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ABSTRACT This paper presents a robust system for mitigating adversarial and natural GPS disruptions by
presenting: (1) a software-based defense mechanism against spoofing attacks using generative adversarial
networks (GANs), The system detects unauthorized or spoofed GPS signals from a hardware based spoofer,
and (2) deep neural network models to infer positioning information in GPS-degraded /denied environments
using the novel idea of GPS satellite constellation fingerprint. As the GAN and Satellite constellation
fingerprinting are used together in a unified framework, we call it the ‘‘GANSAT positioning system.’’
Intuitively, the GANSAT neural networks implicitly learn a representation of the aggregation of the hardware
fingerprints of the satellite’s in the GPS constellation at a given location and time. To demonstrate the
approach, rawGPS signals were collected from the satellite transmitters using a software defined radio (SDR)
at five different locations in the Florida panhandle area of the United States. Additionally, a GPS spoofer is
implemented using a SDR and an open source software and used in an uncontrolled laboratory environment
for spoofing the GPS signals at the aforementioned locations. In our experiments, the GANSAT framework
yields ∼99.5% accuracy for the task of identifying and filtering the spoofed GPS signals from real ones.
It also achieves ∼100% accuracy for the task of location estimation.

INDEX TERMS GPS, GNSS, positioning, machine learning, generative adversarial nets, deep neural
network.

I. INTRODUCTION
From its inception in the early 1990’s the Global Positioning
System (GPS) has slowly infused itself into the fabric of
our daily lives. Large scale deployment of smartphones have
ushered in the era of ubiquitous use of GPS. From walking,
driving, buying food, gettingmoney to finding a rideshare and
national security, GPS is everywhere. Such is it’s usefulness
and integration into our lives that many of us assume that
it is omnipresent; that there can never be a situation when
GPS might not be there. However this cannot be further from
the truth as in reality GPS systems are susceptible to both
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natural and adversarial disruption. The situation is further
complicated by the fact that the conditions that might lead
to such disruptions are easily created and there is no fallback
system available for addressing such failures.

Regardless of whether one is using the GPS device built
into a smartphone or a standalone GPS system, the underly-
ing basic principle for obtaining positioning, navigation and
timing (PNT) information is the same. GPS system uses time
synchronization across satellites and receivers for computing
the time difference of arrival (TDoA) of the signals at a
receiver. A time synchronized GPS receiver computes the
PNT information with the data contained in the received sig-
nal from multiple GPS satellites. The satellites visible at any
given time from a given region form a sub-constellation of the
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entire GPS constellation. The signals from each satellite in the
visible constellation at any point on Earth contains informa-
tion about the time at which the signal was transmitted and the
position of the satellite at that instant. This information can
be parsed and used by a GPS receiver for TDoA computation.
Though this method for obtaining the PNT information is
simple at the core, a lot of research has gone into improving
the operational accuracy of such systems. Three contempo-
rary areas of PNT research include: GPS signals corruption,
machine learning (ML) signals analysis, and satellite signal
fingerprinting.

GPS uses the idea of ‘‘spread spectrum’’ on the carrier
frequency to distribute the satellite transmissions over a large
frequency band in order to maintain a low power profile [1].
Spread spectrum is used to utilize a larger bandwidth than
that required by the original message while maintaining the
same power. A spread spectrum signal does not have a clearly
identifiable peak which makes it more difficult to distinguish
it from the background noise. Since GPS uses spread spec-
trum for the transmission in the L1 (1575.42 MHz) and L2
(1227.60) bands, the signals are devoid of sharp peaks at a
ground based receiver. Though this makes it is more diffi-
cult to intercept the signal by detecting the same, especially
in environments with low SNR (signal-to-noise ratio), this
also makes it easy to overwhelm them using a high power
spoofer placed near the ground based receiver. Since the GPS
satellites are far away, the signal strength at a ground-based
receiver is expected to be fairly low by design and this makes
them susceptible to corruption by a high power spoofer. Thus
due to a combination of several factors, the GPS receiver is
prone to spoofing attacks whereby fake information from a
high power spoofer can be used to fool the receiver into using
wrong information for positioning. This false information
can be passed on to other applications thereby corrupting
their functions as well. With the wide availability of software
defined radios (SDRs), it has become easy to build commer-
cial off-the-shelf (COTS) ‘‘GPS spoofers,’’ for use both in
commercial and civilian settings. Such capability hastens the
need to ensure the received GPS signals’ reliability in order to
protect against the consequences of such attacks, which can
be catastrophic in many cases.

GPS spoofing attacks are common and equally likely in
the communication and dissemination settings with serious
consequences in both the cases. For example in the com-
munication setting, spoofing attacks can be done to cause
severe disruption in air traffic, can be used for hijacking of
delivery drones and cause large scale disruption of trans-
portation and communication networks that rely on precise
positioning information from GPS. On the dissemination
side, GPS spoofing attacks can be used disrupt functioning of
surveillance and reconnaissance systems that rely on precise
timing information for time synchronization. It can also cause
large scale disruption in services that use precise timing
information from GPS systems. For example disruption in
dissemination of precise timing information can have huge
impact on the stock market, the functioning of banking and

FIGURE 1. A pictorial representation of varying GPS constellations as
visible from different cities.

financial sectors, the working of infrastructure services like
power grid to name a few. It must be noted that there is
a protected GPS band, with special a encryption system to
ensure the security and authenticity of the transmitted data.
This is used by organizations related to national security like
the army, navy and the air force. However this band is also
vulnerable since GPS disruptions are often caused by state
actors who have more resources and power at their disposal
to affect such attacks. The massive proliferation of GPS
receivers and the ease of use of software-defined solutions
for implementing spoofers, coupled the fact that the charac-
teristics of the spoofing hardware is unknown in most cases,
makes it impossible to implement a manually configurable
solution for the problem of detecting spoofed GPS signals.
These factors necessitate the use of robust techniques (e.g.,
machine learning) that are agnostic to the presence of intelli-
gent adversaries for the problem of detecting and mitigating
GPS spoofing attacks.

In recent years, there has been a proliferation of
autonomous systems using machine learning (ML) algo-
rithms for inference with large scale radio frequency (RF)
data. A number of ML algorithms, such as Support
Vector Machine (SVM), K-Nearest Neighbor (KNN), Non-
parametric Bayesian Classifier and Neural Networks (NN),
have already been used for various tasks in radio frequency
machine learning [2]. However, deeper variants of NNs have
proven to be superior than traditional ML techniques by pro-
viding a way to implement an end-to-end system for automat-
ically computing and exploiting deep feature representations
of the underlying signal data [3]. It must however be noted
that ML techniques are susceptible to malicious interference
since the underlying assumption of any standard ML algo-
rithm is that the data (training and test data for supervised
algorithms and the data in general for unsupervisedmethods),
faithfully capture and represent the underlying data distribu-
tion. This assumption fails in adversarial settings where an
intelligent adversary can tamper with the data and introduce
flaws in the learned model. In order to circumvent the prob-
lem of adversarial interference in the operation of learning
algorithms, robust learning techniques are needed that can

45486 VOLUME 10, 2022



D. Roy et al.: GANSAT: GAN and SATellite Constellation Fingerprint-Based Framework

detect and eliminate maliciously modified (or crafted) data.
One such technique is the generative adversarial network
(GAN) [4], which was proposed with the goal of generating
and discriminating ‘‘real’’ samples from a given distribution
from ‘‘fake’’ ones generated by a generative system. A by-
product of a GAN is a ‘‘discriminator,’’ which can be used
to differentiate between real and fake data. Thus in a GAN,
which consists of a generator and a discriminator, the goal of
the generator is to generate realistic fake samples (fake data)
from a given data distribution whereas that of the discrimi-
nator is to differentiate the real samples from the fake ones.
This allows us to use a GAN to implement a robust learning
system that can be agnostic to adversarial interference.

GAN training proceeds iteratively with the generator and
discriminator being trained in tandem. The generator is
trained to generate realistic fake samples using implicit feed-
back from the discriminator which is trained to differentiate
between the real and fake samples. By the end of the training
process, the discriminative NN [5] learns to differentiate
between real and generated (fake or spoofed) signals obtained
from the generator. It must be noted that as the GAN training
proceeds, the generator learns to sample from the distribution
underlying the real data, using implicit feedback from the
discriminator, in order to generate realistic signals. On the
other hand, the discriminator iteratively becomes better at
distinguishing the real from the fake data. As a result, at the
conclusion of the GAN training, the optimized discriminator
is robust in the sense that it can distinguish between real
and spoofed signals, regardless of the emitter being used to
generate and transmit the fake data. Likewise, at the end of
the GAN training, the generator learns to generate spoofed
signal data that mimics the real signals. Thus in the end
the discriminator learns to protect against spoofing attacks
mounted by an adversary that can sample from the distri-
bution underlying the real data. hence it can protect against
intelligent adversarial attacks.

It must be pointed out that the GAN approach for spoofed
data detection has been shown to outperform classical ML
techniques, like SVM or the idea of outlier detection [6].
Traditional ML methods use ‘‘expert engineered’’ features,
which are optimized for specific operational environments
and hence may not generalize well to other scenarios. This
is more so for the case of RF signals, which are very easily
affected by the conditions of the surrounding environment.
Hence, it becomes harder to hand-engineer expert features
that are robust to changes in the operating conditions espe-
cially for the RF domain. As a result classical methods like
SVM fail to perform well in such cases. Furthermore when
an intelligent adversary spoofs data they do it in a way that
the spoofed data is not an outlier. As a result classical outlier
detection methods also fail with such data. GAN-based meth-
ods, on the other hand, provide an end-to-end solutionwithout
the need for expert engineered features. They automatically
learn intrinsic representations of the signal data, which are
robust to random in the operating environment. Since a GAN
works by learning a representation of the underlying data

FIGURE 2. A scenario of using GANSAT to detect the spoofed GPS signals
and predict correct location.

distribution, adversarial spoofing methods also fail. This is
because the GAN trained discriminator is able to efficiently
identify the spoofed data as it is generated using a perturbed
version of the data distribution [6].

