vi
∑nb

j=1
Vj(Gij sin θij−Bij cos θij)

(5)

where i = 1, 2, . . . , nb, nb is the total number of buses; QGi
and QDi are the generator and load reactive power, Vi and
Vj are the voltage magnitude of bus i and j, θij is the angle
difference between bus i and j.

3) STATIC PROBABILISTIC INEQUALITY CONSTRAINTS
The static inequality constraint (3) explicitly includes the
probabilistic constraints for generator reactive power, node
voltage and transmission line thermal limits as

P{QGimin ≤ QGi ≤ QGimax} > βQ(i = 1, 2, . . . , nG) (6)

P{Vimin ≤ Vi ≤ Vimax} > βV(i = 1, 2, . . . , nb) (7)

P{Sli ≤ Slimax} > βS(i = 1, 2, . . . , nl) (8)

where nl is the number of branches and Sli is the apparent
power flow in the ith branch; QGi min, QGimax, VGimin
and VGimax are the lower and upper limits of generator
reactive power and bus voltage, respectively; Sli.max is upper
limit of the ith transmission line power. These probabilistic
constraints ensure that bus voltages, generator reactive power
and transmission line power flows are all bounded in the
required ranges with an acceptable risk security level.

4) WIND GENERATIONS
With variable wind speed, a wind generator output is
determined from the speed-power curve of wind turbine,

Pw =


0, (vw < vci, vw > vct)

Prated(
vw − vci
vrd − vci

), (vci ≤ vw ≤ vrd)

Prated, (vrd < vw < vct)

(9)

where Prated is the rated power, vci, vrd and vct are the cut-in,
rated and cut-out wind speed, respectively. The distribution of
wind generations can be calculated from (9) using the wind
speed samples based on its probabilistic model.

III. METHODOLOGY
A. POLYNOMIAL APPROXIMATION OF STATIC STATES
Since both control variables u and uncertain parameters p
have effect on the static system variables y, they are analyzed
together for simplification in this section. We will use p′ =[
uT,pT

]T
as a compact form of control variables u and

uncertain parameters p.
As can be seen from the static equality constraints (2),

the relationship between p′ and desired system outputs y is
implicitly described by a set of algebraic equations. In order
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to investigate the effect of parameters p on static stability, the
SCM is introduced to approximate the relationship between
the static system outputs y and uncertain parameters p′

explicitly with polynomial expression.
Firstly, assume |∂g/∂y| 6= 0, then according to the implicit

function theorem, static constraints (2) can be solved locally
by:

y(p′) ≈ ŷ(p′) =
Nb∑
k=1

cyk8k (p′), (10)

where cyk is the vector of undetermined coefficients which
are time varied; 8k (p′) is the k-th orthogonal polynomial
basis function of multiple parameters, which is 8k (p′) ,{
ϕk1 (p

′

1)ϕk2 (p
′

2) · · ·ϕkd (p
′
d )
}
. Here ϕkd (p

′
d ) is the orthogonal

polynomial basis function in d-th dimension of p′, ki, i =
1, 2, . . . , d is the order of i-th dimensional polynomial basis
function, and the sort order of the subscript k satisfies: k < j,

if
d∧
i=1

(ki < ji). Nb =
(N + d)!
N !d !

is the number of polynomial

basis functions, i.e. undetermined coefficients, where N is
the total degree of the polynomial basis functions

{
8(p′)

}
and d = nu + np is the dimension of parameters p′. Note
that the choice of unidimensional orthogonal polynomial
basis function ϕkd (p

′
d ) depends on the distribution of p′d .

This selection method is called the Askey scheme [27],
which provides some typical probability distribution and
corresponding orthogonal polynomials.

