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ABSTRACT Semi-supervised learning (SSL) is a machine learning approach that integrates supervised and
unsupervised learning mechanisms. This integration may be done in different ways and one possibility is to
use a wrapper-based strategy. The main aim of a wrapper-based strategy is to use a small number of labelled
instances to create a learning model. Then, this created model is used in a labelling process, where some
unlabelled instances are labelled, and consequently, these instances are incorporated into the labelled set.
One important aspect of a wrapper-based SSL method is the selection of unlabelled instances to be labelled
in the labelling process. In other words, an efficient selection process plays an important role in the design
of a wrapper-based SSL method since it can lead to an efficient labelling process, and in turn, the creation of
efficient learning models. In this paper, we propose the use of three selection methods that can be applied to
wrapper-based SSL methods. The main idea is to use two different selection criteria, prediction confidence or
classification agreement with a distance metric, to perform an efficient selection of the unlabelled instances.
In order to assess the feasibility of the proposed approach, the selection methods are applied in two well-
known wrapper-based SSL methods, which are: Self-training and Co-training. Additionally, an empirical
analysis will be conducted in which we compare the standard Self-training and Co-training methods against
the proposed versions of these two SSL methods over 35 classification datasets.

INDEX TERMS Artificial intelligence, machine learning, semi-supervised learning, self-training semi-

supervised method, co-training semi-supervised method.

I. INTRODUCTION
In the last decades, Machine Learning (ML) techniques have
gained considerable relevance in many real-world problems
since they offer a fantastically powerful framework for solv-
ing complex systems in an efficient way [1]. An ML tech-
nique is capable of creating a hypothesis (learning model)
or function capable of solving the problem to be addressed
based on past experiences. In these techniques, a learning
model is created in a training phase and assessed in a testing
phase [2].

In relation to the degree of supervision used during
the training phase, ML techniques can be divided into
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three categories: supervised, unsupervised and semi-
supervised [3], [4]. In these three types, ML algorithms learn
from past experience and from the implicit knowledge present
in existing data. Nevertheless, the main difference among
these three categories is the fact that the data which these
techniques use have information that may or may not be
labelled. The supervised learning (classification system), for
instance, uses only labelled data. In this category, an instance
of a given problem is analysed by a learning model, aiming to
define a label for this instance (class label) [5]. The efficiency
of a classification system is usually related to the knowledge
distribution which is spread among data points. In addition,
it may need a large number of labelled instances to create an
efficient learning model. Nonetheless, the amount of labelled
data is usually limited in several classification problems.
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In fact, for some problems, it is expensive or difficult to
manually label instances [4], [6].

In order to smooth out the problems raised by the limited
amount of labelled data, the semi-Supervised Learning (SSL)
category has been proposed [6]-[9]. With the development of
different SSL methods, these methods were grouped accord-
ing to their characteristics [4], [6], [10], [11]. In [11],
for instance, the SSL methods were divided into inductive
and transductive methods. Among the inductive methods,
a wrapper-based SSL method trains a classification algorithm
(model or classifier) with a small amount of labelled data
and a large amount of unlabelled data. The main aim of
these methods is to iteratively create a learning model from
a labelled set, select and label new instances (unlabelled)
to be included into the labelled set. Several methods have
been proposed in the literature and, among them, we can
mention Self-training [12] and Co-training [13]. In this paper,
the proposed selection procedure is applied to wrapper-based
SSL methods.

In an SSL method, it may occur that wrongly classified
instances are added to the labelled set, deteriorating the sys-
tem performance. In other words, the automatic labelling
process (selection and label) of unlabelled instances plays an
important role in the design of SSL methods. In this sense,
the use of an efficient selection process can produce efficient
SSL methods.

In order to increase the robustness of SSL methods, this
paper proposes a selection approach for choosing unlabelled
instances. In this proposed approach, a selection criterion
(prediction confidence or classification agreement) is com-
bined with a distance metric, in an approach called Distance-
weighted Selection (DwS) criterion. The main aim of this
proposed selection approach is to perform an efficient selec-
tion of the unlabelled instances and, in this sense, to lead
to a robust labelling process. Additionally, in order to eval-
uate the feasibility of the proposed approach, an empirical
analysis will be performed. This analysis will compare the
performance of six versions of each SSL method (Co-training
and Self-training). Moreover, 35 classification datasets will
be used for evaluating the performance of all versions of the
aforementioned methods.

In [14], a Distance-Weighted Selection was proposed that
combines prediction confidence and distance metric. The
obtained results were promising, showing that the using of
a selection criterion (prediction confidence) combined with
distance metric led to a more efficient selection procedure.
In this sense, a more exploratory analysis needs to be done
and it will be performed in this paper. Therefore, this paper
is an extension of the work proposed in [14], and its main
contributions are:

o The proposal of a new Distance-Weighted Selection,
which combines classification agreement and a distance
metric;

o The improvement of the empirical analysis, including
more selection criteria and increasing the number of
datasets from 20 to 35;
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o The inclusion of a comparative analysis, comparing the
performance of the proposed method with existing SSL
methods.

The Distance-Weighted Selection (DwS) was initially pro-
posed in [14], in which prediction confidence and distance
metric were used as parameters in a DwS method. Addition-
ally, in [15], a selection criterion using only classification
agreement was proposed. This paper extends the DwS inves-
tigation, using classification agreement or prediction confi-
dence combined with distance, in a DwS approach. In this
sense, we will have two DwS versions in this paper, DwS-C
that uses prediction confidence (originally proposed in [14])
and DwS-A that uses classification agreement (originally
proposed in [15]), proposed in this paper.

This paper is divided into seven sections and organised
as follows. Section 2 describes the main concepts related to
semi-supervised learning methods while Section 3 presents
some important studies in the SSL literature, focusing on
Co-training and Self-training methods. Section 4 presents the
proposed approach, describing the main differences to the
corresponding standard methods. The experimental method-
ology is presented in Section 5 while the computational
results are illustrated in Section 6. Finally, Section 7 presents
the main conclusions and some directions for future work.

Il. BACKGROUND

This Section presents the SSL methods that will be
used as basis in this paper, Co-training and Self-training
(Section II-A). In addition, two extended versions of these
methods using an ensemble-based selection criterion are also
described (Section II-B).

A. STANDARD SSL METHODS

The next subsections will present two semi-supervised meth-
ods (Self-Training and Co-Training). In these SSL methods,
the following acronyms and names are used: L: labelled set;
i: instance; U: unlabelled set; and C: classifier.

1) SELF-TRAINING

The Self-training SSL technique, which was originally pro-
posed in [12], is a simple and an efficient way to label
unlabelled instances. Algorithm 1 presents the main steps of
this method.

Algorithm 1 Self-Training

1 while U is not empty do

2 train C with L;

3 label U using C;

4 select the best labelled-instances of U and join them
toL;

5 end

In this method, the first step is to train a classifier (model
learning) using the available set of labelled instances (line 2).
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Once the classifier is trained, it labels the whole set of unla-
belled instances (line 3). Then, the best labelled instances are
selected to be added to the labelling set (line 4). This selection
is based on the confidence prediction delivered by the unla-
belled instances. The loop containing these three steps (train,
label and select) stops when the unlabelled set (U) is empty.

2) CO-TRAINING

Co-training [13] is a semi-supervised method that iteratively
applies two different views of an instance in the labelling
process. In order to do this, it trains two classification algo-
rithms, each one with a different attribute subset. Then, it uses
the predictions of one classification algorithm to choose the
unlabelled instances that will be added to the labelled set of
the other algorithm. The main steps of the Co-training method
are described in Algorithm 2. The Co-training functioning
is similar to the Self-training, but it uses two classification
algorithms instead of only one.

Algorithm 2 Co-Training Algorithm

1 create L; and L, with a vertical splitin L;

2 create U and U, with a vertical split in U;

3 while U and U, are not empty do

4 train C1 with L and C, with Ly;

5 apply C1 in U7 and C3 in Uy;

6 select the best instances from U and include them
to Lo;

7 select the best instances from U, and include them

toLg;

s end

In the first step of the Co-training algorithm, the input
attributes are divided into two sets (one for each classification
algorithm). In this sense, both instance sets, labelled (L) and
unlabelled (U), will have two different views of the instances,
Ly and L, (line 1) as well as Uy and U, (line 2). The next
step is to train two classification algorithms, C; and C3,
using L1 and Ly, respectively (line 4). Once the classification
algorithms are trained, the unlabelled instances, U and U»,
are labelled by their corresponding classification algorithms,
Cy and C, (line 5). In the last step, the most confident
instances from U; and U, are incorporated to L, and L
(lines 6 and 7), respectively. This is an iterative process and
continues until both unlabelled sets are empty.

The main objective of the Co-training method is to promote
cooperation between both classification methods by crossing
the acquired knowledge [13]. In this method, the C; algorithm
selects the most confident instances to be incorporated in Ly,
and vice-versa. In doing this, it aims at cooperating with the
quality of the other classification algorithm (Cj). With this
crossing distribution, it is expected that these added instances
are not biased and it will improve the classifier performance.

In summary, it is possible to observe that Self-training
(Algorithm 1) and Co-training (Algorithm 2) have similar
labelling processes. However, they differ in two different
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ways. The first one is the attribute distribution performed
by the Co-training method. It is important to emphasise that
the attribute selection needs to assure that an attribute is
put in only one subset (null intersection) and all attributes
have to be placed in the subsets (total union). These two
conditions will lead to two different subsets and it is expected
to improve the classification efficiency of the Co-training
method. The second difference is related to the addition
of the unlabelled instances. In Self-training, the unlabelled
instances are selected and added to the unlabelled set of one
classifier. On the other hand, in the Co-training method, one
classification algorithm labels an instance and it is added to
the unlabelled set of the other classifier.

B. ENSEMBLE-BASED SELECTION CRITERION

Classifier ensembles are classification structures composed
of a set of base classifiers. These systems have a two-layer
structure in which all base classifiers receive input data and
predict a class for a new instance in the first layer. These
predictions are sent to a combination module in the second
layer, which combines all received predictions into a single
predicted class for each instance (e.g. via majority voting).
The output combination performed by an ensemble usually
surpasses the performance of individual classification algo-
rithms [16], [17]. The ensemble structure makes this sys-
tem an interesting alternative for the selection of unlabelled
instances in semi-supervised methods. By using ensemble
as part of a selection technique, it allows the reduction of
errors provided by the selection based on only one classifier
or metric.

The Ensemble-based Automatic Labelling (EbAL) is an
approach to select instances from unlabelled set more effi-
ciently, and also it uses an ensemble-based selection criterion
in the labelling process [15]. This approach uses classification
agreement from a pool of classifiers (ensemble) for selecting
and labelling instances in SSL methods. In fact, the EbAL
approach can have two main versions. In the first version,
named EbAL-v1, the pool of classifiers is used for select-
ing instances with higher classification agreement from the
unlabelled set. In the second version (EbAL-v2), besides the
use for selecting instances, it also uses the ensemble output
for labelling instances. Although both versions of EbAL
approach were originally applied to the Self-training method,
it can be applied to any wrapper-based SSL method.