GPS is a United States’ Global Navigation Satellite
System (GNSS) that provides positioning, navigation and
timing information to ground based receivers. The system
consists of 31 satellites deployed around the Earth at an
altitude of 11,000 miles (which is referred to as medium
earth orbit (MEO)). Each of these satellites has a stable
atomic clock, which is synchronized with that of the other
satellites. The location and time of each satellite is continu-
ously estimated from ephemeris parameters, broadcast on L1
C/A (1575.42 MHz) and L2 P/Y (1227.60MHz) band with a
data rate of 50bps [7]. The government is in the process of
fielding three new GPS channels designed for civilian use:
L2C, L5, and L1C. The legacy civil signal, namely L1 C/A,
will continue broadcasting, bringing the total number of GPS
signal channels to four. The L2C is the second civilian GPS
signal, designed specifically to meet commercial needs. The
L5 GPS band is the third civilian GPS channel, designed to
meet demanding requirements of safety-of-life transportation
and other high performance applications. Its name refers to
the U.S. designation for the radio frequency used by the
signal which is centered at 1176 MHz. L5 is broadcast in a
radio band reserved exclusively for aviation safety services.
It features higher power, greater bandwidth, and an advanced
signal design. Future aircraft will use L5 in combination with
L1 C/A to improve accuracy (via ionospheric correction) and
robustness (via signal redundancy).

A GPS receiver on earth computes its position by simul-
taneously calculating its distance from at least four GPS
satellites, using the idea of time difference of arrivals (TDoA).
Each satellite also broadcasts a unique pattern of 1,023 plus
and minus signs known as a ‘‘pseudo-random noise’’ (PRN)
code. The satellites actually broadcast two sets of PRN codes:
one for civilian use and the other for the U.S. military use.
Civilian PRN codes are unencrypted and published in a public
database, while military codes are encrypted in a pattern that
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is predictable only if the receiver has access to a secret key.
The satellites that are visible to a GPS receiver change based
on the position of the receiver on earth and the time of day
at which the reception was made. The PRN codes are an
important element of code division multiple access (CDMA)
based satellite navigation systems. Since each satellite within
the GPS constellation has a unique PRN code, that it transmits
as part of the C/A navigation message, this code allows any
receiver to identify the satellite(s) with which it is communi-
cating. The PRN codes act as spreading codes in the spread-
spectrum communications system, and must be carefully
chosen to minimize the interference between each satellite
signal. Failure to do so would leave the system open to
so-called CDMA noise, potentially degrading performance to
unworkable levels.

In this paper the GANSAT framework implicitly leverages
the PRN codes, through learning on the received signal char-
acteristics. This allow us to fingerprint different ‘‘visible’’
parts of the constellation from various locations on Earth at
different times of day. Note that though there is only one
constellation of GPS satellites (which includes all the satel-
lites), for better clarity and understanding, GANSAT treats
each ‘‘visible part of the GPS constellation at a location at a
given time’’ as a different sub-constellation and names them
accordingly (e.g., C1, C2) etc.). Fig. 1 illustrates the fact that
different cities utilize different satellite sub-constellations at
different times of the day. Hence the locations are calculated
from the signals of different satellites at each location and at
each given time of day.

A combination of unique PRN numbers from the various
GPS satellites with their intrinsic hardware characteristics
affect the collective source signal received and thus each
visible constellation has an unique ‘‘fingerprint’’ of its own.
We call these the ‘‘satellite constellation fingerprint,’’ ‘‘satel-
lite constellation signature,’’ or simply ‘‘constellation finger-
print.’’ In GANSAT, a Convolutional Neural Network (CNN)
based technique is used to learn these characteristics automat-
ically in an end-to-end framework and build a ‘‘constellation
fingerprinting’’ system for satellite constellation identifica-
tion. To automatically extract and learn this fingerprint for a
given location at a given time, we use the so called I/Q infor-
mation of the received signal at the given location on earth at
the given time. Any RF source signal consists of an In-phase
(I ) and a Quadrature-phase (Q) component. GANSAT uses
this raw signal data as input to automatically ‘‘learn’’ the
intrinsic signal characteristics, which can then be used as a
‘‘fingerprint’’ for the task of constellation identification [6]
and hence for positioning in GPS degraded environments.
A typical example of using GANSAT in moving vehicles is
presented in Fig. 2. The trained-GANSAT module deployed
in the vehicle helps to predict the correct location not only in a
weak GPS environment, but also in the presence of spoofers.

The GANSAT framework solves two problems, which are
independent in their own right: (1) first it demonstrates the
use of generative adversarial learning for the task of detecting
spoofed GPS signals in an uncalibrated real RF environment,

and (2) second, it introduces the idea of ‘‘GPS constellation
fingerprinting’’ in GPS-denied, weak-GPS as well as strong-
GPS environments. We establish the efficacy of this frame-
work for the task of location prediction in these environments
by conducting ‘‘real world’’ experiments in the Florida Pan-
handle area of US. In our experiments, once the spoofed sig-
nals are eliminated using adversarially trained discriminator,
a CNN estimates the location of the GPS receiver using the
learned satellite constellation fingerprint. It is to be noted that
GPS-denied and weak-GPS environments refer to settings
where the GPS satellites are available and transmitting but
due to the nature of the RF environment at the receiver, the
received signal strength (RSS) is not sufficient to ‘‘lock on’’
to the minimum number of required satellites for the purpose
of PNT.

The main contributions of this paper are as follows:
1) Formulating a GAN-based framework to disambiguate

spoofed GPS signals from real ones and estimate the
position of a receiver using the filtered real raw GPS
data in a GPS-degraded environment. GANSAT has
two parts: a GAN-trained GPS spoofer-detector and a
position estimator that leverages ‘‘constellation signa-
tures’’. The spoofer-detector is tested on spoofed GPS
data obtained using a software-defined GPS spoofer.
The position estimator is trained and tested on real GPS
satellite constellation data obtained in three settings
(denied, weak and strong GPS).

2) Design and implementation of a 9-layer 1-dimensional
CNN (1D-CNN) used in the GANSAT framework to
classify and predict the location using the signatures of
the visible ‘‘GPS constellation’’ from the GAN-filtered
real-GPS signals. This provides a robust mechanism
for estimating the approximate location of the GPS
receiver using the idea of satellite constellation fin-
gerprinting. Note that in general the task of location
prediction can be modeled as a regression problem.
However in the case of GANSAT we model it as a
classification problem as our goal is to establish that the
satellite constellation signature can be used for infer-
ring the location. Thus the CNNs we use are modeled
as classifiers and not regressors.

3) Improving the 9-layer 1D-CNN to a 3-layer 2 dimen-
sional CNN (2D-CNN) model to estimate the loca-
tion using constellation fingerprints, achieving almost
100% accuracy and requiring minimal training time.

4) Designing and implementing a feature augmentation
technique, which we call the ‘‘multi-angular projec-
tion’’ method. The projection is a pre-processing step
used on the raw GPS received signal data that helps
to bring out the spatial correlation in the signal data.
This correlation is then exploited by the deep feature
learners to compute discriminating features for spoofed
data identification as well as position estimation.

5) Implementing a GAN based training for building a dis-
criminator for spoofed GPS signal data. The resulting
discriminator is used to differentiate real GPS signal
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data from spoofed ones obtained from a hardware based
spoofer. To the best of our knowledge, the proposed
model is the first of its kind and provide an end-to-end
robust GPS spoofer detection technique using the idea
of ‘‘satellite hardware fingerprinting.’’ We must point
out that this is different from the idea of ‘‘constellation
fingerprinting’’ used for the task of position estimation
in GPS degraded settings using the aforementioned
CNN.

6) Evaluating the performance of the implemented system
and establishing its efficacy using real world exper-
iments in uncontrolled RF environments. Since the
trained model is designed at the physical layer, it will
not add any computational overhead in the deploy-
ment phase for practical applications. Additionally, the
proposed GANSAT model is the first of its kind that
provides any statistical validation of a GPS spoofer
detection mechanism.

The remainder of the paper is organized as follows. Section II
provides a brief background of related work. The GANSAT
framework and the testbed setup are discussed in Section III
and Section IV respectively. The experimental results are
presented in Section V and conclusions are drawn in the last
section.

II. BACKGROUND AND RELATED WORKS
This section introduces Generative Adversarial Networks
(GANs) and Convolutional Neural Networks (CNNs). GANs
and CNNs have been studied and used extensively; they have
been used successfully in a range of diverse application areas
including RF signal analysis. After introducing GAN and
CNN we conclude this section with a discussion of existing
emitter spoof-detection techniques that are relevant to this
paper.

A. GENERATIVE ADVERSARIAL NET
GAN [4] is an unsupervised learning technique based on
a synergistic application of ideas from game theory and
machine learning. A GAN consists of two competing neural
networks: a generator (which acts as an adversary or spoofer)
and a discriminator (which acts as an adversary or spoofer
detector), which are involved in an infinite horizon game.
The input from a trained generator can be used to build
smart and robust discriminative models that can operate in
the presence of ‘‘yet to be seen’’, ‘‘real’’ adversaries. The
overall training mechanism can be conceptualized as a min-
imax game with two players, namely the generator and the
discriminator. Each player improves through a sequential
iterative training process. Theoretically the generator and
discriminator are supposed to play the game indefinitely, but
in reality. depending on the ratio of data and model density,
the discriminator overpowers the generator in a finite amount
of time, due to vanishing gradient of the generator. Note that
the discriminator is generally deeper than the generator for a
purposeful implementation of the GAN framework.

Following [4], to fit the generator’s distribution pg to the
data x, a prior on input noise variables pz(z) to the generator is
defined and a mapping to the data space is learned asG(z; θg),
where G is a multi-layer perceptron with parameters θg. For
the discriminator, the multi-layer perceptron is defined as
D(x; θd ), where D(x) represents the probability that x was
sampled from the data distribution, and θd is a scalar label.
The objective of GAN training is to train D to maximize the
probability of assigning the correct label (i.e., the detection
problem) and train G to minimize log(1 − D(G(z))), the
probability of D making a correct decision on the fake input,
simultaneously. Since G’s cost depends on D’s parameters
and vice-versa, each player cannot control the other’s param-
eters. This situation is best represented as a min-max game
[8], with value function V (G,D) formulated as follows: [4]

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+E∼px (z)[log(1− D(G(z)))]

The objective of the GAN min-max game is to find the
Nash equilibrium that minimizes the maximum loss. It must
be pointed out that the GAN loss as defined above is hard to
optimize and implementations typically use different strate-
gies like pre-training of the discriminator to circumvent this
problem. Readers interested in knowing more about GANs
are referred to [4] for relevant details.

