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ABSTRACT This paper presents a pansharpening technique based on the non-subsampled contourlet
transform (NSCT) and convolutional autoencoder (CAE). NSCT is exceptionally proficient at presenting
orientation information and capturing the internal geometry of objects. First, it’s used to decompose the
multispectral (MS) and panchromatic (PAN) images into high-frequency and low-frequency components
using the same number of decomposition levels. Second, a CAE network is trained to generate original
low-frequency PAN images from their spatially degraded versions. Low-resolution multispectral images
are then fed into the trained convolutional autoencoder network to generate estimated high-resolution
multispectral images. Third, another CAE network is trained to generate original high-frequency PAN
images from their spatially degraded versions. The result of low-pass CAE is fed to the trained high-
pass CAE to generate estimated high-resolution multispectral images. The final pan-sharpened image
is accomplished by injecting the detailed map of the spectral bands into the corresponding estimated
high-resolution multispectral bands. The proposed method is tested on QuickBird datasets and compared
with some existing pan-sharpening techniques. Objective and subjective results demonstrate the efficiency
of the proposed method.

INDEX TERMS Pansharpening, multispectral image fusion, convolutional autoencoder, NSCT, remote
sensing.

I. INTRODUCTION
The earth observatory satellite can provide two types of
images: panchromatic images with high spatial resolution
but low spectral resolution, and multispectral images with
low spatial resolution but high spectral resolution. Most
satellites earth observation applications require high spectral
and spatial resolution images, such as change detection and
mapping [1]. These satellites are unable to produce images
with high spatial and spectral resolutions due to physical
and technical constraints [2]. Over the last several years,
image fusion has witnessed increasing use in applications
such as pansharpening [3], image dehazing [4], and medical
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treatment [5]. Pansharpening is an integration process for
spatial detail, extracted from a PAN image into an MS
image, which yields a composite image with high spatial
and spectral resolution.Many pansharpening techniques have
been proposed up to now. The basic technique is the high-
pass filtering technique, which consists of injecting high-
frequency components from a PAN image into an MS
image with high spatial resolution using spatial filtering
techniques, such as intensity-hue-saturation (IHS) [6], prin-
cipal component analysis (PCA) [7], and Brovey transform
(BT) [8], etc. Multiresolution-based approaches are another
type of pansharpening technology. Multiresolution decom-
position provides a simple hierarchical structure for merging
images with varying spatial resolutions. As such, Laplacian
pyramids, discrete wavelet transform, curvelet transform,
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contourlet transform, and non-subsampled contourlet trans-
form [9]–[11] are the most commonly used multi-scale
decomposition techniques in pansharpening. However, many
studies have reviewed the performance of the aforementioned
pansharpening categories [8], [12]–[14], which reflect the
advancement of the pansharpening strategies. The NSCT
is a completely shift-in-variation, multi-scale, and multi-
direction development that decays the images at various
goal levels and directions. This manner permits infusing the
subtleties of the data given from the PAN image into the
MS image [15]. Furthermore, in recent years, deep learning-
based pansharpening methods [16], [17], and [18] have been
proposed, which can be viewed as a modern era of pan-
sharpening strategies. In [19], the CAE architecture was used
as part of a component substitution-based method yielding
enhanced fusion outcomes. In [20], the authors introduced a
pansharpening method based on a convolutional autoencoder
and a guided filter (CAE-GF). Our work centers around
the pansharpening method dependent on the non-subsampled
contourlet transform and the deep convolutional autoencoder.
The NSCT is used to decompose the source images in
order to obtain the high-pass subband and low-frequency
subband. Then, two deep convolutional autoencoders are
trained, one from the low frequency of the original PAN
image and its re-sampled version, and the second one from
the high frequency of the original PAN image and its re-
sampled version. After training with the deep convolutional
autoencoder, the upsampled MS image is fed to the network
as input.

In comparison to currently existing approaches, our
paper makes the following contributions: 1) A new deep
learning-based method for pansharpening based on the
convolutional autoencoder and non-subsampled contourlet
transform is introduced. 2) By learning the nonlinearmapping
of high- and low-pass subband panchromatic images and their
degraded versions, our CAE network can successfully inject
spatial information. 3) The proposedmethod’s pansharpening
result is then compared to a representative set of existing
strategies using both full-reference and no-reference index
measures. Thus, we can find that the proposed method
outperforms its counterparts.