1) SELF-TRAINING WITH EbAL

In this extended work, both EbAL versions for Self-training
were originally presented in [15] and they will be named
as Self-training with EbAL - version 1 (St-EbAL(v1)) and
Self-training with EbAL - version 2 (St-EbAL(v2)). Algo-
rithms (3 and 4) will describe both versions, defining the main
steps of them. For simplicity reason, both algorithms use the
following names and acronyms: i: instance; L: labelled set;
U: unlabelled set; C: main classifier; PC: pool of classifiers;
n: pool size; A: classification agreement; and #: threshold for
classification agreement (in percentage).
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Algorithm 3 Self-Training With EbAL - Version 1
(St-EbAL(v1))

1 while U is not empty or no instances were included to L
do
train PC with L
train C with L
foriin U do
Using PC assign n pseudo-labels to i
Compute A of i using the pseudo-labels
if A of i > ¢ then
remove i of U
assign class label to i using C
additoL
end

e 0 NN AW N

—
=4

—
-

end

-
(5]

13 end

The main difference between the standard Self-training
method and St-EbAL(v1) is related to the selection criterion.
While Self-training uses the confidence prediction as selec-
tion criterion, St-EbAL(v1) applies the classification agree-
ment of a PC (agreement defined by the set of classifiers of an
ensemble) to select the most prominent unlabelled instances.

Algorithm 4 Self-Training With EbAL - Version 2
(St-EbAL(v2))

1 while U is not empty or No instances were added to L do

2 train PC with L
3 foriin U do
4 Using PC assign n pseudo-labels to i
5 Compute A of i using the pseudo-labels
6 if A of i > ¢ then
7 remove i of U
8 assign the class with the highest A to i
9 addito L
10 end
11 end
12 end

13 train C with L

As previously mentioned, the main difference between St-
EbAL(v2) and St-EbAL(v1) is that the St-EbAL(v2) labelling
step is also performed by a classifier ensemble combined by
a majority voting method. In other words, in St-EbAL(v2),
an ensemble is used to select and label unlabelled instances.

2) CO-TRAINING WITH EbAL

The Co-training versions using EbAL approach follow the
same flow presented in the standard Co-training (Ct-std),
but using two Pools of Classifiers (PCs) and classifica-
tion agreement in both PCs. In this sense, Co-training has
also two EbAL versions to be introduced. In the first ver-
sion, named Co-training with Ensemble-based Automatic
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Labelling - version 1 (Ct-EbAL(v1)), each pool of classi-
fiers (one at each side) is responsible for selecting the best
instances according to classification agreement; In the sec-
ond one, named Co-training with Ensemble-based Automatic
Labelling - version 2 (Ct-EbAL(v2)), the pools of classifiers
are responsible for the selection and also the labelling of
instances. It is important to emphasise that the use of EbAL
in the Self-training method was originally presented in [15].
However, the combination of EbAL for the Co-training
method is new, and also it represents one of the selection
methods proposed in this paper.

C. SELECTION CRITERIA OF SELF-TRAINING AND
CO-TRAINING METHODS

As it could be observed from the previous sections, prediction
confidence is used as a selection criterion in the standard
versions of both SSL methods (one classifier for St-std or
two classifiers for Ct-std). This criterion describes the con-
fidence level in which a classification algorithm assigns an
instance to a class. Two main aspects can strongly affect
this confidence: 1) the class distribution of the training set;
and 2) the characteristics of the used classification algorithm.
An alternative approach that can be used in the selection of
unlabelled instances is by calculating the similarity between
instances that can be performed by a distance metric. Hence,
the selection the unlabelled instances is based on the similar-
ity information of labelled and unlabelled instances.

As presented in Algorithms 3 and 4, both approaches use
the classification agreement from a pool of classifiers as
selection criterion and/or labelling instances. This criterion
brings to wrapper-based SSL methods the benefits of using
classifier ensemble in the selection process. As an example of
one possible benefit, the diversity promoted by different clas-
sifiers within the pool can lead to more accurate precision. For
both EbAL versions, classification agreement has similar role
as confidence in the standard versions, as the instances with
classification agreement equals or greater than a threshold (7)
are selected to be included in the labelled set.

One drawback of a semi-supervised method is the effect
of including a wrongly classified instance in the labelled set.
This error is usually carried out throughout the following
iterations (snowball case), resulting in weak models (low
accuracy). Because of this, efficient approaches for the selec-
tion process must be used, aiming to smooth out the selection
errors that may occur in the processing of a wrapper-based
semi-supervised method.

IIl. RELATED WORK

Semi-supervised learning (SSL) is, as previously mentioned,
a combination of supervised and unsupervised learning cate-
gories. Since SSL has emerged as a robust attempt to handle
problems with a small number of labelled instances, several
real-world problems can be efficiently solved using SSL.
Therefore, many application domains can benefit from the
use of SSL methods, such as: audio and acoustics [18];
bio-informatics [19]; image processing and classification
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[20]-[22]; text classification and natural language process-
ing [23], [24]; industry [25], transport [26], among others.

The functioning of SSL methods are grounded on
some assumptions (e.g. smoothness assumption, low-density
assumption, manifold assumption and cluster assump-
tion) [11]. These assumptions are conditions that make
possible the use of unlabelled data along with labelled
data to improve the accuracy of supervised methods [4].
As already mentioned, the literature has divided the SSL
methods into groups and these groups are divided by the way
an SSL method uses labelled and unlabelled data. In [11], for
instance, a taxonomy is presented that divides the SSL meth-
ods into Transductive methods (e.g. graph-based methods,
as Mincut [27], Gaussian Random Fields (GRF) [28], and
Learning with Local and Global Consistency (LLGC) [29]);
and Inductive methods - wrapper (e.g. Self-training [12],
Co-training [13], Boosting [30], Tri-training [9]).

Still according to the taxonomy presented in [11], the
inductive methods are further divided into three sub-classes,
which are: wrapper methods, unsupervised pre-processing
methods and intrinsically semi-supervised methods. This
work presents a selection approach of unlabelled instances
to be used in wrapper-based SSL methods due to the that
fact that the predictions of a base classifier is used to gen-
erate additional labelled data. Additionally, Self-training and
Co-training are two well-known semi-supervised methods
that belong to the wrapper-based SSL sub-class. Therefore,
the selection approaches proposed in this paper will be
assessed in these two wrapper-based SSL methods. There-
fore, for simplicity reason, hereinafter, the terms SSL meth-
ods and wrapper-based SSL methods will be used inter-
changeably.

The majority of the studies related to Self-training and
Co-training present different ways to select and label the
unlabelled instances [21], [31]-[35]. In this sense, we divide
the SSL methods based on the used selection criterion and
they are classified into two groups, which are: confidence-
based methods and distance-based methods. To the best of
the authors knowledge, there is no study using an agreement-
based selection (only the previous study of the authors).

A. CONFIDENCE-BASED METHODS

As an example of the use of confidence-based selection, the
studies presented in [21], [26], [31]-[33], [36] used predic-
tion confidence as the unique criterion to select unlabelled
instances. In [31], for instance, the authors combined a Deci-
sion Tree algorithm with a threshold value as a way to define
the number of labelled instances to be selected in a Self-
training method.

An interesting selection strategy was presented in [36],
in which the authors proposed a new semi-supervised learn-
ing algorithm that dynamically selects the most promising
learners for a classification problem from a pool of classifiers
based on a Self-training. They assume a strategy based on
Darwinism, in which a classifier that labels few instances is
not useful for the pool. In other words, they generate a pool of
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classifiers and repeat the classification process, dropping the
worst classifier until only the best classifier for the problem
remains.

A domain-based study was presented in [26], in which a
second-order inference methodology was proposed to take
advantage of the Self-training method to predict the missing
destinations for urban transportation systems. The proposed
method uses two phases: a base learner to predict the missing
destinations based on the statistics of a selected similarity-
based “training set”, and the selection of data with high
prediction confidence to update the training set.

In [37] the authors propose the CPSSDS, which uses the
Self-training in the data stream context. In that approach, the
authors combine inductive conformal prediction of base clas-
sifiers with the Self-training algorithm to determine the most
reliable unlabelled samples. These selected instances were
used to update the model during the evaluation phase. The
results point out that their approach was proposed for improv-
ing the classification performance of the semi-supervised
Self-training approach in non-stationary environments.

In another study, [32], the authors proposed a Self-training
extension based on density peaks of data, being an approach
in which the concept of differential evolution was employed.
It is used as a way to both discover the data structure for
a better classifier training and to improve the placement of
labelled data. In addition to this, the authors carried out an
empirical analysis, comparing the accuracy results obtained
to the standard Self-training version.

Still in the context of confidence-based selection, there are
some attempts to incorporate a confidence-based selection
criterion in the functioning of a Co-training method. For
instance, in [33], the authors proposed a Co-training method
with confidence-based selection for sentiment classification
of Massive Open On-line Course (MOOC) posts. Addition-
ally, this method used a mixed loss function computed over
labelled and unlabelled data. According to the authors, the
results were better than those obtained by methods trained
with massive labelled data.

Another study with Co-training was presented in [24].
In the cited paper, a multi-Co-training method was proposed
and its objective is to improve semi-supervised document
classification performance. This work used three document
representation techniques to increase the diversity of the fea-
tures. The selection criterion of this method is based on the
confidence of a instance. Only the instances with the highest
confidence are added at each iteration.

In [21], several deep neural networks were combined with
the general concept of co-training as a way to create a deep
multi-view of image datasets. A confidence-based selection
criterion was also used to select the unlabelled instances.
According to the authors, the proposed method yielded good
results, when compared to state-of-the-art SSL methods.

B. DISTANCE-BASED METHODS
Semi-supervised methods with distance-based selection are
the ones that apply a distance metric (or a similarity metric) as
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basis to select the instances of the unlabelled set. The studies
presented in [34], [35], [38]-[40] are examples of distance-
based selection approaches for Self-training and Co-training
methods. In [38], for instance, a distance-based Self-training
is proposed. The main aim was to select the images of the
unlabelled set that were more similar to the labelled instances
in order to improve the video classification performance.

Another distance-based Self-training study was proposed
in [34], in which the k-NN classification algorithm k-NN was
used as a noise filter, allowing the aggregation only of the
nearest instances at the selection step. In [39], the authors pro-
posed anew SSL method based on self-training algorithm and
named as RDE_self-training. The main difference between
the original and the proposed approaches is the adjustment
of mislabelled instances (labelling step). This adjustment is
performed over mislabelled samples according to a nearest
neighbour voting rule. They use an SVM classifier to perform
the labelling process, achieving the best accuracy in 15 out of
18 cases.

