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ABSTRACT In many anomaly detection tasks, where anomalous data rarely appear and are difficult to
collect, training using only normal data is important. Although it is possible to manually create anomalous
data using prior knowledge, they may be subject to user bias. In this paper, we propose an Anoma-
lous Latent variable Generative Adversarial Network (ALGAN) in which the GAN generator produces
pseudo-anomalous data as well as fake-normal data, whereas the discriminator is trained to distinguish
between normal and pseudo-anomalous data. This differs from the standard GAN discriminator, which
specializes in classifying two similar classes. The training dataset contains only normal data; the latent
variables are introduced in anomalous states and are input into the generator to produce diverse pseudo-
anomalous data. We compared the performance of ALGAN with other existing methods on the MVTec-AD,
Magnetic Tile Defects, and COIL-100 datasets. The experimental results showed that ALGAN exhibited an
AUROC comparable to those of state-of-the-art methods while achieving a much faster prediction time.

INDEX TERMS Anomaly detection, computer vision, machine learning, deep learning, generative adver-
sarial networks.

I. INTRODUCTION
Anomaly detection refers to the technique of distinguish-
ing between unexpected and normal data and is closely
related to outlier detection and novelty detection [1]. Practical
examples include fraud detection to identify unauthorized
access [2], medical diagnosis to discover lesion sites from
medical images [3], surveillance to find suspicious behavior
in real-time videos [4], and optical inspection for detecting
defects in industrial products [5]. A common feature of these
applications is the discovery of undesirable data.

The difficulty with anomaly detection is that, in many
cases, anomalous data are rarely observed and are of a wide
variety; hence, the learning of anomaly detection models
suffers from the difficulty of imbalanced or one-class clas-
sification. Various methods have been proposed to address
this issue, such as creating a dataset containing new anoma-
lous data not included in conventional datasets [6], verify-
ing classification performance for anomalous data that are
rarely observed [2], and developing a new one-class classi-
fier for complex data such as image and sequence data [7].
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The augmentation of anomalous data from different sources
has also been proposed (e.g., out-of-distribution data [8], [9]);
however, in such cases, undesired biases may be introduced.

This paper discusses anomaly detection using only normal
training data. Because preparing a large amount of anoma-
lous data is difficult, training without anomalous data is a
preferable approach. In this line of research, a wide variety
of methods have already been proposed based on traditional
machine learning and statistical techniques, such as one-class
classification, likelihood, nearest neighbors, and clustering.
See Chandola et al. [1] for a comprehensive survey of tradi-
tional approaches.

Recently, deep learning methods such as representation
learning and deep generative models have been successfully
applied to anomaly detection without using anomalous data
for training. See [10]–[12] for a comprehensive survey of the
deep learning approaches. Taking advantage of the effective
representation of deep learning, the features obtained by a
pre-trained model, such as VGG [13] and ResNet [14], are
applied to unsupervised anomaly detection [15]. Because
Generative Adversarial Networks (GANs, [16]) can learn a
generative model of normal data through a discrimination
task, they have been combined for anomaly detection in
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FIGURE 1. Images generated by ALGAN-image. Top row: Fake-normal data from normal latent variables N(0, I). Bottom row: Fake-anomalous data from
anomalous latent variables N(0, σ2I), where σ = 4.

various ways [3], [17]–[20]. More details on anomaly detec-
tion without using anomalous data for training are presented
in Section II.
In this paper, we propose a method that improves anomaly

detection performance by generating pseudo-anomalous data
from only normal training data using GANs. Unlike the
standard usage of GANs, the generator used in the pro-
posed method provides pseudo-anomalous data as well as
fake-normal data, by introducing anomalous states in the
latent variable. We call this model Anomalous Latent GAN
(ALGAN). Note that the discriminator of a standard GAN
is not necessarily suitable for distinguishing between normal
and anomalous data. It is trained to discriminate between real
and fake data such that in successful learning, the two classes
are almost similar. By contrast, when training is successful,
the discriminator of ALGANdistinguishes between the group
of real-normal data and the group of fake-normal and pseudo-
anomalous data.

Some state-of-the-art anomaly detection methods special-
ize in product appearance inspection from images. For exam-
ple, DifferNet [21] concatenates feature vectors from three
different resolution images and uses them to train a model;
furthermore, PatchCore [22] uses the hierarchical patches
of features to achieve effective and fast performance. How-
ever, these methods presume a pre-trained model and cannot
be trained directly from the image data. By contrast, the
proposed ALGAN can be trained using both images and
features.