B. CONVOLUTIONAL NEURAL NETWORKS
Over the last decade neural networks (NNs) have become the
tool of choice for applications of artificial intelligence (AI)
in a variety of domains. They have been successfully used
to build systems that have beat humans in tasks like image
classification and language translation [4]. Though initially
slow to adopt this new paradigm for implementing AI sys-
tems, the RF community has progressively embraced the use
of NNs in the last couple of years with applications becoming
mainstream by the day. Neural networks (NNs) are rapidly
gaining ground in radio frequency machine learning (RFML)
[2], [6] as they provide a way to build end-to-end systems that
require minimal or no expert feature engineering. Inspired by
their recent success, in this work we adopt neural networks
for building a RFML system for the task of fingerprinting
GPS constellations, using raw I/Q signal data with the goal of
building a GPS agnostic positioning system. More precisely
we show that convolutional neural networks (CNN) can learn
GPS constellation signatures from raw I/Q data by exploiting
the spatial correlations present in the same. Finally we show
that these signatures can be used to identify specific locations
on the surface of Earth.

CNNs are implemented using three types of layers (where
each layer consists of several neurons): convolutional, pool-
ing and fully connect layer. CNNs learn ‘‘local features’’ from
the input (for example spatial correlation) through the use of
specially designed structures called convolutional ‘‘filters,’’
which can be looked upon as masks that are designed to elicit
special responses from the input data. To reduce the number
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of features and elicit finer responses through aggregation,
deep structures pool information from the convolutional lay-
ers for learning progressively finer features. These pooled
features exploit the ‘‘locality’’ information in the input and
in turn help the network to learn more compact and meaning-
ful representations for solving a specific problem. The fully
connected layers organize the nonlinear combinations of the
high-level features from the CNN. CNNs have proven to be
effective not only for image and video processing [5], but also
for problems in the RFML domain. Lately, there has been
quite a few attempts at using CNNs for learning different
intrinsic RF parameters [6], [9], [10].

C. RELATED WORKS
This section discusses the design and implementation of
effective spoofers for positioning systems using SDRs.
We also discuss the state-of-the-art defense mechanisms
against such spoofing attacks for various outdoor and indoor
positioning systems. The advantages of using automatic fea-
ture learning techniques to prevent/circumvent such attacks
over large-scale deployments is discussed. Finally, the section
concludes with a discussion of artificial intelligence (AI)
inspired spoof-detection techniques for modern location
estimation services.

In 2008 Humphreys et al. [11] started to work on a portable
civilian GPS spoofer to assess the impact of the threat of
spoofing attacks on civilian GPS receivers. They also pro-
posed two SDR-based and one cryptography-based measures
for countering such attacks. However, all the methods studied
and implemented were low impact and not without problems.
Later a receiver-autonomous angle-of-arrival spoofing coun-
termeasure was proposed in [12] by using a dual antenna
receiver. It was argued that the presence of multiple antennas
mounted at the receiver makes it difficult for the spoofer
to successfully inject an artificial GPS signal into the sys-
tem. An automatic gain control (AGC) based RF front end
was proposed in [13] to enable spoofing detection in case a
receiver was perceived to have been spoofed ‘‘with varying
degrees of success and computational complexity.’’ However
per their results, it was concluded that spoofing detectors
should not rely solely on AGC though it can be used in
conjunction with other techniques to provide a robust defense
mechanism against spoofing attacks.

A multi-step defense against GPS spoofing was presented
in [7], where the authors found that combining cryptography,
signal-distortion detection and direction-of-arrival sensing,
can provide a substantially secure countermeasure that could
be commercially deployed. In [14], the authors implemented
a practical real-time GPS spoofing attack for the use case
of road navigation. They argued that there were no effective
countermeasures for protecting civilian GPS systems against
spoofing attacks until that time. Tanil et al. proposed a novel
Kalman filter based inertial navigation system (INS) monitor
in [15] to detect GNSS spoofing attacks on an aircraft, even
when the spoofer was able to correctly estimate the real-time
position of the aircraft. They demonstrated the applicability

of their proposed approach by stopping a spoofing attack on a
Boeing 747. In [16], the authors presented a RF fingerprinting
based method to detect pseudo-GPS signals by leveraging the
Doppler frequency shift in the signal as a ‘‘fingerprint’’.

Even with the large scale deployment of GPS and other
worldwide positioning services through satellites, indoor
positioning suffers due to the low reachability of satellite
signals. GPS signals are hardly discernible in indoor settings
due to the use of low power transmissions using spread spec-
trum. However, due to the advent of ubiquitous computing,
recent efforts seek to make indoor positioning fool-proof and
accurate. In [17], Randall et al. presented an indoor posi-
tioning system using carpet-like distributed Radio Frequency
Identification (RFID) tags to estimate location. A remote
navigation system by estimating the indoor floorplan was
proposed in [18] for RFID-augmented environment. On the
other hand, a hybrid location approach, which opportunis-
tically selects between signal strength–based fingerprinting
techniques for indoor positioning and traditional GPS-based
positioning for the outdoor localization, was proposed in [19],
for mobile devices which frequently move between indoor
and outdoor settings.

In [20] the authors explored the idea of using multiple RF
sources for indoor positioning. They showed that it is possible
to compute accurate indoor positioning information if one can
choose between different RF sources when computing the
location information using nearest neighbor based methods
on the space of RF fingerprints. Their method protects against
spoofing attacks since in order for the spoofer to work all the
RF sources need to be spoofed, a task that is hard to achieve
if the number of sources is large. Furthermore the method can
be deployed with acceptable real time performance.

Another real-time indoor localization technique based on
dynamic measurement compressive sensing for wireless sen-
sor networks was proposed in [21]. Similarly, in [22] the
authors proposed an indoor location and orientation estima-
tion technique by using the user’s 3D location and head-
ing direction via a simple trilateration algorithm. However,
though all these indoor localization techniques have resulted
in better indoor position estimation techniques, they have
not dealt with the fact that malicious entities can still play
havoc with such systems in the absence of active spoofing
mitigation schemes. Moreover with the large scale deploy-
ment of indoor positioning systems and the wide availability
of ubiquitous computing, it has become important to deploy
end-to-end spoofer detection systems in indoor environments.
Thus there is a need for research into building AI-based
spoofer detection and mitigation techniques that can scale to
large deployment areas in both indoor and outdoor settings.

III. PROPOSED GANSAT FRAMEWORK:
SPOOF-DETECTION AND LOCATION PREDICTION
This section presents details of the proposedGANSAT frame-
work (shown in Fig. 3), which consists of a system for detect-
ing spoofed GPS signals and subsequently using the filtered
‘‘real GPS’’ signals to estimate the approximate location of
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FIGURE 3. The system architecture of GANSAT framework.

the receiver using the idea of satellite constellation signatures.
Note that as mentioned before, the GANSAT implementation
passively senses GPS signals without the need for the receiver
to get a ‘‘lock’’ and hence works irrespective of the signal
strength at a given location. To describe the framework, this
section first introduces the idea of a ‘‘multi-angular projec-
tion.’’ This is used with the raw GPS signal data to enhance
the spatial correlation present in the data by projecting it
to a higher dimensional space. In multi-angular projection,
the amplitude of the in-phase (I ), and the quadrature-phase
(Q) components of the raw signal data are projected to a
higher dimensional space. The GAN-based approach (first
part of GANSAT framework) filters the spoofed signals
from real ones using this high dimensional representation
of the raw GPS data. Finally, the high dimensional represen-
tation of the filtered real signals are fed into a CNN model
(second part of GANSAT framework) for location estimation,
using implicit ‘‘constellation fingerprints’’ learned from the
training data.

A. MULTI-ANGULAR PROJECTION
Raw signal data including that from GPS satellites consists
of multiple I and Q value pairs. Note that a single (I ,Q) pair
is a point in the 2D complex plane and is associated with
an amplitude r and a phase φ (see Fig. 4). Fig. 4 illustrates
that I = r · cos(φ) and Q = r · sin(φ) and hence the
complex number (I ,Q) can be represented by (cos(φ), sin(φ))
when the amplitude r is a constant. Note that a complex
number is fully determined by a radial coordinate, r , and
an angular coordinate, φ. This in turn means that if one
of these parameters is known, the complex number is fully
determined by the other remaining parameter. Thus if r is
fixed, then the complex number is determined by the phase φ.
This angle denotes a direction with respect to the horizontal
coordinate axis and hence the complex number in this case is
synonymous with a specific direction. Thus each point in the
complex plane determines a direction specified by phase of
the complex number corresponding to the point.

Given a set of (I ,Q) values for a time varying signal,
denoted by (Ij,Qj), j = 1, 2, . . . ,N , a multi-angular pro-
jection is obtained by projecting each (Ij,Qj), on a set of
pre-determined directions specified by a set of complex num-
bers having phase angles φk , where k = 1, 2, ldots,M .
The projection of (Ij,Qj) in the direction specified by φk
defines another complex number P(Ij,Qj) having phase φk
and amplitude Ij · cosφk + Qj · sinφk . Note that the set
of phase angles for computing the projections for each

FIGURE 4. Amplitude and phase of IQ data.

FIGURE 5. Computing the multi-angular projection R for phase φk .

FIGURE 6. Phase angles for computing multi-angular projection.

j = 1, 2, ldots,N are the same. Hence for each raw I/Q data
(Ij,Qj), we consider the set of amplitudes of the resulting
projections along the M directions, as the input feature set.
This is a vector in the M -dimensional real space. Thus for
each (Ij,Qj) j = 1, 2, . . . ,N , the resulting input feature
is (Ij · cosφ1 + Qj · sinφ1, . . . , Ij · cosφM + Qj · sinφM )
∈ RM . It should be clear that the multi-angular projection
can be interpreted as a dimension expansion technique which
captures the variations present in the input data by projecting
the data along different directions specified by the phase
angles resulting in a high dimensional projection. Fig. 5
shows the details of the multi-angular projection method for a
single (I ,Q) value and direction φk . For our implementation,
we used eight phase angles for computing the multi-angular
projection and these angles are shown in Fig. 6.

