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ABSTRACT Radiation can affect the correct behavior of an electronic device. Hence, the microprocessors
used for space missions need to be protected against fault. TMR (Triple modular redundancy) is used for
mitigating various kinds of faults in an electronic circuit. Although TMR provides an excellent level of
reliability, it takes a large area and suffers from high power consumption. To reduce the area and power
overheads DMR (double modular redundancy) is used. The DMR approach significantly reduces the resource
overhead but it also reduces the performance by imposing timing penalty. Various methods have been
proposed since the incarnation of TMR and DMR, but the resource overhead is still a challenging issue.
Hence, in this work, a new DMR based reconfigurable quad-core RV32IM processor architecture is proposed
for fault-tolerant applications. Depending upon the environment of operation and application sensitivity, the
designed processor can be reconfigured to work either in normal mode or fault-tolerant mode. The novelty
of the proposed architecture is that the reconfigurable feature reduces the resource overhead and makes
the processor energy-efficient by optimally using all four processor cores to provide fault-tolerant results.
The proposed computing architecture is designed using Verilog HDL(Hardware Description Language)
and synthesized on 32nm CMOS (Complementary Metal-Oxide Semiconductor) process technology node
using Synopsys Design Compiler EDA (Electronic Design Automation) tool. Compared to unprotected
design, the synthesis tool reports -21.75% reduction in power with a time penalty of +9.96% and area
overhead of +17.89% for the proposed fault-tolerant approach. Compared to the state-of-the-art fault-
tolerant computing system, the proposed design achieves -2.26% low area overhead with its reliability intact
as DMR. Further, the proposed processor is prototyped and tested on FPGA (field-programmable gate array)
with fault-injection using SEM (soft error mitigation) IP core.

INDEX TERMS Reconfigurable VLSI architectures, fault-tolerant processor, FPGA implementation,
RISC-V ISA, single event upset.

I. INTRODUCTION

Electronic devices used for space applications suffer from
damage due to cosmic rays. Technology scaling improves the
speed, power, and area of electronic devices. Nevertheless,
technology scaling has negative impacts on system reliabil-
ity [1], [2]. In a harsh radiation environment, the collision
of a high-energy particle to a CMOS device may produce a
bit-flip in a cell, known as single event upset (SEU). Such
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radiation impact is more prominent in the case of deeply
scaled SRAM-based FPGAs [3]-[5]. Other than the harsh
radiation environment, a fault may also occur as a result of
hardware aging. This single bit change in an electronic circuit,
caused by SEUs or hardware aging, may lead to complete
system failure [6]—[8].

The faults are commonly categorized as either permanent
or transient. As the name suggests permanent faults are those
that can not be recovered over time. The transient faults
are short-lived and their effect goes away after some time.
The ratio of transient-to-permanent faults is 100:1 or even
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higher [9]. Hence protection against transient faults has now
emerged as a critically important design constraint. Protec-
tion against faults is achieved by introducing redundancy,
either in space or time. The space redundancy uses separate
copies of hardware and the result is generated by majority
voting. Hence, space redundancy requires a large area and
power. In time redundancy, the task is re-evaluated on the
same hardware. Hence, time redundancy takes less area com-
pared to space redundancy but it reduces the performance of
the system [10], [11].

The electronic systems [12] should be capable of mitigat-
ing faults. The triple modular redundancy (TMR) is a long-
time-used approach for mitigating various kinds of faults.
TMR uses three copies of a circuit and hence provides an
excellent level of reliability, but it requires a large area and
suffers from high power consumption [13]-[15]. To reduce
the area and power overheads, some approaches use double
modular redundancy (DMR) [16]. The DMR approach sig-
nificantly reduces the resource overhead but it also reduces
the performance of the system by imposing timing penalty.
To improve the performance with low-overhead, selective
TMR approach can be used. The selective TMR approach
provides the fault-tolerance capability to frequently used
blocks such as arithmetic logic units (ALUs) [17], register
files [14], even only multipliers [18]. However, the fault
tolerance capability in the selective TMR approach is less
compared to the conventional TMR approach [19].