To apply anomaly detection in real-world applications, it is
important to consider computational resources [10]. Normal
training data can be collected efficiently; however, training
time increases with the amount of training data. In addi-
tion, real-time prediction is significant in the real world [4],
where the data generation speed has increased [23]. Reducing
computational costs will contribute to the expansion of the
application [24]. The proposedALGANachieves fast training
and prediction times.

The contributions of this study are as follows:
• We propose a novel method for generating pseudo-
anomalous data: adding pseudo-anomalous data to GAN
training improves the anomaly detection performance of
the discriminator.

• The proposed method can be applied to both images
and feature vectors. Experimental results show that it
achieves a state-of-the-art performance compared with
image-based methods and comparable ability to feature-
based methods.

• The proposed ALGAN achieved a remarkably fast
prediction time, 10.4 to 54.6 times faster than other
image-based methods on the benchmark MVTec-AD
dataset.

The remainder of this paper is organized as follows.
We compare our proposed method to relevant anomaly detec-
tion methods in Section II. Section III presents preliminar-
ies on standard GANs, details of the proposed method, and
intuition for pseudo-anomalous data. Section IV provides
the implementation details, datasets, and evaluation method.
Section V examines the anomaly detection performances on
various datasets and presents the computation time, stability,
and ablation study results. Section VI discusses the advan-
tages of this study and possible future work. Section VII
presents concluding remarks.

II. RELATED WORK
A. GAN-BASED ANOMALY DETECTION
A vast body of literature already exists on generative models
for anomaly detection; therefore, we present only represen-
tative studies that use GANs. Anomaly detection methods
using GANs can be divided into two categories: those using
reconstruction errors and those using one-class classifiers.
In early studies [3], [17], the latent variable corresponding
to given test data was estimated, and the reconstruction error
of the image generated from the latent variable was used
as the anomaly score. GANomaly [18] uses two encoders
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FIGURE 2. Overview of ALGAN training. (a) Procedure for training the discriminator D with real-normal data x (black), latent variables zn ∼ N(0, I) (blue),
anomalous latent variables za ∼ N(0, σ2I) (red), fake-normal data x ′n (blue), fake-anomalous data x ′a (red), buffered fake-normal data x̂n (blue), and
buffered fake-anomalous data x̂a (red). (b) Procedure for training the generator G.

that estimate the latent variables of the input and gener-
ated images and detects anomalies using the reconstruction
error between two latent variables. Skip-GANomaly [19] is
an improvement that evaluates the anomaly score using the
features extracted from the middle layer of the discrimina-
tor. Because a generator with an encoder–decoder structure
trained only on normal data may not properly reconstruct
anomalous data, ALOCC [20] exploits the one-class classifi-
cation of the reconstructed images. However, these methods
fail to detect anomalies when data reconstruction is success-
ful. By contrast, the proposed method does not depend on the
reconstruction error and discriminates directly.

B. ANOMALY DETECTION WITH PRE-TRAINED MODELS
Remarkable performance has been demonstrated in a recent
work [25] in which feature representations were exploited
from pre-trained models on the ImageNet dataset [26]. The
method in [27] extracts the hierarchical features of normal
data from a pre-trained EfficientNet [28], fits them with a
multivariate normal distribution, and uses the Mahalanobis
distance as the anomaly score. SPADE [29] extracts hier-
archical features, concatenates them, and performs anomaly
detection at the image and fine-grained pixel levels using the
k-nearest neighbors. PaDiM [30] separates hierarchical fea-
tures into patches and stores the mean and covariance in a
memory bank to measure the Mahalanobis distance. Patch-
Core [22] subsamples patches of hierarchical features to
achieve a high performance and fast prediction. Differ-
Net [21] uses a flow-based model [31], which typically is
computation-intensive, and utilizes pre-trained model fea-
tures [32] that reduce data dimensionality and computational
costs for likelihood-based anomaly detection. Most of these
methods use traditional anomaly detection techniques that
require the use of features, and images cannot be used directly
for training. By contrast, the proposed method can use both
types of training data.

C. PSEUDO-ANOMALOUS DATA
Some methods consider the generation of pseudo-anomalous
data. Data immaturely generated during the training
process of GANs have been used as pseudo-anomalous

data for training [33]–[35]. In CutPaste [36], patches of
random sizes and angles are cut out from an image and
randomly pasted onto the image. The classifier is trained
either from scratch or fine-tuned using normal and pseudo-
anomalous data. The feature representation by the classifier
is then used to calculate the anomaly score based on the
Gaussian density assumption. The proposed method gener-
ates pseudo-anomalous data by introducing anomalous states
into latent variables other than using data generated by an
immature generator. Thus, it is less biased than techniques
that generate pseudo-anomalous data using prior knowledge.