It must be noted that unlike dimension reduction tech-
niques that are used in machine learning, the multi-angular
projection is a dimension expansion technique. While it may
seem counter-intuitive, the use of dimension expansion tech-
niques is not without precedent in the literature. In fact, one of
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the classical strategies in machine learning is to project points
to a higher-dimensional feature space in order to learn the
decision boundary in cases where the points are not separable
in a lower-dimensional space. For example, 2D points, which
can be separated by a circular decision boundary and hence
are not linearly separable in two dimensions, can be projected
onto the surface of a 3D parabola where they become lin-
early separable [23]. The intuition behind this idea (which
is generally called ‘‘kernelization’’) is that projecting the 2D
points on to the surface of the 3D parabola provides a new
‘‘perspective’’ for the data, which can be exploited to learn a
linear decision boundary. The generalization of this approach
can be found in the idea of the ‘‘kernel trick’’ where the
classifier is learned in a higher dimensional space in order
to exploit hidden properties of the input data.

The inspiration for the multi-angular projection comes
from this idea of kernelization and the fact that the I/Q values
obtained from the GPS satellites (or as a matter of fact any
transmitter) have inherent properties that can be exploited
to fingerprint the transmitters [2]. These fingerprints can be
used to distinguish between real and fake signals transmitted
by (or purported to be transmitted by) a given emitter. Fur-
thermore, since the properties of the emitted signals are also
affected by the intrinsic environmental noise, a combination
of fingerprints from multiple emitters can be correlated to the
operational environment of the emitters (and hence used for
location inference). The idea of characterizing the location
using signatures of signals emitted frommultiple transmitters
is the idea of ‘‘emitter constellation fingerprinting.’’ However
multi-path effects and random variations in the environmental
noise make it hard to learn these characteristics. This is
especially true in the case of GPS signals, due to its use of
spread spectrum for transmissions [24]. Under these circum-
stances, it becomes non-trivial to directly decipher and learn
these inherent characteristics of the signals for the purpose of
filtering out real GPS signals from fake ones or for the task of
location inference using emitter constellation fingerprinting.
Thus in order to decouple the effects of multi-path and ran-
dom variations of environmental noise from the received GPS
signal usingmulti-angular projection, the received signal data
is projected to a higher dimensional space. This is done to
implicitly learn the decision boundaries by decoupling these
distortions present in the data from each other. Intuitively, the
projection should provide enough ‘‘perspectives’’ of the data
for the learning algorithm to consider and in the process, the
algorithm can be expected to learn pertinent feature represen-
tations for the given task. The effectiveness of the proposed
projection technique is analyzed through experimentation
during the implementation of the location inference system
in Section V-C and V-D.

B. GAN FOR SPOOF-DETECTION
As mentioned before, a GAN framework consists of two
distinct models: the generator (G) and the discriminator (D).
The goal of the generator is to create ‘‘fake’’ samples that
are akin to the real ones by implicitly learning the real data

distribution. The goal of the discriminator is to differenti-
ate the fake data from the ‘‘real’’ ones by estimating the
probability that a given sample was obtained by sampling
the real data distribution rather than using G. As GANSAT
is based on the GAN framework, it consists of both these
entities, trained with the express purpose of generating fake
GPS data and identifying the same. In GANSAT, during the
training phase, the generator acts as a malicious GPS emitter,
which generates fake GPS data with the goal of forcing the
discriminator into making a mistake (accepting the fake data
as real). The discriminator in turn aims to minimize the prob-
ability of error in classifying real GPS data from fake ones.
During the training phase, the decision of the discriminator is
conveyed to the generator, which uses this information to fine
tune its parameters to generate more realistic ‘‘fake’’ data.
At the end of the training, the generator learns to generate
‘‘fake’’ or spoofed GPS signals, and the discriminator learns
to distinguish between the real and spoofed GPS data.

1) GENERATIVE MODEL
The generative model works by accepting a random vector as
input and generating ‘‘fake’’ GPS data as output by sampling
from an approximation of the real data distribution that it
learns implicitly through unsupervised learning. Note that
in the context of the GANSAT application scenario, which
is that of generating I/Q data spoofing raw GPS signals,
the generator can be thought of as generating an N class
output, where N is the number of I/Q values in the sample
corresponding to a time t . Thus the generator input is a 1×N
random vector where each component is two dimensional.
This is conditioned on a prior distribution and the output is
a vector of I/Q samples of the same dimension but sampled
from the latent distribution of the real GPS data, which is
denoted by pg(g). In effect the generator creates a signal
using a random input which can be modeled as consisting of
two additive components the first of which is s(t), which is
defined as:

s(t) = c1m(t)+ c2r(t)+ c3l(t) (1)

Here s(t) is modeled as a continuous time varying signal
modulated onto a sinusoid with varying frequency, phase,
amplitude or some permutation of these parameters. In the
above expression, m(t), r(t), and l(t) are the time series con-
tinuous signals for modulation, amplitude, and phase respec-
tively. These are usually selected randomly using some prior
imposed on the data that factors in the knowledge about the
underlying communication system. The coefficients c1, c2,
and c3 are some path loss or constant gain terms associated
with m(t), r(t), and l(t) respectively. The input to the gener-
ator, g(t), is finally obtained as:

g(t) = s(t)+ n(t) (2)

where n(t) is Gaussian white noise. g(t) is used as input to the
generator which generates a ‘‘fake’’ data point from this input
by sampling from the latent probability distribution pg(x)
over sample space (x) of the real I/Q data. The distribution
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pg(x) over sample space x is learned implicitly during train-
ing. Note that we have indexed the prior information, noise
and the generated signal by time t in order to acknowledge
that the signal characteristics can change over time. However,
for this work, we do not explicitly consider the effects of
the variation of signal characteristics and noise with time.
The goal of the GAN is to minimize the cost V (G) which is
the probability that D correctly identifies the signal as being
generated from G.

2) DISCRIMINATIVE MODEL & GAN TRAINING
The discriminator is trained with both real signal data (x)
drawn from the data distribution pdata(x) and generated signal
data from the generator (g(t)). The discriminator’s objective
is to successfully identify real data samples from fake ones
by maximizing the probability of classifying real samples
as such and minimizing the probability of classifying fake
samples as real. Thus the objective of the overall GANmodel
is formulated as follows: the goal of the generator is to
maximize the probability that a fake sample is classified
as real while that of the discriminator is to maximize the
probability of classifying real samples as such and minimize
the probability of classifying fake samples as real. Let the
overall GAN cost be denoted by V (G,D) and let D(x) be the
probability of classifying a sample x as real. Then the GAN
cost function can be written as V (G,D)= Epdata(x) logD(x)+
Epg(g) log(1 − D(G(g))), where pg(g) is the generator’s dis-
tribution over the generated signal samples g and pdata(x) is
the distribution of real signal samples x. Note that D(x) is
the probability that x came from pdata(x) rather than from
pg(g) and D(G(g)) represents the probability a fake sample
g generated from G is classified as real, that is coming from
pdata(x). Finally the goal of the GAN training is:

min
G

max
D

V (G,D) (3)

After training, the GAN framework eventually converges
to an unique optimal discriminator for a given generator,

D∗(x) =
pdata(x)

pdata(x)+ pg(g)
. It is clear that D is optimal when

the discriminator can distinguish between every real signal
data (x) and generated signal data (g). Similarly, it is also
clear that G is optimal when D cannot distinguish between x
and g, that is, G is optimal when pg(g) = pdata(x).

3) PROPOSED GAN ARCHITECTURE
In the proposed GAN architecture, the generator first gener-
ates data from the prior constrained random noise without any
information about the latent data distribution; but after a few
training epochs,G(g) learns to generate signals from the latent
data distribution pg(g) using feedback on the performance
of the discriminator which implicitly provides information
on the latent data distribution. Note that an epoch consists
of a forward and a backward pass of the model over the
entire dataset. On the other hand, the trained discriminator
learns to differentiate between the generated data distribu-
tion (pg(g)) and the real data distribution (pdata(x)) over the

FIGURE 7. GAN training in the GANSAT framework.

different training epochs. In effect the trained model tries
to distinguish the generated signals (g) from the real ones
(x). The Adam [25] optimizer is used for the GAN training
with different learning rates per epoch. The output from the
discriminator is fed back to both G(g) and D(g) as a form
of implicit information about the latent data distribution (for
the generator) and generator’s distribution (for the discrim-
inator), which in turn helps them to adjust their respective
models to better compete against each other.

4) GAN IMPLEMENTATION
Our GANSAT implementation is compatible with data gener-
ated by any existing GPS system. The GAN trained discrimi-
nator is deployed inside the GANSAT system for the purpose
of spoof-detection and it is responsible for filtering out real
GPS data from spoofed ones. Note that the discriminator
model though trained with the generator input is used to
filter out GPS data spoofed by an actual hardware spoofer
and not data generated by the generator, which is used only
during GAN training. During training, the discriminator is
trained with data from the generator and real GPS satel-
lites. The training methodology is presented in Fig. 7 and
occurs over several rounds (epochs) with the generator and
discriminator both contending to achieve superiority over
the other. As mentioned before, during training, the output
from the discriminator is used as input to both the generator
and the discriminator, and this feedback is used to tune the
hyper-parameters of the system. Over time, the discriminator
eventually overpowers the generator. Once the GAN training
is complete, the trained discriminator is deployed in the AI
module of the GANSAT framework, conceptually presented
in Fig 8.

The details of the GAN implementation is shown in Fig. 9.
The generator consists of three dense layers with neurons
in the scale of the sample size. The sample size is imple-
mentation specific, and for these RF experiments, we used
a sample size of 1024. In the beginning, the generator starts
by computing on random noise, but with the progress of GAN
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FIGURE 8. Deployment of trained discriminator in spoofed GPS
environment.