So, there is a trade-off between reliability and resource uti-
lization by the adopted technique of fault mitigation. In [20],
the authors have considered reliability and power consump-
tion as two main objectives in designing real-time embedded
systems. Their scheme postpones the execution of tasks on
spare cores. By doing this it gives an opportunity to suspend
the execution of second copy of a task when the execution of
first copy of the task completes successfully. So, it leads to
reduction in power consumption. The authors report 47.6%
reduction in peak power compared to the other schemes.
In [21] the authors have proposed a scheme in which exe-
cution time overlap between primary tasks and their corre-
sponding replicas are reduced. Since the occurrence of fault
is rare, the tasks are commonly completed earlier. So, in case
of early or successful completion of the primary task the
remaining part of replicas are canceled to save power. Since
the introduction of the TMR approach, several protection
techniques have been appeared using redundancy in hardware
or time, but the resource overhead is still a challenging issue
[22]. Therefore, it is necessary to adopt a fault-tolerance
technique that can provide low resource overheads while still
maintaining the performance and reliability level. For such
low-overhead implementation of fault-tolerance multicore
platforms provide a great opportunity [23]-[25].

Hence, a new reconfigurable DMR based fault-tolerant
quad-core processor architecture is proposed using RISC-V
instruction set architecture (ISA). This work is based on
the idea that a processor need not be in fault-tolerant mode
all the time. Depending upon the environment of operation

VOLUME 10, 2022

TABLE 1. Comparisons of open source ISAs [26].

[ Features

Base+Ext
Compact code
Quad FP v
32-bit v v
64-bit v
128-bit

[ SPARC V8 [ OpenRISC | RISC-V |

SNANESENENEN

and application sensitivity, the proposed processor can be
reconfigured to work in normal mode or fault-tolerant mode.
The novel contribution and implementation details of the
proposed work are summarized as follows:

o A new low-overhead fault-tolerant quad-core processor
is proposed in this paper. Due to its reconfigurable
feature, the proposed processor takes low-overhead to
provide fault-tolerant results.

o The proposed processor is implemented using Verilog
HDL and further synthesized using 32nm CMOS
process technology node.

o The proposed processor is prototyped using a commer-
cially available NEXYS4 DDR FPGA board.

o The resource utilization results are compared with state-
of-the-art fault-tolerant processors.

« Soft error mitigation (SEM) IP core of Xilinx Inc. is used
for fault injection campaign to evaluate the fault toler-
ance capability of the proposed processor in laboratory
experimental setup.

The rest of the paper is organized as follows; Section II
highlights the features of RISC-V ISA and existing
fault-tolerant computing systems. Section III presents the
proposed processor architecture and its functional operation
in both normal mode and fault-tolerant mode. Section IV
provides the simulation and implementation results and their
comparison with existing state-of-the-art processor archi-
tectures. Further, chip-level evaluation (on FPGA) with
fault-injection using SEM IP core is presented in this section.
Finally, section V concludes the paper.

II. RISC-V ISA AND EXISTING FAULT-TOLERANT
COMPUTING SYSTEMS

The design of a processor starts with choosing an ISA,
and one of the primary reasons for using RISC-V ISA
is that it is open-source, which makes it free ISA. The
RISC-V foundation encourages both open-source and pro-
prietary implementations of the RISC-V ISA specification.
This is interesting because this type of license allows design-
ers around the globe to come together and build a strong
community chain for further developments. This reduced
the complexity and IP issues found in previous research
projects based on MIPS [27], SPARC [28], and x86 [29].
Table-1 [26] presents the comparison of open-source ISAs.
The Base+Ext (modular approach) feature is only supported
by RISC-V ISA. The RISC-V ISA supports 32, 64, and
128-bit implementations, it also provides quad floating-point
support. RISC-V ISA appears to be the best candidate out of
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existing open-source ISAs due to its modular feature and ease
of implementation. The features of RISC-V ISA, its imple-
mentations, and related work are presented in this section.