III. PROPOSED METHOD
A. OVERVIEW
Fig. 2 illustrates the training procedure of our pro-
posed ALGAN. The generator is trained in the same manner
as in standard GANs. Two additional data types are employed
to train the discriminator. One of the data types is generated
from the anomalous latent variable, and the other is a buffer of
data generated during the training process. The buffer size is
twice as large as the training data, and in each epoch, a portion
of the old buffer is replaced with newly generated data.

B. GENERATIVE ADVERSARIAL NETWORKS
GANs [16] replace distribution modeling with a discrimi-
nation problem: the generator G(z; θ ) maps latent variables
z to the data space, and the discriminator D(x;φ) distin-
guishes between real data x and the generated samples
x ′ = G(z). The discriminator outputs the probability of the
input, and real data and generated samples are labeled with
probability 1 and 0, respectively. The discriminator is trained
to maximize the log-likelihoods log(D(x)) and log(1 −
D(G(z))). Conversely, the generator is trained to minimize
log(1 − D(G(z))) to fool the discriminator. Both network
objectives are given by the following equations:

max
D

(
Ex∼pdata(x)[log(D(x))]

+ Ez∼pz(z)[log(1− D(G(z)))]
)
, (1)

min
G

(
Ez∼pz(z)[log(1− D(G(z)))]

)
, (2)
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where pdata and pz denote the distributions of real data and
latent variables, respectively.

When the discriminator can no longer distinguish between
real data and generated samples, the generator approximately
realizes a sampler from the real data distribution. The objec-
tive function of the GANs is obtained by combining (1)
and (2) as follows:

min
G

max
D

(
Ex∼pdata(x)[log(D(x))]

+Ez∼pz(z)[log(1− D(G(z)))]
)
. (3)

Given the optimal generator, the discriminator can distin-
guish between two similar classes. Thus, it is nontrivial to
determine whether such a discriminator is suitable for identi-
fying real and anomalous data. When GANs are trained on a
dataset {x} that includes only normal data, the discriminator
has poor discrimination performance on anomalous data [3].
This suggests that the discrimination boundary of GANs is
not specialized in the one-class classification of anomaly
detection.

C. PSEUDO-ANOMALOUS DATA
We introduce two types of pseudo-anomalous data for train-
ing. They are in addition to the x and x ′n = G(zn) used in the
standard GANs described in Section III-B, where x, x ′n, and
zn are defined as real-normal data, fake-normal data, and
latent variables from N (0, I ), respectively.
The first type of pseudo-anomalous data is called

fake-anomalous data. ALGAN utilizes the anomalous latent
variables za∼N (0, σ 2I ) with a larger variance (σ > 1)
to generate fake-anomalous data x ′a=G(za). See Fig. 1
for examples of fake-anomalous data. The fake-anomalous
images are slightly degraded compared with the fake-normal
images.

The other type of pseudo-anomalous data is called buffered
data x̂ = {x̂n, x̂a}, which are defined as generated samples
during the early stage of the training process. These are
expected to differ from the real-normal data. During training,
the fake samples x ′ = {x ′n, x

′
a} are stored and used as buffered

data.

D. TRAINING METHODOLOGY
The discriminator is trained to maximize log-likelihoods
logD(x), log(1 − D(x ′)), and log(1 − D(x̂)) to distinguish
real-normal data x from other data. Conversely, the generator
is trained to generate fake-normal data from zn, and minimize
log-likelihood log(1 − D(G(zn))) to fool the discriminator.
Both network objectives are given by the following equations:

max
D

(
Ex[log(D(x))]+ ξEzn [log(1− D(x

′))]

+ (1− ξ )Ezn [log(1− D(x̂))]
)
, (4)

min
G

(
Ezn [log(1− D(G(z)))]

)
, (5)

where ξ is the ratio of generated data to buffered data. Let the
ratio of fake-normal data to fake-anomalous data be α; then,

Algorithm 1 Training Algorithm of ALGAN
Notation: Number of batches, m; latent variables for D, zd ;
latent variables for G, zg.
Hyperparameters: Training epochs (e), update frequency of
latent variables (nz), ratio of normal and anomalous latent
variables (α), standard deviation of anomalous latent (σ ), and
number of updates for D (ndis).
1: for i = 1, · · · , e do
2: if i mod nz = 0 then
3: Sample zd ∼ αN (0, I ) and (1− α)N (0, σ 2I )
4: Sample zg ∼ N (0, I )
5: end if
6: for j = 1, · · · ,m do
7: Sample x ∼ pdata
8: for k = 1, · · · , ndis do
9: x ′← Gθ (zd )
10: if i = 1 then
11: LossD← Dφ(x)+ Dφ(x ′)
12: else
13: Sample buffered data x̂ ∼ Buffer
14: LossD← Dφ(x)+ Dφ(x ′)+ Dφ(x̂)
15: end if
16: φ← Adam(LossD, φ)
17: end for
18: Buffer← x ′

