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ABSTRACT The paper is concerned with station keeping control problem via backstepping for an
autonomous underwater vehicle (AUV) systems with nonlinear continuous function. This paper is the
first time to using backstepping control method for stochastic nonlinear systems. Under nonlinear growth
conditions, when the AUV motion affected the driving force, resistance of ocean and the force generated by
current the difficulty arising from the underwater robot system output feedback makes the station keeping
problems challenging and forward-looking. There exist two problems to research the fast response time and
good station keeping, respectively. There a new control method is proposed for the first time to construct
a backstepping stabilizing controller. In this paper, a concept of randomness to study the station keeping
control problem of output feedback of stochastic nonlinear systems, remove the original harsher growth
conditions, make it meet the more general function growth conditions. In order to deal with the station error
of system converges to arbitrarily small domains. Under all the states of the system meet boundedness,
a coordinate transformation is proposed. A useful technical theorem is proposed in the stability analysis to
show that combined with the backstepping method to cleverly construct a set of Lyapunov functions, and
obtain the output controller to ensure that the system is asymptotically probabilistic in the global scope.
Finally, through the ocean library in the Simulation X simulation software and the Hardware-in-the-loop
simulation, the controller design results are imported into the AUV actuator model to verify the effectiveness
of the controller design.

INDEX TERMS Station keeping, complex uncertain nonlinear systems, system growth conditions, feedback
control with backstepping.

I. INTRODUCTION
The operation of AUV is known as one of the most chal-
lenging problems in the field of nonlinear control, and they
are playing a crucial role in exploration and utilization
of resources located at deep oceanic environments [1]–[3].
In recent decades, station keeping, tracking control and path
planning of underwater robots have gained the attention of
researchers. Therefore, the control theory and engineering
fields urgently need to study the output feedback control
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theory and related technologies, which are suitable for com-
plex systems or systems affected by various factors (such as
nonlinearity, randomness, time delay) [4]–[6]. This project
mainly studies the output feedback control of the system
under the action of the above-mentioned various factors, and
at the same time tries to make the studied system more in
line with the actual system, relaxes and removes the strict
assumptions attached to the system, and makes the final
conclusion more accurate. Generality, and on this basis, the
theoretical results are applied to an appropriate practical engi-
neering system—the underwater electro-hydraulic actuator
system [7], [8].
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As we all know, the control theory system established
under the framework of deterministic system is no longer
applicable to stochastic system [9]–[11]. Therefore, it is a big
challenge for the control theory and engineering community
to solve the output feedback control problem of stochastic
nonlinear systems with the help of stochastic control the-
ory and related mathematical tools [12]–[14]. For a system,
its input and output are likely to be random signals, the
probability of this happening is very high in practice, and
the system combining nonlinear characteristics with random
characteristics is a research field that the theoretical circle
is more concerned about. Up to now, the research on the
design of stochastic nonlinear systems is still very incom-
plete. There are still many problems to be solved in the
research on the design ideas of feedback controllers based on
inverse inference and constructive establishment, such as how
remove stochastic nonlinear systems and form a relatively
complete stochastic nonlinear control theory system based
on the inverse method or the constructive controller design
method [15]–[17]. In addition, in the actual system, there is
a lag of data measurement and actuators, some time delays
do not change with time, some time delays change with time,
which increases the complexity of the system and makes the
research on the output feedback control of the system-like
system is full of necessity and practical application value.

Previous studies limitations of are as follows:
• Underwater vehicle is considered as fully actuated,
• Limited numbers of attempts are considered underwa-

ter currents and their effects.
• Same papers which are used for tracking control are

used for station keeping, therefore time of converge to zero is
long and controller design is complex in nature.

It is particularly worth noting for the field of deep-sea
electro-hydraulic actuator system development and the sta-
tion keeping of the underwater robot, due to the impact
of water flow and the harsh environment of the deep
sea [18]–[21], the system model of AUV in the process of
performing tasks presents relative uncertainty and nonlinear
characteristics, at the same time, the hovering control of the
underwater robot system is the most critical part [22]. Based
on the above analysis, the system of AUV engineering prob-
lems include nonlinearity, uncertainty, piecewise linearity,
etc. And the hover control for underwater robot determines
the stability and reliability of the operation of the entire
underwater equipment, which is related to the safety of ocean
generation and development.

In the existing research, the hover control strategy for AUV
is mainly based on linearizing the system or linearizing the
original nonlinear system. For example, [20], [24], in the
paper [20] simplifies the AUV system, which is a linear
system. In this way, multiple controller switching can be
performed for a simple controlled system, but the system
cannot reflect the complex characteristics of the actual sys-
tem. Literature [24] uses the PID algorithm to realize the
stable hovering of the AUV. However, the PID control does
not have the complex characteristic description inside the

complex control object and does not require an accurate con-
trol object description, which will directly lead to inaccurate,
unstable and non-persistent control effects. Different from the
existing research results, this paper conducts detailed model
identification for the AUV controlled system. Nonlinear sys-
tems is constructed with random perturbations and uncertain
parameters. This systemwill achieve fine hover control of the
AUV. The contributions of this paper are characterized by the
following features:

(1) To the best of author’s knowledge, Two papers (Guo
and Zhou, 2021; Guo and Ni, 2021) are the newest achieve-
ment to consider AUV systems hovering control. It should be
pointed out that, This articles aremainly based on the research
of hover control with the stable special working point of
the AUV controlled object. The overall control through the
analysis of several operating points will produce large errors,
and this paper is based on the analysis and controller design
of a continuous nonlinear system with uncertain parameters.

(2) This paper is the first time to use backstepping control
method for stochastic nonlinear systems. The backstepping
control method is used to solve the problem ofAUVhovering,
which the nonlinear vector terms depend on the unmeasurable
states besides the measurable output, and it is satisfying the
more general growth conditions.