A different example of distance-based selection for semi-
supervised methods was proposed in [41]. In this paper, the
authors use the neighbourhood close to the decision bound-
ary and assign the label of the selected instances using an
agreement between classifier and neighbourhood. Based on
the Apollonius circle approach, that proposal samples the
instances from unlabelled data and determines the label of
each instance in an iterative process. The results compare
their approach with supervised SVM, standard Self-training,
and other state-of-art methods and state that their proposal
achieves better results and superiority when few labelled
instances.

For Co-training, in [35], the authors proposed a distance-
based selection criterion for Co-training, using the K-means
clustering technique. This technique was applied to select the
closest instances that are capable of representing a cluster.
This concept was then employed to two Co-training steps,
data splitting and subsets crossing over. This cited work
also compared their approach with some state-of-the-art SSL
methods, and, according to the authors, it outperformed them
in all analysed metrics, such as unsupervised accuracy, nor-
malised mutual information and purity.

The authors in [40] proposed a variation of the Self-
Organizing Map (SOM) using the Co-training algorithm
and the Mahalanobis distance metric. In this approach, the
Co-training algorithm is used to create two views of the
same dataset. Then, a clustering process is performed until
convergence. The authors compared their proposal with three
other SOM-based methods, obtaining their proposal the best
results in both multi and single views.

Besides the previously mentioned studies, there are other
SSL studies that seek to strengthen the robustness of SSL
approaches. The improvements can be reached either by
switching the standard selection process [42] or applying
extra apparatus as a way to improve the selection step [32],
[43], [44]. In [42], for instance, an adjustable confidence
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parameter was defined as a threshold to select unlabelled
instances. This parameter varies throughout the iterative pro-
cess and, according to the authors, it improved the perfor-
mance of a Self-training method.

An improved selection approach was also proposed in [45].
The authors proposed a pseudo-label aware robust sample
selection, a hybrid selection that combines the best from all
three most used selection strategies for large-scale datasets
(sample selection approaches, noise-robust loss functions,
and label correction methods) in a framework to achieve
robustness to noisy labels. The Self-training iterative process
performs the pseudo-labelling step to filter the ambiguous
instances. The results show that their proposal obtains sig-
nificant gains over state-of-the-art methods; in some cases,
the gains are 27% in the test dataset.

An example of a more robust Co-training was presented
in [46], which proposed an approach based on entropy and
multi-criteria. That proposal uses two views with the same
amount of information by entropy, then a clustering criterion
and confidence criterion are adopted to select unlabelled data
from both views. The results show that the multi-criteria
approach achieves good classification effectiveness when
compared with state-of-art.

In summary, it is evident that the use of confidence-based
or distance-based selection can be considered robust selection
approaches for wrapper-based SSL methods. Nevertheless,
there is still possible ways to improve the selection pro-
cess and the combination of these approaches can poten-
tially improve the performance of this class of SSL method.
Thus, this extended work proposes selection approaches for
wrapper-based SSL methods, distinctively Self-training and
Co-training methods. In this proposal, the confidence-based
selection criterion (or an agreement-based selection) is com-
bined with a distance metric (distance-based selection) as
a way to define a general parameter for the selection of
unlabelled instances, which has been named as Distance-
Weighted Selection (DwS).

IV. THE PROPOSED APPROACH
As mentioned previously, this paper proposes a different
selection approach for wrapper-based SSL methods. Our
approach uses confidence-based or agreement-based crite-
rion in the selection step. This criterion is then combined with
a distance metric in order to establish the overall parameter to
select unlabelled instances, in an approach called Distance-
weighted Selection (DwS). In [15], a DwS was proposed
that combined a confidence-based criterion with a distance
metric. In this paper, we proposed a new DwS that combines
an agreement-based selection criterion with a distance metric.
The best way to combine a distance metric with any addi-
tional information (selection criterion) is through a weighted
sum. In Equation 1 formally defines how to compute the
Distance-weighted Selection for an instance i (DwS;).

DwS; = max(Vje; DWS;) @€))
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where:
DwS;; = W;; x i 2)
dij
where:

o DwS;; is the distance-weighted selection of instance i to
class j;

o Wj; defines the additional information (selection crite-
rion) for an instance i to the j-th class. In this paper,
we will use prediction confidence and classification
agreement as the selection criterion, W, in this equation;

« Jrepresents the set of classes of a problem;

« dj; represents the distance between the i-th instance and
the centroid of the j-th class.

As it can be observed in Equation 1, the Distance-weighted
Selection of an instance i is defined by the maximum value
among values of all classes. For each class, the Distance-
weighted Selection is defined by multiplying the distance of
this instance to the centroid of a class with its corresponding
weight. In this paper, we will use the Euclidean distance as
djj and it calculates the distance between the i-th instance
and the centroid of the j-th class. Additionally, we will use
two selection criteria as weight (Wj;), prediction confidence
and classification agreement, leading to two DwS versions,
DwS-C and DwS-A. The next subsections will describe the
use of these selection approaches in both Self-training and
Co-training SSL methods.

A. SELF-TRAINING WITH DwS-C

Algorithm 5 shows the functioning of Self-training with
DwS-C (St-dws-C). Regarding the differences between St-std
and St-dws-C, the former uses a confidence-based selection
while the later uses a distance-weighted selection, combining
the confidence-based selection with a distance metric.

Algorithm 5 Self-Training With Distance-Weighted
(St-dws-C)

1 while U is not empty do

2 train C with L;

3 compute dj; for all classes j using L;

4 label U using C;

5 compute DwS-C; for each i within U;

6 select the best labelled-instances of U according
DwS; and join them to L;

7 end

Considering the following illustrative example: suppose
that we have two unlabelled instances u; and u, from U.
Let dy, and d», be the distance from these instances to class
a, respectively. The steps described in Algorithm 5 are used
in this example and it selects only one instance at each iter-
ation. Then, suppose that a classification algorithm assigns
class label “a” for both instances u; and uy (line 4), with
the prediction confidences (conf;;) for these two instances
(u1 and uy) equal to 0.80 and 0.90, respectively. Based on
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these confidence values, we can state that the classification
algorithm is more confident in assigning u» to class a than u;.

Note that if the standard Self-training (St-std) is used, then
uy would be selected. Nevertheless, for St-dws-C, suppose
that the Euclidean distance is used to calculate the distance
between an instance and the centroid of a class and we
obtained di, = 1.58 and dp, = 2.73, for u; and u», respec-
tively. This shows that u#1 is much similar to all instances of
class a than u,. Based on this, we can then calculate DwS ij
for u; and class a, as follows

1
DwS,,, = conf_pred; x 7
1
DwS, . = 0.80 x T35 = 0.5063

For u; and class a, the same equation (Eq. (2)) was applied
and DwS;; = 0.3297. Suppose that the results delivered by
DwS,,, and DwS,,, represent, respectively, the maximum
value achieved by DwS ;, for both instances. In this sense, the
DwS values for u; and u» would be, respectively, 0.5063 and
0.3297. Finally, based on the St-dws-C flow, the instance
selected in the selection step would be u;.

The DwS strategy focus on benefiting the unlabelled
instances which are closer to instances of the same class in the
labelled set. Consequently, we aim at decreasing the selection
of poorly labelled instances, which often happens with semi-
supervised methods, mainly in the beginning of the selection
process. In the empirical analysis of this paper, as in the above
example, the Euclidean Distance between an instance and the
centroid of a class will be used as distance metric, for all
methods that use a DwS approach.

B. SELF-TRAINING WITH DwS-A

In this approach, the Self-training method uses a Distance-
weighted Selection in which an agreement-based selec-
tion criterion is combined with a distance metric. For the
agreement-based criterion, we use the ensemble-based agree-
ment criterion described in Section II-B (EbAL).

As shown in Algorithms 3 and 4, EbAL has two ver-
sions, vl and v2. For each version, we implemented the
use of Selt-training with DwS, leading to St-dws-A(v1) and
St-dws-A(v2) SSL methods. It is important to emphasise that
the difference between St-dws-A(v1) and St-dws-A(v2) lies
only in the labelling phase (the selection phase is the same),
in which St-dws-A(v1l) performs labelling using a single
classifier (C), and St-dws-A(v2) performs labelling using the
output of a classifier ensemble.

C. CO-TRAINING WITH DwS-C

Co-training standard version that uses the DwS-C approach,
named Co-training with Distance-weighted Selection
(Ct-dws-C), follows the same concept used in Self-training.
In addition, DwS-C values are calculated using Egs. (1)
and (2) as well as the confidence prediction as the W;; weight,
for both views (classifiers) of a Co-training method. Then, the
selection is performed based on the calculated DwS-C values.
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After the selection procedure, the same flow of a standard
Co-training method is used by Ct-dws-C, in which unlabelled
instances chosen by one classification algorithm are added to
the labelled set of the other one.

D. CO-TRAINING WITH DwS-A

Co-training with DwS-A versions follow the same idea of
St-dws-A(v1) and St-dws-A(v2), including the EbAL as the
agreement-based selection criterion and a distance metric.
Two versions have been implemented, one for each EbAL
version, Ct-dws-A(v1) and Ct-dws-A(v2). In these two ver-
sions of Co-training, after computing the classification agree-
ment for all instances from the unlabelled set, the DwS
process is applied for each view (classifier). Then, as in the
standard Co-training, the unlabelled instances selected by one
classifier is included in the labelled set of the other classifier.

V. EXPERIMENTAL METHODOLOGY

This section will present a detailed description of the exper-
imental framework performed in this paper. These details
include a description of the datasets employed in the empir-
ical analysis; the baseline methods used in the empirical
analysis; the predictive accuracy measures used to assess the
quality of the analysed methods; and other materials and
methods of this empirical analysis. The methodology and the
experimental framework used in this paper are based on the
experimental methodology presented in [15].

A. THE EXPERIMENTAL FRAMEWORK

The experimental methodology applied in this paper uses the
general functioning of a n-fold cross validation method, with
n = 10. The main steps are described as follows.

1) shuffle the original dataset;

2) divide the dataset into /0 stratified folds;

3) separate one fold for validation (Validation set - V) and
9 folds for training (Training set - 7);

4) divide the Training set into labelled and unlabelled sets.
Usually, we use a small set of labelled instances. In this
paper, the proportion of initially labelled instances (L)
is 10%. Then, the proportion of initially unlabelled
instances (U) is 90%;

5) apply the semi-supervised method to create an ML
model, using L;

6) validate the created ML model with V;

7) repeat steps 3-6 (using a different fold for validation)
until all folds have been used as validation.

The above process is repeated 10 times and a different data
distribution for the 10 folds is applied each time. At the end
of this process, we will obtain 100 values (10 x 10-fold cross-
validation) and the overall result is defined by averaging these
values. Another important aspect of this methodology is that
the proportion between labelled and unlabelled instances is
set to 10% and 90%, respectively. These values were selected
based on previous experiments performed in our former stud-
ies, as in [14], [15]. In these experiments, methods using the
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TABLE 1. Description of the datasets.