The rest of the paper is organized as follows: Section II
elaborates on the proposed fusion method. Section III
analyzes the comparative experimental results and their
discussion. Finally, the conclusion is drawn in section IV.

II. DEVELOPED FUSION METHOD FOR PANSHARPENING
A. BASIC PANSHARPENING FRAMEWORK
The following equation represents the basic pansharpening
framework of component substitution based-approaches [21].

MSHRi = MSLRi + gi × (PAN− I ) (1)

where MSHR
i and MSLRi represent the high-resolution and

low-resolution MS image in the ith band, respectively.
gi represents the ith injection gain of the detailed map, which

FIGURE 1. The decomposition framework of Non-subsampled Contourlet
Transform (NSCT) [23].

is expressed as:

gi =
cov

(
MSLRi , I

)
var(I )

(2)

where cov indicates the covariance between images, and var
is the variance of the intensity component image. I denotes
the intensity component of MS image, which is expressed as:

I =
∑n

i=1
wiMSLRi (3)

wherewi denotes the weights, and n is the number of spectral
bands. However, the optimal weights can be computed by
solving the following optimization problem [22].

w∗i = arg
∥∥∥PAN−∑n

i=1
wiMSLRi

∥∥∥2 (4)

B. NONSUBSAMPLED CONTOURLET TRANSFORM (NSCT)
An increasing number of pansharpening techniques have
been proposed based on the Laplace pyramid, wavelet trans-
form, and contourlet transform multiresolution approaches.
Wavelet transforms are often used in pansharpening because
of their characteristics, such as multiple resolutions, local-
izations, critical scans, and limited orientation [8]. However,
it is not possible to determine the smoothness along the
contour [2]. The contourlet transform seems to overcome this
shortcoming [10]. Indeed, the contourlet transform is a mul-
tiresolution transform that provides a proficient directional
portrayal and considers wavelet properties. The contourlet
transform was used for image fusion and pansharpening [2]
and [8]. The contourlet transformation without subsampling
is a shift-invariant version of the contourlet transform. The
decomposition framework of NSCT is shown in Fig. 1. This
paper uses the NSCT to decompose the source images to
obtain the high-pass and low-frequency subbands.

C. CONVOLUTIONAL AUTOENCODER (CAE)
An autoencoder is a type of unsupervised learning that takes
an input picture and attempts to recreate it. The convolutional
autoencoder is a type of convolutional neural network that
generates output image patches based on the input image
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FIGURE 2. The network structure of CAE.

patches. The design of a convolutional autoencoder works
in two stages: encoding and decoding. The encoding stage
accounts for half of the network and includes convolution and
max-pooling layers. The deconvolution and upscaling layers
are used in the decoding stage to recreate the input image
from its degraded image. The CAE architecture is depicted
in Fig. 2.

D. PROPOSED PANSHRPENING METHOD
The developed pansharpening scheme consists of several
steps after decomposing the source images using NSCT
into high-pass and low-pass subbands. Our method sets the
patch size with overlapping pixels, 8 × 8, 5 as indicated
in [19], [20]. The high-pass subband and low-pass subband
and their degraded version are partitioned into 8× 8 patches
with 5 overlapping pixels. The high-pass CAE network
is trained using the back-propagation algorithm to learn
the relationship between a high-pass subband panchromatic
image and its degraded version. The low-pass CAE network is
trained to learn the relationship between a low-pass subband
panchromatic image and its degraded version. In order to
improve the spatial information of the low-resolution MS
bands, the MS bands are then fed to the low-pass CAE
network. The intensity component is also fed to the low-
pass CAE network for enhancement. Then, the result of the
low-pass CAE is fed to the high-pass CAE in order to get
the estimated MS image. The pseudo-code for the developed
pansharpening scheme is summarized in Algorithm 1. The
complete procedure of the developed pansharpening scheme
is described in Fig. 3.