(3) For the first time, constraints of the system are studied
in the AUVhovering technology, whichmakes the constraints
more relaxed and the AUV system’s underwater operation
more complex with the actual situation and disturbance.
By finding the optimal controller as the goal and minimizing
the conservatism as the condition, the hovering of the system
is asymptotically stable in the sense of probability under
random disturbance.

(4) The high-order gain observer technique is applied to the
backstepping control for stochastic nonlinear systems for the
first time.

The paper is organized as follows. Section 2 provides the
description of dynamic modelling of robot, In Section 3 is the
station keeping control design, Section 4 is the underwater
robot transportation model example and Section 5 is the
concluding and future prospects.

II. DESCRIPTION OF DYNAMIC MODELLING OF ROBOT
In this section, we consider the output feedback control prob-
lem for a well-known underactuated underwater robot system
model. As shown in Figure 1.

Whether on the surface or underwater, an underwater robot
cannot be seen as operating in an ideal state without inter-
ference. There are many kinds of interference, such as the
most common surface gravitational waves [23]. This kind of
interference will attenuate quickly when the operating depth
is deep; then there is the ocean current, which is also a
disturbance factor. Due to various reasons such as thermal
radiation, evaporation and precipitation in the seawater, the
seawater will produce various inconveniences, water masses
of the same density. Ocean currents can not only appear
in shallow waters, but also exist in deep waters far away
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FIGURE 1. Body-fixed frame and earth-fixed reference frame for underwater robot.

FIGURE 2. Hardware-in-the-loop simulation device with underwater robot.

from the surface, which is its biggest feature. At the same
time, it also shows that the ocean current is more likely to
have an impact on the dynamics and control performance of
the underwater robot, and the impact of the ocean current
should be fully considered for the control problem [24], [25].
Usually, we assume that the displacement of the underwater
robot is measurable from the ground, and consider the ocean
current as an external disturbance to the dynamics of the
underwater robot in the coordinate system.

The underwater kinematics equation of the underactuated
AUV can be expressed:

M ν̇ + C(ν)ν + D(ν)ν + g(ε) = F (1)

where,
M are the inertia matrix, which contains AUV addi-

tional quality.C(ν) are Coriolis centripetal force representing
underwater vehicles.D(ν) stands for underwater vehicle fluid
damping. g(ε) represents the gravity of the underwater vehi-
cle in operation and the restoring force (moment) generated
by the buoyancy. F = [Fx Fy Fz Fk Fm Fn]T are the
resultant forces and moments. ν̇ = [u̇ ν̇ ω̇ ṗ q̇ ṙ]T

are the linear and angular accelerations in surge, sway and
heave direction respectively with respect to body(moving)
frame, ν = [u ν ω p q r]T are linear and angular
velocity with respect to body(moving)frame, u - surge veloc-
ity, ν - sway velocity, ω - heave velocity, p - roll rate, q - pitch
rate, r - yaw rate. ε = [x y z α β γ ]T are position
and orientations with respect to inertial(fixed) frame, x - surge

position, y - sway position, z - heave position, α - roll angle,
β - pitch angle, γ - yaw angle.

It can be seen that, because of its special properties, if the
controller is designed with the above mention six degree
of freedom model, the controller will be very complicated
and difficult to realize. Therefore, when the AUV moves at
underwater for designing the controller, In the body frame,
the velocity can generally be decomposed into two motion
models, linear velocity variables ν1 = [u ν ω]T and angu-
lar velocity variables ν2 = [p q r]T . In the earth-fixed
frame, the velocity can generally be decomposed into two
motionmodels, vehicle position ε1 = [x y z]T and vehicle
orientation ε2 = [α β γ ]T , which can greatly simplify the
AUVmodel. In this paper only consider the velocity variables
ν1 = [u ν ω]T and linear motion ε1 = [x y z]T of the
AUV underwater.

The relationship between body frame and fixed frame in
linear velocity is given by:

ε̇1 = J (ε)ν1 (2)

where, J (ε) is the kinematic transformation matrix and it is
in the following form:

J (ε) =

cγ cβ − sγ cα + cγ sβsα sγ sα + cγ cβsα
sγ cβ cγ cα + sγ sβsα − cγ sα + sγ sβcα
−sβ cβsα cβcα


where, s = sin and c = cos. Another, ε2 = [α β γ ]T

is the angle in surge, sway and heave direction with respect
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to earth frame, respectively. This transformation is undefined
for β = ±90◦ and to overcome this singularity, a quaternion
approach must be considered. However, most of the robots
are designed to operate at pitch angles well below ±90◦ and
hence this limitation has no major significance here.

For the better understanding and good detailed analysis,
it is preferred to investigate the system with respect to the
earth fixed frame of reference in order to maintain every state
to a single reference frame. For this, the coordinate transfor-
mation (ε1, ν1)

µ
−→ (ε1, ε̇1) is performed using Eq.(2), which

yields: (
ε1
ε̇1

)
=

[
I 0
0 J (ε)

](
ε1
ν1

)
The coordinate transformation µ is a global diffromorphism,
analogous to a similarity transformation in linear system. The
robot dynamic model with respect to the earth fixed frame of
reference becomes:

Mε1 ε̈1 + Cε1 ε̇1 + Dε1 ε̇1 + gε1 = Fε1 (3)

where,

Mε1 = J (ε)−TMJ (ε)−1

Cε1 = J (ε)−T
(
C(ν)−MJ (ε)−1J̇ (ε)

)
J (ε)−1

Dε1 = J (ε)−TD(ν)J (ε)−1

gε1 = J (ε)−T g(ε)

Fε1 = J (ε)−TF (4)

The following assumptions are needed.
Assumption 1: The article only consider the velocity of

between self position and fixed frame, which is l̇ = (ẋ2 +
ẏ2 + ż2)

1
2 . Assumption the system origin station ε1(0) =

[0 0 0] and ε̇1(0) = [0 0 0].
Assumption 2: In the paper. The velocity ε1 = [x y z]

and the angle ε2 = [α β γ ] is known by using sensors.
According to the characteristics of underwater robot sys-

tem,we generalize the dynamicmodel to obtain a broadmath-
ematical model with unknown control directions as follows.