Then, the undetermined coefficients cyk in (10) can be
solved by the SCM with the following formula:

cyk =
1
χk

M∑
m=1

αm8k (p′(m))y(p′(m)), (11)

where χk =
∫
D′ 8k (p′)8k (p′)ω(p′)dp′, and D′ is the domain

of p′; p′(m), m = 1, . . . ,M are collocation points (also called
integration points), and αm is the integration coefficient of
p′(m). The collocation points and corresponding integration
coefficient αm are determined through the Smolyak sparse
grid quadrature [26]; y(p′(m)) is the value of y with p′ =
p′(m), which can be obtained through solving (5). For
the proposed method, the sampling points are the tensor
products of the Gaussian integration points required for each
one-dimensional parameter. Therefore, the sampling points
required by the proposed method are not randomly generated,
but are determined by both the dimensionality of the parame-
ters and the order of the polynomial approximation. When
the data of the required sampling points are insufficient,
it will lead to the loss of accuracy in the calculation of the
approximation coefficients by Eq. (11), which in turn will
lead to the loss of reliability of the solution of the SOPF.

With the polynomial formulation, the ith moments of the
static variables can be readily approximated by applying their
definitions directly to the polynomial approximation (10),
such as

µ
y
i , E{ŷi(p′)} =

∫
ŷi(p′)ω(p)dp, (12)

where ω(p) is the probability density function (PDF) of
the uncertain parameter. With these moments, the CDF of
static/transient variables derived using methods such as the
Gram-Charlier (GC) expansion [24].

B. REFORMULATION OF SOPF MODEL
In last subsection, the polynomial expansion of all static
variables has been obtained using the SCM. Therefore, all
variables in the SOPF model can be substituted by their
polynomial expansions. In this section, we will present
how to use polynomial expansions to transform the original
probabilistic NLP problem into a deterministic NLP problem.

1) REFORMULATION OF OBJECTIVE FUNCTION
As for the objective function E{c(y,u,p)}, when we sub-
stitute y with their polynomial expansions, the expectation
considering the uncertain parameters can be derived by

E{c(y,u,p)} ≈
∫
c(

Nb∑
k=1

cyk8k (u,p)ω(p)dp

= c′(u). (13)

Therefore, the reformulated objective function is a function
in terms of control variables u.

2) REFORMULATION OF PROBABILISTIC STATIC STABILITY
CONSTRAINTS
In order to evaluate the the probabilistic static stablity
constraints, probability P{H(y,u,p) ≤ Hmax} need to be
evaluate first. Note that both uncertain parameter p and
control variables u are included in variables’ polynomial
expansions, but only the uncertainty of p need to be
quantified. Therefore, P{H(y,u,p) ≤ Hmax} are functions
in terms of control variables. In this subsection, an approach
based on the SCM and the Gram-Charlier expansion is
proposed to approximate these functions and reformulate the
probabilistic static/transient stability constraints.

The main procedures are presented as follows:
1) Give the set of collocation points of control variables

according to the Smolyak sparse grid quadrature as
u(m),m = 1, . . . ,M .

2) For each u(m), evaluate the probability of H(y,u,p) ≤
Hmax using the Gram-Charlier expansion by

P{H(y,u,p) ≤ Hmax}|u(m)

=

∫ H̃max

−∞

N (u)du−N (H̃max)[
K3

3!σ 3 (H̃
2
max − 1)

+
K4

4!σ 4 (H̃
3
max−3H̃max)

+
K5

5!σ 5 (H̃
4
max−6H̃

2
max+3)], (14)

where H̃max = (Hmax − µ)/σ , µ and σ are the mean
value and the standard deviation of H(y,u(m),p); N (∗)
is the standard normal distribution function; Kj are the
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jth cumulants of H(y,u(m),p) which can be derived
from the moments of H(y,u(m),p).