FIGURE 9. The details of GAN implementation in GANSAT.

training, it keeps getting feedback from the discriminator and
this feedback acts as a form of implicit information on the
latent distribution of the real GPS data. This helps the gener-
ator adjust its parameters and generate better quality outputs
which is more akin to the real GPS data. The generated
samples are of length 2 × sample size and are sampled from
the estimated latent distribution pg(g). The discriminator D
consists of one input layer having 2 × sample size neurons,
three hidden layers with neurons in scale of the sample size
and finally a softmax output layer with 2 neurons to classify
an input as either spoofed or real. GANSAT uses tanh
activation at the hidden layers along with a Dropout [26]
of 0.5 in between these layers for regularization. Note that
during the training phase, the discriminator is trained on real
and generated signals, whereas in the deployment phase the
discriminator is able to distinguish between real and hard-
ware spoofed (as well as generated) signals.

C. 1D-CNN FOR LOCATION PREDICTION
In order to learn the intrinsic properties of GPS signals,
GANSAT exploits the spatial correlation present in the raw
GPS signal data using a CNN. Since the GPS signal is
received as a stream of I/Q values, locality is inherently
present in the data and thus intuitively the spatial correlation

FIGURE 10. The proposed CNN architecture of GANSAT for GPS satellite
constellation fingerprinting.

TABLE 1. Parameter setup for each convolution layer.

in the data can be best exploited through the use of 1-D
convolution in the CNN models [5]. The GANSAT design
and implementation uses a CNN with four conv1D [27]
layers, a Flatten operation and five fully connected (dense)
layers, as shown in Fig. 10. The number of filters used for
each layer (shown in Fig. 10) is in the scale of sample size.
A Dropout [26] of 0.6 after each dense layer is used for
regularization and Table 1 presents information about kernel
and stride sizes for each convolution layer in our testbed
implementation. GANSAT uses the ReLU [28] activation for
all the convolution layers and tanh activation [5] for all fully
connected layers, other than the last layer which uses the
softmax [5] activation. Detailed settings of the configuration
parameters are presented in Table 2. The system employs
stochastic gradient descent (with learning rate of 10−4) based
optimization with categorical cross-entropy training. During
training, we set the maximum epoch to 100 with an early
stopping condition such that if there is no improvement of
validation loss is observed for five consecutive epochs, then
the training is stopped. We observed through multiple train-
ing runs that the proposed model converges within a range
of 45-60 epochs.

It is to be noted that we designed the CNN with only
4 convolution layers and 5 fully connected layers for faster
training [29] and also because no significant increase in the
testing accuracy was observed after increasing the number of
layers.

1) OPTIMIZATION IN THE PROPOSED 1D-CNN
As discussed in Section III-A, the input to the GANSAT
system is the output of the multi-angular projection applied
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on the raw GPS signal data as a pre-processing step. The
result of the projection operation is represented as η = (Ij ·
cosφ1 + Qj · sinφ1, . . . , Ij · cosφM + Qj · sinφM ) ∈ RM ,
which is the input to the proposed NNs (both the CNN as
well as the discriminator). For an input η, the output of the
k th convolution layer of is:

Ck = P(ReLU (W c
k ∗ Ck−1 + b

c
k )), k = 1, 2, 3, 4, 5 (4)

where C0 = η, ‘‘∗’’ is the convolution operation, W c
k and

bck are the convolution kernel and bias corresponding to the
k th layer and ReLU (·) denotes the activation function. P(·) is
the zero-padding operator to fill the borders with zeros for
effectively using the convolution operation. Next the output
of C5 is transformed to a flattened tensor ηf to be fed into the
fully connected layers (or dense layers). Here the output of
l th hidden dense layer is given by:

Dl = tanh(W d
l ◦Dl−1 + bdl ), l = 1, 2, 3, 4 (5)

where D0 = ηf , ‘◦’ is the matrix multiplication operation
whileW d

l and bdl are the weight and bias corresponding to the
l th dense layer respectively and tanh(·) denotes the activation
function. Finally the output layer computes a feature vector z
from the input η as follows:

z = [z0z1z3 · · · zv · · · zC−1] (6)

where C is the total number of classes (here locations) and
v is the vector index. The softmax function on z predicts the
label of the input η. If the original label of input η is ζ , then
the predicted label is given by:

ζ̂ = argmax
v

ezv∑
m e

zm
,m = 0, 1, 2 · · · (C − 1);

v = 0, 1, 2 · · · (C − 1) (7)

The goal for training the proposed 1D-CNN is to find the
parameters α that minimizes the cost function J (α):

argmin
α
J (α) = argmin

α

N∑
i=1

Ji(α) = argmin
α

N∑
i=1

(ζ̂ − ζ )2

(8)

where N is the total number of input samples.

D. 2D-CNN FOR IMPROVED LOCATION PREDICTION
The location prediction system can be improved with a two
dimensional (2D) convolution instead of a 1D-convolution
as described above. In the 2D-CNN approach each projected
sample is treated as an image of dimension (8, sample size).
This simple change made the location prediction system
more accurate and simpler while decreasing the training time.
The details of the proposed architecture with 2D convolu-
tion is presented in Fig. 11. GANSAT uses 64 filters in the
Conv2D [27] layer with (2, 2) kernel size and (1, 1) stride
with ReLU [28] activation. The max pooling layer has a pool
size of (2, 2) and stride (2, 2), while other details are provided
in Fig. 11 and Table 2. The dense layer, after Dropout [26]
and Flatten operation, uses ReLU [28] activation as well. It is

TABLE 2. Details of parameter setup for CNN Model of proposed GANSAT
framework.

FIGURE 11. The proposed 2D CNN architecture of GANSAT for improved
location prediction.

evident that the 2D-CNN architecture is shallower compared
to the 1D-CNN implementation. Another advantage of 2D-
CNN approach is that one does not need to change the number
of filters depending on the variable sample size, as is required
for the 1D CNN.

1) OPTIMIZATION BY THE PROPOSED 2D-CNN
The overall optimization technique for the 2D CNN is similar
to the 1D-CNN. The primary difference is the lesser number
of convolutions and fully connected layers. For an input η,
the output of the 2D-convolution layer is given by:

C1 = P(ReLU (W c
1 ∗ η + b

c
1)) (9)

where ∗, W c
1 , b

c
1, ReLU (·), and P(·) represent the same oper-

ations as presented earlier. The computation at the single
hidden dense layer D1 is given by:

D1 = ReLU (W d
1 ◦ ηf + b

d
1 ) (10)

where ηf , ◦,W d
1 , and b

d
1 represent the same things as before.

However there is no change in the softmax activation function
for the output layer. Finally, the goal of optimization for the
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proposed 2D-CNN can be summarized as:

argmin
α
J (α) = argmin

α

N∑
i=1

Ji(α) = argmin
α

N∑
i=1

(ζ̂ − ζ )2

(11)

where as before N is the total number of training examples.

IV. TESTBED SETUP
In order to validate the proposed GANSAT framework,
we collected raw GPS signals in real outdoor environments
at five different locations in the Florida panhandle area of
USA, at different times of day: (a) Shalimar a small town
in the Okaloosa county Florida; (b) Crestview, another small
town about 25 miles away from Shalimar; (c) Defuniak
Springs, a small locality along the Interstate 10 corridor
of Florida; (d) Freeport, a small town off Highway 20 in
the Florida panhandle; and (e) Niceville, a mid sized town
along around the Eglin Air Force Base, Florida. An out-
door location was selected randomly in the aforementioned
towns and our equipment was setup at that location for data
collection. Before collecting the data, we noted the latitude
and longitude of the selected location for records. We would
like to mention that we selected these five locations and no
more due to the difficulty in collecting the data by driving
to different locations while at the same time ensuring the
safely and security of the people involved. The data was
collected during the Covid pandemic that is still raging across
the world and we had to ensure proper precautions as spec-
ified by the Universities. Though we wanted to visit other
locations and collect more data, we finally decided against
it due to health and wellness concerns of the researchers.
However, since the locations were randomly selected, the
results generalize to any location on the planet from where
the GPS constellation is visible. Note that at some places (and
times), the GPS signal was strong and we obtained a lock
and NAV messages, whereas at others, the signal was weak
and we did not get a lock or NAVmessages.We also collected
fake GPS data inside an uncontrolled laboratory environment,
spoofing the exact same 5 locations (latitude and longitude
wise). We implemented the generator and discriminator (of
the GAN) to detect and filter out the spoofed signals from
real ones and then used a CNN to predict the locations from
real GPS signals in GPS-deprived or weak-GPS environ-
ments. The details of the experiments are discussed below.

A. REAL GPS DATA COLLECTION
In order to collect the raw over-the-air GPS signals, we used
an universal software radio peripheral (USRP) software
defined radio (SDR), namely B210 from Ettus Research [30].
To collect data using the B210 SDR we used the open source
‘‘Global Navigation Satellite Systems’’ software-defined
receiver (GNSS-SDR) [31] package which was installed on
a 2.9 GHz 16 GB Intel i7 system. Our data acquisition sys-
tem utilized a B210 compatible GPS Disciplined Oscillator

FIGURE 12. An overview of GPS data collection.

TABLE 3. GPS receiver configuration parameters.

(GPSDO-TCXO) and an active GPS antenna on the USRP-
B210 SDR. Since we used an active GPS antenna, we placed
a bias-T between the USRP and the antenna to connect the
antenna to a power source, so that the required voltage (5V)
could be delivered [32] to the antenna without any overload.
The data collection setup is shown in Fig. 12 and the con-
figuration parameters are shown in Table 3. We tuned the
radio to 1575.42 MHz as we wanted to capture the Coarse-
acquisition (C/A) and the L1 civilian (L1C) codes for the L1
GPS band. Note that during our data collection in strong-
GPS environments, GNSS-SDR was able to get a Position
Fix; however for GPS-free and weak-GPS environments we
observed a consistent loss of satellite locks and hence the
receiver was not able to get a position fix in these cases. For
these cases we simply collected the raw GPS I/Q data and
inferred the location from a smartphone based GPS.