A. FEATURES OF RISC-V ISA

The RISC-V ISA was developed for supporting computer
architecture research and education, and now it has become
a standard open-source architecture for industry implementa-
tions. The RISC-V ISA can be implemented as a base integer
ISA (necessary for any RISC-V-based implementation) plus
optional standard and non-standard extensions to the base
ISA. The base ISA consists of a minimum set of instruc-
tions sufficient to provide a reasonable target for processor
architecture, compiler, assembler, linker, and operating sys-
tem [30]. There are two primary base integer variants, RV32I
and RV641, which provide 32-bit or 64-bit user-level address
spaces.

RISC-V has been designed to support extensive cus-
tomization and specialization. The modular approach allows
computer architects to implement only those set of instruc-
tions that are needed for a target application. It makes
the design energy-efficient by cutting-off unnecessary hard-
ware and makes it suitable for domain-specific designs. For
RISC-V-based processors [31], the base integer ISA can be
extended with one or more optional instruction set extensions,
but the base integer instructions can not be redefined [30].

B. EXISTING FAULT-TOLERANT COMPUTING SYSTEMS

A RISC-V ISA-based fault-tolerant microprocessor archi-
tecture, derived from a non-fault-tolerant SHAKTI-C Class
processor [32] named SHAKTI-F is presented in [33]. This
work focus on protecting the design by combining both
space and time redundancy. In [34], authors have presented a
fault-tolerant ALU in which functional units are customized
according to the dynamic profiling of the application. Most
executed assembler instructions of a program are identified
by the profiling. Various TMR implementations of ALU have
been presented as part of a case study for the two most used
instructions based on benchmark programs. The architecture
of ALU is modified to replicate only those instructions which
are most used. The quicksort, matrix multiplication, and
Fibonacci series generation are used as a benchmark program
to identify the most used instructions.

In [35], the authors have discussed the energy consump-
tion of conventional TMR and 2-stage TMR. In view of
the deficiencies in the conventional TMR approach, a novel
approach named R-TMR (Reactive TMR) is proposed. The
R-TMR is an energy-efficient TMR-based approach that can
tolerate both transient and permanent faults for hard-real-time
systems. To evaluate the effectiveness of fault-tolerance for
the design, a simulation model framework is presented. The
reported energy consumption of this design is 48% in case
of transient faults and 49% for permanent faults compared to
the conventional TMR approach while keeping the reliability
intact. In [36] authors have proposed a novel scheme for
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Algorithm 1 Instruction Scheduling and Operation of Pro-
posed Fault-Tolerant Quad-Core Processor
Initialization;
while enable # 0 do
if mode_sel = 0 then
Corel executes Instr_corel;
Core2 executes Instr_core2;
Core3 executes Instr_core3;
Core4 executes Instr_core4;
else if mode_sel = 1 then
Corel executes Instr_corel;
Core2 executes Instr_core2;
Core3 executes Instr_corel;
Core4 executes Instr_core2;

Levell:

if Out_Port1 = Out_Port3 then
Instr_corel result correct;
Error_T1 =0;

else if Out_Port1 # Out_Port3 then
error in corel or core3;
Re-run Instr_corel on corel and core3;
Error T1 =1;
Go to Levell;

end if

Level2:

if Out_Port2 = Out_Port4 then
Instr_core?2 result correct;
Error_T2 = 0;

else if Out_Port2 # Out_Port4 then
error in core2 or core4;
Re-run Instr_core2 on core2 and core4;
Error T2 = 1;
Go to Level2;

end if

end if
end while

SEU-tolerant turbo decoders which takes an overhead of
2.2 times than unprotected one.

The impact of radiation on soft-processor implemented
using SRAM-based FPGA is presented in [37]. This work
presents fault-injection in the RISC-V-based processor, and
the design shows more than 90% efficiency against SEU.
In [22], a new architecture of a fault-tolerant reconfigurable
system is implemented on SRAM-based FPGA, with an
integrated soft-core processor. The design is implemented
on Xilinx Virtex-5 FPGA, which uses a fault-tolerant con-
figuration engine built using PicoBlaze core [38] for SEU
mitigation.

All the existing fault-tolerant approaches address the
trade-off between reliability and resource utilization by pro-
viding a fixed solution that requires more overheads. To the
best of the authors’ knowledge, there is no such recon-
figurable approach used for achieving fault-tolerance in
electronic devices.
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FIGURE 1. Proposed new reconfigurable fault-tolerant quad-core processor architecture.

