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ABSTRACT Synthetic Aperture Radar (SAR) is a useful tool in marine surveillance. Small targets detection
in SAR images especially in nearshore area is a difficult issue. Due to the complex background, there exist
a lot of false targets. Therefore, we propose an effective method for small targets detection in SAR images
under complex background, which combines the features of SAR images and those of SAR time series.
A new neural network which integrates a neighborhood similarity module is constructed to enhance the
features of small targets in SAR images. Then, a false alarm suppression method is put forward, which
is based on empirical orthogonal functions to extract spatio-temporal features. Compared with other false
alarm suppression methods, our proposed method is easily-implemented, highly efficient and in no need of a
priori information. Simulation results on real datasets prove the efficiency and effectiveness of our proposed

method.

INDEX TERMS SAR detection, complex background, false alarm suppression, neural network.

I. INTRODUCTION
Synthetic Aperture Radar (SAR) is a kind of high-resolution
and all-time surveillance tool which is widely applied in
marine surveillance [1]. Target detection and classification
are the prominent fields in SAR applications and deep learn-
ing is proved to be the most effective method for target detec-
tion and classification in SAR images [2]. However, there still
exist many problems to be solved in SAR target detection and
classification, such as multiple scales of targets, discrimina-
tion of closely spaced targets, high intra-class diversity and
large inter-class similarity due to irradiation conditions, and
high false alarm rate brought about by complex background
[3]. Real scenes of complex background are shown in Fig. 1.
There are two mainstream detection methods based on
deep learning. The first category, called two-stage detectors,
is based on region proposal, such as faster R-CNN. The
first stage is to generate candidate object proposals using a
regional generation algorithm. The second stage is to extract
features from the candidate object proposals by applying
convolutional neural networks (CNNs). The second category,
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FIGURE 1. Real scenes of complex background. (a) Scene 1. (b) Scene 2.

called one-stage detector, is based on regression, such as
SSD (single-shot detection) and YOLOV3 (““you only look
once” version 3) [4]. Although one-stage detectors are faster
and easily-optimized, their performace is inferior to two-
stage detectors due to the region proposal generation and
refinement paradigm [5].

In this paper, we propose an effective method for small
targets detection in complex background based on combi-
nation of SAR time series and SAR images. The principle
of our method is shown in Fig. 2. A new neural network
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FIGURE 2. The principle of our method.

is designed to find the suspicious targets with a neighbor-
hood similarity module integrated in this framework. This
module aims to enhance the features of small targets, which
can assist small target detection. Then, a false alarm sup-
pression method is put forward. Recent studies show that
empirical orthogonal functions have a good performance in
extracting spatio-temporal features of time series [6]. This
is because they are easily-implemented, highly efficient and
in no need of a priori information. Through experiments
with real dataset, the proposed detection method is proved to
achieve better performance than other state-of-art methods.
The rest of this paper is organized as follows:
Section 2 reviews the mainstream method for small targets
detection in complex background. Section 3 describes the
proposed detection method. Experimental results are also
carried out to demonstrate the effectiveness of the proposed
framework in Section 4. Section 5 concludes this paper.

Il. RELATED WORK

In this section, we review the related work with respect to
small targets detection in complex background based on SAR
images.

For the problem of small target detection, researchers strive
to solve it from different perspectives [7]. One strive is to
increase the resolution of SAR images in order to improve
the signal to noise ratio. However, SAR cannot reach the
resolution that other sensors achieve. Another strive is to
fuse SAR with other sensors. Some researchers engage in
statistical analysis. Most prefer to use deep learning methods.
Hong et al [4] used linear scaling based on the k-means+-+
algorithm to satisfy the difference of anchor boxes between
different detection scales. Cui et al [8] adopted a pyramid
structure with dense connnections in the top-down network
to obtain more semantic information for small targets detec-
tion. Since features stemming from low-level layers indi-
cate structure information whereas those stemming from
high-level layers represent semantic information [9], [10].
Further, he also devised an anchor-free method called Cen-
terNet which regarded keypoint of targets as the targets to
detect ships in large scale SAR images [11]. Kang et al [12]
combined CFAR and Faster R-CNN to detect small targets.
Faster R-CNN generated classification score and CFAR was
applied on the lower confidence proposals. Ju et al [13]
proposed new detection frameworks for small targets detec-
tion which included three modules, namely, dilated module,
feature fusion and passthrough module. Shadow-aided detec-
tion methods are also investigated to be used in detecting
small targets, especially moving ones [14]. Also, methods
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utilizing target peripheral features can perform better in small
targets detection [15]. But all methods above cannot avoid
introducing false targets while detecting small targets.