In order to collect GPS signals using GNSS-SDR, a small
script was developedwith configuration parameters that spec-
ify the B210 signal source and the Civilian L1 C/A Band
decoding process. During the execution of the script, GNSS-
SDR attempts to lock onto and track the GPS transmitters
in the visible satellite constellation at a given location. Finally
the GNSS timer starts to get bit synchronization with each of
the visible satellites and obtain bit sync messages to receive
accurate navigation information. After 2-3 minutes, gradu-
ally it starts to receive the NAV messages from the visible
satellites. At this point it is able to compute the receiver’s
coordinates by getting a Position Fix after receiving a stream
of NAV messages.

The GPS data collection setup is shown in Fig. 13. Note
that we collected raw over-the-air GPS signal data in five dif-
ferent outdoor locations as shown in Fig. 14. All the locations
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FIGURE 13. The GPS data collection setup in our lab.

FIGURE 14. The five locations of data collection in northern part of
florida.

TABLE 4. Information about locations and time of real GPS data
collection.

were a minimum of 10 miles apart from each other and we
show the exact latitude, longitude and GPS signal strength at
each of these locations in Table 4. We collected most of our
data within two days, at different times in order to get unique
visible GPS satellite constellations per location.

In Shalimar, we were able to lock onto the GPS satel-
lites intermittently, obtaining the receiver’s coordinate for a
period of 1-2 seconds only; hence, we label this location
as having a weak-GPS. In Niceville, we observed that the
GNSS-SDR was able to get the lock and obtain the receiver’s
coordinates consistently; hence we label it as a strong-GPS
location. However for the other three places we observed that
GNSS-SDR was unable to obtain the lock consistently and
hence we labeled these locations as GPS-deprived, since the
receiver was unable to calculate it’s coordinate even once.
We chose a combination of all three types of environments
to show that the efficacy of the proposed approach is the

FIGURE 15. The real GPS data collection setup.

FIGURE 16. An overview of the designed spoofer.

same irrespective of the strength of the received GPS signal.
We show the actual positions as obtained from Google Maps
using Google high accuracy mode in Table 4. Our data col-
lection setups are shown in Fig. 15.

B. GPS SPOOFING ATTACK IMPLEMENTATION
Software-defined GPS transceivers were a natural choice for
studying civilian GPS spoofing and its effects. In a software
defined GPS transceiver, the real-time correlators, tracking
loops, and navigation solvers are all implemented in software
on a programmable processor.

In order to spoof GPS signals, we use the open source GPS-
SDR-SIM [33] package. The SIM package accepts a Receiver
Independent Exchange Format [34] (RINEX) version 2 nav-
igation file as input, with information about the latitude and
longitude to be spoofed being provided by the user. It then
produces fake GPS samples based on prior information about
GPS satellite positions at the given latitude, longitude.

Once the fake GPS data file is generated by the software,
it is transmitted via an SDR, namely the Blade RF 2.0 micro
xA4 [35] manufactured by Nuand. The samples were trans-
mitted on a frequency of 1575.42 MHz with a sampling rate
of 2.6Mhz and bandwidth of 2.5Mhz. In order to test whether
the samples could be used by a real GPS receiver for position
computation, we collected these samples using the inbuilt
GPS receiver of a Samsung Galaxy S7, operating in GPS
only mode. An overview of the spoofing process is depicted
in Fig. 16. The GPS data was then used by the ‘‘GPS Test’’
application [36] which was loaded onto the phone in order
to parse the location information from the data. The results
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FIGURE 17. Screenshots of standard GPS vs. spoofed.

FIGURE 18. The spoofer setup in lab environment.

obtained are shown in Fig. 17. We performed multiple tests
by varying the distance between the transmitter and receiver
from 1 to 15 ft. For each of these tests we used the GPS
Test [36] application to verify that the correct latitude and
longitude were being spoofed and that the same was being
received by the receiver. As can be seen from Fig 17, which
shows the results of one of our spoofing experiments, even
though the actual location of the receiver was in Florida,
USA, the receiver was getting latitude and longitude infor-
mation of some location in China which was being broadcast
by the designed spoofer.

Once we confirmed the effectiveness of the spoofer,
we collected spoofed raw GPS signal data using an USRP
B210 running GNSS-SDR asmentioned in Section IV-A. The
spoofed data collection setup is shown in Fig. 18. A sample
output from GNSS-SDR while being spoofed with a file
generated from ephemerides recorded in 2014 is shown in
Fig. 19. It is clear from Fig. 19 that GNSS-SDR was success-
fully obtaining a ‘‘lock’’ with the spoofed data and calculating
fake latitude and longitude (shown in green) after getting con-
stant NAV messages. Thus, though the GPS receiver should
have calculated the actual latitude and longitude of the posi-
tion of the receiver (which is the latitude and longitude of our
lab), due to the presence of the spoofer, it ended up computing
the latitude and longitude of the spoofed location transmitted
by the spoofer. This fake raw GPS signal data collected from
the spoofer is used as input to the GAN trained discriminator
model during the testing phase.

C. COLLECTED DATASETS
We collected both real and fake raw GPS data for 5 minutes
at each of the five locations selected for our experiments.

FIGURE 19. A screenshot of how GNSS is locking onto designed spoofer.

We obtained more than 50 million I/Q samples for each of
the datasets (real and fake). Though we collected a variable
number of training samples at each location, we used the
same number of samples during GANSAT training for all the
locations to mitigate the data skewness problem observed in
ML. As mentioned in Section IV-A, the GNSS-SDR setup
was tuned to the L1 GPS band and raw GPS I/Q samples with
two features, I and Q, were obtained for each of the locations
at any given time during the data collection process. Note
that we did not parse the GPS data packets even if a lock
was obtained by the receiver. We simply dumped the raw I/Q
values received at the receiver at a given time at any given
location. These raw I/Q samples are nothing but complex64
numbers stored in binary files. The two types of collected
datasets are:

• Real GPS Dataset:We collected more than 250 million
I/Q samples from real GPS signals at 5 different loca-
tions (see Table 5) in the state of Florida, USA. It is
clear that we only got bit sync, and NAV messages for
GPS-deprived locations (Crestview, Defuniak Springs,
Freeport), whereas we got intermittent Position fix in
weak-GPS areas (Shalimar) and a constant Position fix
in strong-GPS locations (Niceville).

• Spoofed GPS Dataset:We collected the same number of
I/Q samples from the GPS spoofer, spoofing the same
5 locations, in an uncontrolled lab environment (see
Table 5). It is evident from the table that the spoofed
data size was much smaller than that of the real data.
We found that this was due to there being much less
induced noise in the spoofed data than the real one.
This in turn was due to the spoofer being much nearer
(one millionth) to the GPS receiver compared to the
actual GPS satellites. During the spoofed data collection,
we always got all the three types of GPSmessages, as the
spoofer was simulating a strong-GPS environment.
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FIGURE 20. Plots of 4 million (I,Q) value Pairs for different types of
dataset from Shalimar.

It is to be noted that though ionospheric and tropospheric
errors were included in the collected real datasets, characteri-
zation of these are beyond the scope of this work. We are also
not explicitly using Doppler Shifts since we are directly using
the raw I/Q signal data as input to our system. As a result,
we do not need to extract the carrier or phase information of
the signal for our experiments.

D. DEEP DIVE INTO DATA
We plot approximately 4million I/Q value pairs from both the
real and spoofed datasets for Shalimar and the corresponding
multi-angular projection is shown in Fig. 20. It is clear from
Fig. 20 that it is impossible for the human eye to differentiate
between the real and spoofed data by simply looking at the
signal samples or their plots. We notice similar results for the
GPS I/Q data from other locations as well. Wemust also point
out that the set of visible GPS satellites at a given location
changes by the time of day at which an observation is made.
As a result, the observed GPS data at a given location inher-
ently contains the ‘‘hardware signatures’’ of the transmitters
on the visible satellites.

As mentioned in Section I, in the current implementation
of the GPS system, the unique identity of a GPS satel-
lite is encoded by the transmitted pseudo-random (PRNs)
codes (civilian ones) within the broadcast signal. The PRNs
obtained at the different data collection locations are pre-
sented in Table 6. We refer to the combination of PRNs from
the visible satellites at a given location as a constellation. Due
to the same reason we use the terms location and constella-
tion interchangeably. It is to be noted that the constellations
marked as C1, C2, C3, C4, C5 are unique from each other
though C3 is included as a subset of C4 and C5. Note that
due to this containment relationship it would be interesting
to observe whether the proposed CNN is able to differentiate
between these three constellations as the underlying features
for C3 are difficult to separate from those of C4 and C5.

E. SPATIAL CORRELATION IN THE DATASETS
In order to learn the intrinsic properties of GPS signal data
via convolutions, GANSAT needs to exploit the spatial cor-
relations present in the data. To do this we use the idea of
the multi-angular projection from Section III-A, to project the
received I/Q value pairs at a receiver to a higher dimensional
space. Note that for our choice of projection directions, for

FIGURE 21. Spatial correlation in the datasets in Pearson’s method.

a single I/Q value the transformed data is given by Xangle:

[[(I cos
iπ
8
+ Q sin

iπ
8
); i = 1, 2, · · · , 8]. In order to study

the spatial dependency between the I/Q values, we calculate
the correlation between the multi-angular projections of two
consecutive I/Q value pairs using both Pearson’s and Spear-
man’s correlation coefficients. This is done in order to present
a robust perspective as to the efficacy of this transformation.

The Pearson’s correlation at all the 5 locations, including,
for both real and spoofed data, are shown in Fig. 21. The
Spearman’s correlation for the same locations is shown in
Fig. 22. Note that the real data for each location is represented
in blue whereas the spoofed data is shown in gray. First it
must be noted that we typically observe lesser correlation
in the spoofed data than in the real ones. CNNs work by
capturing the correlation (local features) present in the data
and then use the same for classification (or regression). Here,
since the nature of the correlations are different for each of
the locations in the dataset, this difference can be leveraged
to learn discriminative features to disambiguate between the
various locations. Hence we can conclude that CNNs should
be effective for the problem of location estimation using
the satellite constellation signatures. This observation is later
corroborated via the results from our testbed implementation
(Section V).