The proposed processor can be reconfigured to work in
normal mode or fault-tolerant mode. Due to the reconfig-
urable feature, the proposed processor optimally use all
four processor cores to provide fault-tolerant result. The
reconfigurable approach reduces the use of excessive redun-
dant copies of hardware for achieving fault-tolerant results.
Although the area and power overheads are significantly
reduced by the proposed approach but this approach also
reduces the number of instructions computed per unit time
in fault-tolerant mode.

lll. PROPOSED RISC-V BASED FAULT-TOLERANT

PROCESSOR ARCHITECTURE
The aim is to develop a low-overhead reconfigurable

quad-core processor for fault-tolerant applications. RISC-V
instruction set architecture appears to be best suitable to
design such processor as it is open-source and follows mod-
ular approach. Hence, the proposed processor is designed
based on RISC-V ISA, and for this work, a single-cycle,
32-bit base integer variant of RISC-V ISA along with stan-
dard “M” extension is implemented and will be referred
as “RV32IM”. The algorithm and architecture of the pro-
posed fault-tolerant, reconfigurable quad-core processor, are
presented in this section.

A. NEW FAULT-TOLERANT PROCESSOR ARCHITECTURE

The architecture of a new, low-overhead, DMR based
fault-tolerant quad-core processor is presented in figurel.
Depending upon the operating environment and application
sensitivity, the proposed processor can be reconfigured to
work either in normal mode or fault-tolerant mode. The
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algorithm for instruction scheduling and operation of the
proposed processor is presented in algorithml. The recon-
figurable feature allows the design to use its hardware opti-
mally for providing fault-tolerant results. The mode select
signal ("mode_sel’) is used to reconfigure the design. As pre-
sented in algorithm-1, when the ’mode_sel’ signal is °0’,
the processor runs in normal mode of operation, and all
four RV32IM processor cores run four different instructions.
Hence, the designed processor runs as a basic quad-core
processor that can execute four different instructions at a
time. In another case, when the mode_sel signal is ’1’, the
processor runs in the fault-tolerant mode of operation, and
two copies of corel_instruction and core2_instruction are
executed. In the fault-tolerant mode of operation, corel and
core3 execute corel_instruction, and core2 and core4 execute
core2_instruction. The final result of corel instruction in
fault-tolerant mode is generated after comparing the results
of corel and core3 for every instruction. similarly, The final
result of core2_instruction in ’fault-tolerant mode’ is gener-
ated after comparing the results of core2 and core4 for every
instruction. As presented in algorithm-1, if the comparison
results are not matched, then an error signal is generated,
from the corresponding ’fault detection and correction block’.
When an error signal is detected, it guides the architecture to
hold the program counter and re-run the previous instruction
until the result of both processor cores matches. It is worth
mentioning that the result mismatch may be due to a one-bit
error or two-bit error. In either case, the processor re-executes
the instruction to provide final result.

Continuing to algorithm-1, the proposed reconfigurable,
fault-tolerant quad-core processor architecture is presented in
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FIGURE 2. Flowchart for content modification of Program counter of proposed fault-tolerant

architecture.

figure-1. The proposed architecture consists of four RV32IM
cores, a mode controller unit, and a fault detection and cor-
rection unit. All four RV32IM cores shown in figure-1 are
identical and they access the same memory. Due to space
constraint the address, data, and control signals to access
memory is shown only for RV32IM_core_4. However, the
instruction and data memory segment for each RV32IM pro-
cessor core along with the signals corresponding to them are
shown in the memory block of figurel. The mode controller
block takes the 'mode_sel’ signal as an input and based
on this signal, the mode of operation for the proposed pro-
cessor is determined. When ’mode_sel’ signal is *0’, mux1
of “mode controller block’ send core3_instruction to core3
and mux2 of ’'mode controller block’ send core4_instruction
to core4 for execution. Hence, the proposed reconfigurable
processor works as a basic quad-core processor and executes
four instructions simultaneously. In the fault-tolerant mode
of operation, the mode_sel’ signal is ’1’, so mux1 sends a
copy of corel_instruction to core3, and mux2 sends a copy
of core2_instruction to core4. So, two copies of every instruc-
tion are executed in the fault-tolerant mode of operation.