In order to reduce false targets, many researchers resort to
the attention mechanism and saliency information which are
mainstream methods to suppress false alarms [11], [16], [17].
The essence of attention mechanism is to force the model to
concentrate on key information and discard irrelevant infor-
mation [18]. There are three types of attention models: spa-
tial attention model, channel attention model and spatial and
channel mixed attention model [11]. However, attention mod-
ule will increase the cost of model and reduce the speed of
detection. Furthermore, Lin et al. [19] Devised a new network
based on faster R-CNN with squeeze and excitation mecha-
nism to suppress false detections. Sun ef al. [20] introduced
a category position module into an anchor-free detection net-
work to improve target positioning in complex scenes. Later,
they also employed an angular classification structure to the
head network in more complex scenes with arbitrary-oriented
and densely arranged ships [21]. Fu et al [22] designed an
anchor-free network called scattering keypoints guided net-
work which incorporated a context-aware feature selection
module. Yang et al. [23] devised a new loss function so
as to reduce false targets in complex background, espe-
cially in nearshore area. Nieto-Hidalgo et al. [24] proposed a
domain-tailored two-stage CNN for small target detection in
specific backgrounds by introducing a postprocessing stage
of morphological opening filter to eliminate false targets.
Xiong et al. [25] combined the advantages of time-frequency
analysis and fractal theory to improve the detection perfor-
mance. Chen et al. [26] proposed a hybrid model combining
classification, localization, and segmentation with a novel
multi-task loss function to suppress false alarms. The meth-
ods above need more complex networks so more parameters
should be trained, leading to large computational load.

Ill. PROPOSED METHOD

In this section, we give a description of our proposed method.
First, we put forward a new neural network which is incorpo-
rated with a neighborhood similarity module. Then, we intro-
duce a false alarm suppression method.

A. THE FRAMEWORK OF PROPOSED NEURAL NETWORK

The structure of our proposed neural network is shown in
Fig. 3. CNN is helpful for improving the detection perfor-
mance of small targets so our proposed neural network is
based on CNN. For the problem of small target detection, the
most common method is to combine features from different
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FIGURE 3. Detail structure of our proposed neural network.

TABLE 1. Details of our proposed neural network structure.

Type Kernel size Input size
NSMB 3x3 512x512x3
Downsampling 2x2 512x512x32
NSMB 3x3 256%256x32
Downsampling 2x2 256x256x64
NSMB 3x3 128x128x64
Downsampling 2x2 128x128x128
Dropout 0.2 64x64x128
NSMB 3x3 64x64x128
Upsampling 2x2 64x64%128
NSMB 3x3 128x128x128
Upsampling 2x2 128x128x128
NSMB 3x3 256x256x128
Upsampling 2x2 256x256x64
NSMB 3x3 512x512x64
Conv 3x3 512x512%32
Conv 1x1 512x512x3

CNN layers. In order to avoid losing useful pixels, we should
reduce the layers of downsampling. So there are only three
layers of downsampling included in our proposed neural net-
work [27], whose structure and details are given in Table 1.

A new block integrated with neighborhood similarity mod-
ule (NSMB) is incorporated in our proposed neural network.
The structure of this new block is shown in Fig.3. It consists
of three convolution layers, three batch normalization block,
two leaky ReLU and a neighborhood similarity module.

The generic neighborhood similarity for neural networks
is formulated as

1
Yi=¢ (x) Zv]f (xi. xj)g (%) . (D

where x; is the input feature, y; is the output response at
pixel i, and j enumerates the neighborhood pixels of i. C (x)
is a normalization factor, g (-) represents an input function
at pixel j and f (-) denotes the similarity between pixel
iandj [28].

Instead of using the whole image to calculate output
response, we prefer to use a small neighborhood surrounding
pixel i. Then the neighborhood similarity module is revised
as

1
i=¢ (x) ZVjeN,-f (xi.x7)g (%)) . )

where N; indicates the neighborhood of i.
The distance between pixel i and other pixels in
its neighborhood is computed using embedded Gaussian,
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FIGURE 4. Principle of false alarm suppression.

so (2) becomes

l T X; X;
Yi=CTw ZVjeN,— e et g (x), )

where 6 and ¢ are two imbedding functions.

As shown in Fig. 3, in order to implement this neigh-
borhood similarity module, we employ softmax operation to
represent normalization. Two embedding functions 6 and ¢
are represented by single layer of convolutional block with
(1 x 1) kernel. Function g is represented by 2 layer convolu-
tional blocks with (3 x 3) kernel.