F. MACHINE LEARNING LIBRARIES USED
Several libraries and tools are available for programming
deep neural networks in order to reduce the burden of
programming traditional GPUs. We use Keras [27] as the
frontend with Tensorflow [37] as the backend in our imple-
mentations. We also useNumpy, Scipy andMatplotlib Python
libraries.

G. PERFORMANCE METRICS
To establish the efficacy of any NN-based solution, ‘‘classi-
fication accuracy’’ is used as the typical performance metric.
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TABLE 5. The details of collected datasets.

TABLE 6. The GPS satellite constellation information.

FIGURE 22. Spatial correlation in the datasets in Spearman’s method.

However, ‘‘classification accuracy’’ can sometimes be mis-
leading and incomplete when the data is skewed. In such
situations, ‘‘precision’’ or ‘‘recall’’ can be used to establish
the effectiveness of the model. In the case of two class clas-
sification, ‘‘precision’’ of a model is the proportion of posi-
tive identifications that are actually correct whereas ‘‘recall’’
measures the proportion of actual positives that were iden-
tified correctly. These definitions can be easily extended to
the multi-class setting. A confusion matrix uses precision and
recall to show how the classification model performs with
respect to erroneous predictions (false alarms) and correct
classifications. The confusion matrix provides more insights
on the performance of a learning model by identifying not
only the number of errors, but more importantly the types
of errors. Similarly the F1 score which is the harmonic
mean of the ‘‘precision’’ and ‘‘recall,’’ is also another widely
used performance metric for NN-based classification. As a
result, both the confusion matrix and F1 score are shown and
analyzed for our experiments.

V. EXPERIMENTAL RESULTS
This section presents the results of our experiments with the
GANSAT framework on real and spoofed raw GPS signal
data for the tasks of GPS spoof detection and location esti-
mation using constellation fingerprints. We conducted exper-
iments on real world GPS data obtained from a spoofer and
real GPS satellites, All the experiments were conducted on on
a Ryzen 8 Core system with 64 GB RAM and a GTX 1080 Ti
GPU unit with 11 GB graphics memory. Our experiments
consisted of a offline training phase and an online evalua-
tion phase. During the offline training phase, the GANSAT
framework was trained to learn the signatures of the real GPS
signals as well as the constellation signatures. During the
online evaluation phase the trained models were deployed
on a system and presented with real or spoofed raw GPS
data. Note that the trained model can be deployed on a scaled
down version of the hardware used for the experiments. For
example the trained models can potentially be deployed on a
low end laptop or a portable computer like an Intel Nuk or
even a smart phone running the Android OS.

The GANSAT networks are trained on both real and fake
raw GPS data collected from k = 5 different locations as
described before. For the sake of robustness and statistical
significance, we present the results from each of the proposed
models after averaging over several runs. For describing the
results the total number of training examples is denoted byN .
Each training sample consists of n = sample size I/Q val-
ues which correspond to a time t . Note that the signal data
obtained is a time series but we do not exploit the temporal
variations in the data for this work, rather focusing on the
spatial correlations for both the tasks of spoof detection and
location inference.

A. SAMPLE SIZE AND NUMBER OF SAMPLES PER
CONSTELLATION
Since the GANSAT implementation depends on exploit-
ing the spatial correlation between the I/Q samples, the
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FIGURE 23. The overview of proposed GAN training.

sample size which we have denoted by n plays an important
role in our implementations. We performed various sets of
experiments with different values of sample size to determine
the optimum value that captures the spatial correlation in the
GPS data. The results of these experiments are presented in
Section V-C. Based on these experiments, we decided to use a
sample size of 1024 and the # of training samples per location
(for both real and spoofed data) was fixed at 4000 to avoid the
data skewness problem. Any changes in these two parameters
are explicitly noted going forward.

B. PERFORMANCE ANALYSIS FOR SPOOFED SIGNAL
IDENTIFICATION
For the first set of experiments, we train the GANSAT model
described in section III-B on the collected real raw GPS data
and generated raw fake GPS data obtained from the generator.
Note that when we train the discriminator without GAN,
we notice that it is able to detect spoofed GPS signals with
49.22% accuracy, which is similar to what one would obtain
with random guessing.

1) TRAINING PHASE
We train both the generator and discriminator through
iterative sequential learning to strengthen the generative and
discriminative model over time. We perform categorical
cross-entropy training with Adam [25] optimizer for gradient
based optimization. We use 70%, 10%, and 20% of the total
data for training, cross-validation and testing respectively.
Note that we pre-process all the data, training or otherwise,
using the multi-angular projection as described before.

During the training phase, the generator (G) generates fake
GPS I/Q data from a prior constrained random seed using
implicit feature information about the real GPS data obtained
through the discriminator feedback loop. The discrimina-
tor (D) is trained using the raw real and generated GPS
data from G. Since GAN training is known to be hard, we
experimented with several paradigms for training the GAN
models in order to get the best possible performance. This
led us to train both the models using a 3-step paradigm
which results in faster yet accurate convergence. The 3-step
training procedure through 150 epochs is presented in Fig. 23,
where LRG and LRD represents learning rates of the generator
and discriminator respectively. It must be noted that in each
epoch the learning rate of the generator is lower than that
of the discriminator. This is because we want the generator
to be able to generate realistic samples by learning a good
approximation to pg(g), the latent data distribution of real

FIGURE 24. Generative and discriminative loss of proposed GAN model.

GPS data. However we add more layers to the discriminator
so that it is able to accurately learn the decision boundary in
order to eventually overpower the generator.

It is clear from Fig. 24 that the generator’s loss starts to
decrease and the discriminator’s loss starts to increase at the
beginning of the training. However, after a certain number of
epochs both the losses saturate. The generator loss fluctuates
more and reaches saturation later (at around 40 epochs) while
the discriminator’s behavior is more or less stable throughout
all epochs. Once both the models are trained, GANSAT is
ready for the deployment (online) phase.

2) DEPLOYMENT PHASE
During the deployment phase, we randomly choose GPS
signal data from real GPS satellites, a GPS spoofer, and
fake data from the generator. We pre-process the spoofed
GPS dataset to ensure that we have the same sample size
and sample space as the real GPS dataset, that was collected
at different locations in Florida. This was done to ensure
that the spoofed data was indistinguishable from the real
data using simple features that can be easily learned by a
regular discriminator (not trained using a GAN). Using this
data we observe ∼ 50% spoof-detection rate prior to GAN
training. However after the discriminator is trained in the
GAN training loop and has learned the data distribution of the
real and fake GPS signals, we obtain an improved detection
rate. Succinctly we get an accuracy of 99.5%with the spoofed
data being generated from either the trained generator or an
actual hardware spoofer built by us using software defined
radios as described before.

As mentioned earlier, the GAN training and testing were
conducted with different values of the sample size and

VOLUME 10, 2022 45501



D. Roy et al.: GANSAT: GAN and SATellite Constellation Fingerprint-Based Framework

TABLE 7. Performance of GANSAT for different GAN training settings.

number of training samples per location. The results of
these experiments are presented in Table 7. It is evident
that the proposed GAN training works reasonably well
with different values of both these parameters per location
(or constellation).

C. PERFORMANCE ANALYSIS FOR LOCATION PREDICTION
Once the spoofed signals are filtered-out, GANSAT esti-
mates the location using the constellation fingerprint of the
real GPS signals using the proposed 1D-CNN discussed in
Section III-C. We obtained 97.82% accuracy, 97.8% preci-
sion, 97.82% recall and a F1-score of 0.98 using GANSAT
with the default experimental settings. The accuracy plot and
confusion matrices are presented in Fig.25, using 70%, 10%,
and 20% of the real GPS data for training, cross-validation
and testing respectively. We note that in general both the
training and validation accuracy increases with the number
of epochs. However during training, in some epochs the
validation accuracy drops suddenly. This is most likely due to
degradation of the quality of the parameter estimates due to
the optimization algorithm coming up with worse solutions in
a given epoch compared to the previous epochs. This is likely
due to the inherent complexity of the solution space which is
highly non-convex. Note however that the validation accuracy
gradually increased over the long run.

It is evident from the confusion matrix that the number of
false positives and true negatives are almost negligible. Intu-
itively the results show that the convolutional filters that were
used with the network were able to identify and encode dis-
criminative features for classification. We call these features,
which intuitively encode the spatial correlation among the
satellite signal data, the ‘‘satellite constellation fingerprint’’
or simply ‘‘satellite fingerprint’’. Also notice that, as pointed
out before, the constellations C3, C4, and C5 are quite similar
(Table 6), though not the same. However the proposed CNN
was able to differentiate between these three constellations
even though most of the false positives and true negatives
in the confusion matrix (Fig. 25) are corresponding to these
three constellations.

We also trained and tested the proposed CNN model with
different values of the sample size and number of training
samples per location. These results are presented in Table 8.
It is noticeable that the proposed architecture works bet-
ter by increasing the sample size and number of training

FIGURE 25. Accuracy and confusion matrix of the proposed 1D-CNN for
satellite constellation classification with sample size = 1024, and #
samples/location = 4000.

samples per constellation. This observation is intuitively
clear, given the fact that a larger sample size coupled with
more training samples would reduce the degrees of free-
dom of the network parameters. However we did observe
that the gain in accuracy after reaching a threshold is not
enough to justify the increased computational costs that are
incurred with such increased sizes. Thus, since the per-
formance did not improve much with a change in sample
size from 1024 to 2048, though the training time increases
significantly, we decided that a sample size of 1024 with
4000 samples per constellation is sufficient. Furthermore,
we also present an ablation study showing the effectiveness of
the proposed multi-angular projection. The results are shown
in Table 8. It is evident that not using the multi-angular
projection results in ∼20% degradation in accuracy for the
task of location estimation.

D. PERFORMANCE ANALYSIS FOR IMPROVED LOCATION
PREDICTION
It is interesting to observe that with the implementation of the
2D-CNN model (discussed in Section III-D) for improving
the performance of the location prediction algorithm, we get
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TABLE 8. Performance of GANSAT for location predictions with variable file parameters.