dl1 = l2dt + f1(t, l(t), u)dt + g1(l)dω

dl2 = udt + f2(t, l(t), u)dt + g2(l)dω

y = l1 (5)

where, l = (l1, l2)T ∈ R2, u ∈ R, y ∈ R, are the states,
input and output of system; corresponding to this. Here,
we introduce a stochastic process for the system: ω is an
m - dimensional standard Wiener process defined on the
complete probability space (�,0,P) with � being a sample
space, 0 being a filtration, and P being a probability measure.
Observable state l2 is not measurable. fi : Rn

→ R and
gi : Rn

→ Rr , i = 1, 2 is satisfied a linear growth of the
following conditions and is local Lipschitz. And fi(0) = 0,
gi(0) = 0.

Definition 1: for any given function V ∈ C2(R2
;R) asso-

ciated (5), the differential operator $ is defined as

$V (l) =
∂V (l)
∂l

f (l, t)+
1
2
Tr{gT (l, t)

∂2V (l)
∂l2

g(l, t)} (6)

Definition 2: If there is a K∞ function γ , its derivative γ ′

exists and is also a K∞ function, a matrix-valued function
R2(l) that satisfies R2(l) = RT2 (l) > 0 for all l, and there is
a feedback control function u = α1 that is continuous except
for the origin α(0) = 0. If the feedback control function
can ensure that the equilibrium point l = 0 is globally
asymptotically stable for the probability, and the performance
function

J (u) = E
(∫
∞

0

[
s(x)+ γ (|R2(l)1/2u|)

]
dτ
)

can be guaranteed to take the minimum value, it is said that
the inverse optimal stabilization problem for the probability
of the system (5) is to be solvable.
We give the solution to the probabilistic inverse optimal
stabilization problem as follows:
Lemma 1: Considering the control law:

u = α(l) = −R−12 (Lg2V )T
`γ (|Lg2VR

−1/2
2 |)

|Lg2VR
−1/2
2 |2

(7)

where V (l) is a preselected Lyapunov function, γ (·) is a
K∞ function, and its derivative γ ′ exists and is also a K∞
function, and R2(l) is a matrix-valued function that satisfies
R2(l) = RT2 (l) > 0. If the control law (7)makes the system (5)
is globally asymptotically stable according to the probability
about V (l), then the control law

u∗=α∗(l)=−
β

2
R−12 (Lg2V )T

(γ ′)−1(|Lg2VR
−1/2
2 |)

|Lg2VR
−1/2
2 |

, β≥2

(8)

can make the performance function

J (u) = E
(∫
∞

0

[
s(l)+ β2γ

(
2
β
|R2(l)1/2u|

)]
dτ
)

(9)

to solve the probabilistic inverse optimal stabilization prob-
lem of system (5) by minimizing where s(x) is a positive
definite radially unbounded function satisfying

s(l) = 2β
[
`γ (|Lg2VR

−1/2
2 |)− Lf V −

1
2
Tr
(
gT1
∂2V
∂l2

g1

)]
+β(β − 2)`γ (|Lg2VR

−1/2
2 |) (10)

Assumption 3: there exists known positive constant
Cf ,Cg ≥ 0 such that the following inequality holds

|fi(l)| ≤ Cf (|l1| + · · · + |li|)

|gi(l)| ≤ Cg (|l1| + · · · + |li|) (11)

Young inequality: for any two real vector has the same
dimension l and y, lT y ≤ λp

p |l|
p
+

1
qλq |y|

q, where λ > 0,
p > 1, q > 1, and p−1 + q−1 = 1.
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Based on this assumption, for the system (5) to design a
smooth output feedback controller, enable closed-loop sys-
tem at the origin is the probability of global asymptotic
stability, and the probability of inverse optimization problems
are solvable.

III. STATION KEEPING CONTROL DESIGN
The controller design of nonlinear system (5) is divided into
two parts. The first part is to design a state observer for
the system; the second part uses the backstepping method to
design an output feedback controller for system (5) to meet
the corresponding control performance indicators.

A. HIGH-ORDER GAIN OBSERVER DESIGN
Since the system is not measurable except for l1 which is a
measurable state, a set of high-order gain observers is first
constructed:

˙̂l1 = l̂2 + H1K1

(
l1 − l̂1

)
,

˙̂l2 = u+ H2K2

(
l1 − l̂1

)
, (12)

In this set of observers, the H > 0 is a unknown high-gain
parameter and real number Ki > 0 is a known constant such

that the matrix A =
(
−K1 1
−K2 0

)
is asymptotically stable, thus

there exists a positive definite matrix P that satisfies ATP +
PA = −I . we define the error equation of system (5) as

l̃ =
(
l̃1, l̃2

)T
, l̃i =

li − l̂i
H i−1 , i = 1, 2 (13)

According to (5) and (12), the system error model can be
obtained as

dl̃ = HAl̃dt + F(l)dt + G(l)dω (14)

where

F(l) =
(
f1(l),

1
H
f2(l)

)T
,

G(l) =
(
gT1 (l),

1
H
gT2 (l)

)T
(15)

Choosing V0(l̃) = 3l̃TPl̃, applying | 1
H i−1 li| ≤ |

1
H i−1 l̂i| + |l̃i|,(∑2

i=1 ai
)2
≤ 2

∑2
i=1 a

2
i ,H > 0, Definition 1 and Assump-

tion 3, we can obtain

$V0= 3Hl̃T
(
ATP+ PA

)
l̃ + 6l̃TPF(l)

+ 3Tr{GT (l)PG(l)}

≤−3H |l̃|
2
+ 3|l̃TP|

2

+ 3

(
2∑
i=1

|
fi(l)
H i−1 |

2
+ λmax(P)

2∑
i=1

|
gi(l)
H i−1 |

2
)