19: LossG← Dφ(Gθ (zg))
20: θ ← Adam(LossG, θ)
21: end for
22: end for
23: return Dφ,Gθ

the objective of the discriminator is given by the following
equation:

max
D

(
Ex[log(D(x))]+ α{ξEzn [log(1− D(x

′
n)]

+ (1− ξ )Ex̂n [log(1− D(x̂n))]}
+ (1− α){ξEza [log(1− D(x

′
a))]

+ (1− ξ )Ex̂a [log(1− D(x̂a))]}
)
. (6)

Thus, the discriminator of ALGAN learns the discrimina-
tion boundary between real-normal data and the other types
of data. The objective function of ALGAN is obtained by
combining (5) and (6) as follows:

min
G

max
D

(
Ex[log(D(x))]+ α{ξEzn [log(1− D(G(zn)))]

+ (1− ξ )Ex̂n [log(1− D(x̂n))]}
+ (1− α){ξEza [log(1− D(x

′
a))]

+ (1− ξ )Ex̂a [log(1− D(x̂a))]}
)
. (7)

The proposed method follows an adversarial training pro-
cedure (Fig. 2). It provides a discrimination boundary not
only for the real-normal and fake-normal data but also for
the real-normal and pseudo-anomalous data, the latter of
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FIGURE 3. Intuitive interpretation of fake-anomalous data in the toy problem: fake-anomalous data are added to training GANs that
map 100-dimensional latent variables to 2-dimensional normal distribution. (a) Fake-anomalous data x ′a (red) generated by σ = 4 are
distributed to surround the fake-normal data x ′n (green). (b) Real-normal data x (blue) are overlaid on the left figure. From the figure,
it can be seen that the generator has been trained successfully and has generated fake-normal data that approximate the real-normal
data distribution. Thus, the discriminator cannot distinguish between the real-normal and fake-normal data. By contrast, the
fake-anomalous data can be properly distinguished by adjusting the discrimination threshold because they are distributed outside.

which has a broader support of the distribution. As the
training progresses, the generator produces samples that
resemble real-normal data, and the discriminator cannot dis-
tinguish between real-normal and fake-normal data. The
pseudo-anomalous data are clearly different from the real-
normal data; therefore, the discrimination boundary of the
discriminator is used to classify them.

The pseudo-code for training is presented in Algorithm 1.
A feature of ALGAN training is the method for updating the
parameter φ of the discriminator. In line 3 of the pseudo-code,
normal and anomalous latent variables are sampled, and in
line 9, fake-normal and fake-anomalous data are produced
from the generator. In line 11, loss is calculated by identifying
both types of data, and in line 16, the parameter φ of the
discriminator is updated. Fake-normal and fake-anomalous
data are buffered in line 18. As there are no buffered data in
the first epoch, the conditional branch for i = 1 is required
in line 10. The loss of buffered data is calculated in addi-
tion to fake-normal and fake-anomalous data in line 14 after
the branch. The parameter θ of the generator is updated
by only fake-normal data from normal latent variables in
lines 4, 19, and 20.

Fig. 3 and the accompanying movie provide an intuitive
understanding of the training for anomaly detection using
fake-anomalous data. The generator is trained to produce
fake-normal data that approximate the distribution of real-
normal data. Given anomalous latent variables, the generator
produces fake-anomalous data with a large variance. The
discriminator is trained to distinguish between real-normal
data and the other types of data. Even after real-normal and
fake-normal data become indistinguishable, fake-anomalous

data can be identified because the discrimination boundary is
laid between real-normal and fake-anomalous data.

E. ANOMALY DETECTION
In ALGAN, the real and fake labels are assigned proba-
bility 1 and 0, respectively. The real label corresponds to
normal data; thus, the anomaly detection rule is given by the
following:

ALGAN(x) =

{
Normal, if D(x) > threshold,
Anomalous, otherwise.

(8)

Because the significance of false positives or false negatives
depends on their application, the threshold is chosen by the
user.