No Dataset Inst | Att | Class | Type
dl Abalone 4177 9 28 C,N
d2 Adult 32561 | 15 2 C,N
d3 Arrhythmia 452 | 261 13 N
d4 Automobile 205 26 7 C,N
ds Blood Transfusion Service 748 5 2 N
dé Car 1728 6 4 N
d7 Cnae-9 1080 | 857 9 N
d8 Dermatology 366 35 6 N
d9 Ecoli 336 8 8 C, N
d10 Haberman 306 4 2 N
dll Hill Valley 606 101 2 N
d12 | Indian Liver Patient Dataset (ILPD) 582 10 2 N
d13 King-Rook vs King Pawn 3196 36 2 C
d14 Leukemia Haslinger 100 50 2 N
d15 Madelon 2600 | 501 2 N
d16 Multiple Features Karhunen 2000 64 10 N
d17 Mushroom 8124 | 22 2 C
d18 Musk 6598 | 168 2 N
d19 Nursery 12960 | 9 5 C
d20 Ozone Level Detection 2536 | 73 2 N
d21 Pen-based digits 10992 | 16 10 N
d22 Phishing Website 2456 | 30 3 N
d23 Planning Relax 182 13 2 N
d24 Seeds 210 7 3 N
d25 Semeion 1593 | 256 10 N
d26 Solar Flare 1389 13 6 C N
d27 Solar Flare 1 323 11 8 C,N
d28 Sonar 208 61 2 C,N
d29 Spectf Heart 267 14 2 N
d30 Tic Tac Toe Endgame 958 9 2 C
d31 Twonorm 7400 21 2 N
d32 Waveform 5000 40 3 N
d33 Wilt 4839 6 2 N
d34 Wine 4898 12 11 N
d35 Yeast 1484 9 10 N

proportion 10-90 obtained the best results. Therefore, this
proportion has been selected as part of the configuration for
the experimental methodology of this paper.

B. DATASETS

In this empirical analysis, we aim at assessing the feasibility
of the proposed methods. In order to do this, a wide range
of classification problems is selected and it is represented in
35 datasets, which were selected from a well-known machine
learning repository.! Table 1 illustrates a short description
of the used datasets, including their reference number (No),
name (Dataset), number of instances (Inst), attributes (Att)
and classes, as well as the attribute data types (categorial - C
or Numeric - N). For this extended version, we included more
datasets, seeking to conduct a more exploratory analysis.

C. COMPARATIVE ANALYSIS

As stated earlier, this extended work aims to assess the
effectiveness of our proposed DwS approach. In order to
do so, a comparative analysis will be performed and dis-
cussed in two parts. In the first part, 14 SSL methods are

1UC Irvine Machine Learning Repository. Available on https://archive.ics.
uci.edu/ml/datasets.php
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assessed, our 6 proposed methods, St-dws-C, Ct-dws-C,
St-dws-A(v1l), St-dws-A(v2), Ct-dws-A(vl) and Ct-dws-
A(v2) will be compared to their standard SSL versions, St-
std and Ct-std, as well as to the corresponding versions with
random selection (St-rand and Ct-rand), and their correspond-
ing SSL versions using only the agreement-based selection
criterion, St-EbAL(v1), St-EbAL(v2), Ct-EbAL(v1) and Ct-
EbAL(v2). In the second part, the proposed methods that
achieved the best results in the first part (best Self-training
and best Co-training) will be compared to some existing SSL
methods, GRF, LLGC, YATSI and one supervised method
with two training strategies, J48-10% and J48-90%.

In [15], a comparative analysis included a different SSL
method with a confidence-based selection criterion (Self-
training Flex-Con-C1(s) proposed in [42]). Therefore, for
simplicity reasons, we decided not to include this SSL. method
in the comparative analysis of this paper.

D. TIME EFFICIENCY ASPECTS

The set of experiments did not take into account time-related
aspects since they were performed in different machines with
different hardware resources and with different programming
languages. Nonetheless, it was observed that the Ensemble
Based (EbAL) approaches take 20 to 40 times longer than the
non-EbAL versions, which is justified by the use of a pool
of classifiers in EbAL-based Self-training versions and two
pools of classifiers in the EbAL-based Co-training versions.
Finally, it is important to note that the time spent in an EbAL-
based method is strongly related to the type of classifiers used
in the pool of classifiers. Thus, we recommend the use of
weak classifiers in the composition of the pool. Apart from
this observation, the remaining SSL. methods have a similar
processing time.

E. PREDICTIVE ACCURACY MEASURES

In this experimental analysis, all semi-supervised methods
are assessed using two distinct predictive measures, which
are: classification accuracy and F-measure. The classification
accuracy (or simply accuracy) is defined by dividing the
number of instances that are correctly predicted by the total
number of testing instances, whereas the F-measure (or F-
score) is defined by the harmonic mean between precision
and recall [47] and it can be expressed in Eq. 3. Moreover,
considering the characteristics of the datasets (i.e., multi-
class), we use macro-averaging F-measure.

2 xP=xR)
F-measure = ———— 3)
(P+R)

where:

o P is precision, or the positive predictive value. It can
be defined as the division of true positive instances by
the number of all instances labelled as positive (true and
false); and

o Risrecall and itis defined by the division of true positive
instances by the sum of true positive and false negative
instances.
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In addition, the results delivered by both measures will be
analysed from a statistical perspective. In order to do this, the
Friedman test will be applied, with a significance level equal
to 0.05 (or 5%). The null hypothesis of this test states that
there is no significant difference between the average values
achieved by the evaluated methods. In cases where the null
hypothesis is not accepted, we perform a post-hoc test, which
will be the Nemenyi test [48].

F. METHODS AND MATERIALS

The semi-supervised methods that employ the DwS approach
will apply the Euclidean Distance between an instance and
the centroid of a class as the distance metric (d;; in Eq. 2).
This distance is well-known and it is widely applied in several
ML tasks. Because of this, we decided to use the Euclidean
Distance as the distance metric.

All twelve methods as well as the experimental framework
were developed based on the Weka API [49]. For all semi-
supervised methods analysed in this paper, a Decision Tree
is selected to be the base classifier. In [50], we evaluated
the use of several ML models (k-NN, SVM, MLP and DT)
as base classifiers in SSL methods with automatic selection
procedure. As a result of this evaluation, they all have sim-
ilar performance (based on statistical analysis). Therefore,
this algorithm (DT) was selected due to its simplicity and
efficiency. Nevertheless, any other well-known classification
algorithm can be used as a base classifier. We used the
J48 version which is an implementation of Decision Tree
in Weka. In addition, all hyper-parameters were set to their
default values. The only exception was confidence factor
(depth of tree) that was set to 0.05, defined after an initial
investigation.

The proportion of initially labelled instances (L) is set to
10% of the original training set. Regarding this proportion,
we tested different other values, such as: 5% and 15%, but
none of them produced better results. Therefore, we decided
to present the results of this value. Additionally, in the DwS
methods, the number of instances to be selected at each
iteration is set to 10%. Therefore, these versions select the
10% best-ranked instances according to its DwS values. This
value was also based on initial analysis.

Finally, all experiments were performed on a PC (desk-
top) with the following configuration: Ubuntu 16.04 64 bit;
Intel(R) Xeon(R) CPU E5-4610 v4 - 1.80GHz, 6 core; HD
with 1 TB; and RAM with 24Gb. In fact, as the Transductive
SSL methods (e.g. GRF and LLGC) demand a reasonable
quantity of RAM, we added 16Gb of RAM to the initial
configuration (8Gb) and ran all the experiments, including
the ones previously presented.

1) EXISTING SSL METHODS

For a better understanding of the results obtained by the
proposed methods, a comparative analysis will be conducted,
comparing the obtained result to some existing SSL methods.
In this comparative analysis, We also include a Supervised
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method. Thus, the methods used in the comparative analysis
are the following ones.

o Learning With Local and Global Consistency
(LLGC): this method is a graph-based SSL method
that was originally proposed in [29]. The experiments
with LLGC were performed using a Weka-based version
presented in the Collective Classification Project.> For
this method, all hyper-parameters are set to the default
values;

o Yet Another Two Stage Idea (YATSI): this is a
wrapper-based SSL method and was proposed in [51].
The used YATSI version is also available on Weka
Collective Project. For this method, the number of
nearest neighbours was set to 10 (serKNN(10)), with-
out weights (setNoWeights(true)) and all other hyper-
parameters with default values;

o Gaussian Random Fields (GRF): this is also a graph-
based SSL method and GRF was originally proposed
in [28]. The experiments using GRF were performed
using an R implementation with all hyper-parameters set
to default values;

o Decision Tree: it is a well-known supervised method
available in Weka through its implementation called
J48. Regarding the hyper-parameters, confidence factor
(depth of tree) was set to 0.05, and all others were set to
default values. Moreover, we used two additional train-
ing set configurations for J48 which are: a) it uses 10% of
the original training set as its actual training set (named
as J48-10%); b) it uses 90% of the original training as
its actual training set (named as J48-90%). These two
training set configurations were used as benchmarks for
comparison purposes.

The experimental framework presented in Subsection V-
A is also used for all SSL methods described in this section,
including their parameter settings. The only exception is the
DT method which is a Supervised method and it does not use
the unlabelled set of instances.

VI. EXPERIMENTAL RESULTS

This section presents the experimental results, comparing
the predictive performance of the proposed approach (DwS-
based versions) to eight other baseline methods: (a) St-rand,
(b) St-std, (c) St-EbAL(v1), (d) St-EbAL(v2), (e) Ct-rand,
(f) Ct-std, (g) Ct-EbAL(v1) and (h) Ct-EbAL(v2). In this
paper, a pairwise analysis will be performed, comparing
a DwS method and the corresponding non DwS method,
in a two-by-two basis. The obtained results are presented
in Tables 2 — 5. These tables present average accuracy
and F-measure results for all analysed methods (columns
from 2 to 8) over all 35 datasets (lines). In these tables, the
bold numbers represent the highest value among all analysed
methods for each dataset. In addition, the last three lines of
each table represent: (a) the overall average accuracy over

2available on https://github.com/fracpete/collective-classification-weka-
package
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all datasets (Avg); (b) the overall number of wins for each
method (General wins); and (c) the average ranking over all
datasets for each method (Avg rank).

For simplicity reasons, this analysis will be divided
into two main parts, Self-training and Co-training and the
obtained results are evaluated in the next two subsections.

A. SELF-TRAINING METHOD

1) PREDICTIVE ACCURACY

Table 2 presents the experimental results for Self-training
method using accuracy as metric of performance. According
to Table 2, in general, we can state that St-EbAL(v2) (Self-
training using agreement-based selection criterion) obtained
the best average accuracy (73.89 %) among all other methods,
having the highest number of wins (12 out of 35 datasets), and
also the lowest average ranking (3.03).

When analysing the impact of DwS-C, in comparison with
both standard and random selection self-training versions,
columns (2-4) in Table 2, we can observe that the use of
DwS as a selection criterion had a positive effect in the
selection phase of this SSL method. It is important to note
that, in this comparison, St-dws-C was more accurate than
St-std and St-rand. In addition, St-dws-C achieved a better
ranking position and a higher number of wins than St-std and
St-rand. In other words, St-dws-C outperformed St-std and
St-rand in all three evaluation criteria.