3) Based on the SCM, the polynomial expansion of
probability P{H(y,u,p) ≤ Hmax} can be constructed
by

P{H(y,u,p) ≤ Hmax}|u ≈ P̂{H(y,u,p) ≤ Hmax}|u

=

Nb∑
k=1

cPk8k (u), (15)

with

cPk =
1
χk

M∑
m=1

αm8k (u(m))P{H(y,u,p) ≤ Hmax}|u(m)

(16)

4) Static stability constraints (3) can be reformulated as

P{H(y,u,p) ≤ Hmax}|u ≈

Nb∑
k=1

cPk8k (u) ≥ β (17)

So far, uncertain parameters have been eliminated from
the model of SOPF, and the following algebraic NLP is
formulated:

min c′(u) (18)

Subject to static stability constraints:
Nb∑
k=1

cP{H≤Hmax}
k 8k (u) ≥ β (19)

When constraint (19) is included in the SOPF formulation, the
static constrains (2) are also included implicitly. Therefore
these constraints and the corresponding variables y can be
eliminated from the formulation of SOPF. The reformulation
of SOPF model gives the following advantages:

1) The chance constraint (3) in the general SOPF can
not be dealt with directly by existing optimization
methods. Differently, the reformulated SOPF model is
deterministic, which can be easily dealt with.

2) The dimension of the optimization model is largely
reduced. With the elimination of the static con-
strains (2), the dimension of the optimization model are
less than that of a conventional OPF.

3) The uncertainty of parameters p in the SOPF model
has been thoroughly quantified, the optimal solution
of the SOPF can be directly obtained through solving
the reformulated SOPF model (18)-(19) without any
iteration.

C. PDIMP FOR SOLVING THE REFORMUALTED SOPF
Based on the classical PDIPM [5], by introducing slack
variables for inequality constraints (19) and appending
the logarithmic barrier functions to the objective, SOPF
model (18)-(19) can be reformulated as the following
subproblem:

min c′(u)− µ
r∑
j=1

log(υ) (20)

Subject to :
Nb∑
k=1

cP{H≤Hmax}
k 8k (u)− υ = β (21)

where µ > 0 is the barrier parameter that is enforced to
decrease towards zero iteratively; υ = [υ1(p), . . . , υr (p)] is
the vector of slack variables for inequality constraints, and
r is the number of static stability inequality constraints (19).
Asµ tends towards zero, the solution of the reformulated sub-
problem approaches the solution of the primary optimization
model (18)-(19). By solving the subproblem (21)-(21), the
optimal solution of the reformulated SOPF problem (18)-(19)
can be obtained.

IV. PROCEDURES
The main procedures of the proposed method for solving the
SOPF problem are summarized below.

Step 1: Input system data and construct the parametric
SOPF model, determine the uncertain parameters
and controllable parameters to be considered in the
stability analysis.

Step 2: In order to eliminate the power flow equation
from the SOPF model, construct the polynomial
approximation of static variables as Eq. (10), and
then the static stability constraint in SOPF model
can be reformulted as Eq. (19).

Step 3: Reformulate the SOPF model as an algebraic NLP
in Eq. (18)-(19), introduce slack variables for
inequality constraints (19) and appending the loga-
rithmic barrier functions to the objective. By solving
Eq. (21)-(21), the optimal control scheme of the
reformulated SOPF problem can be obtained.

V. CASE STUDIES
The modified 3-machine 9-bus system with 2 wind farms as
shown in Fig. 1 and IEEE 118-bus system are presented in
this section. The purpose is to illustrate the characteristics and
effectiveness of the proposed method through the 3-machine
9-bus system case, and to illustrate the potential of themethod
for practical power system applications through the IEEE
118-bus system case.

The Monte Carlo method (MCM) is conducted for
benchmarking the performance of the proposed method in
static stability analysis. All computations are performed on
Wolfram Mathematica 12.0 on a desktop with a CPU of Intel
i7-8700U 3.20 GHz and a RAM of 8:0 GB.