IV. EXPERIMENTS
An advantage of ALGAN is that it can be used for both
the images and features extracted from a pre-trained model,
whereas some state-of-the-art methods for visual inspec-
tion depend on features [21], [22], [29], [30]. To demon-
strate this advantage experimentally, we used two different
types of implementations. We call them ALGAN-image and
ALGAN-feature, and compare them with the relevant meth-
ods.

A. IMPLEMENTATION DETAILS
1) NETWORK ARCHITECTURE AND HYPERPARAMETER
ALGAN-image employs an architecture similar to that
of DCGAN [37]. The generator and discriminator use
seven transposed convolutional and convolutional layers,
respectively.
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FIGURE 4. Overview of the experimental datasets. (a) Magnetic Tile Defects dataset (MTD); (b) Columbia University Image Library dataset (COIL-100).

For ALGAN-feature, WideResNet101 [38] is applied to
the feature extractor to obtain 2048-dimensional vectors from
the last block with global average pooling. Both the generator
and discriminator have three fully connected layers.

In both architectures, the generator uses batch normal-
ization [39] and the ReLU activation function, whereas
batch normalization is removed from the output layer. The
discriminator employs spectral normalization [40] and the
Leaky-ReLU activation function.

The networks were optimized using Adam [41] with
momentum β1= 0 and β2= 0.9, and the learning rates of
the generator and discriminator were set to 2× 10−4 and
1× 10−4, respectively. The latent variable z had 100 dimen-
sions, and the standard deviation of the anomalous latent vari-
able used σ = 4. The parameters that determine the ratio of
the pseudo-anomalous data were set to α= 0.75 and ξ = 0.75.
The parameters of Algorithm 1were set as nz= 2 and ndis= 2.
The buffer holds twice the batch size, half of which is ran-
domly replaced by newly generated data.

The comparison methods were implemented using
a DCGAN-like architecture similar to ALGAN-image.
In GANomaly [18] and Skip-GANomaly [19], the dimen-
sions of the latent variables were set to 100 and 512, respec-
tively. The image resolution used for each method was
256 × 256. All the models were trained using a batch size
of 16.

2) SOFTWARE AND HARDWARE
All the models were implemented using Python 3.8.8 and
PyTorch 1.8.1 on Ubuntu 20.04 LTS. An AMD EPYC 7542
32-core processor with 512 GB memory and an NVIDIA
A100-SXM4 40 GB GPU were used for the computations.

B. DATASETS
For performance evaluation, we used three different datasets.

1) MVTec-AD DATASET
This dataset, designed for visual inspection, consists of
5,354 images, comprising five texture and 10 object
categories [42]. The training set contains 3,629 defect-free
(normal) images, and the test set contains 467 defect-free
(normal) images and 1,258 defective (anomalous) images.

2) MAGNETIC TILE DEFECTS DATASET (MTD)
This dataset consists of grayscale images with different
aspect ratios, including 952 defect-free (normal) images and
392 images containing five defect types (anomalous) [43]
(Fig. 4).

3) COIL-100 DATASET
This dataset contains 100 different object categories and
7,200 images [44]. Each object category has 72 images
rotated every 5◦ (Fig. 4).

4) SPLITTING INTO TRAINING AND VALIDATION SETS
Because the training sets of MVTec-AD andMTD contain no
defective (anomalous) images, 50% of their respective test
sets was used as the validation set, which was used as the
stopping rule.

In MTD, the test set is not provided separately from the
training data; therefore, 50%, 25%, and 25% of the defect-
free (normal) images were used for training, validation, and
testing, respectively.
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For COIL-100, 10 categories were selected for normal data
and the remaining 90 categories for anomalous data. We used
60%, 20%, and 20% of the normal data for training, valida-
tion, and testing, respectively, and 50% of the anomalous data
were used for validation and 50% for testing.

5) PRE-PROCESSING AND DATA AUGMENTATION
In MVTec-AD using ALGAN-image, images were resized to
256 × 256. To highlight defects, two images were concate-
nated with the original image and used as an input image:
one was created with max pooling and the other with average
pooling in the channel axis dimension. For the texture cate-
gories, vertical and horizontal flips were applied (however,
only horizontal flip was applied for wood). In the object
categories, vertical flip, horizontal flip, and random rotation
were applied to Bottle and Hazelnut. Horizontal flip was
applied to Toothbrush, Transistor, and Zipper. Toothbrush
was converted into grayscale. Random rotation was applied
to Metal nut and Screw. Cable, Capsule, and Pill were only
resized.

In MVTec-AD using ALGAN-feature, the texture cate-
gories were resized to 224 × 224. Furthermore, the object
categories were resized to 256×256, and then center-cropped
to 224 × 224. Following Rudolph et al.’s procedure [21],
we applied 24 and 64 different angular rotations during train-
ing and prediction, respectively, but using a single-resolution
image.