In relation to the use of classification agreement as selec-
tion criterion in the first version (named v1), we compare its
use on its own (column 5) with its use in the DwS approach
(column 6), we can state that its use in the DwS approach had
a positive effect on the Self-training performance, allowing
St-dws-A(v1) to be slightly better than St-EbAL(v1) in terms
of average accuracy, presenting also a better ranking position.
However, St-EbAL(v1) had a higher number of wins than
St-dws-A(v1) (7 against 3 wins). In fact, we can observe
that St-EbAL(v1) is more unstable than St-dws-A(v1) with
a higher accuracy variation throughout the analysed datasets.

Although the use of DwS-A had a positive effect on the
first DwS-A version, a similar pattern has not been noticed
in the second DwS-A version. When comparing the results
presented in columns 7 (St-EbAL(v2)) and 8 (St-dws-A(v2)),
we can observe St-EbAL(v2) outperformed St-dws-A(v2) in
all three evaluation criteria. We believe that this behaviour
pattern is due to the fact that the performance of St-EbAL(v2)
was already very high, not allowing the proposed combina-
tion any opportunity for improvement.

In summary, based on Table 2, we can state that DwS-based
methods had better performance in 2 analysed scenarios (out
of 3), which may indicate that our proposal has enhanced the
accuracy performance of the Self-training SSL method.

Figure 1 presents the CD diagram of the Self-training
results (average accuracy) presented in Table 2. In this
diagram, the method with the lowest average ranking is
St-EbAL(v2) (the leftmost method), followed by St-dws-C
and St-dws-A(v2). Of the top four methods, three of them
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TABLE 2. Average accuracy for self-training methods.

St- St- St- St- St- St- St-

rand std dws-C | EbAL(vl) | dws-A(vl) | EbAL(v2) | dws-A(v2)
d1 21.31% | 20.04% | 21.81% 22.96% 22.60% 22.89% 23.41%
d2 84.24% | 84.58% | 84.29% 84.18% 84.43% 84.18% 83.30%
d3 54.67% | 54.89% | 59.30% 56.88% 57.54% 54.62% 55.75%
d4 41.60% | 41.64% | 42.05% | 43.98% 40.52% 37.43% 38.95%
d5 76.07% | 76.73% | 76.47% 75.53% 76.20% 75.94% 75.26%
dé 76.39% | 74.76% | 76.22% | 78.18% 76.45% 78.12% 77.37%
a7 67.69% | 68.98% | 69.17% 70.19% 68.98% 71.67% 76.67 %
d8 72.97% | 73.49% | 78.94% 74.32% 73.52% 77.28% 76.77%
a9 73.78% | 74.08% | 74.98% 74.10% 72.91% 77.05% 78.88%
d10 72.87% | 74.19% | 74.26% | 74.74% 73.84% 72.53% 74.20%
dil 49.75% | 46.46% | 50.90% 47.52% 50.24% 50.58% 49.26%
d12 66.55% | 67.77% | 64.50% 64.14% 66.22% 71.70% 53.03%
d13 95.28% | 94.74% | 95.718% | 96.37% 95.87% 94.24% 95.99%
d14 73.00% | 60.00% | 73.00% 69.00% 73.00% 69.00% 62.00%
d15 54.15% | 53.23% | 55.85% 53.19% 58.12% 55.23% 52.58%
d16 66.05% | 63.95% | 69.95% 65.95% 70.30% 80.40% 81.35%
d17 98.77% | 98.84% | 98.87% 98.77% 99.37% 99.02% 99.43%
d18 86.12% | 88.03% | 88.65% 85.68% 85.80% 93.36% 90.53%
d19 89.79% | 89.81% | 89.84% 89.79% 89.75% 89.92% 88.34%
d20 96.96% | 97.04% | 96.96% 96.65% 96.96% 97.12% 96.14%
d21 89.05% | 89.05% | 88.32% 89.26% 89.48% 91.09 % 88.56%
d22 92.16% | 91.92% | 92.09% 91.96% 92.02% 92.68% 92.57%
d23 57.78% | 57.69% | 55.50% 60.26% 58.86% 70.47 % 69.24%
d24 80.95% | 79.52% | 87.62% 88.10% 84.29% 87.14% 85.71%
d25 53.61% | 52.35% | 56.88% 51.53% 57.81% 69.37% 70.25%
d26 71.20% | 70.70% | 71.49% 70.05% 71.06% 72.64% 71.99%
d27 88.90% | 88.90% | 88.90% | 88.90% 88.90% 88.25% 87.94%
d28 66.69% | 65.26% | 64.79% 64.31% 63.40% 60.64% 67.50%
d29 72.80% | 67.62% | 69.62% | 74.46% 68.50% 72.79% 62.45%
d30 68.05% | 66.07% | 68.05% 66.60% 68.05% 70.36% 68.37%
d31 80.61% | 79.82% | 82.55% 80.68% 81.58% 85.05% 84.97%
d32 71.42% | 69.84% | 74.72% 70.22% 74.74% 76.52% 74.28%
d33 96.73% | 96.67% | 95.89% 96.61% 96.42% 94.61% 94.79%
d34 47.35% | 43.75% | 44.42% 49.88% 49.04% 51.04% 47.69%
d35 49.33% | 49.73% | 52.29% 49.67% 48.85% 51.08% 52.76 %
\ Avg \ 71.56% \ 70.63% | 72.43% 71.85% \ 72.16% \ 73.89% \ 72.81% \

[ 3 [ 5 [ 5 7 | 3 [ 1 [ 3
\ Rank \ 4.37 \ 491 \ 3.31 \ 4.09 \ 3.80 \ 3.03 \ 3.77 \

Dataset

CcD

StEbAL(v2) - St-EbAL(v1)

St-dws-C St-rand

St-dws-Av2) —— St-std

St-dws-A(v1)

FIGURE 1. Critical difference diagram presenting average accuracy for
self-training methods.

contain the proposed selection approach, which is a promis-
ing result. Additionally, when comparing St-dws-C and
St-std, the statistical test detected difference in performance,
with St-dws-C providing more accurate results.

2) F-MEASURE

Table 3 presents the experimental results for Self-training
method using F-measure as metric of performance.
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In general, we can state that St-dws-C (one of the proposed
methods) obtained the best F-measure values (0.5862) among
all other methods, and the lowest average ranking (2.74).
However, regarding the number of wins, St-dws-A(v2) pro-
vided a higher number of wins, 10 out of 35.

When analysing the results of columns (2-4) in Table 3
(St-rand, St-std and DwS-C), the use of DwS as a selection
criterion had a positive effect on the selection procedure of
Self-training, when comparing St-std and St-rand against St-
dws-C. In this comparison, note that St-dws-C was better
than St-std and St-rand in all three evaluation criteria, average
F-measure values, ranking position and number of wins
(8 out of 35).

Regarding the use of classification agreement in the first
DwS-A version, columns 5 (St-EbAL(v1)) and 6 (St-dws-
A(vl)), we can state that the use of DwS-A as a selec-
tion criterion made St-dws-A(v1) deliver a slightly better
than St-EbAL(v1), in all three evaluation criteria, average
F-measure values, ranking position and number of wins
(6 out of 35).

Finally, when comparing the use of classification agree-
ment in the second DwS-A version, columns 7 (St-EbAL(v2))
and 8 (St-dws-A(v2)), we can state that the use of DwS-A asa
selection criterion improved the performance of the selection
procedure, leading to an increase in performance, ranking and
number of wins.

In summary, based on Table 3, we can state that DwS-
based methods had better F-measure performance in all three
analysed scenarios, which may indicate that our proposal
has enhanced the F-measure performance of the Self-training
SSL method.

Figure 2 presents the CD diagram for the Self-training
results (average F-measure) presented in Table 3. In this
figure, the leftmost method, St-dws-C obtained the lowest
average ranking of all analysed methods. From this figure,
we can also observe that all three proposed approaches
are located in the left part of this diagram, showing that
the proposed approaches can help the self-training method
to become more effective in imbalanced datasets. Addition-
ally, when comparing St-dws-C against St-std and St-rand,
the statistical test detected difference in performance, with
St-dws-C providing higher F-measure results.

B. CO-TRAINING METHOD
1) PREDICTIVE ACCURACY
Table 4 presents the experimental results for the Co-training
method using accuracy as metric of performance. From this
table, we can state that Ct-EbAL(v2) obtained the best results
for all three evaluation criteria, the highest average accuracy
(66.62% ), the highest number of wins (14 out of 35 datasets),
and the lowest average ranking (2.69).

When analysing DwS-C, in comparison with the standard
Co-training and the one with random selection (columns 2-4),
we can see that the use of DwS as a selection criterion had
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TABLE 3. Average F-measure for self-training methods.

TABLE 4. Average accuracy for co-training methods.

Dbataset | SF St- St- St- St- St- St- Dataset | CF Ct- Ct- Ct- Ct Ct Ct-

rand std dws-C | EbAL(v1) | dws-A(vl) | EbAL(v2) | dws-A(v2) rand std dws-C | EbAL(v1) | dws-A(vl) | EbAL(v2) | dws-A(v2)
dl | 0.0920 | 0.0840 | 0.0920 | 0.0890 0.0970 0.0760 0.0840 di | 15.72% | 20.17% | 21.14% | 2092% | 22.88% | 2233% | 2038%
d2 0.7713 [ 0.7770 | 0.7712 0.7700 0.7720 0.7650 0.7500 dz 75.92% | 82.00% | 82.10% | 81.74% 76.90% 82.24% 71.44%
a3 0.1761 | 0.1540 | 0.1890 0.1810 0.1940 0.0780 0.0730 d3 56.82% | 56.48% | 57.50% 56.36% 57.16% 58.98% 57.61%
a4 0.1876 | 0.1880 | 0.2220 0.2010 0.1950 0.2020 0.1950 d4 26.50% | 38.00% | 37.50% 33.25% 32.25% 38.00% 26.25%
a5 04419 | 0.5490 | 0.4550 0.4580 0.4320 04310 0.5830 ds5 76.00% | 73.13% | 74.87% 73.60% 73.47% 76.00 % 75.07%
d6_ | 03671 | 0.3500 | 0.3735 | 0.3820 03730 0.3600 0.4810 6 | 69.94% | 7509% | 74.51% | 75.12% | 6994% | 7512% | 74.31%
d7__ | 07461 | 0.7530 | 0.7745 | 07570 | 07480 | 0.7760 | 0.7970 47 | 1L11% | 5440% | 57.08% | 5542% | 4463% | 49.58% | 1079%
48 | 0.6069 | 0.6460 | 0.7165 | 0.6080 0.6380 0.6420 0.6280 d8 28-3227‘7 15:56% | 7625% 72-0‘)‘? 1236% | 7764% | 75.28%
d9 | 0.4096 | 0.4000 | 0.4152 | 0.4090 0.4070 03470 03830 ”'190 42'; % 76 ; ‘152 ‘;” 62‘44 % 6~] ‘4;‘ % 52'22 % | 6 i ;2 % 6‘;'2]2%
d10 | 05744 | 0.5100 | 0.5723 | 0.4720 05450 0.4790 0.4740 d 7333% | 74.16% | 72.00% | T183% | 73.33% | 7233% | 73.16%
0330 03300 o2is0 04140 09580 05090 04750 d11 | 50.00% | 49.06% | 49.10% | 49.96% | 48.61% | 4951% | 49.38%
S oasss 03500 103690 04880 05090 3390 16330 di2 | 71.19% | 61.71% | 68.05% | 6627% | 7L.19% | 70.76% | 68.48%
a3 109530 " 00150 | 09350 | 0.9640 3350 e o d13 | 52.19% | 7436% | 7421% | 7459% | 5711% | 7420% | 12.27%