In the normal mode of operation, *mode_sel’ is 0; hence,
mux3 of fault detection and correction block shown in figurel
passes the outputs of corel directly to Port_A, and mux4
of passes the outputs of core2 directly to Port_B. In the
fault-tolerant mode of operation, 'mode_sel = 1°, hence,
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the output of comparison and error detection units are sent
to Port_A and Port_B. An error signal is generated by com-
parison and error detection block in case of result mismatch.
The resulting mismatch indicates the occurrence of fault, and
hence error signal is generated by the respective comparison
and detection unit. In case of the occurrence of an error, the
instruction is re-executed. For re-execution of the instruction,
the program counter (PC) of the corresponding core is kept
on hold until the error signal is present. When the processor
operated in fault-tolerant mode PC of core3 and core4 are kept
on hold.

In the proposed processor architecture, PC content for each
core is of utmost importance as it plays an important role
during instruction scheduling. Figure2 shows the flowchart of
PC modification with each positive edge of the clock. While
reset, all the PC content of all cores is set to zero. As the
memory is byte addressable and instruction is of 32-bit word
size, in the normal mode of operation PC content of all cores
is added with a constant value 4. When the *mode_sel’ signal
is ’1’°, the mode controller block holds the PC content of
core_3 and core_4. In fault-tolerant mode, if the error signal
is zero, then 4 is added to the PC content of the corresponding
core. When an error signal is present, the PC content for the
corresponding core is kept on hold, as shown in figure2.

The program counter of the RV32IM core contains the
address of the next instruction to be executed. So, when the

VOLUME 10, 2022



S. Shukla, K. C. Ray: Low-Overhead Reconfigurable RISC-V Quad-Core Processor Architecture

IEEE Access

1[0:6) T

PROGRAME
COUNTER

Imm_select

ALU_Ctrl

Instruction decoder

Word/offset

calculation g
i 'y L
i 8-
: store_select 2
' STORE BLOCK
Dm_out

mux

1[20:24]]
€

1
1
1
1
1
1
1
]
I
’l
| 117:11)

Out_port

[ T

R31

Dm_addr[31:0]

Y

a: Immediate Adder output I
b: Store Block output

1 32-bit Immediate output
d: PC+4

e: PC adder iuput

frALU Output

gi 32-bit immediate output

FIGURE 3. Proposed Architecture of single-cycle RISC-V 32IM processor core.

TABLE 2. Comparison of resource overhead of proposed architecture with SHAKTI-F [33].

SHAKTI-F Architecture [32] Proposed Processor
Evaluation Parameters Base Fault-tolerant Improved Fault-tolerant Base Fault-tolerant | Overhead
Resources | Resources | Overhead % | Resources | Overhead % | Resources Resources %

Total Instance Count 25176 31766 +26.17 30096 +19.54 44570 52491 +15.09
Std. cell Area (mm?) 0.13 0.2 +53.80 0.2 +53.80 0.109 0.162 +32.78
Core Area (mm?) 0.2704 0.3249 +20.15 0.3249 +20.15 0.183 0.223 +17.89
Clock Period (nS) 2.4 3.7 +54.17 3 +25.0 21.78 24.19 +9.96
Total Power (mW) 21.55 10.35 -51.97 11.74 -45.52 5.225 42917 -21.75

program counter of an RV32IM core is on hold, it keeps
the record of the next instruction to be executed. So, when
the processor returns from fault-tolerant mode to the normal
mode the processor core resumed the execution from where it
left. In the proposed fault-tolerant processor architecture, the
RV32IM processor core is one of the main building blocks.
Hence, the detailed architecture of the designed RV32IM
processor core is presented in the following sub-section.