≤−3H |l̃|
2
+ 3‖P‖2|l̃|

2

+ 3

( 2∑
i=1

|
fi(l)
H i−1 |

)2

+ λmax(P)

(
2∑
i=1

|
gi(l)
H i−1 |

)2

≤−3H |l̃|
2
+ 3‖P‖2|l̃|

2

+ 3C2
f

(
2∑
i=1

1
H i−1

)2(
|l1| +

|l2|
H
+ · · · +

|l2|
H1

)2

+ 3λmax(P)C2
f

(
2∑
i=1

1
H i−1

)2

×

(
|l1| +

|l2|
H
+ · · · +

|l2|
H1

)2

=−3H |l̃|
2
+3‖P‖2|l̃|

2
+c1

(
|l1| +

|l2|
H
+ · · · +

|l2|
H1

)2

≤−3H |l̃|
2
+3‖P‖2|l̃|

2
+c1

(
2∑
i=1

|
1

H i−1 l̂i| +
2∑
i=1

|l̃i|

)2

≤−3H |l̃|
2
+ 3‖P‖2|l̃|

2

+ 2c1

( 2∑
i=1

|
1

H i−1 l̂i|

)2

+

(
2∑
i=1

|l̃i|

)2
≤−3H |l̃|

2
+ 3‖P‖2|l̃|

2

+ 4c1

(
2∑
i=1

(
|

1
H i−1 l̂i|

)2

+

2∑
i=1

(
|l̃i|
)2)

=−

(
3H − 3‖P‖2 − 4c1

)
|l̃|

2
+ 4c1

(
l̂21 +

l̂22
H2

)
(16)

where

c1 = 3(C2
f + λmax(P)C

2
g )

(
2∑
i=1

1
H i−1

)2

=
3(C2

f + λmax(P)C
2
g )

H2

(
1∑
i=0

(i+ 1)H i
+ (3− i)H2

)
(17)

B. OUTPUT-FEEDBACK CONTROLLER DESIGN
In this subsection, we give the backstepping controller design
procedure. Firstly, introduce a series of coordinate transfor-
mation

z1 = l̃1, z2 = l̃2 − α1
(
l̂[1]
)

(18)

where α1
(
l̂[1]
)
is the virtual control laws to be designed.

step 1: definiting

V1(l̃, z1) = V0(l̃)+
1
2
z21 (19)

by Definite 1, system (12), (16)-(19) and Young’s inequality

$V1 ≤ −
(
3H − 3‖P‖2 − 4c1

)
|l̃|

2
+ 4c1

(
l̂21 +

l̂22
H2

)
+ z1(l̂2 + Hl1 l̃1)

≤ −

(
3H − 3‖P‖2 − 4c1

)
|l̃|

2
+ 4c1z21 + 4c1

l̂22
H2

+ z1α1 + z1z2 + Hl̃21 +
H
4
l21z

2
1 (20)
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Using the (18) and (a+ b)2 ≤ 2a2+ 2b2, choosing H ≥ 8c1,
we can obtain

4c1z21 ≤
H
2
z21, 4c1

1
H2 l̂

2
2 ≤ 8c1

1
H2 z

2
2 + 8c1

1
H2α

2
1 (21)

Therefore, according the equation (20) and equation (21),
we can get the first virtual controller as

α1(l̂1) = −Hb1z1, b1 =
1
2
+
l21
4
+ 2 (22)

renders

$V1 ≤ −
(
3H − 3‖P‖2 − 4c1

)
|l̃|

2
+ H

(
1
2
+
l21
4

)
z1

+ 8c1
1
H2 z

2
2 + 8c1

1
H2 + z1α1 + z1z2 + Hl̃

2
1

≤ −

(
2H − 3‖P‖2 − 4c1

)
|l̃|

2
− (2H − 8c1b21)z

2
1

+ 8c1
1
H2 z

2
2 + z1z2 (23)

In the last step through backstepping theory, select the
controller

z2 = l̂2 + Hb1 l̂1

dz2 =
(
u+ H2d20 l̃1 + H2d21z1 + H2d̄2,1z1 + H2d22z2

)
dt

(24)

where

di0 = li+bi−1li−1+bi−1bi−2li−2+ · · · +bi−1bi−2 . . . b1l1

dij =
i−1∏

k=j−1

b− k − bj
i−1∏
k=j

bk , j=1, . . . , i− 2, b0=0

d̄i,i−1 = bi−1bi−2 − b2i−1, dii = bi−1 (25)

By (24), Choosing control law

u
(
l̂[2]
)
= −Hb2z2 = −M (l̂)z2

= −

2∑
i=1

H i

 2∏
j=2−(i−1)

bj

 l̂2−(i−1) (26)

renders

$V2 ≤ −
(
H − 3‖P‖2 − 4c1

)
|l̃|

2

−

i∑
j=1

1
H2j−2

(
H − 8c1b2j

)
z2j −

1
H2Hz

2
2 (27)

where

V2(l̃, z[2]) = 3l̃TPl̃ +
2∑
j=1

1
2H2(j−1) z

2
j (28)

M (l̂) = Hb2, b2 > 0 is a real number that satisfies (22) and
does not depend on H

C. STABILITY ANALYSIS
Theorem 1: For a stochastic nonlinear system (5) satisfy-

ing the Assumptions 3, there must be constants H∗1 ≥ 0, and
for any H > H∗1 , controller (8) and (26) can get as follows:
Conclusion:
(1) For any initial value (l0, l̂0), the solution process of the

closed-loop system (5), (8) and (26) is almost everywhere and
unique.

(2) The equilibrium point of the closed-loop system at the
origin is globally asymptotically stable according to proba-
bility.