: 2000 | 9 T gt s - d1d | 53.00% | 6550% | 69.00% | 6550% | 61.00% | 62.00% | 74.00%
Ll 0.7106 | 0.6330 | 0.7110 | 0.6580 0.711 0.6840 05990 d15 | 4935% | 51.98% | 52.80% | 5237% | 50.77% | 56.50% | 52.71%
di5 | 05419 | 0.5320 | 0.5580 | 0.5330 0.5880 0.5650 04980 d16 | 1530% | 44.20% | 49.40% | 45.42% | 30.15% | 51.78% | 55.18%
d16 | 0.6614 | 0.6510 | 0.7030 | 0.6660 07050 0.8070 0.8110 d17 | 51.78% | 89.68% | 90.56% | 89.56% | 79.53% | 89.55% | 89.06%
d17 | 0.9878 | 0.9890 | 0.9890 | 0.9880 0.9940 0.9900 0.9940 dl8 | 84.56% | 90.09% | 91.18% | 90.54% 8021% | 92.02% 89.05%
di8 | 0.5876 | 0.6730 | 0.7070 | 0.5480 0.6490 0.8630 0.7990 a9 1 32.02% | 6201% 1 6158% | 62.83% | 33.54% | 6241% | 6141%
d19 | 0.5456 | 0.5700 | 0.5730 | 0.5460 0.5510 0.5530 0.5540 d20 | 97.23% | 97.03% | 97.03% | 96.87% 97.23% 97.23% 95.61%
d20 0.4923 | 0.5180 | 0.4920 0.5290 0.4920 0.4930 0.5060 daz1 22.80% | 78.87% | 78.73% 78.80% $2.11% 81.33% 18.02%
d21 | 0.8909 | 0.8910 | 0.8960 | 0.8930 0.8950 0.9130 0.8910 22 | 55.70% | 81.95% | 82.28% | 8291% | 8242% | 8134% | 81.77%
d22 | 0.9204 | 0.9180 | 0.9200 | 09190 0.9190 0.9260 0.9250 23 | 67.78% | 6694% | 60.56% | 6472% | 6444% | 69.44% | 69.16%
d23 | 04361 | 0.4590 | 0.4200 | 04520 0.4700 0.4100 0.4230 24 | 34.08% | 75.00% | 7643% | 7643% | 7405% | 74.76% | 85.00%
d24 | 0.8099 | 0.8060 | 0.8770 | 0.8770 0.8460 0.8710 0.8590 25 | 15.60% | 41.76% | 43.18% | 4456% | 3431% | 50.60% | 5034%
d25 | 0.5479 | 0.5310 | 0.5770 | 05260 0.5830 0.7020 0.7120 26 | 23.93% | 53.46% | 53.00% | 52.64% | 3675% | 5343% | 53.86%
d26 | 0.5551 | 0.5720 | 0.5950 | 0.5400 0.5550 0.5670 0.5440 a27 | 87.88% | 87.73% | 87.42% | 87.88% | 87.88% | 87.88% | 8621%
d27 | 0.1175 | 0.1180 | 0.1180 | 0.1180 0.1180 0.1250 0.1310 28 | 50.95% | 63.81% | 55.00% | 58.09% | 5738% | 54.16% | 51.86%
d28 | 0.6652 | 0.6490 | 0.6550 | 0.6410 0.6450 0.6350 0.6810 d29 [ 73.53% | 6647% | 67.65% | 70.00% | 7191% | 7294% | 6647%
d29 | 0.6451 | 0.6020 | 0.6430 | 0.6810 0.6180 0.5960 0.7100 d30 | 65.62% | 68.02% | 67.86% | 67.34% 64.16% 67.29% 65.52%
d30 0.5887 | 0.4410 | 0.5880 0.5090 0.5880 0.6620 0.5310 d31 54.60% | 79.05% | 81.58% 80.37% 81.93% 84.80% 84.60%
d31 | 0.8064 | 0.8000 | 0.8260 | 0.8070 0.8160 0.8510 0.8500 d32 | 33.25% | 5145% | 54.32% | 5244% | 3347% | 54.10% | 53.81%
d32_ | 0.7149 | 0.6980 | 0.7500 | 0.7030 0.7500 0.7720 0.7590 33 | 94.63% | 95.70% | 96.18% | 9578% | 94.63% | 9463% | 94.69%
d33_ | 0.8165 | 0.8080 | 0.7870 | 08110 | 0.7950 | 04860 | 0.5370 d34 | 44.90% | 43.96% | 45.03% | 45.78% | 45.76% | 4697% | 4686%
B34 01589 T 0.1420 | 0.1460 | 0.1410 01490 0.1080 0.1300 35 | 3069% | 43.77% | 4185% | 41.16% | 31.10% | 38.22% | 41.47%
d35 | 03284 | 0.3440 | 0.3600 | 03300 | 03330 | 03160 | 0.3500 [ Avg [ S116% [ 6574% [ 6601% [ 6570% [ 61.03% | 66.62% [ 6335% |

[ Avg [ 05610 [ 0.5598 | 0.5862 | 05603 | 05750 | 05698 | 05797 ] Wins [ 6 [ 5 [ 4 [ 5 [ 5 [ 14 ] 25 |
T T T B S I R N U [ Rank | 540 | 371 | 337 | 351 | 466 | 260 | 391 |
| Rank | 454 | 457 | 274 [ 437 | 351 | 409 | 366 |
o) (Ct-EbAL(vl) and Ct-EbAL(v2)) outperformed the DwS-
B . .
A versions (Ct-dws-A(vl) and Ct-dws-A(v2)) in all three
2 3 4 5 evaluation criteria, average accuracy, ranking position and
‘ : ‘ ‘ number of wins.

In summary, based on Table 4, we can state that DwS-
based methods had better performance in only 1 analysed
scenario (out of 3). Unlike Self-training, our proposal did not

Stdws-C SHEbAL{v) improve the performance of the selection procedure for the
St-dws-AW1) —— ] Strand Co-training SSL method.
Staws AK2) sted Figure 3 presents a CD diagram for the Co-training results

St-EbAL(v2)

FIGURE 2. Critical difference diagram presenting average F-measure for
self-training methods.

a positive effect in the Co-training selection procedure, and
this can be observed when comparing Ct-std against Ct-dws-
C and Ct-rand. In this comparison, we can observe that Ct-
dws-C is more accurate than Ct-std and Ct-rand, and also had
a lower ranking position. However, it delivered a slight lower
number of wins (4 against 5 and 6, respectively).

Regarding both DwS-A versions, columns (5-8), compar-
ing Ct-EbAL(vl) against Ct-dws-A(vl) and Ct-EbAL(v2)
against Ct-dws-A(v2), unlike DwS-C, the use of DwS as
a selection criterion deteriorated the performance of the
selection procedure of the Co-training method. In this com-
parison, for both versions, the agreement-based versions
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(average accuracy) showed in Table 4. In this diagram, the
leftmost method, Ct-EbAL(v2), obtained the lowest average
ranking of all analysed methods. From this diagram, we can
also observe that Ct-dws-C is the second method, from the
left to right, showing that this method has the second lowest
ranking. Nevertheless, the statistical test detected statistically
significant difference, only in relation to Ct-rand.

2) F-MEASURE
Table 5 presents the experimental results for Co-training
method using F-measure as metric of performance. From a
general perspective, we can state that Ct-dws-C obtained the
best average F-measure (0.5203) among all other analysed
methods, having also the highest number of wins (11 out of
35) and providing the lowest average ranking (2.49).

When analysing DwS-C, comparing it to the standard Co-
training and the one with random selection (columns 2-4),
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Ct-EbAL(v2) Ct-dws-A(v2)

Ct-dws-C

Ct-dws-A(v1)

Ct-EbAL(v1) — Ctrand

Ct-Ctd

FIGURE 3. Critical difference diagram presenting average accuracy for
co-training methods.

we can observe an improvement in performance caused by the
use of DwS as a selection criterion, when comparing Ct-std
and Ct-rand against Ct-dws-C. Additionally, it is possible to
observe that Ct-dws-C outperformed Ct-std and Ct-rand in all
three evaluation criteria, F-measure values, ranking position
and number of wins (11 against 4 and 0, respectively).

Regarding both DwS-A versions, columns 5 and 6
(Ct-EbAL(vl) against Ct-dws-A(vl)) and 7 and 8
(Ct-EbAL(v2) against Ct-dws-A(v2)), we can state that the
use of DwS as a selection criterion did not have a positive
effect on the F-measure performance. In this table, it can be
seen that Ct-EbAL(v1) overcomes Ct-dws-A(v1) in average
F-measure, ranking position and number of wins. Moreover,
Ct-dws-A(v2) overcomes Ct-EbAL(v2) in the number of
wins and average ranking. However, Ct-EbAL(v2) delivers
a much higher F-measure value than Ct-dws-A(v2).

In summary, based on Table 5, we can state that DwS-
based methods had better performance in 1 out of 3 anal-
ysed scenarios. However, it is important to emphasise that
the improvement in performance has always been happening
when using the DwS-C selection criterion and, in some cases,
in the first DwS-A version.

Figure 4 presents a CD diagram for the Co-training results
(average F-measure) showed in Table 5. The leftmost method
of this diagram, Ct-dws-C, obtained the lowest average rank-
ing of all. This method uses one of the proposed approaches
and it is statistically better than Ct-dws-A(vl) and Ct-rand.
Although Ct-dws-C was not statistically better than Ct-dws-
A(v2) as it was against Ct-dws-A(vl), we can state that
Ct-dws-C obtained the best results among all three DwS-
based methods. Therefore, the best combination for the
Co-training method, assessing with F-measure, is a
confidence-based selection criterion combined with a dis-
tance metric.

C. COMPARATIVE ANALYSIS

Based on the extensive analysis carried out over the experi-
mental results presented in Sections VI-A and VI-B, we were
able to select the best two proposed methods (one for Self-
training and one for Co-training), according to their accuracy
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TABLE 5. Average F-measure for co-training methods.