B. RV32IM PROCESSOR CORE ARCHITECTURE

The RV32IM processor core used in figure-1 is a single-
cycle, 32-bit base integer variant of RISC-V ISA along with
standard “M” extension. The base integer variant RV32I
contains integer computational instructions, integer loads,
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integer stores, and control-flow instructions. The standard
"M’ extension supports signed and unsigned multiplica-
tion and division instructions. The RV32IM is load-store
architecture, where only load and store instructions access
memory. In load-store architecture, arithmetic instructions
operate only on CPU registers. The detailed architecture of
the proposed RV32IM core is shown in figure3.

The instructions coming from instruction memory are
decoded by the instruction decoder. Based on the op-code
of the instructions, the control unit generates appropriate
control signals. Since memory is byte-addressable, in every
clock cycle the program counter is incremented by 4 to
access the next instruction present in the instruction memory.
The sign extension and shuffle block is used to handle the
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FIGURE 4. Post-synthesis simulation showing operations in normal and fault-tolerant mode for ASIC implementation of proposed

architecture.

immediate values coming from the instructions. The ALU
performs all the arithmetic and logical operations. As shown
in figure3, all the ALU operations are performed either on
two general-purpose registers or one general-purpose register
and one immediate value. The store block is responsible for
storing the content from the register file in data memory.
Similarly, the load block loads the content of a memory
location to the register file.

IV. SIMULATION, IMPLEMENTATION AND EVALUATION
The proposed fault-tolerant quad-core processor presented

in figurel is implemented using Verilog HDL. The design
is synthesized using 32nm CMOS process technology node.
Post-synthesis simulation, FPGA prototype, and protection
evaluation using SEM (soft error mitigation) IP core are
presented in the next sub-sections.

A. ASIC IMPLEMENTATION RESOURCE EVALUATION

The proposed fault-tolerant quad-core processor is syn-
thesized on 32nm CMOS process technology node using
design_compiler EDA tool of Synopsys. The gate-level
netlist obtained from the design compiler after synthesis is
compiled using the VCS tool of Synopsys, and post-synthesis
simulation results are presented in figure4. In the normal
mode of operation, the processor executes four instructions in
parallel, and hence it can provide four outputs simultaneously
as shown in the upper half portion of figure4. In fault-tolerant
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mode, two copies of every instruction are evaluated, which is
shown with the help of internal signals (OUT_A, OUT_B,
OUT_C, OUT_D) in the lower half of figure4. However, the
final output for instruction is generated after comparing both
the copies, and hence, only two output ports are enabled in
fault-tolerant mode.

The synthesis result reported by the Design Compiler tool
is presented in table-2 and overheads are calculated based
on the synthesis result. As presented in table-2, the area
overhead for incorporating fault-tolerant feature by the pro-
posed approach is +17.89% compared to unprotected design.
For the proposed fault-tolerant approach, the synthesis tool
reports —21.75% reduction in power with a time penalty
of +9.96% compared to unprotected design. The design is
able to achieve 41MHz frequency with a time overhead of
49.96%. For the proposed design, when operated in fault-
tolerant mode, the throughput will depend on the occurrence
of an error (because in case of error the instruction will be re-
executed). Although the throughput and power consumption
of design has a strong dependence on the occurrence of error,
the gain in area overhead has no dependence on it.

The resource overhead results are compared with two
approaches, fault-tolerant, and improved fault-tolerant, dis-
cussed in [33]. A comparison of area, power, timing, and
overhead with and without reconfigurable fault-tolerant fea-
tures is presented in table-2. In both fault-tolerant architec-
tures presented in [33], the area overhead is +20.15% which
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TABLE 3. Comparison of resource overhead for FPGA prototype of proposed architecture with [15].

LEON3 Soft Processor [15] Proposed Fault-tolerant Processor
Resource Single LEON3 Two LEON3 Quad-core
Baseline TMR Overhead | Baseline TMR Overhead | Baseline | Fault-tolerant | Overhead
LUT 4088 16041 | +74.51% 11471 35311 | +67.52% 12866 19853 +35.19%
Flip-flop 1950 5850 +66.66% 6626 14426 | +54.07% 8367 8425 +0.69%
Slice 1397 5401 +74.14% 4546 12746 | +64.33% 1615 4341 +62.79%
DSP 1 3 +66.66% 2 +66.66% 16 16 0%
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FIGURE 5. Post-implementation timing simulation of proposed architecture targeting NEXYS DDR4 FPGA board.

is reduced to 4+-17.89% for the proposed processor. The clock
period overhead for fault-tolerant and improved fault-tolerant
architecture presented [33] is +54.17% and +25% respec-
tively. For the proposed processor architecture clock period
overhead is only +9.96%. Since the time overhead is more
in SHAKTI-F, it achieves a low power overhead compared to
the proposed design.