First, Table 1 demonstrates the abbreviations that would
use in Mathematical equations. So, let the original low-pass
PAN patches, marked by {Xi}Ni=1, and spatially degraded
low-pass PAN patches, marked by {xi}Ni=1, form the target
and the input of the low-pass CAE network, respectively.
On each iteration, the output corrections for the low-pass
CAE network are calculated as:

{
X̃i
}N
i=1
= Decoder(Encoder

(
{xi}Ni=1

)
) (5)

TABLE 1. List of abbreviations.

Similarly, the original high-pass PAN patches, marked by
{Yi}Ni=1, and spatially degraded high-pass PAN patches,
marked by {yi}Ni=1, form the target and the input of the low-
pass CAE network, respectively. On each iteration, the output
corrections for the high-pass CAE network are calculated as:{

Ỹi
}N
i=1
= Decoder(Encoder

(
{yi}Ni=1

)
) (6)

Both low-pass CAE and high-pass CAE use the Mean
Square Error (MSE) between the original patches and their
reconstructed versions to update the weights.

Loss
({
X̃i
}N
i=1
, {Xi}Ni=1

)
=

1
2

∑N

i=1

∥∥∥X̃i − Xi∥∥∥2
2

(7)

Loss
({
Ỹi
}N
i=1
, {Yi}Ni=1

)
=

1
2

∑N

i=1

∥∥∥Ỹi − Yi∥∥∥2
2

(8)

In the testing part, the up-sampled MS patches are fed to
the low-pass CAE; afterward, they are fed to the high-
pass CAE. In addition, the intensity components patched
are fed to the low-pass CAE. Because of the similitude in
the spectral attributes of PAN and MS images, the prepared
networks are relied upon to work on the spatial/spectral data
of the upsampled MS bands. Indeed, not just the estimated
version saves the spectral information of MS bands, but
it also conveys more spatial data in correlation with the
information of input patches. Afterward, tiling the assessed
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FIGURE 3. Block diagram of pansharpening proposed method.

high-resolutionMS bands, the pansharpening is done through
the following equation:

HRMSi = M̂Si + gi × (PAN− I ) (9)

where HRMSi represents the ith estimated high resolution
M̂Si band obtained from the trained both CAE networks.
Here, the injection gains gi are used to obtain the refined
detail map between the estimated M̂Si and the estimated
intensity image Îi. It’s carried out as follows

gi =
cov

(
M̂Si, Î

)
var(Î )

(10)

III. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, experiments have been conducted on
QuickBird satellite images to evaluate the performance of the
proposed technique. Table 2 shows twelve different image
fusion methods for comparison, including BT-H, BDSD-PC,
GSA, PRACS, MF, FE-HPM, SR-D, PWMBF, AIHS, PNN,

CAE, and CAE-GF. We used the available toolbox [14].
In this toolbox, several quality/distortion indices were also
reported. Therefore, eight image quality assessments were
utilized to assess the quality of the pansharpening image.

A. QUALITY ASSESSMENTS
1) The correlation coefficient (CC) is expressed as (11),

as shown at the bottom of the next page,

where Ref and Fus are the reference image and the fused
image with size M × N , respectively. R̄ef and F̄us are the
means of the reference image and fused image, respectively.
The CC demonstrates the comparability of spectral features
between the pan-sharped and the reference images [33]. The
two images correspond when CC is near 1.

2) Universal image quality indexes (UIQI)

The UIQI measures the similarity between the fused image
and the reference image; in other words, it measures the
structure distortion degree between two images [34]. The
quality of the fused image is better if the value of UIQI is
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Algorithm 1 Pansharpening Scheme Based on NSCT and
CAE
Input: PAN image, MS image
Output: Fused image HRMSi
Step 1: Preparation part
1. Degrading the PAN image using Bi-cubic interpolation.
2. Appling the NSCT algorithm to decompose the PAN image and
its degraded version to the high-pass subband and low-frequency
subband.
Step 2: Training part
1. The low-pass CAE network is trained using (Eq. (5)).
2. The high-pass CAE network is trained using (Eq. (6)).
Step 3: Testing part
1. Feeding the low-resolutionMS bands to the trained low-pass CAE
network.
2. Then, low-pass CAE results are fed to the high-pass CAE to get
the estimated MS image.
3. Feeding the intensity component to the low-pass CAE network
for enhancement.
4. Tiling the enhanced MS image bands and the enhanced intensity
component.
Step 3: Fusion part
1. Using (Eq. (9)) to get the fused image band HRMSi.