Dataset Ct- Ct- Ct- Ct- Ct- Ct- Ct-
rand std dws-C | EbAL(v1) | dws-A(vl) | EbAL(v2) | dws-A(v2)
d1 0.0097 | 0.0790 | 0.0834 0.0812 0.0722 0.0669 0.0707
d2 0.4316 | 0.7334 | 0.7360 0.7292 0.5499 0.7387 0.5991
d3 0.0557 | 0.1613 | 0.1595 0.1699 0.1621 0.0944 0.0692
d4 0.0776 | 0.2340 | 0.2213 0.2102 0.1989 0.1726 0.1512
ds 0.4318 | 0.4624 | 0.4842 0.4756 0.4423 0.4318 0.4816
dé 0.2058 | 0.3012 | 0.2948 0.3046 0.2058 0.2982 0.2989
d7 0.0224 | 0.6138 | 0.6381 0.6207 0.4889 0.5540 0.0258
d8 0.0868 | 0.6789 | 0.6704 0.6564 0.5924 0.6900 0.6363
d9 0.0761 | 0.2458 | 0.2839 0.2638 0.1500 0.2212 0.2577
d10 0.4231 | 0.4869 | 0.4425 0.4912 0.4231 0.4252 0.4532
d11 0.3333 | 0.3488 | 0.4586 0.3488 0.4510 0.3750 0.4660
d12 0.4158 | 0.4436 | 0.4670 0.5107 0.4348 0.4490 0.4795
d13 0.3429 | 0.7531 | 0.7531 0.7556 0.5139 0.7527 0.7361
di4 0.4610 | 0.6567 | 0.6995 0.6567 0.6141 0.5738 0.6827
d15 0.4934 | 0.5199 | 0.5286 0.5238 0.5078 0.5515 0.4600
d16 0.1532 | 0.4545 | 0.5035 0.4635 0.3076 0.5318 0.5708
d17 0.3412 | 0.9047 | 0.9118 0.9016 0.8152 0.9034 0.8997
d18 0.4776 | 0.8029 | 0.8270 0.8064 0.7689 0.8336 0.7643
d19 0.0979 | 0.3648 | 0.3621 0.3730 0.1368 0.3664 0.3684
d20 0.4930 | 0.4925 | 0.4953 0.4921 0.4930 0.4930 0.4994
d21 0.2271 | 0.7909 | 0.7893 0.7904 0.8256 0.8181 0.1967
d22 0.3577 | 0.8178 | 0.8209 0.8285 0.8238 0.8119 0.8179
d23 0.3992 | 0.4637 | 0.4383 0.4728 0.4214 0.4154 0.4406
d24 0.1942 | 0.7573 | 0.7669 0.7841 0.7398 0.7527 0.8516
d25 0.1460 | 0.4221 | 0.4330 0.4488 0.3396 0.4967 0.4977
d26 0.0642 | 0.4122 | 0.4093 0.3870 0.2564 0.3946 0.4066
d27 03118 | 0.3115 | 0.3155 0.3118 0.3118 0.3118 0.3172
d28 0.3980 | 0.6445 | 0.5552 0.5864 0.5679 0.5175 0.5691
d29 0.4237 | 0.5807 | 0.6328 0.6228 0.6019 0.5746 0.6324
d30 0.3962 | 0.5289 | 0.5672 0.5651 0.4902 0.5634 0.5490
d31 0.4362 | 0.7914 | 0.8160 0.8041 0.8200 0.8483 0.8462
d32 0.1976 | 0.5137 | 0.5440 0.5230 0.1672 0.4921 0.4661
d33 0.4862 | 0.6507 | 0.6835 0.6610 0.4862 0.4862 0.5165
d34 0.0885 | 0.1994 | 0.2120 0.1966 0.1412 0.1421 0.1620
d35 0.0469 | 0.2310 | 0.2072 0.2100 0.0474 0.1703 0.2071
[ Avg [02744 [ 05101 [ 05203 | 05151 | 04391 | 04948 | 04699 |
[[Wins T 0 [ 4 T 11 | 8 [ 1 [ 5 [ 6 \
| Rank | 654 | 343 | 249 [ 271 | 48 | 38 [ 354 |
cD
—_—
2 3 4 5 6 7
| |
Ct-dws-C ——— Ct-EbAL(v2)
Ct-EbAL(v1) Ct-dws-A(v1)
ctCd ——— —— Ctrand

Ct-dws-A(v2)

FIGURE 4. Critical difference diagram presenting average F-measure for
co-training methods.

and F-measure performances. The best proposed methods
are St-dws-A(v2) and Ct-dws-C. These two methods will be
compared to the existing methods discussed in Section V-F1,
which are: LLGC, YATSI, GRF, J48-10% and J48-90%.

1) PREDICTIVE ACCURACY

Table 6 presents the average accuracy results for all seven
methods (i.e., three existing SSL methods, two supervised
methods and the two proposed methods). In general, we can
state that J48-90% obtained the best average accuracy
(79.70%) among all analysed methods, having the highest
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number of wins (24 out of 35 datasets), and also the low-
est average ranking (1.86). This result was expected mainly
because J48-90% is a supervised method using a training set
of 90% of the original training set, which is nine times bigger
than the initial training set of the SSL methods.

When analysing our two proposal methods, we can state
that St-dws-A(v2) obtained the best results among them,
including average accuracy, number of wins and average
ranking. In this sense, we will compare St-dws-A(v2) (i.e.,
best proposed method) against the existing SSL methods
(columns 2-4 and 7). We can observe that St-dws-A(v2)
obtained the best average accuracy (72.81%) and the lowest
average ranking (3.40). However, it did not obtained the high-
est number of wins, being only the third method according to
this metric (3 out of 35 datasets).

Regarding the overall performance of the existing SSL
methods (columns 2-4), we can state that YATSI obtained
the best average accuracy (72.67%) and the lowest average
ranking (3.46). But it was only second in number of wins (4
out of 35 datasets). Moreover, GRF obtained the highest num-
ber of wins (5 out of 35 datasets). However, its performance
in average accuracy and average ranking was poor (56.32%
and 5.06, respectively). Finally, LLGC was the overall worst
baseline method in all three metrics (50.30%), (5.51) and
3 wins.

Figure 5 presents the CD diagram for the average accuracy
results presented in Table 6. As we can see, the leftmost
method, J48-90% obtained the lowest average ranking of all
analysed methods. From this figure, we can also observe that
St-dws-A(v2) is the second best method located in that dia-
gram. Additionally, when comparing St-dws-A(v2) against
the existing methods, we can observe that the statistical test
produced two statistically significant results: St-dws-A(v2)
was significantly better than both LLGC ((p-value = 0.0007)
and GRF (0.0226). Finally, according to the statistical test,
there is no statistical difference between J48-90% (i.e., the
overall best method) and St-dws-A(v2) (i.e., best proposed
method). This is a promising result since it shows that our
proposed method delivered similar performance to a super-
vised method that has a training set nine times bigger than its
initial training set, from a statistical point of view.

2) F-MEASURE PERFORMANCE OF THE BEST METHODS
Table 7 presents the average F-measure results for the afore-
mentioned methods. Once again, J48-90% delivered the best
results, achieving 0.6538 in average F-measure, 2.11 in
average ranking, and number of wins equals to 18, out of
35 datasets.

When analysing our two proposed methods, St-dws-A(v2)
also obtained the best results, including average F-measure,
number of wins and average ranking. Regarding St-dws-
A(v2) compared to the existing SSL methods, we can state
that St-dws-A(v2) achieved the best average F-measure
(0.5797) and the second lowest average ranking (3.49). How-
ever, it did not obtained the highest number of wins, being
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TABLE 6. Average accuracy for the best proposed method and baselines.

Dataset GRF LLGC | YATSI | J48-10% | J48-90% | St-dws-A(v2) | Ct-dws-C
d1 3.21% 16.49% | 20.76% | 21.38% 21.88% 23.41% 21.14%
d2 5538% | 76.41% | 82.06% | 84.26% 85.68% 83.30% 82.10%
d3 57.05% | 54.24% | 54.90% | 57.32% 65.53% 55.75% 57.50%
d4 3.81% 31.17% | 35.64% | 43.07% 79.52% 38.95% 37.50%
ds 73.60% | 76.20% | 76.07% | 76.07% 76.47 % 75.26% 74.87%
dé 69.94% | 70.08% | 77.43% | 76.45% 87.38% 77.371% 74.51%
d7 72.68% 8.04% | 66.20% | 67.41% 87.50% 76.67% 57.08%
d8 82.43% | 30.89% | 83.88% | 74.05% 93.99 % 76.71% 76.25%
d9 67.50% | 42.52% | 80.34% | 73.50% 80.02% 78.88% 63.44%
d10 71.61% | 73.22% | 713.86% | 72.23% 71.28% 74.20% 72.00%
di1 52.79% | 49.51% | 49.75% | 49.75% 47.36% 49.26% 49.10%
d12 66.95% | 71.19% | 56.73% | 66.39% 67.26% 53.03% 68.05%
d13 22.78% | 52.25% | 94.43% | 95.40% 99.16% 95.99% 74.27%
di4 97.00% | 45.00% | 61.00% | 73.00% 77.00% 62.00% 69.00%
d15 48.27% | 48.62% | 52.77% | 52.58% 69.27% 52.58% 52.80%
d16 10.75% 7.40% | 84.25% | 67.55% 81.30% 81.35% 49.40%
d17 100.00% | 50.90% | 99.21% | 98.88% | 100.00% 99.43% 90.56%
d18 55.36% | 84.59% | 90.01% | 85.60% 99.95% 90.53% 91.18%
d19 40.31% | 33.41% | 90.37% | 89.79% 95.63% 88.34% 61.58%
d20 98.35% | 97.12% | 96.92% | 96.96% 97.00% 96.14% 97.03%
d21 11.11% | 10.29% | 85.08% | 89.15% 96.03% 88.56% 78.73%
d22 56.09% | 56.09% | 92.47% | 92.14% 94.94% 92.57% 82.28%
d23 69.44% | 71.49% | 63.77% | 56.08% 71.49% 69.24% 60.56%
d24 90.96% | 34.29% | 86.67% | 80.48% 90.95% 85.71% 76.43%
d2s 17.11% 10.42% | 70.81% | 53.42% 74.76 % 70.25% 43.18%
d26 5521% | 29.23% | 71.49% | 71.20% 88.90% 71.99% 53.00%
d27 88.49% | 88.90% | 88.90% | 88.90% 75.31% 87.94% 87.42%
d28 42.38% | 48.60% | 63.93% | 64.31% 72.19% 67.50% 55.00%
d29 58.82% | 73.09% | 70.50% | 72.23% 83.97% 62.45% 67.65%
d30 68.96% | 65.34% | 70.98% | 68.05% 83.82% 68.37% 67.86%
d31 76.41% | 50.34% | 84.76% | 80.82% 84.97% 84.97% 81.58%
d32 70.02% | 32.32% | 71.90% | 71.44% 75.48% 74.28% 54.32%
d33 94.32% | 94.61% | 94.71% | 96.84% 98.18% 94.79% 96.18%
d34 0.31% 44.86% | 47.16% | 47.12% 56.96 % 47.69% 45.03%
d3s 21.81% | 3147% | 47.65% | 49.06% 58.22% 52.76% 41.85%
Avg 56.32% | 50.30% | 72.67% | 71.51% 79.70% 72.81% 66.01%
win 5 3 4 1 24 3 0
Avg rank 5.06 551 3.46 3.71 1.86 3.40 4.71
CD

1 2 3 4 5 6
| | L L
J48_90 Ct-dws-C
St-dws-A(v2) GRF
Yatsi —— LLGC
J48_10

FIGURE 5. Critical difference diagram presenting average accuracy for the
best proposed method and baselines.

only the third method according to this metric (2 out of
35 datasets).