A. THE 3-MACHINE 9-BUS SYSTEM CASE
1) CASE SETTINGS
The detailed data of the 3-machine 9-bus system shown
in Fig. 1 can be found in [29]. The slack generator is at
bus 1. The controllable parameters are power generation
PG2 ∈ [60, 175] MW, PG3 ∈ [40, 180] MW. The fuel
cost coefficient for the generators is [3, 1, 1]T. For wind
farms at bus 6 and bus 8, an aggregated model with a
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FIGURE 1. Diagram of 9-buses system.

total number of 100 DFIGs with rated power 1.5 MW
each cited from [24] are aggregated to form a wind farm
respectively. Therefore, the uncertain parameter in this case
is the active output of wind farms PW6 and PW8, which
varies in the range [0, 150] MW. In order to keep the
power factor of the wind farm constant at 0.5, the reactive
power output of the wind farmwill vary with the active power
output.

2) APPROXIMATION ERROR AND COMPUTATION TIME OF
THE PROPOSED METHOD
In order to verify the accuracy of the proposed polynomial
approximation method in approximating the steady-state
states, the control parameters are set to nominal values and
the uncertain parameters are freely varied within their ranges.
Fig. 2 plots the variation of bus voltage V4 with the uncertain
parameters PW6 and PW8. It can be seen that V4 increases
with PW6, which is due to the fact that the more power is
emitted from the wind farm, the more the load power at bus
6 can be balanced locally as much as possible without the
need for power generation at bus 1. As PW8 increases, the
power flowing from bus 4 to bus 6 becomes smaller and
smaller until its direction is found to change. After the change
in power flow direction, the excess power from wind farms
needs to be absorbed by the balancing machine at bus 1 and
the voltage at bus 4 will then be reduced to accommodate the
shift of power flow. Note that in the model of the SOPF, the
outputs of the wind turbines are stochastic parameters and
the outputs of the generators are control parameters. The aim
of the SOPF is to find a set of optimal control parameters
such that the probability of violating the safety constraint
under the influence of the stochastic parameters is lower than
a specified value. Therefore, the relationship between them
is not a quantitative function relationship, it is not possible to
use an image like Fig. 2 to portray the relationship between
them.

To quantitatively evaluate the approximation error of the
proposed SCM, we use the following absolute error δy(p) as
the error index:

δy(p) , |y(p)− ŷ(p)|, (22)

FIGURE 2. The variation of bus voltage V4 with uncertain parameters
PW6 ⊆ [0,150]MW and PW8 ⊆ [0,150]MW .

FIGURE 3. Approximation error of the stochastic collocation method for
approximating bus voltage V4 in the 3-machine 9-bus system case.

where y(p) is the actual value of y with parameter p, ŷ(p) is
the approximated value.

Fig. 3 plots the approximation error of voltage at bus 4.
As can be seen from the figure, the approximation error of the
proposedmethod is very small in thewhole range of uncertain
parameters. Moreover, the maximum approximation error
does not exceed 0.00025 p.u. in this case, which shows the
effectiveness of the proposed method for approximating the
static states of the power system.

In the proposed method, it is necessary to first construct
a polynomial approximation of the system operating state
with respect to the stochastic parameters, then quantify
the uncertainty of the stochastic parameters using the
Gram-Charlier expansion, and finally find the optimal control
scheme using the interior point method. Therefore, in order
to improve the accuracy of the optimal solution, the key point
is to improve the accuracy of the polynomial approximation.
Based on this, the accuracy of the polynomial approximation
can be improved by increasing the order of the polynomial
approximation. The results in Table 1 verify that when
the order of polynomial approximation is increased, the
approximation error becomes smaller. The computation time
of SCM with N − th order of polynomial bases is also shown
in Table 1. As we can see, the computation time increases
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TABLE 1. Computation time and error of the polynomial approximation
of static states based on the SCM in the 3-machine 9-bus system case.

rapidly with N . The reason is that the SCM need to use
the simulation results at the collocation points, thus more
collocation points result in more computation time. As shown
in Table 1, the number of collocation points Np increases
with N , so the computation time increases with N as well.
Moreover, the results in table 1 show that the approximation
error becomes smaller as the order of the polynomial basis
function increases. However, the approximation error is small
enough at N = 3, and the error decreases more and more
slowly with the increase of order. Therefore, considering
the accuracy of approximation and computational efficiency,
we set the order of polynomial approximation to N = 3 in
this paper.