The images in MTD and COIL-100 were resized to
256 × 256 for ALGAN-image and 224 × 224 for ALGAN-
feature. For ALGAN-image, a horizontal flip was applied,
and for ALGAN-feature, Rudolph et al.’s procedure [21] was
applied for both training and prediction.

C. EVALUATION METHOD AND METRIC
Accounting for the randomness of the dataset split, we per-
formed 10 experiments with different seed values for each
dataset. Performance was evaluated in terms of the area under
the receiver operating characteristic (AUROC) curve, which
is obtained bymoving the classification threshold for the ratio
of true-positive and false-positive rates. ALGAN-image was
trained on 512 epochs and ALGAN-feature on 192 epochs.
The performances were validated every eight epochs on the
validation set, and the model that showed the best AUROC
was saved. The best model was evaluated on the test set after
training.

V. RESULTS
A. ANOMALY DETECTION ON MVTec-AD
1) TRAINING WITH IMAGE DATA
The results on the test data with the model with the
best AUROC for validation (Section IV-C) are listed in
Table 1. ALGAN-image significantly outperformed other
state-of-the-art image-based methods, such as GANomaly,
Skip-GANomaly, and ALOCC. ALGAN-image showed an

TABLE 1. Results obtained on MVTec-AD. ALGAN-image is compared with
methods trained on image data. Top row: mean AUROC. Bottom row:
standard deviation. We report the results of 10 experiments using each
method. The best performance for each category is indicated in boldface.

average accuracy of more than 10% compared with the others
and attained the best accuracy for 13 out of the 15 categories.

Our method uses the discriminator to distinguish between
normal and anomalous directly from the images. In the Hazel-
nut and Screw categories, the rotation angle of the object is
different in each image. Thus, small changes in image details
caused by slight defects may be buried by large changes in
the image caused by rotation. Consequently, the anomalous
data detection performance could not be better than that of
the comparison methods in these categories.

Because the comparison methods use reconstruction error,
they fail to detect anomalous data if the reconstruction is suc-
cessful. By contrast, our proposed method, ALGAN-image,
uses the discriminator to classify the data and does not suffer
from detection errors due to reconstruction.
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TABLE 2. Results obtained on MVTec-AD. ALGAN-feature is compared with methods learned from features of pre-trained models. For DifferNet and
ALGAN-feature, we report the mean AUROC results of 10 experiments. The best performance for each category is indicated in boldface.

TABLE 3. Results obtained on Magnetic Tile Defects. For training with the image data, we report the mean AUROC results of 10 experiments. Numbers in
boldface indicate the best performance.

TABLE 4. Results obtained on COIL-100. Top row: mean AUROC. Bottom
row: standard deviation. We report the results of 10 experiments using
each method. The best performance is indicated in boldface.

2) TRAINING WITH PRE-TRAINED FEATURES
The results for the feature-basedmethods are listed in Table 2.
The results for DifferNet are the means of 10 different
test datasets (see Section IV-C). The results for GANomaly
were obtained from [21] and the other methods from their
respective papers [22], [27], [29], [30], [36]. ALGAN-feature
achieved results comparable to those of DifferNet, whereas
PatchCore-25, PaDiM, and CutPaste achieved better per-
formance. Note, however, that the PatchCore, PaDiM, and
CutPaste methods are strongly specialized for pre-trained
features.

ALGAN-feature and DifferNet use only a single feature
from the last layer of the pre-trainedmodel; better performing
methods use features from multiple layers. Using features
from multiple layers increases the computational costs owing
to their high dimensionality. For example, PatchCore [22]
divides high-dimensional features into patches and subsam-
ples them to select useful patches, which results in much
higher computational costs. The prediction time is also longer
than that of ALGAN-feature (see Section V-C). Furthermore,
DifferNet [21] concatenates features from three different
image resolutions, whereas our proposed method, ALGAN-
feature, achieves comparable performance with only one
resolution.

B. ANOMALY DETECTION ON OTHER DATASETS
The results obtained on MTD and COIL-100 are listed in
Tables 3 and 4, respectively. These are the means of 10 trials
with the same hyperparameters as those used for MVTec-
AD. ALGAN-image achieved state-of-the-art performance

FIGURE 5. Histograms of raw output values of the discriminator before
input to the sigmoid function in ALGAN-image. Left: Magnetic Tile
Defects. Right: COIL-100. The sign is reversed so that the horizontal axis
represents the anomaly score.

on MTD after training with image data and achieved com-
parable results to that of PatchCore. On MTD, ALGAN-
feature performed worse than ALGAN-image. This may be
because the features useful for anomaly detection could not
be extracted from the last block ofWideResNet-101. Because
the features from the deep block in ResNet are biased towards
ImageNet [22], the features from the shallow block should be
used to identify the more abstract features required for MTD.
On the COIL-100 benchmark, all the methods performed
almost perfectly.