B. FPGA IMPLEMENTATION RESOURCE EVALUATION

To wvalidate the functionality on silicon, the proposed
fault-tolerant architecture is prototyped on a commercially
available Artix-7 FPGA chip using NEXYS4 DDR FPGA
board. The design of the proposed processor attains a max-
imum frequency of 32MHz on the Artix-7 FPGA chip. The
post-implementation simulation, including the timing delay
model for the FPGA prototype of the proposed design, is pre-
sented in figure5. The upper half of the figure5 shows the
normal mode of operation in which the mode select signal
is ’0’ and all four processor core runs different tasks. When
the processor runs as a simple quad-core processor, the error
signals corel_error and core2_error are disabled, and the
processor can not detect any fault that occurs. When the mode
select signal is ’1°, the processor works in fault-tolerant mode.
Hence, the processor would run only two tasks simultane-
ously, as shown in the lower half of the figure5.
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The resource utilization and overheads of the proposed
design are compared with single-core LEON3 and two core
LEON3 soft processors presented in [15]. Comparison results
of the FPGA prototype are summarized in table-3. Due to its
reconfigurable feature, fault tolerance for the proposed pro-
cessor comes at the cost of minimal hardware overhead. The
LUT (look-up table) overhead in single LEON3 processor
implementation is +74.51% and it is reduced to +67.52% in
two LEON3 processor implementations. The LUT overhead
for the proposed processor is +35.1% which is less than
both implementations presented in [15]. Since the proposed
design does not use any extra core to bring fault-tolerant
features (it reconfigures the existing resources) the overhead
in the DSP (digital signal processor) block is Zero and it has
negligible overhead in the number of flip-flops for the same
reason. Although the overhead in the number of slices for the
proposed design is +62.79%, it is still less than both single
LEON3 processor (4-74.14%), and two LEON3 processor
(+64.33%) presented in [15]. Hence, for the proposed design,
the overhead is less compared to the fault-tolerant approach
discussed in [15].

C. ON-CHIP VALIDATION AND

FAULT-TOLERANCE EVALUATION

The proposed processor is prototyped on a commer-
cially available NEXYS DDR4 FPGA board for on-chip
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validation and fault-tolerance evaluation. The proposed pro-
cessor is synthesized, implemented, and loaded on the
Artix-7 XC7A100T-CSG324 chip using the Vivado Inte-
grated Design Environment (IDE) tool of Xilinx. Several
algorithms are validated as part of on-chip validation.
To evaluate the fault-tolerance of the proposed design a fault
injection campaign has been conducted. For injecting the
fault in the proposed design on FPGA, Single Event Mitiga-
tion (SEM) IP from Xilinx Inc. is used.

1) PROTECTION EVALUATION IN SIMULATION

For evaluation of fault tolerance in functional or post-
synthesis simulation, an internal bit may be forced to toggle
for a reasonable period of time (preferably more than the
clock period to ensure injection) and it would cause a single
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bit-flip. Hence, fault injection may be mimicked in simu-
lation, and the fault tolerance of the design can be tested.
Moreover, since the design reevaluates the current instruction
in case of error detection, there will be no change while
dealing with double-bit errors. For double bit errors also two
cores will provide different results and the fault detection and
correction unit will generate an error signal. However, there
is a possibility that in case of double-bit error two processor
cores may provide exactly the same wrong result. In this case,
this architecture will fail to provide fault-tolerant results.

2) SOFT ERROR MITIGATION IP CORE

Soft Error Mitigation core [39] is an IP provided by Xilinx
Inc. to protect the designs against single event upset. The
SEM IP core can be used in 2 modes; either for error injection
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and correction or it may be used only for error injection. Here
SEM core is used to inject bit-flip to test the fault-tolerance
of the proposed design. This tool is selected to emulate the
fault for the proposed design as it is designed to work with
Xilinx products, is free, and requires only a serial interface
to work. In the injection state, the SEM IP receives the
frame and injects the fault into the frame which changes the
configuration memory and returns again to the observation
state.