3) THE REFORMULATION OF CHANCE CONSTRAINTS
In this subsection, chance constraint P{Sl4(u;p) ≤ Sl4.max} ≥

β is used as an example to verify the effectiveness of the
proposed method for chance constraint reformulation, where
Sl4 is the power flow in line 9-6, u = [PG2,PG3]T is the vector
of control parameters, p = [PW6,PW8]T is the vector of
uncertain parameters. Through the procedures of the chance
constraint reformulation proposed in subsection III-B, in this
case, the above chance constraint can be reconstructed as the
following deterministic constraint containing only the control
parameters:

0.231155+ 6.5× 10−3PG2 − 1× 10−5P2G2 + 0.012PG3
− 4.6× 10−5PG2PG3 − 4.3× 10−5P2G3 ≥ β, (23)

Fig. 4 plots how the left side of Eq. (23), i.e., the probability
of the line power flow within its limit varies with respect to
the control parameters. As we can see, probability P{Sl4 ≤
Sl4.max} will decrease as PG2 and PG3 increase. This is
because line 9-6 are mainly responsible for delivering power
to the load at node 6, so when the increase in PG2 and PG3
will result in more power being delivered to bus 6, which
leads to a decrease in the probability of the line power flow
being within the limit. Fig. 5 plots the approximation error of
probability P{Sl4 ≤ Sl4.max}. As can be seen from the figure,
the maximum approximation error in the whole range of
uncertain parameters does not exceed 0.00024, which shows

FIGURE 4. Probability of P{Sl4 ≤ Sl4.max} varies with respect to control
parameters PG2 and PG3.

FIGURE 5. Approximation error of probability P{Sl4 ≤ Sl4.max} obtained
by the proposed SCM.

TABLE 2. Optimization results of the OPF and the proposed SOPF in the
3-machine 9-bus system case.

the effectiveness of the proposed method for reformulation
the chance constraints.

4) THE SOLUTION OF THE REFORMULATED SOPF
Table 2 gives a comparison of the optimization results of the
OPF without considering the randomness of wind farms and
the SOPF considering the randomness of wind farms based on
the proposed SCM. The OPF is implemented with uncertain
parameters PW6 = PW8 = 120MW . It can be seen that
the fuel cost of the control scheme obtained by the SOPF
is higher than that of the control scheme obtained by the
OPF. However, the number of times that the line power flow
satisfies its constraint when subjected to wind farm output
uncertainty is 97 when the power flow calculation is run
100 times randomly, which is much higher than the 35 times
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when the OPF is used. In terms of computational time, the
SOPF model has a higher computational efficiency in the
optimization calculation because the number of constraints
is smaller than the OPF model due to the elimination of the
system’s power flow equation in the SOPF model.

B. THE IEEE 118-BUS SYSTEM CASE
The detailed data of the IEEE 118-bus system can be found
in [35]. In this case, two wind farms are added at bus 59 and
bus 80 to verify the effectiveness of the proposedmethod. The
variation range of the uncertain wind power generation PW59,
PW80 is [0, 154.5] MW and [0, 477] MW respectively, and
each wind farm consists of DFIGs with rated power 1.5 MW
cited from [24]. The controllable parameters in this case are
the power generation by generators at bus 61, bus 65, bus 66,
bus 87, bus 89 and bus 100.

Fig. 6 plots the probability density function of PW59 and
PW80 affected by wind speed. The shape and scale parameters
of wind speed are set as α = 2 and β = 12, while the cut-in,
cut-out and rated wind speed for WTs are vci = 3 m/s, vct =
25 m/s and vrd = 12 m/s [24], respectively. According to as
Eq. (9), the output of wind farms is determined by the random
parameter wind speed vw, so it is also a random variable as
shown in this figure.

