
Received March 28, 2022, accepted April 8, 2022, date of publication April 22, 2022, date of current version April 29, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3169503

Beyond Hyper-Heuristics: A Squared
Hyper-Heuristic Model for Solving
Job Shop Scheduling Problems
ALONSO VELA, JORGE M. CRUZ-DUARTE , (Member, IEEE),
JOSÉ CARLOS ORTIZ-BAYLISS , (Member, IEEE),
AND IVAN AMAYA , (Senior Member, IEEE)
School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico

Corresponding author: Ivan Amaya (iamaya2@tec.mx)

This work was supported in part by the Consejo Nacional de Ciencia y Tecnología (CONACyT) Basic Science Project 287479, and in part
by the Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM) Research Group with Strategic Focus in Intelligent Systems.

ABSTRACT Hyper-heuristics (HHs) stand as a relatively recent approach to solving optimization problems.
There are different kinds of HHs. One of them deals with how low-level heuristics must be combined to
deliver an improved solution to a set of problem instances. Literature commonly refers to them as selection
hyper-heuristics. One of their advantages is that the strengths of each heuristic can be fused into a high-
level solver. However, one of their drawbacks is that sometimes this generalization scheme does not suffice.
Additionally, it is not easy to reuse these HHs since the model cannot be easily tweaked. So, in this work,
we develop a hyper-heuristic model with an additional layer of generalization. The rationale behind it is to
preserve the general structure of selecting an adequate solver for a particular situation but to use HHs instead
of low-level heuristics. We call this model a Squared Hyper-Heuristic (SHH). To validate our proposal,
we pursue a four-stage methodology that covers several testing scenarios. Our data reveal that, under proper
conditions, our model can outperform the base HHs. Moreover, it is flexible enough to allow for an increased
number of layers so that the complexity of the final model can be tuned. Additionally, different kinds of
instances can be used to train each stage of the model, thus setting the groundwork for developing a transfer
learning approach for hyper-heuristics.

INDEX TERMS Job shop scheduling problem, heuristics, hyper-heuristics, optimization, problem features,
squared hyper-heuristics.

NOMENCLATURE
SYMBOLS
c Machine makespan
F Objective Function
F Feature value
Eg Global velocity vector
H Heuristic
j Job
El Local velocity vector
m Machine
M Set of machines
N Number
o Operation

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

O Set of operations
OP Optimizer

SYMBOLS
p Processing time
PD Problem domain
PM Performance metric
q Iteration counter
s Schedule
S Set of schedules
SL Set of available solvers
TR Set of training instances
u Unification Factor
U Uniform Distribution
Er Random vector
Evt Current total velocity
Ex Position

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 43981

https://orcid.org/0000-0003-4494-7864
https://orcid.org/0000-0003-3408-2166
https://orcid.org/0000-0002-8821-7137
https://orcid.org/0000-0001-5981-5683

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

X Population (swarm of agents)
Xa Neighborhood topology
Ex t Current position

SYMBOLS
1 Performance gap
φ1 Self confidence coefficient
φ2 Global confidence coefficient
χ Constriction factor

SUBSCRIPTS
a Agent or particle
d Dimension
e Expanded value
f Feature index
i Element index (machine, heuristic, or number)
j Job
k Job index
l Operation index
m Machine
max Maximal value
n neighbor
o Operation
r Rule
tr Training instance
W Most expensive
∗ Best value

ACRONYMS
COP Combinatorial Optimization Problem
HH Hyper-Heuristic
JSSP Job Shop Scheduling Problem
LPA Least Pending Activities
LPT Longest Processing Time
MPA Most Pending Activities
OSCOMBA Operation Slots COMBined with pro-

cessing times Amplified
OSRMA Operation Slots Repeated Machines

Amplified
PSO Particle Swarm Optimization
SHH Squared Hyper-heuristic
SPT Shortest Processing Time
UPSO Unified Particle Swarm Optimization

I. INTRODUCTION
Hyper-heuristics (HHs) stand as a contemporary method for
tackling optimization problems [1]. Although there are dif-
ferent kinds of HHs, the overall idea is straightforward: to
combine the strengths of a set of available solvers to improve
one or more performance metrics. This usually allows finding
better solutions than by using the solvers in a standalone
fashion.

There are several ways to classify a HH. Some of the
earliest approaches considered the nature of the heuristic
(constructive or perturbative) and the way the available

solvers are used (selection or generation) [2], [3]. Nowadays,
researchers have developed a wider set of hyper-heuristics,
and so it has become necessary to extend the existing criteria,
as Drake et al. discuss [4]. Such elements include the kind of
feedback used by the HH, e.g., online or offline learning, and
the nature of its parameters, e.g., static or dynamic, among
others.