TABLE 2. Brief description of the comparison methods used to compare
the performance of fusion results.

closer to 1. It is calculated by

UIQI =
σFusRef × (2µFusµRef )× (2σFusσRef )

(σFusσRef )× (µ2
Fus + µ

2
Ref )× (σ 2

Fus + σ
2
Ref )

(12)

where σFR denotes the covariance between the pan-sharped
and the reference images, it collects three different operators,
loss of correlation, luminance distortion, and contrast distor-
tion. The term σFus and σRef are the standard deviations of
the pan-sharped image and the reference image, respectively.

3) An image quality index Q4 index
Q4 is a comprehensive measure to the 4-bands image of the
Q index [35], which is formulated as

Q4 =E(Q4B×B) (13)

where E(.) represents the quaternion acquired via averaging
the pixel quaternion within a B×B block.

4) The root means square error (RMSE)
The RMSE gives the dissimilarity between the pan-sharped
and the reference images depending on the changes in the
pixels’ value [36]. Note that a smaller RMSE value shows
that the pan-sharped image is closer to the reference image.
It is expressed by

RMSE =
1
MN

√∑MN

i,j=1
(Fus(i,j) − Ref(i,j))2 (14)

5) The Relative Average Spectral Error (RASE)
The RASE gives the average performance of image fusion
methods for each spectral band [37]. It is calculated
by

RASE =
100
µ

√
1
N

∑N

i=1
RMSE (15)

where µ is the average radiation value of N bands.
6) The erreur relative global adimensionnelle de synthèse

(ERGAS)
The ERGAS represents the difference between the
pan-sharped and the reference images. In other words, it gives
a global picture of the quality of a fused image [38]. It is
defined as

ERGAS= 100
h
l

√
1
N

∑N

i=1
(

RMSEi
MEAN (Ri)

)2 (16)

where h, l are the spatial resolution of the PAN image and
the MS image, respectively, N marks the number of bands of
the fused image, the MEAN(i) denotes the mean value of ith
band of the reference MS images and the RMSE(i) represents
the RMSE between the ith band of the fused image and the ith
band of the MS reference images. The smaller ERGAS value
indicates that a small spectral distortion in the pan-sharped
image.

7) The spectral angle mapper (SAM)
The SAM displays the spectral distortion between the pan-
sharped and the reference images by considering the absolute
angles between the two vectors in consideration [39], which is
constructed from the pan-sharped and reference images. The
ideal fused image should be zero. The SAM is expressed as

SAM = arccos(
uRef , uFus

‖uRef ‖2 . ‖uFus ‖2
) (17)

CC =

∑M
i=1

∑N
j=1 [Fus(i, j)− F̄us][Ref (i, j)− R̄ef ]√∑M

i=1
∑N

j=1 [Fus(i, j)− F̄us]2
∑M

i=1
∑N

j=1 [Ref (i, j)− R̄ef ]2
(11)
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FIGURE 4. Pansharpening outcomes for a sample degraded QuickBird-1 dataset.

FIGURE 5. Pansharpening outcomes for a sample degraded QuickBird-2 dataset.
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FIGURE 6. Error maps between the Pansharpening outcomes and the
reference image for the degraded QuickBird-1 dataset.

FIGURE 7. Error maps between the Pansharpening outcomes and the
reference image for the degraded QuickBird-2 dataset.

8) The spatial correlation coefficient (sCC)

sCC value reflects the spatial quality of the fused results.
The fused image is compared to the ground truth image
using the correlation coefficient between the spatial details

TABLE 3. Comparison of quantitative assessments for full reference
quickbird-1 dataset, the best values are bolded.

extracted from the two images. The greater the value, the
more spatial information the fused image has from the PAN
image [14], [40].