Fig. 5 shows histograms of the raw output values of the dis-
criminator before they are input into the sigmoid function of
ALGAN-image. The distributions of normal and anomalous
data are significantly separated. In COIL-100, normal data
have a peaky distribution with fewer variations, whereas the
distribution of anomalous data exhibits a long tail, reflecting
the large variations of anomalous data.

C. PREDICTION AND TRAINING TIMES
Table 5 compares the prediction times of the models for
MVTec-AD. We can see that ALGAN-image achieved a
significantly faster prediction time (10.6 ms), which is 10.4 to
54.6 times faster than those of the other image-based meth-
ods. ALGAN-feature is 1.3 to 2.2 times faster than the
other methods trained on the feature. Fig. 6 depicts the
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TABLE 5. Mean prediction times per single test image for all categories on MVTec-AD. Boldface indicates the best result.

TABLE 6. Mean training times for all categories on MVTec-AD. Boldface indicates the best result.

FIGURE 6. Mean AUROC vs. prediction time for each method on
MVTec-AD.

prediction time and AUROC performance of the selected
methods. ALGAN-image is the fastest and has a high
AUROC, but it is not the highest. ALGAN-feature is faster
than the other feature-based methods while maintaining
a competitive AUROC. ALGAN and PatchCore exhibit a
trade-off between performance and speed. Considering the
fast prediction of ALGAN-image, it can be applied to expen-
sive tasks such as real-time prediction with a large number of
bounding boxes obtained from object detection [45].

Table 6 compares the training times obtained
onMVTec-AD. ALGAN-image is the fastest among the com-
pared methods, with the default number of epochs described
in Section IV-C. Because there is no official implementa-
tion of PatchCore, we did not use the Faiss library [46],1

which is used in the original study, but applied our own
implementation.

D. TRAINING STABILITY
Zaheer et al. reported that GAN-based anomaly detection
exhibited unstable validation results during the training pro-
cess [34]. Upon validation, our proposed method exhibited
stable results in terms of AUROC (Fig. 7).

1Our implementation uses the scikit-learn [47] library for core-set selec-
tion [48] and random projection [49]. We confirmed that our implementation
produces an AUROC similar to the results in [22].

FIGURE 7. Validation results plotted every 8 epochs during the training of
the transistor category. ALGAN-image and ALGAN-feature exhibit stable
AUROCs compared with other GAN-based methods.

TABLE 7. Ablation study results obtained on MVTec-AD with
ALGAN-image. Each experiment was conducted 10 times. The left side of
the mean AUROC column lists the mean and the right side lists the
standard deviation. The best performance is indicated in boldface.

E. ABLATION STUDY
Ablation studies were performed to verify the effect of
the two types of pseudo-anomalous data on performance.
In ALGAN, buffered data and the data generated by anoma-
lous latent variables were used as pseudo-anomalous data.
The checkmark in Table 7 indicates the type(s) used.
Although either of the two can improve performance, using
both works best and reduces variance. These results vali-
date that the proposed pseudo-anomalous data are useful for
improving anomaly detection performance.

F. HYPERPARAMETER STUDY
We also studied the impact of hyperparameters on anomaly
detection performance. ALGAN employs the following
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TABLE 8. Impact of σ changes on performance. Top row: mean AUROC.
Bottom row: standard deviation. Boldface indicates the best result.

TABLE 9. Impact of α and ξ change on performance. First row: mean
AUROC. Second row: standard deviation. Boldface indicates the best
result.

hyperparameters: σ is the standard deviation of the anoma-
lous latent variable, nz is the epoch frequency to update the
latent variables, ndis is the number of updates per batch on
the discriminator, and α and ξ are the fake-anomalous and
buffered data balanced parameter, respectively. Each experi-
ment was conducted 10 times using the Bottle category of the
MVTec-AD dataset.

1) STANDARD DEVIATION σ FOR ANOMALOUS LATENT
VARIABLE
For a small σ , performance is low and peak performance is
reached at σ = 4 or 5. If the σ value is too large, the support
for normal and anomalous data may be separated, which can
degrade performance (Table 8).