3) FAULT INJECTION AND PROTECTION EVALUATION

In order to evaluate the fault tolerance of the proposed archi-
tecture, the SEM IP core of Xilinx Inc. discussed in the
previous sub-section is used for fault injection. The proposed
design with SEM IP core is loaded to NEXYS4 DDR board,
having an XC7A100T-1CSG324C Xilinx Artix-7 FPGA.
To emulate fault on the FPGA chip, an internal bit where
design is mapped, needs to be flipped. The location inside
the FPGA chip where a sub-blocks is to be placed may be
provided using Vivado placement constraints. This allows the
evaluation to be effective as one can inject error to a sensitive
node which affects the functionality of the processor. The
fault injection and evaluation setup are shown in figure6. The
benchmark programs to evaluate fault-tolerance are selected
considering certain characteristics which follow [40].

1) Matrix multiplication: It involves a lot of arithmetical
operations that use more hardware during program exe-
cution and makes the process susceptible to error. The
inputs are two 3 x 3 square matrices filled with random
numbers.

2) Quicksort: The input is 30 elements unsorted array
with random numbers. The input array is sorted and
sorted input array is output. It involves many jumps and
conditional instruction hence better for evaluating the
fault tolerance.

3) Correlation: Itis used in signal processing and involves
many arithmetic and jump instructions. Hence, suitable
for the evaluation of fault tolerance.

4) Dijkstra: This algorithm is used to find the shortest path
between nodes in a graph.

The FPGA prototype in the laboratory experimental setup
is shown in figure 7. For real-time evaluation and analysis, the
proposed design with SEM IP core is loaded on the FPGA
board. Fault Injection control and configuration memory
address (fault injection address) are sent to FPGA by PC-host
through Xilinx Vivado tool and the Tektronix logic ana-
lyzer(TLA6402) is connected to the NEXYS DDR4 FPGA
board to verify the output result. In total, 5000 errors cover-
ing the entire range of the proposed processor are injected
per benchmark. The configuration memory addresses for
fault injection are generated using the ACME tool discussed
in [41]. The ACME tool takes the EBD file and coordinates
[(X1, Y1), (X2, Y2)] of design on FPGA as inputs and it
provides the injection addresses to the SEM IP core. For the
performed fault injection campaign in fault-tolerant mode,
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no error is found in the output result. Hence, In fault-tolerant
mode, the proposed architecture provides 100 percent fault
tolerance for the performed fault-injection campaign. Further,
the same injection campaign is applied in the normal mode of
operation for which 12 percent of errors are detected in output
results.

V. CONCLUSION

In this paper, a new low-overhead DMR based reconfigurable
quad-core processor architecture is proposed along with
instruction scheduling algorithm for fault-tolerant applica-
tions. RISC-V ISA-based RV32IM processor core is designed
and used to implement the reconfigurable quad-core proces-
sor. The reconfigurable feature makes the proposed architec-
ture energy-efficient by optimally using all four processor
cores to provide fault-tolerant results. The designed processor
architecture is implemented in Verilog HDL and synthesized
targeting 32nm CMOS process technology node. For fault-
tolerant design, 32nm CMOS implementation result shows
a significant reduction in power with a slight increase in
area and time compared to unprotected design. Hence, the
proposed new RISC-V-based processor architecture shall be
suitable for low-overhead fault-tolerant computing systems.
Further, the proposed architecture is prototyped and validated
on a commercially available Artix7 FPGA chip with fault
injection in laboratory experimental setup. For the proposed
architecture, the resource overhead of the FPGA prototype is
less compared to state-of-the-art fault-tolerant systems. The
proposed design provides 100 percent fault tolerance for fault
injection campaigns on FPGA. Future work will consider
delaying the execution of redundant copies in the proposed
design. It will create an opportunity to cancel the execution
of redundant copies in case of early or successful completion
of the task which will reduce the power consumption.
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