(3) Control law

u∗ = α∗(l̂) = −βHb2z2, β ≥ 2 (29)

makes the closed-loop system inverse optimal stabilization
according to the probability and the cost function

J (u) = E
(∫
∞

0

[
s(l̃, l̂)+

1
H2M

−1(l̂)u2
]
dτ
)

(30)

is minimum, where s(l̃, l̂) and (10) have the same definition,
and l̂ = (l̂1, l̂2)T , f̄ (l̃, l̂) = ((HAl̃)T + FT (l),Hs1 l̃1 +
l̂2,H2s2 l̃)T , g̃1(l̃, l̂) = (GT (l), 0), ḡ2(l̃, l̂) = (0, 1)T ,V = V2

Proof: According to dii = bi−1, (22) and (25), which
can get bi > bi−1, b0 = 0, bi > 1(i = 1, 2). Considering
max{4c1, 8c1, 8c1b21} = 8c1b21. If

H > 8c1b21 + 3‖P‖2 (31)

is holds, According to (27), (28) and Theorem 1, the conclu-
sion (1) and (2) is clearly established.

When i = 1, by analyzing (31), (17) and (22), the article is
easy to get c1 is dependent on H and b1 is not dependent on
H . Where

H >
24(C2

f + λmax(P)C
2
g )

H2

×

(
1∑
i=0

(i+ 1)H i
+ (3− i)H2

)
b21 + 3‖P‖2

is equivalent to the following.

H3 > 24(C2
f + λmax(P)C

2
g )b

2
1

(
i∑

i=0

(i+ 1)H i
+ (3− i)H2

)
+ 3‖P‖2H2 (32)

renders

H3
+

2∑
i=0

aiH i > 0 (33)

Meantime, a0 = −1, a1 = −21, a2 = −1 − 3‖P‖2,1 =
24(C2

f + λmax(P)C2
g )b

2
1 Based on the real coefficient of

the polynomial Factorization theorem. Now, we discuss the
choice of H∗1 in two cases:
(i) If there is at least one positive real number in

H1,H2,H3, chooseH∗1 = max1≤i≤3{Hi} to be the largest real
root.

H = 8c1b21 + 3‖P‖2

= 24(C2
f + λmax(P)C

2
g )b

2
1(1+

1
H
)2 + 3‖P‖2 (34)
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(ii) otherwise, choosing H∗1 = 0. Therefore, there must be
H∗1 ≥ 0, so that for anyH > H∗1 (31) holds. next step, we will
to prove conclusion (3). (12) and (14) can be written(

dl̃
d l̂

)
= f̄ (l̃, l̂)dt + ḡ1(l̃, l̂)dω + ḡ2(l̃, l̂)udt (35)

By choosing γ (r) = 1
2H2 r

2, we can get (γ ′)−1(r) = H2r and
`γ (r) = 1

2H
2r2, According to (7), (35) and V = V2 can get

u = α(l̂) = −R−12 (l̂)
1
H2 z2

1
2
H2

= −
1
2
R−12 (l̂)z2 (36)

choosing R2(l̂) = (2M (l̂))−1 = 1
2Hb2

, we can get u =
−M (l̂)z2, it has same form with (26). Considering conclusion
(2) and Lemma 1, the inverse optimal controller

u∗ = α∗(l̂) = −
β

2
R−12 (l̂)

1
H2 z2

1
2
H2

= −
β

2
R−12 (l̂)z2 = βα(l̂), β ≥ 2 (37)

minimizes the performance function
Remark 1: There have been some researches on this type

of system and some results have been obtained. For example,
in the [26], the random impulse control problem of the system
under Hölder conditions is analyzed. By comparing previous
studies, the described nonlinear system conditions have a
stronger scope of application in this paper. On the basis of
nonlinear system analysis method, the problem of robust
sliding mode controller design is considered for piecewise
linear discrete time-delay systemswith state lag and uncertain
parameters, piecewise linear time-delay systems is applying
sliding mode control theory, which can make the system state
moving along a given ‘‘sliding mode’’ motion trajectory, and
the slidingmode variable structure control theory is to applied
the underwater robot states keeping control system, which has
practical significance in the control theory and application of
the piecewise linear system.
Remark 2: On the basis of designing observers for non-

linear systems, scholars have launched the observer-based
controller design. Among them, the controller design of
the observer combining the Lyapunov stability theorem and
the LMIs method has achieved certain research results.
In [27], [28] the author studied the robust controller design
of the state observer for uncertain time-delay systems.
From the above research results, it can be obtained that
robust control has a wide range of applications, and it also
reflects the degree of attention paid to the research of uncer-
tain nonlinear systems with time delays. But on the other
hand, most of the research results mentioned at present are
the study of time-delay nonlinear systems, state-uncertain
nonlinear systems, or both time-delay characteristics and
parameter-uncertain nonlinear systems. There are relatively
few researches on observers of time-delay, state uncertainty
and time-delay uncertainty, as well as observers of nonlinear

discrete systems include state variables and nonlinear func-
tions of time-delay variables and robust control based on
observers.
Remark 3: In the control design program, the design prob-

lem of the controller is transformed into a parameter con-
struction problem by introducing the appropriate coordinate
transformation, and the forward push and saturation control
design method based on the iterative program is not used. The
controller gain obtained by the iterative design method may
become too small during multiple iterations. The obtained
controller is theoretically effective, but it is difficult to achieve
in engineering practice, when the dimensionality of the sys-
tem is relatively high. The multiple iteration procedures will
greatly increase the difficulty and complexity of the design.
The controller designed in this project has a simple form and
moderate dynamic/static gain strength, so it is easier to apply
to engineering practice. In this article, we take the under-
water robot system as an example, and the robust controller
designed is applied above to verify the effectiveness of the
controller.

IV. UNDERWATER ROBOT TRANSPORTATION
MODEL EXAMPLE
In order to investigate the effect of the proposed output
feedbacking control method on the performance of the sta-
tion keeping of underwater robot, the output feedbacking
controller is simply adopted in this section, it describes
the design of the nonlinear station controller for the AUV
to maintain a given reference coordinates using the output
feedbacking control law.