2) BALANCE PARAMETER α AND ξ FOR FAKE-NORMAL AND
BUFFERED DATA
When α is small, the effect of fake-anomalous is large,
and when ξ is small, the effect of buffered data is large.
The performance is high around the values of α = 0.75,
ξ = 0.75 reported in this study. Recalling (6), ξ is mul-
tiplied by α. When α = 0.25, ξ = 0.25, the effect of
the fake-anomalous buffer is greater, and the performance
is improved. By contrast, when α = 0.85, ξ = 0.85, the
effect of fake-anomalous and buffered data is smaller, and the
performance is lower (Table 9). The results suggest that the
effect of fake-anomalous buffer is large, and the parameters
α and ξ should be adjusted so that the effect is not too small.

3) UPDATE FREQUENCY FOR LATENT VARIABLE AND
DISCRIMINATOR
In this study, nz peaked at 2, and ndis was good above 2,
but performance decreased slightly when discriminator
updates became excessive (Tables 10, 11). Therefore, nz has

TABLE 10. Impact of nz changes on performance. Top row: mean AUROC.
Bottom row: standard deviation. Boldface indicates the best result.

TABLE 11. Impact of ndis changes on performance. Top row: mean
AUROC. Bottom row: standard deviation. Boldface indicates the best
result.

FIGURE 8. CutPaste-style processed images. An image patch is sampled
from the full image, then color-jittered and pasted onto the original
image.

a considerable impact on the performance and should be
carefully considered and chosen in practical applications.

G. ROBUSTNESS TO OTHER ANOMALOUS DATA
We also examined the robustness of anomalous data not
included in the test data. From Fig. 3, we hypothesized that
the generator learns the distribution of real-normal data, and
the discriminator lays the discrimination boundary between
high-density and low-density regions of normal data. The fol-
lowing two types of data were used for the evaluation: fake-
anomalous data generated by σ = 5 to 8, and CutPaste-style
processed images [36] on normal data included in the test
data. An image patch was sampled from the full image with
an area ratio of 20 to 30% and an aspect ratio between 3 : 1 and
1 : 3, then color-jittered and pasted onto the image.
As in the previous experiments, the discriminator was

trained using fake-anomalous data generated by σ = 4 in
the Bottle category. All the anomalous data, generated by
σ = 5 to 8 and CutPaste images, were classified as anoma-
lous. Thus, these results suggest that the discriminator learns
similar to one-class classification between normal data and
the other data types.

VI. DISCUSSION
The key finding of this study is that adding pseudo-anomalous
data to training improves the anomaly detection performance
of the discriminator, as shown in Table 7. Fake-anomalous
data, one of the pseudo-anomalous data types, are gener-
ated from anomalous latent variables with high entropy.
This method has fewer concerns about biases than adding
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out-of-distribution data to the training [8], [9] or using prior
knowledge to generate pseudo-anomalous data [36].

Furthermore, our proposed method uses only the discrim-
inator for anomaly detection, whereas other image-based
methods use multiple networks such as encoders, decoders,
or both. Thus, the prediction time of our method is
faster.

PatchCore [22] is a state-of-the-art feature-based method
that uses pre-trained models for images and cannot uti-
lize other types of data. The same is true for other high-
performance methods. By contrast, our proposed method can
be directly applied to both images and features. Standard
GANs have the potential to approximate any data distribu-
tion. ALGAN, an extension of standard GANs, has the same
potential.

The evaluation in this study focused on image data. How-
ever, it would be interesting to see the performance of
ALGAN for anomaly or novelty detection in other data types,
such as signals [50] and text [51]. This is an important topic
for future work.

VII. CONCLUSION
We proposed a novel GAN-based anomaly detection
method called ALGAN. The ALGAN generator provides
pseudo-anomalous data as well as fake-normal data, by intro-
ducing anomalous states in the latent variable. The ALGAN
discriminator distinguishes between the group of real-normal
data and the group of fake-normal and pseudo-anomalous
data.

The proposed method for generating pseudo-anomalous
data can be applied to both images and feature vectors.
We applied it to three anomaly detection benchmarks and
demonstrated its high accuracy.

On MVTec-AD, ALGAN-image achieved more than 10%
higher average accuracy than conventional image-based
methods, and ALGAN-feature exhibited comparable ability
to the feature-based methods. On the COIL-100 dataset,
ALGAN performed almost perfectly.

ALGAN exhibited remarkably fast predictions. Com-
pared with methods trained on image data and features,
ALGAN-image could predict 10.4 to 54.6 times faster while
maintaining high performance, and ALGAN-feature could
predict 1.3 to 2.2 times faster.
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