Fig. 7 plots the probability density function of active power
flow in lines L118-76, L98-80, L75-70 and L81-68 obtained
by the SCM and MCM respectively, the shaded part in light
blue is the operating range that satisfy the stability constraint.
As can be seen from this figure, apart from line L98-80,
the active power flow of lines has a certain probability to
run outside the stable range affected by the randomness of
wind speed. To quantitatively evaluate the approximation
error of the proposed SCM, we use the following maximum
percentage error δy.max(p) as the error index:

δy.max(p) , Max{|y(p)− ŷ(p)|/y(p)}, (24)

where Max{·} stands for the maximum computation,
y(p) is the actual value of y with parameter p, ŷ(p) is the
approximated value.

The approximation error and computation time of SCM
with N − th order of polynomial bases and the MCM with
10000 samplings is shown in Table 3. As we can see, though
the computation time increases with N for the SCM, the
computation time using Monte Carlo method is much more
than the SCM. Like the results in the 3-machine 9-bus system
case, the results in table 3 show that the approximation error
becomes smaller as the order of the polynomial basis function
increases. The approximation error of the proposed method
is very small in the whole range of uncertain parameters
as the maximum percentage error does not exceed 5.7%
in this case when the order of polynomial approximation
is 3, which shows the effectiveness of the proposed method
for approximating the statistical characteristic of static
states.

In order to verify the effectiveness of the proposed method
in solving the SOPF problem, Table 4 compares the control

FIGURE 6. Probability density function of PW59 and PW80.

FIGURE 7. Probability density function of PL118−76, PL98−80, PL75−70 and
PL81−68 obtained by the SCM and MCM.

TABLE 3. Computation time and error of the polynomial approximation
of static states based on the SCM in IEEE 118-bus system case.

effect of the control schemes obtained by the proposed
method and by solving the OPF with rated output of wind
farms. The OPF is implemented with uncertain parameters
PW59 = 154.5 MW, PW80 = 477 MW. From Table 4 we
can see that the fuel cost of the control scheme obtained
by the proposed SOPF is higher than that of the control
scheme obtained by the OPF. The reason is that the SOPF
considers the security constraints of the power system, and
the dispatchable generating units in need to change the power
flow by changing their output, which leads to a relatively
high fuel cost. In addition to this, the number of times the
line power flow satisfy their constraints is different when
different methods are used. Because there is no constraint
on the line power flow in the OPF, the number of times
the line power flow L118-76, L75-70, and L81-68 satisfy
their limits in 1000 power flow calculations are 616, 705,
and 844 respectively, and the out-of-limit probability is
38.4% in this case. For the SOPF, the number of times the
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TABLE 4. Optimization results of the OPF and the proposed SOPF in IEEE
118-bus system case.

line power flow L118-76, L75-70, and L81-68 satisfy their
limits in 1000 power flow calculations are 925, 923, and
975 respectively, so the out-of-limit probability is only 7.7%
when using this method, which is much smaller than that of
the OPF. Therefore, even though the fuel cost of the proposed
SOPF is slightly higher than that of the OPF, it can ensure that
the operating state of the system meets the safety constraint.
It is worth noting that for line L98-80, the line power flow
always satisfies the constraint no matter which method is
used, which is consistent with the results in Fig. 7. That
is to say, the power flow of the line is guaranteed to be
within its limits regardless of the variation of the wind farm’s
output.

VI. CONCLUSION
In this paper, a SCOPF problem is investigated for power
system preventive control so as to enhance the static stability
security affected by uncertain wind power generation. The
solution of the SOPF problem is obtained using polynomial
approximation based on the stochastic collocation method
(SCM), which reformulates the probabilistic SOPF model
into a deterministic one by explicitly depicts the relationship
between the probability of chance constraint satisfication and
uncertain parameters. Tests and analysis on the modified
3-machine 9-bus system and the IEEE 118-bus system have
demonstrated the validity of the SOPF model for improving
the probabilistic security level and the effectiveness of the
SCM. Compared with the widely used MCM, the proposed
SCM-based method has higher computation efficiency while
the solution quality is generally comparable.
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