For real dataset experiments (Full Resolution), we used
the quality without reference (QNR) index to define the
comprehensive quality of the fusion result without needing
the reference image [41]. The QNR measure consists of a
spectral distortion index Dλ and a spatial distortion index Ds,
respectively. The following equations show the estimation of
QNR, DS , and Dλ.

QNR = (1− Dλ) (1− Ds) (18)

where (1−Dλ) represents the spectral quality and (1−Ds)
represents the spatial quality (19) and (20), as shown at the
bottom of page 9.
The ideal value for the QNR index is 1, while Dλ and Ds
are 0.

B. FUSION RESULTS
Two pairs of reduced resolution QuickBird satellite datasets
were examined and evaluated according to the Wald’s
protocol; the sizes of the MS image and the PAN image are
64 × 64 and 256 × 256, respectively. Moreover, two pairs
of No-reference QuickBird datasets were examined, and the
sizes of the MS image and the PAN image are 256× 256 and
1024 × 1024, respectively. The pansharpening outcomes
for reduced resolution QuickBird datasets are provided in
Figs. 4–5, and the objective quality indexes are reported
in Table 3–4. By visually comparing the pansharpening
outcomes, the first remark is that our method is very close
to the ground truth image compared with others, which
can better preserve the colors and the spatial information
of the PAN image are also better injected. By objectively
comparing, the proposed method outperforms relatively in
comparison with SOTA methods. Due to the difficulties in
visual comparison, we provided the error maps where the
distinction between the pansharpening image and the ground
truth can be inspected to see the consistency and edges.
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FIGURE 8. Pansharpening outcomes for a sample real QuickBird-1 dataset.

FIGURE 9. Pansharpening outcomes for a sample real QuickBird-2 dataset.
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TABLE 4. Comparison of quantitative assessments for full reference
quickbird-2 dataset, the best values are bolded.

TABLE 5. Comparison of quantitative assessments for no-reference
quickbird datasets, the best values are bolded.

It can be observed in Figs. 6–7; our strategy accomplished
superior pansharpening in most image areas among other
techniques.

For full resolution QuickBird datasets, the pansharpening
outcomes are provided in Figs. 8–9, the objective indexes
assessment of the pansharpening results are listed in Table 5.
Visually, the proposed method preserves the PAN image’s
edges and spatial details better than others. The comparison of
quality indexes demonstrates that our method achieves better
results than other methods.

C. AVERAGE PROCESSING TIME
The proposed method’s average consumption time compared
to that of the other techniques on the aforementioned

TABLE 6. Average time comparison of the different pansharpening
methods.

datasets is reported in Table 6. For deep learning methods,
we only considered the testing phase processing time. On a
MacBook with an Intel Core i5-5257U CPU (2.7 GHz/8G),
we conducted the experiments using MATLAB R2016a
and Jupyter Notebook. From Table 6, it can be seen
that the deep learning methods require the most time
for fusion. Additionally, the proposed technique requires
more time to acquire the fusion results than other meth-
ods due to the deep CAE and mechanism of NSCT
(decomposition and reverse construction). Despite that, the
proposed method outperforms others in terms of fusion
results.

IV. CONCLUSION
In this paper, we have proposed a pansharpening method
based on CAE and NSCT. The major contributions of
this paper are twofold. First, the low-pass CAE network
was trained to learn the relationship between a low-pass
subband panchromatic image and its degraded version.
Meanwhile, the spatial information of the low-resolution
MS bands improved. Second, the high-pass CAE network
was trained to learn the relationship between a high-pass
subband panchromatic image and its degraded version. The
proposed method has fused the images while preserving
spectral information of MS images and carried more spatial
information. The experimental results have shown that
the proposed method outperformed others in both aspects,
subjective and objective. Furthermore, the CAE and NSCT
could be extended to the existing state-of-the-art-based image
fusion methods.

Dλ =

√
1

N (N−1)

∑N

l=1

∑N

r=1,r 6=l
|Q(MSl,MSr )−Q(Fusl − Fusr )| (19)

Ds =

√
1
N

∑N

l=1
|Q(Fusl,PANLR)−Q(MSl,PANHR)| (20)
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