Consider the following stochastic nonlinear system:

l̇1 = l2 +
1
10
l1l2 +

1
10
l1l2ω̇

l̇2 = u+
1
10
l2sinl1 +

1
10
l2sinl1ω̇

y = l1 (38)

Obviously, Assumption 3 was established. here select
Cf = 1

10 and Cg = 1
10 , and select the observer as

˙̂l1 = l̂2 + H (l1 − l̂1)
˙̂l2 = u+ H2(l1 − l̂1) (39)

The parameters are selected asK1 = K2 = 1, the real number
H > 0 is the unknown gain parameter to be designed. Define
the l̃1 = l1 − l̂1 and l̃2 =

l2−l̂2
H , the following is obtained:

dl̃ = HAl̃dt + F(l)dt + G(l)dω, l̃ = (l̃1, l̃2)T

F(l) =
(

1
10
l2sinl1,

1
10

(l1l2)
1
2

)T
G(l) =

(
1
10
l2sinl1,

1
10

(l1l2)
1
2

)T
(40)

Introduction,

z1 = l̂1
z2 = l̂2 − α1(l̂1) (41)
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By using the stability theorem and controller design method
proposed in Section 3, which can be obtained the output
feedback controller.

α1(l̂1) = −Hb1z1, b1 =
1
2
+

1
4
+ 2 = 2.75, H ≥ 8c1

(42)

u = −Hb2z2, b2 =
d220
4
+
d221
4
+ d22 + 2 = 19.03

(43)

Meantime

c1 =
3

100
(1+ λmax(P))

(
1+

1
H

)2

(44)

P =
(

0 − 1
2

−
1
2 1

)
, ‖P‖ =

√
6
2 , λmax(P) = 1+

√
2

2 , d20 = 1 +

b1 = 3.75, d21 = 1− b21 = −6.56, d22 = b1 = 2.75.
In this section, we apply Theorem 1 to a specific the under-

water electro-hydraulic compound valve position control sys-
tem described in Figure 2. Hence, by using Theorem 1,
we can design an output-feedback controller as follows.
The related control laws are implemented in the follow-
ing form: u = −Hb2z2. The parameters are selected as
H > H∗1 = 9.9609.

A. SIMPLE STATION KEEPING RESULTS IN THE PRESENCE
OF UNDERWATER CURRENT
According to the analysis above, we simulate a group to
prove the effectiveness of our proposing strategy. Simulation
results are shown in Figures 3 and 4. The initial conditions
are [l1(0), l2(0), l̂1(0), l̂2(0)]T = [0, 10, 0, 0]T .

B. HARDWARE-IN-THE-LOOP SIMULATION RESULTS IN
THE PRESENCE OF UNDERWATER CURRENT
In order to investigate the performance of the proposed
scheme, typical simulations are conducted and results are
presented in this section. For confirming the effectiveness of
the proposed scheme, hardware-in-the-loop (HIL) simulation
is also carried out, where the control outputs are given as
the inputs of the actual actuators and the actuators responses
are feedback to the simulation model. For numerical and
HIL simulations, the test device underwater robot Figure 2 is
considered.

The same previous operating condition has taken for the
HIL simulation to confirm the performance of the proposed
scheme in the real time. The results of the experiment are
given in Figures 5 and 6, which shows that the proposed sys-
tem can effectively keep the given desired coordinates in the
presence of uncertainties such as disturbances (underwater
current). The simulation results error of HILS and numerical
simulations are given in Figures 7 and 8, which confirmed
that the proposed controller effectiveness can compensate the
underwater currents effectively. The settling time or steady
state time (fromHIL values), corresponding to position errors
of robot are shows in Figures 7 and 8, respectively. HIL values

FIGURE 3. Station keeping results for the proposed control method with
underwater current.

FIGURE 4. The controller u trajectory of underwater robot system.

FIGURE 5. HIL simulation results for the proposed configuration with
underwater current.

are showing similar behaviour of the numerical simulation
values with disturbance effects. These disturbance effects
are mainly due to the actuator response delay, instrument
underwave and mechanical vibrations of the robot - actuator
frame.
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FIGURE 6. HIL simulation results for the controller u trajectory of
underwater robot system.

FIGURE 7. Results error of numerical and HIL simulation for the proposed
configuration with underwater current.

FIGURE 8. Results error of numerical and HIL simulation for the
controller u trajectory of underwater robot system.

C. PID SIMULATION RESULTS IN THE PRESENCE OF
UNDERWATER CURRENT
According to the PID simulation results, simulation results
are shown in Figures 9 and 11. The initial conditions
are [l1(0), l2(0)]T = [0, 1]T . We compare results of the

FIGURE 9. Station keeping results for the PID method with underwater
current.

FIGURE 10. Station keeping results for the PID method with underwater
current.

FIGURE 11. The PID controller u trajectory of underwater robot system.

backstepping and the PID. By the designing backstepping
controller method, the initial value is more large, the method
can reduce the vibration time of converge to zero for the
underwater robot and reduce the vibration amplitude of the

50922 VOLUME 10, 2022



Y. Peng et al.: Research on Hover Control of AUV Uncertain Stochastic Nonlinear System

robot when it moves underwater. We can confirm the effec-
tiveness of our proposing strategy.

V. CONCLUDING AND FUTURE PROSPECTS
In this paper, we study the design of the system observer
under the condition that the state of the system is unmea-
surable, and the system controller is designed based on the
observer. The system has uncertain disturbances and nonlin-
ear terms. By introducing the error between the observation
value and the actual value, combining the error equation
and the closed loop of the observer-based control system,
the Lyapunov method for stability analysis is used. Finally,
the relevant theorems obtained from the stability analysis
to design the observer and the controller is combined. The
Simulation X is used to solve the backstepping controller
under the given parameters; finally, the AUV position control
model and the robot position of its actuator through the
controller designed are established and analyzed in this paper,
respectively. In this paper, we study the design of system
observers when state variables are unmeasurable, and imple-
ment observer and controller design are based on the stability
theorem. The nonlinear system studied includes uncertain
disturbances and nonlinear terms.