In relation to the existing SSL methods, we can state
that YATSI obtained the best average F-measure (0.5793)
and the lowest average ranking (3.20). But it was only
second in number of wins (4 out of 35 datasets). More-
over, once again, GRF obtained the highest number of wins
(11 out of 35 datasets). However, it was the fourth in average
F-measure (0.5369) and the third in average ranking (3.80).
Finally, LLGC was the overall worst baseline method in all
three metrics (0.2476), (6.71) and O wins.

Figure 6 presents the CD diagram for the average
F-measure results presented in Table 7. As we can see that
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J48-90% obtained the lowest average ranking of all analysed
methods (the leftmost method). From this figure, we can also
observe that St-dws-A(v2) is the third best method located
in that diagram. Additionally, when comparing St-dws-A(v2)
against the existing methods, we can observe that the sta-
tistical test produced one statistically significant result:
St-dws-A(v2) was significantly better than LLGC (p-value =
0.0001). Finally, according to the statistical test, there is no
statistical difference between J48-90% (i.e., the overall best
method), YATSI (i.e., the second best method) and St-dws-
A(v2) (i.e., best proposed method).

2 3 4 5 6 7
[ | 1
J48_90 J48_10
Yatsi ——— Ct-dws-C
St-dws-A(v2) L— LLGC
GRF

FIGURE 6. Critical difference diagram presenting average F-measure for
the best proposed method and baselines.

D. DISCUSSION OF THE OBTAINED RESULTS

In the previous section, we conducted a robust analysis to
investigate the benefits of using a combination of a distance
metric with a selection criterion. In order to investigate this
combination, we implemented different versions of Self-
training and Co-training methods. This section presents an
analysis of the obtained results.

When analysing the experimental results presented in
Tables 2 and 3, we can conclude that the DwS-based
Self-training versions obtained better results than the cor-
responding versions without this selection criterion (5 out
of 6 analysed scenarios for both accuracy and F-measure).
It is important to emphasise that St-dws-C uses the proposed
approach, showing the importance of combining a selection
criterion with a distance metric in the performance of the Self-
training method.

In relation to the Co-training methods, the experimental
results presented in Tables 4 and 5 show that the DwS-based
Co-training versions had better results in only 3 cases (out 6),
when compared to their corresponding versions. It is impor-
tant to highlight that the Co-training with the best F-measure
values, Ct-dws-C, uses the proposed approach and it shows
the importance of combining a selection criterion with a
distance metric in the performance of the Co-training method.
However, when compared to the Self-training methods, the
use of the DwS approach did not cause a stronger impact
in the performance of the Co-training methods. As pre-
viously mentioned, Co-training uses two subsets (views)
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TABLE 7. Average F-measure for the best proposed method and
baselines.

Dataset | GRF | LLGC | YATSI | J48-10% | J48-90% | St-dws-A(v2) | Ct-dws-C
dl__ | 0.0492 | 0.0101 | 0.0825 | 0.0924 | 0.0986 0.0840 0.0834
d2__ | 05013 | 04331 | 0.7362 | 07715 | 0.7922 0.7500 0.7360
d3__ | 07220 | 0.0537 | 0.1018 | 0.1829 | 0.2986 0.0730 0.1595
dd__ | 0.0401 | 0.0735 | 0.2090 | 0.1997 | 0.5488 0.1950 02213
d5 | 05949 | 0.4321 | 04870 | 04419 | 0.5730 0.5830 0.4842
d6__ | 0.8231 | 0.2060 | 0.4291 | 03735 | 0.6663 0.4810 0.2948
d7 | 0.7781 | 0.0280 | 0.7229 | 0.7423 | 0.8829 0.7970 0.6381
a8 | 0.8069 | 0.0777 | 0.7195 | 06325 | 0.9097 0.6280 0.6704
d9 | 0.4408 | 0.0739 | 0.4463 | 04071 | 0.4584 0.3830 0.2839
d10__ | 0.6470 | 0.4197 | 0.4879 | 0.5656 | 0.4138 0.4740 0.4425
dil__ | 05285 | 0.3309 | 03320 | 0.3320 | 03350 0.4750 0.4586
di2__ | 05618 | 0.4154 | 0.4979 | 0.4627 | 0.5036 0.6320 0.4670
dI3_ | 02172 | 0.3430 | 09443 | 09544 | 09916 0.9400 07531
di4__ | 09725 | 0.3052 | 0.6082 | 0.7106 | 0.7724 0.5990 0.6995
di5__ | 04736 | 03271 | 05310 | 0.5267 | 0.6929 0.4980 0.5286
d16__ | 0.0946 | 0.0414 | 0.8455 | 0.6780 | 0.8133 08110 0.5035
d17__| 1.0000 | 0.3349 | 0.9922 | 0.9889 | 1.0000 0.9940 09118
dI8 | 05348 | 0.4582 | 0.8318 | 0.5560 | 0.6990 0.7990 0.8270
d19 | 03812 | 0.1002 | 05651 | 0.5456 | 0.7063 0.5540 03621
20| 09423 | 0.4927 | 05054 | 04923 | 05162 0.5060 0.4953
d21__ | 0.1027 | 0.0307 | 0.8414 | 0.8921 | 0.9604 0.8910 0.7893
d22_ | 05287 | 0.5287 | 09241 | 09203 | 0.9488 0.9250 0.8209
d23 | 0.6406 | 0.4160 | 0.4855 | 0.4346 | 04160 0.4230 0.4383
d24__ | 09106 | 0.1691 | 0.8710 | 0.8088 | 0.9097 0.8590 0.7669
425 | 0.1720 | 0.0461 | 0.7277 | 05485 | 0.7523 0.7120 0.4330
d26__ | 05042 | 0.1243 | 0.5614 | 0.5557 | 0.1175 0.5440 0.4093
d27 | 08026 | 0.1175 | 0.1175 | 0.1175 | 0.6091 0.1310 03155
d28 | 04010 | 0.3221 | 0.6543 | 0.6412 | 0.7259 0.6810 0.5552
d29 | 05688 | 0.4210 | 0.6730 | 0.6384 | 0.7944 0.7100 0.6328
d30 | 06221 | 0.3948 | 0.6698 | 0.5887 | 0.8211 0.5310 0.5672
d31__ | 0.7641 | 0.3671 | 0.8478 | 0.8083 | 08199 0.8500 0.3160
d32_ | 06956 | 0.1627 | 0.7810 | 0.7157 | 0.7558 0.7590 0.5440
d33 | 08253 | 0.4861 | 05737 | 0.8225 | 0.9085 0.5370 0.6835
d34__ | 00187 | 0.0563 | 0.1350 | 0.1519 | 0.047 0.1300 0.2120
d35 | 0.1254 | 0.0676 | 0.3380 | 03229 | 0.4661 0.3500 0.2072

[ Avg ] 0.5369 | 02476 | 05793 | 0.5607 | 0.6538 | 05797 | 05203 |

[ win [ 1T ] 0 [ 4 0 [ 18 [ 2 [ 1 |

[Avgrank | 380 | 671 | 320 | 397 | 211 | 349 | 451 |

+

which are presented to two different classifiers. The proposed
Co-training methods use the selection values of one classi-
fier (view) to be included in the other one. It means that the
selected values are calculated based on one subset, but its
corresponding instance is added to the other subset, which
may not be as important as it was in the original subset. This
is a step that is used in the original Co-training and we decided
to maintain it in the proposed methods. However, we believe
that this may cause a deterioration in the performance of the
proposed approaches.

When comparing the best proposed method against the
existing methods (SSL and supervised ones), we can state
that J48-90% obtained the best average accuracy and aver-
age F-measure among all other methods, having the high-
est number of wins, and also the lowest average ranking.
As mentioned previously, it is an expected result mainly
because J48-90% is a supervised method, using a training
set composed of 90% of the original training set. However,
despite of J48-90%’s performance, our best proposed method
(i.e., St-dws-A(v2)) obtained the second best average accu-
racy and average ranking among all SSL methods. Moreover,
St-dws-A(v2) obtained the second best average F-measure
and the third best average ranking for this metric. This is
a promising result since it shows that St-dws-A(v2) out-
performed three well-known SSL methods, mainly in terms
of predictive accuracy. On top of that, St-dws-A(v2) was
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statistical similar to J48-90% (i.e., the best baseline method),
in both predictive accuracy and F-measure.

VII. FINAL REMARKS

This paper presented a new methodology for selecting unla-
belled instances for wrapper-based Semi-supervised Learn-
ing (SSL) methods. This work is an extension of a previous
work [14], including the proposal of one selection version
and performing much deeper empirical analysis than [14].
In the proposed approach, a selection criterion (prediction
confidence or classification agreement) was combined with
a distance metric, in a method called Distance-weighted
Selection (DwS-C or DwS-A). This selection method can
be adjusted to be used in any wrapper-based SSL method,
but, in this paper, we apply this method for Self-training and
Co-training SSL methods.

Aiming to investigate the effects of using DwsS, differ-
ent versions of Self-training and Co-training have been
implemented, including confidence-based (DwS-C) and
agreement-based (DwS-A) methods. Moreover, random ver-
sions, standard versions and agreement-based based versions
of these methods were also implemented. In the empirical
analysis, the main aim was to investigate deeper its effect over
35 well known and diverse datasets using two performance
metrics (accuracy and F-measure).

In general, we can state that the adoption of a combined
selection criterion had a positive effect in the performance
of both analysed SSL methods, being Self-training the one
that obtained the highest improvements. It is also important
to emphasise that the proposed approach achieved better per-
formance than the original SSL versions, for the majority of
analysed scenarios. On top of that, the best proposed method
obtained competitive results against five existing methods,
being statistically better than two SSL methods, and similar
to the supervised methods and one SSL method (YATSI).
We can then conclude that the obtained results are promising
and they show us that a more effective selection criterion can
improve the performance of a wrapper-based SSL method.

In order to further improve the investigation presented
in this paper, it would be relevant to apply the selection
approaches in other wrapper-based SSL methods, investigat-
ing the feasibility of employing our proposal to SSL methods
that use distinct sampling and labelling procedures. Finally,
distinct approaches for formulating DwS (e.g. linear combi-
nation of confidence prediction and distance metric) could
also be assessed.
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