FIGURE 26. Accuracy and confusion matrix of the proposed 2D-CNN for
improved location prediction with sample size = 2048, and #
samples/location = 8000.

almost 100% accuracy, 100% precision, 100% recall, and
a F1-score of 1.00 with sample size of 2048. It achieves
competitive accuracy for other settings as well. The accuracy
plot and confusion matrices are presented in Fig.26. We use
the same percentages of data for training, cross-validation
and testing as with the 1D-CNN. We perform categori-
cal cross-entropy training for gradient based optimization.

FIGURE 27. Comparison of F1 score between proposed location
prediction schemes. Gray bars: results from the 1D-CNN implementation,
blue bars: results from the 2D-CNN implementation.

It is clear from the confusion matrix that there are no
false positives or false negatives during the testing phase.
We also present two comparative bar charts for comparing
the F1 score and training time between the 1D-CNN (basic
version) and 2D-CNN (improved version) implementations
in Fig. 27 and 28 respectively with different settings. The gray
bars represent the results from the 1D-CNN implementations
whereas the blue ones represent the ones from the 2D-CNN
one. It is noticeable from the charts that the improved ver-
sion performs significantly better than the basic version with
respect to both credibility and time. Moreover, we have
noticed a significant impact from using the multi-angular
projection for the 2D-CNN implementation which is pre-
sented in Table 9. These observations clearly establish that the
dimension enhancement during the multi-angular projection
positively impacts the representations that can be learned by
the network for location estimation.

E. PERFORMANCE ANALYSIS FOR SPOOFED DATA
DETECTION
A key element of GANSAT is its ability to detect spoofed
GPS signals and filter them out before location estimation.
To that effect we use the trained discriminator to differentiate
between the collected spoofed GPS signals and the real GPS
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TABLE 9. Performance of GANSAT for improved location predictions with variable file parameters.

FIGURE 28. Comparison training times between proposed location
prediction schemes. Gray bars: results from the 1D-CNN implementation,
blue bars: results from the 2D-CNN implementation.

signals at the different locations used for our experiments.
Note that the spoofed data can be used by any GPS receiver
to estimate the location using positioning and navigation
information contained in the data. However, in this work we
wanted to see how our proposed CNN models for location
estimation with satellite constellation signatures performed
when it came to the spoofed data. Succinctly, we wanted to
see whether the CNNs could discern satellite constellation
signatures from the spoofed GPS data. Intuitively, since the
data is generated by a single transmitter - as opposed to a
set of satellite based emitters, the features obtained from the
spoofed signals should not have enough spatial correlation
information to be exploited by the CNNs. As a result one
would expect the CNNs to perform poorly with the spoofed
data for location inference. This would also establish the fact
that the signals from the GPS satellites do contain informa-
tion that can be exploited to differentiate among different
locations.

It was very interesting to observe that the proposed CNN
models were able to predict the location from the spoofed
GPS signals with ∼30% accuracy which is akin to random
guess or worse and this proves our intuition empirically. Note
that all the spoofed data was transmitted by the same SDR
and contained information that could be interpreted by any
GPS receiver to get location estimates, which are the same
as the locations used to collect the real GPS data. Thus if the

proposed CNNs simply used the same inherent information
from the raw GPS data as used by a GPS receiver, then
they would predict the same locations as the GPS receiver.
Since this is not the case, it establishes the fact that the
CNNs use intrinsic features of the signals received from
the satellites which contain discriminating information for
location estimation. These signatures from multiple satellites
interact to create a ‘‘satellite constellation signature’’ which
can be exploited for signal classification by location. This
also establishes the fact that these features can be used to
discriminate between real and fake GPS data. We should also
point out that the GANSAT system works with the raw GPS
I/Q data and hence its performance does not depend on the
received signal strength (RSS) at the receiver as long as the
SNR is not below the noise threshold. Thus, the GANSAT
system works in environments where the received GPS signal
is very weak as opposed tomost of the existing systemswhich
would fail to work in weak-signal environments.

F. COMPARISON WITH STATE-OF-THE-ART
SPOOF-DETECTION SCHEMES
In this section we present a comparative study of the pro-
posed GANSAT approach for ‘‘GPS spoof-detection using
raw signal data’’ against some ‘‘state-of-the-art’’ techniques
for GPS spoof-detection (see Table 10). It must be pointed
out that we did not find any ML based methods for robust
GPS spoof-detection. Hence the existing techniques that we
have considered here are not exhaustive and were only tested
with a single run of the experiment. In this setting, it is
clear that the GANSAT approach is superior to any existing
GPS spoof-detection technique as it achieves nearly 100%
accuracy for multiple instances and uses only raw GPS sig-
nals. However, due to lack of relevant published literature,
we could not give any comparison for the task of location
prediction using ‘‘constellation signatures.’’

In summary, contributions of GANSAT are as follows:

1) Proposing, implementing and demonstrating the use-
fulness of multi-angular projection for enhancing the
spatial correlation of raw GPS signal data for various
raw signal based estimation tasks.

2) Demonstrating the use of spatial correlation from the
raw GPS signal data enhanced through multi-angular
projection, which can be exploited by GAN and CNN
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TABLE 10. Comparison of the proposed approaches with state-of-the-art.

models for spoof detection and location estimation,
respectively;

3) Ability to distinguish between real and spoofed raw
GPS signals either in GPS-deprived, weak-GPS or
strong-GPS environments;

4) Implementing a system for achieving 99.5% accuracy
for spoof detection using the raw GPS signals only.
The working principle of GAN does not depend on
the received signal strength at the receiver, which is a
dominant factor in most of the relevant existing works;

5) Employing a 1D-CNN model that predicts the correct
location with 97.82% accuracy by exploiting the spatial
correlation as a discriminative attribute for GPS satel-
lite constellation fingerprinting;

6) Deploying a 2D-CNN model that estimates the true
location with ∼100% accuracy and with much lesser
training time; and finally

7) Design of an end-to-end robust system for GPS spoof-
detection and location estimation, especially in GPS-
deprived and weak-GPS environments.

G. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of the proposed implemen-
tations can provide a comprehensive look at the operating
landscape of the GANSAT framework.We calculate the com-
plexities for the training phase only, as the trained model
provides the output within constant time (O(1)) during the
deployment phase. Understanding the time complexity of
training different types of NN is still an evolving research
area. In [38], the authors proved that a NN of depth δ can
be trained in poly(s2

δ
) time, where s is the dimension of

the input and poly(.) denotes a polynomial in the arguments.
Note that if δ is constant then for a given dimension s,
poly(s2

δ
) is a constant and hence such networks are efficiently

learnable. Note that the convolution operations of CNNs add
additional time complexity along with the forward and back-
propagation operations. In [29], the authors noted that the
time complexity for training all the convolutional layers is:
O(

∑ζ
τ=1(ητ−1ν

2
τ .ητρ

2
τ ), where ζ is the number of convolu-

tional layers, τ is the index of a convolutional layer, ητ−1
is the number of input channels for the τ th layer, ντ is the
spatial size of the filters at the τ th layer, ητ is the number
of filters at the τ th layer and ρτ is the size of the output
features of the τ th layer. In the GANSAT 1D-CNN model,
there are 4 convolutional layers and 5 fully connected layers
and hence this adds an additional time complexity for training

TABLE 11. Time complexities for training of GAN, 1D-CNN, and 2D-CNN
implementations.

those four convolutional layers. Similarly, an additional time
complexity for the single convolution layer is used in the
2D-CNN implementation.

The time complexities for the two parts of GANSAT
implementation are presented in Table 11. The proposed
GAN, 1D-CNN and 2D-CNN implementations had 8, 9 and
3 layers of neurons respectively. Note that we have used
different sample sizes and the total number of samples (for
training, validation and testing). Asmentioned before, 80% of
data is used for training and validation purpose. For example,
the complexity of GAN with 8 layers using 80% of data
(Ndata) samples for training and validation, is poly(0.8 ×
N 28
data). On another note, we should also mention that for

quick estimates of the training time, the number of hyper-
parameters can be used as a ball-park number for the com-
plexity. Thus, if there are more hyper-parameters, then the
training time is proportionately larger.We present the number
of hyper-parameters in Table 11 with a sample size of 1024.

1) LIMITATIONS OF GANSAT
Finally, before concluding we must point out that the main
limitation of GANSAT is its dependency on the training data
the model was trained on, like any other data driven solution.
In this regard, for GANSAT to successfully estimate the
location from raw GPS signal data, it has to be trained with a
wide variety of GPS constellations, even for the same location
(since the visible constellation at a location changes with
time). We validate GANSAT on collected data from 5 dif-
ferent locations, hence, our testing framework is limited to
the GPS signals from those 5 locations only. However, since
the locations were randomly selected, our implementation
and results establish the possibility of using such a system
for large scale deployments with approximate models using
transfer learning over temporal models.We have not explored
this direction in this work and leave that to a future study.
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VI. CONCLUSION
This paper presents the GANSAT framework, which provides
robust defense against GPS spoofers. The GANSAT system
and associated algorithms achieve 99.5% accuracy for the
task of GPS spoofer detection. The proposed approach is
resilient to any kind of spoofing attacks, as it works on the
physical layer of the devices. The framework is also able to
predict the approximate location of a software GPS receiver
with ∼100% accuracy, using the raw GPS signals, leverag-
ing the concept of ‘‘satellite constellation fingerprinting’’ in
GPS-denied and weak-GPS environments. The robustness of
the proposed approach is established using a testbed imple-
mentation and the observed efficacy is explained using local
characteristics of GPS signal data as represented by spatial
correlations. Additionally, time complexity of the implemen-
tation is comparedwith other GPS spoofer detection schemes.
Though the GANSAT framework is tested on data from
5 locations, the success of this implementation proves the
feasibility of applying AI/ML based methods for large-scale
location prediction in GPS denied environments and leads
to the possibility of incorporating the same in civilian and
commercial GPS systems. Going forward we would like to
study the feasibility of large scale deployment of such sys-
tems using the idea of temporal transfer learning for adapting
temporally stale GANSATmodels to work with real time data
using minimal retaining. This would open up the possibility
of large scale deployments of such models which might then
require industry level collaboration for implementation and
testing.
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