However, in the actual research process, there is a class
of nonlinear systems that can be piecewise linearized. The
system model is a piecewise linear model, that is, a nonlinear
system is composed of finite or infinite linear subsys-
tems. Piecewise linear systems are widely used in prac-
tice. In the life and production process, the piecewise linear
system is also an important approximation method for the
nonlinear system. The nonlinear system can be described
by the piecewise linear system. Therefore, it is neces-
sary to study the control problem of the piecewise linear
system.

ACKNOWLEDGMENT
The authors are very grateful to an anonymous review-
ers and an AE for their constructive comments and
suggestions.

CONFLICT OF INTEREST
The author declares that there is no conflict of interest regard-
ing the publication of this paper.

DATA AVAILABILITY STATEMENT
All data generated or analyzed during this research are
included in this paper.

REFERENCES
[1] M. T. Vu, H. N. N. L. Thanh, T.-T. Huynh, Q. Thang, T. Duc, Q.-D. Hoang,

and T.-H. Le, ‘‘Station-keeping control of a hovering over-actuated
autonomous underwater vehicle under ocean current effects and model
uncertainties in horizontal plane,’’ IEEE Access, vol. 9, pp. 6855–6867,
2021.

[2] K. L. Walker, R. Gabl, S. Aracri, Y. Cao, A. A. Stokes, A. Kiprakis, and
F. Giorgio-Serchi, ‘‘Experimental validation of wave induced disturbances
for predictive station keeping of a remotely operated vehicle,’’ IEEE Robot.
Autom. Lett., vol. 6, no. 3, pp. 5421–5428, Jul. 2021.

[3] I. G. Borlaug, K. Y. Pettersen, and J. T. Gravdahl, ‘‘Tracking control of
an articulated intervention autonomous underwater vehicle in 6DOF using
generalized super-twisting: Theory and experiments,’’ IEEETrans. Control
Syst. Technol., vol. 29, no. 1, pp. 353–369, Jan. 2021.

[4] X. Wang, B. Niu, X. Song, P. Zhao, and Z. Wang, ‘‘Neural networks-
based adaptive practical preassigned finite-time fault tolerant control for
nonlinear time-varying delay systems with full state constraints,’’ Int. J.
Robust Nonlinear Control, vol. 31, no. 5, pp. 1497–1513, Mar. 2021.

[5] X. Ye, ‘‘Adaptive stabilization of time-delay feedforward nonlinear sys-
tems,’’ Automatica, vol. 47, no. 5, pp. 950–955, May 2011.

[6] M.-C. Pai, ‘‘RBF-based discrete slidingmode control for robust tracking of
uncertain time-delay systemswith input nonlinearity,’’Complexity, vol. 21,
no. 6, pp. 194–201, 2016.

[7] L.-H. Nguyen, M.-D. Hua, G. Allibert, and T. Hamel, ‘‘A homography-
based dynamic control approach applied to station keeping of autonomous
underwater vehicles without linear velocity measurements,’’ IEEE Trans.
Control Syst. Technol., vol. 29, no. 5, pp. 2065–2078, Sep. 2021.

[8] T. Yang, N. Sun, and Y. Fang, ‘‘Adaptive fuzzy control for a class of
MIMO underactuated systems with plant uncertainties and actuator dead-
zones: Design and experiments,’’ IEEE Trans. Cybern., vol. 29, no. 1,
pp. 353–369, Jan. 2021.

[9] W. Zhou, P. Zhou, Y. Wang, N. Wang, and D. Duan, ‘‘Station-keeping
control of an underactuated stratospheric airship,’’ Int. J. Fuzzy Syst.,
vol. 21, no. 3, pp. 715–732, Apr. 2019.

[10] L.-C. Guo, X. Zuo, J.-W. Liu, and H.-Q. Liang, ‘‘Output-feedback control
of a class of stochastic nonlinear systems with power growth conditions,’’
Int. J. Control, Autom., Syst., vol. 12, no. 2, pp. 274–282, Feb. 2014.

[11] L.-C. Guo and J.-W. Liu, ‘‘Improved backstepping control for stochastic
high-order nonlinear time delay system with a constructive mechanical
system,’’ Trans. Inst. Meas. Control, vol. 40, no. 15, pp. 4115–4124,
Nov. 2018.

[12] L.-C. Guo and X.-K. Fang, ‘‘Bounded analysis and practical tracking
control of complex stochastic nonlinear systems with unknown control
coefficients,’’ Complexity, vol. 2020, pp. 1–8, Feb. 2020, doi: 10.1155/
2020/1502065.

[13] A. BenAbdallah, M. A. Hammami, and J. Kallel, ‘‘Robust stability of
uncertain piecewise-linear systems: LMI approach,’’ Nonlinear Dyn.,
vol. 63, nos. 1–2, pp. 183–192, Jan. 2011.

[14] C. Briat, ‘‘Stability analysis and control of a class of LPV systems with
piecewise constant parameters,’’ Syst. Control Lett., vol. 82, pp. 10–17,
Aug. 2015.

[15] M. Koo, H. Choi, and J. Lim, ‘‘Global regulation of a class of uncertain
nonlinear systems by switching adaptive controller,’’ IEEE Trans. Autom.
Control, vol. 55, no. 12, pp. 2822–2827, Dec. 2010.

[16] X. Zhang, L. Baron, Q. Liu, and E.-K. Boukas, ‘‘Design of stabilizing
controllers with a dynamic gain for feedforward nonlinear time-delay sys-
tems,’’ IEEE Trans. Autom. Control, vol. 56, no. 3, pp. 692–697,Mar. 2011.

[17] M. Krstic, ‘‘Feedback linearizability and explicit integrator forwarding
controllers for classes of feedforward systems,’’ IEEE Trans. Autom. Con-
trol, vol. 49, no. 10, pp. 1668–1682, Oct. 2004.