B. FALSE ALARM SUPPRESSION

The principle of false alarm suppression is shown in Fig. 4.
Suppose a time series extracted from a detected object is

represented by a matrix X (s, #), in which s denotes space

point and ¢ denotes time point:

X11 X12 T Xln

X21 X22 e X2n
X(Svt):(XI’XZ»"’»Xn)Z . . . . )

Xml  Xm2 - Xmn

“

where each column is an observation over m points at a given
time ¢ and each row is an observation over time ¢ at a given
point m [29].

In order to get the temporal covariance, we calculate the
mean of each column to obtain spatial anomaly X':

X =X-1,X, (3)
where 1,, is a unit vector of length n. X = (X1,X2, -+ ,X3)
contains the mean of each column,

1 m
X; = E lest- (6)
S=
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Then the temporal covariance is formulated as

1
c=—Xx"x. )
m—1
Eigenvectors can be obtained by solving the eigenvalue
equation

CU =UA, (®)
where U is an orthogonal matrix and A = diag
(A1, A2 -+, Ap) contains eigenvalues of temporal covariance

C in descending order.

It is proved that the first eigenvalues represent the main
features of the signal, so we decide the number of eigenvalues
by selecting the eigenvalues which can amount to 95% of
the sum of all eigenvalues [29]. The eigenvalues of different
objects is classified by a support vector machine (SVM)
classifier so as to achieve false target suppression.

IV. IMPLEMENTATION AND EXPERIMENT

In this section, our new neural network is implemented on
SAR images from SSDD dataset to obtain potential targets.
It is compared with some state-of-art detection methods for
weak targets. Then, our false alarm suppression method is
applied to verify the effectiveness of our proposed method.

A. DATASET

To verify the performance of our proposed method, we use
dataset called SAR ship detection dataset (SSDD), which
can be obtained in [30]. SSDD is the first public dataset
for ship target detection in SAR images, which has been
widely used to compare the performance of different detec-
tors. SAR images in this dataset comes from different sensors
and scenes, such as Radarsat-2, Sentinel-1, and TerraSAR-X
with the resolution ranging from 1 to 15 m, which contains
multiscale ships labeled with BBox in various environments.
The polarization modes of these samples include HH, HYV,
VV and VH. There are totally 1160 images in SSDD, which
are randomly divided into training set and test set with the
proportion of 8:2 for the training and testing of the proposed
method.

B. EXPERIMENTAL SETUP

Simulations are conducted under TensorFlow framework.
Weights of this new neural network are set under He ini-
tialization. In the training stage, initial learning rate is set
as 0.005. Adam optimizer is adopted for training loss opti-
mization. This network is trained with 500 epochs and the
minibatch size is set as 8.

C. EVALUATION CRITERIA

In order to evaluate different models properly,
we choose average precision (AP), false alarm rate (py)
and missing rate (py;) to quantify the performance of the
models.
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AP is defined for target detection algorithms, which is
expressed as

1
AP =/ Py (Ry) dRy ©)
0

where d is the IoU threshold judging a detection result is true

positive or a false positive. The value of AP ranges between

0 and 1. Regularly, d is set as 0.5.
The precision rate p, is defined as

TP

~ TP+ FP

where TP denotes true positive targets and FP denotes the

false positive targets.
The recall rate R; is defined as

TP
~ TP+ FN
where FN denotes false negative targets.
The missing rate p,, is defined as
FN
T Gr
where GT denotes the actual number of ships.
The false alarm rate py is defined as
FP
T Gr

Pd (10

Y

Ry

Pm (12)

Pr 13)
D. DETECTION RESULTS OF OUR PROPOSED NEURAL
NETWORK

In order to prove the effectiveness of our proposed neural
networks, we compare it with some state-of-the-art detection
methods, such as YOLOvV3, Retina-Net and Faster R-CNN
[31]. To evaluate the performance of different detection meth-
ods, average precision (AP), false alarm rate (py) and missing
rate (p,,) are introduced as indicators. The results of three
complex backgrounds are shown in Fig. 5 and the overall
comparison is shown in Table 2.

As shown in Fig. 5 and Table 2, the detection performance
of our proposed neural netowrk is better than the other three.
The detection performance of YOLOV3 is better than that
of Retina-Net and of Faster R-CNN because Faster R-CNN
is not suitable for small targets detection which has a high
missing detection rate. Both of these four methods have
unbearable false alarm rates. All targets are enlarged on the
feature maps and their boundaries become blurred. This is
because neighborhood similarity module not only enhances
the features of targets but also enhances features surrounding
the target edges, which causes the edges to be incorrectly
determined as targets. This is why our proposed method has
a high false alarm rate.