[18] Z. Liang and Q. Liu, ‘‘Design of stabilizing controllers of upper triangu-
lar nonlinear time-delay systems,’’ Syst. Control Lett., vol. 75, pp. 1–7,
Jan. 2015.

[19] P. Krishnamurthy and F. Khorrami, ‘‘Feedforward systems with ISS
appended dynamics: Adaptive output-feedback stabilization and dis-
turbance attenuation,’’ IEEE Trans. Autom. Control, vol. 53, no. 1,
pp. 405–412, Feb. 2008.

[20] S. Liu, D. Wang, and E. Poh, ‘‘Output feedback control design for station
keeping of AUVs under shallow water wave disturbances,’’ Int. J. Robust
Nonlinear Control, vol. 19, no. 13, pp. 1447–1470, Sep. 2009.

[21] S. Negahdaripour, X. Xu, A. Khamene, and Z. Awan, ‘‘3-D motion and
depth estimation from sea-floor images for mosaic-based station-keeping
and navigation of ROVs/AUVs and high-resolution sea-floor mapping,’’ in
Proc. Workshop Auto. Underwater Vehicles, Aug. 1998, pp. 191–200, doi:
10.1109/AUV.1998.744455.

[22] X. Lyu, J. Zhou, H. Gu, Z. Li, S. Shen, and F. Zhang, ‘‘Disturbance observer
based hovering control of quadrotor tail-sitter VTOL UAVs using synthe-
sis,’’ IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 2910–2917, Oct. 2018.

[23] Y.-L. Chen, X.-W. Ma, G.-Q. Bai, Y. Sha, and J. Liu, ‘‘Multi-autonomous
underwater vehicle formation control and cluster search using a fusion con-
trol strategy at complex underwater environment,’’ Ocean Eng., vol. 216,
Nov. 2020, Art. no. 108048, doi: 10.1016/j.oceaneng.2020.108048.

VOLUME 10, 2022 50923

http://dx.doi.org/10.1155/2020/1502065
http://dx.doi.org/10.1155/2020/1502065
http://dx.doi.org/10.1109/AUV.1998.744455
http://dx.doi.org/10.1016/j.oceaneng.2020.108048


Y. Peng et al.: Research on Hover Control of AUV Uncertain Stochastic Nonlinear System

[24] Z. A. Ali and H. Zhangang, ‘‘Multi-unmanned aerial vehicle swarm for-
mation control using hybrid strategy,’’ Trans. Inst. Meas. Control, vol. 43,
no. 12, pp. 2689–2701, Aug. 2021.

[25] C. Hu, L. Fu, andY.Yang, ‘‘Cooperative navigation and control for surface-
underwater autonomous marine vehicles,’’ in Proc. IEEE 2nd Inf. Technol.,
Netw., Electron. Autom. Control Conf. (ITNEC), Dec. 2017, pp. 589–592,
doi: 10.1109/ITNEC.2017.8284801.

[26] B. Niu, J. Liu, D. Wang, X. Zhao, and H. Wang, ‘‘Adaptive decen-
tralized asymptotic tracking control for large-scale nonlinear systems
with unknown strong interconnections,’’ IEEE/CAA J. Automatica Sinica,
vol. 9, no. 1, pp. 173–186, Jan. 2022.

[27] X. Chen, X. Zhang, and Q. Liu, ‘‘Prescribed-time decentralized regu-
lation of uncertain nonlinear multi-agent systems via output feedback,’’
Syst. Control Lett., vol. 137, Mar. 2020, Art. no. 104640, doi: 10.1016/j.
sysconle.2020.104640.

[28] T. Yang, N. Sun, and Y. Fang, ‘‘Adaptive fuzzy control for uncertain
mechatronic systems with state estimation and input nonlinearities,’’ IEEE
Trans. Ind. Informat., vol. 18, no. 3, pp. 1770–1780, Mar. 2022.

YUDONG PENG was born in Henan, China,
in 1996. He received the B.S. degree from the
Zhengzhou University of Light Industry, in 2016.
He is currently pursuing the master’s degree with
the School of Mechanical Engineering, Hangzhou
Dianzi University. His research interests include
subsea equipment control systems and underwater
robotics.

LONGCHUAN GUO received the bachelor’s
degree in automation and the Ph.D. degree in con-
trol theory and control engineering from the China
University of Petroleum, Beijing Campus (CUP),
in 2011 and 2016, respectively. He is currently an
Associate Professor with the School ofMechanical
Engineering, Hangzhou Dianzi University. He and
his team have currently developed the key equip-
ment of the deep-sea production system-the pro-
totype of the underwater electric actuator and the

prototype of the underwater carrier communication; their team is currently
conducting research work on underwater multi-purpose robots and under-
water production control system simulation platforms. His research interests
include controlling of complicated nonlinear systems and mechanical sys-
tem design, complex nonlinear systems and applications, subsea equipment
control systems, and underwater robotics.

QINGHUA MENG received the Ph.D. degree
from Zhejiang University. He is currently a Pro-
fessor with the School of Mechanical Engineering,
Hangzhou Dianzi University. He has published
more than 50 papers. His research interests include
new energy vehicle design and control technology,
mechanical noise and vibration control, mechani-
cal fault test and diagnosis, and vehicle electrics.

HUIQIN CHEN received the bachelor’s and
Ph.D. degrees from Hunan University, in July
2005 and June 2012, respectively. FromDecember
2008 to August 2010, she jointly trained doctoral
studies at Monash University, Australia. Since
September 2012, she has beenworking as anAsso-
ciate Professor with Hangzhou Dianzi University.
Her research interests include automobile safety,
driving behavior, and human–machine co-driving.

50924 VOLUME 10, 2022

http://dx.doi.org/10.1109/ITNEC.2017.8284801
http://dx.doi.org/10.1016/j.sysconle.2020.104640
http://dx.doi.org/10.1016/j.sysconle.2020.104640