E. FALSE TARGET SUPPRESSION

The false alarm suppression method is implemented after
applying detection based on neural network. It is based on
the classification result of the proposed neural network.
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FIGURE 5. Comparison between different detection methods. (a) Ground
truth of scene 1. (b) Ground truth of scene 2. (c) Grouth truth of scene 3.
(d)YOLOV3 for scene 1. (e) YOLOv3 for scene 2. (f) YOLOv3 for scene 3.
(g) Retina-Net for scene 1. (h) Retina-Net for scene 2. (i) Retina-Net for
scene 3. (j) Faster R-CNN for scene 1. (k) Faster R-CNN for scene 2.

(I) Faster R-CNN for scene 3. (m) Our proposed neural network for

scene 1. (n) Our proposed neural network for scene 2. (o) Our proposed
neural network for scene 3. (real targets are marked in red, false targets
are marked in green and missing targets are marked in yellow.)

TABLE 2. The overall comparison between different detection methods.

Detection methods AP Py D
YOLOv3 0.780 0.194 0.144
Retina-Net 0.717 0.188 0.150
Faster R-CNN 0.733  0.181 0.187
Our proposed neural 0.848 0.197 0.080
network

Since the false alarms are caused by inshore facilities in the
scenario concerned, it is necessary for us to discriminate true
targets from those inshore facilities. As stated in Section III,
the number of eigenvalues is selected by the principle that
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TABLE 3. The eigenvalues.

Radar  Eigenvalu Eigenvalu Eigenvalu Eigenvalu  Eigenvalu
series el e2 e3 e4 e5
True 1.91 1.53 0.73 0.15 0.06
target 1.94 1.58 0.84 0.23 0.05
s 1.91 1.54 0.82 0.17 0.07
1.85 1.28 0.45 0.04 0.02
1.85 1.24 0.51 0.04 0.01
False 1.87 1.27 0.42 0.05 0.01
target 1.88 1.26 0.43 0.05 0.02
s 1.87 1.27 0.45 0.04 0.01
1.88 1.23 0.43 0.05 0.01
1.82 1.25 0.42 0.04 0.02
Q
=}
=
5
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L
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FIGURE 6. False alarm suppression. (a) Ground truth of scene 1.

(b) Ground truth of scene 2. (c) Ground truth of scene 3.

(d) Scene 1 before false alarm suppression. (e) Scene 2 before false alarm
suppression. (f) Scene 3 before false alarm suppression. (g) Scene 1 after
false alarm suppression. (h) Scene 2 after false alarm suppression.

(i) Scene 3 after false alarm suppression. (real targets are marked in red,
false targets are marked in green and missing targets are marked in
yellow.)

all components can reach 95% of the signal. Therefore, the
number of eigenvalues is set to be 5. The eigenvalues corre-
sponding to true targets and false ones are shown in Table. 3.
It is obvious that there is difference between the eigenvalues
of true targets and those of false ones. So it is proved that
empirical orthogonal function is a useful tool to suppress false
targets.

After calculating eigenvalues, we perform an SVM clas-
sifier to discriminate true targets and false ones. The results
of three complex backgrounds are shown in Fig. 6 and the
comparison of py is shown in Table 4.

As shown in Fig. 6 and Table 4, there are only true targets
left in the radar image after implementing our false target
suppression method. py decreases dramatically, which proves
the effectiveness of our method.
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TABLE 4. The comparison of probability of false alarms.

Detection methods Py
Before false alarm suppression 0.197
After false alarm suppression 0.084
———— NSMB l P NsMB l P NSMB
NSMB
o v Nsvis
_ —_—

FIGURE 7. The structure of our detection neural network with attention
module.

TABLE 5. The Comparison between our proposed method and our neural
network with attention.

Methods Py Time(ms)
Our proposed method 0.084 67.7
Our neural network with attention 0.093 83.4

Finally, we compare our detection neural network with the
attention mechanism in terms of the performance of false
alarm suppression. The attention module which is added into
our detection neural network is the same as that in [18].
The structure of our detection neural network with attention
module is shown in Fig. 7.

The comparison result is shown in Table. 5. It is obvious
that our proposed method is better than our detection neural
network with attention module in false alarm suppression
and running time. This is because the latter utilises a com-
plex neural network, introducing a large amount of training
parameters.

V. CONCLUSION

In this paper, we propose an effective detection method
for small targets based on combination of SAR time series
and SAR images. Our method has two advantages: it
incorporates a neighborhood similarity module to improve
detection performance of small targets; and develop a
computationally-efficient method to suppress false targets. Its
performance is verified by real data recordings. Future work
will extend real field processing to complex field processing
by using Wasserstein—Fourier analysis to further reduce false
alarm rate.
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