Because of the plethora of hyper-heuristic models avail-
able in the literature, it is unfeasible to cover all variants
in this brief introduction. Nonetheless, we feel it is essen-
tial to provide some recent examples. In terms of HHs
with online learning capabilities one can find the works of
Wei et al., and those of Yu et al. and of Majeed and Naz.
In the first one, the authors developed a model for plan-
ning paths in marine environments, being able to achieve
good-quality solutions in real-time [5]. In the second one, the
authors focused on controlling swarm robots and found that
hyper-heuristics are a good choice for their decentralized con-
trol [6]. In the remaining approach, the authors combined this
online learning capability with a memory of already solved
solutions, achieving promising results in different clustering
datasets [7]. In a somewhat related application, one finds the
work of Adnan et al. where the authors considered a semi-
supervised hyper-heuristic model for classification, outper-
forming state-of-the-art alternatives [8]. Finally, the work by
Cui et al. dealing with multi-objective hyper-heuristics could
also prove of interest to the reader since the authors develop
a framework for scheduling flight deck operations [9].

Hyper-heuristics have been successfully applied to
different combinatorial problems. For example, Zhong et al.
tackled the generation of schedules for heat sinks in net-
works of wireless sensors [10]. Similarly, Toledo et al. tar-
geted the Orienteering Problem with Hotel Selection, where
an optimum tour including hotels and points of interest
must be found [11]. Moreover, Bai et al. developed a
general-purpose hyper-heuristic for solving bin packing and
course timetabling problems [12]. In all of these cases, the
authors achieved better performance levels than when using
human-made choices or existing alternatives.

Notwithstanding, researchers have also explored the con-
tinuous domain, although mostly focused on traditional
benchmarks. For example, Miranda et al. fused selection
and generation hyper-heuristics to improve upon the solu-
tion of continuous benchmark problems [13]. Additionally,
Cruz-Duarte et al. explored how to automatically develop
new metaheuristics through a selection hyper-heuristic
approach [14], [15]. The works of Choong et al. and Sabar
et al. also focus on the design of hyper-heuristics. The first
one uses reinforcement learning for automatically finding a
heuristic selection approach, achieving results comparable to
the top HHs found in literature [16]. The latter uses a genetic
programming technique for deciding the next heuristic that
shall be used [17].

Another challenging task where HHs have proved use-
ful is to solve Job Shop Scheduling Problems (JSSPs).
This problem has multiple applications to real-life scenarios,

43982 VOLUME 10, 2022

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

especially those related to manufacturing [18]–[23]. So,
it is natural that the JSSP has been tackled with different
methods. Some efforts include genetic programming [24].
Others include those based on data mining and machine
learning [25], [26]. However, yet another group focuses on
using hyper-heuristics. The work by Pickardt et al., where the
authors developed a two-stage hyper-heuristic for developing
and assigning dispatching rules, is an exemplar of this cat-
egory [27]. Another relevant work is the one from Hart and
Sim, where the authors used genetic programming for creat-
ing heuristics [28]. In their proposal, the model distributes
instances to a set of solvers, thus pursuing a divide and
conquer approach. Moreover, Lara-Cardenas et al. developed
a reward-based model so that rules can keep on evolving [29].
Other recent works include the analysis of problems with
scenario-based processing times [30] and with more complex
constraints [31], as well as problems closer to reality [32].

Despite the existing hyper-heuristic models and their suc-
cess when tackling JSSPs, it is customary to find problem
instances that are not properly solved by the same hyper-
heuristic. This comment is supported by previous work [33],
where HHs containing low-level solvers were not able to
properly solve different types of instances at once.We suggest
we can alleviate this by improving upon the generalization
capabilities of HHs. However, to the best of our knowledge,
such a higher-order model that selects HHs is a field yet
unexplored. So, in this work, we aim to fill such a knowledge
gap by proposing a more general selection hyper-heuristic
model, which can accommodate other hyper-heuristics. We
then exploit a previously proposed instance generator that
allows for the creation of instances where simple heuristics
excel or fail [34]. The idea of such an instance generator
was adopted from [35]. In this way, our work has a two-fold
contribution:

1) The proposal of a more general hyper-heuristic model
that can accommodate other high-level solvers and its
extensive testing across different sets of instances

2) A complexity analysis about how the computational cost
of the proposed model grows

Consequently, our work strives to answer the following
research questions:

1) How can a higher-order hyper-heuristic model be imple-
mented?

2) What is the performance of such a higher-order hyper-
heuristic when solving JSSPs?

3) How does the computational complexity grow for such
a model?

The rest of this document is organized as follows. Section II
presents the core definitions and ideas that represent the foun-
dations of our work. Then, Section III describes our proposed
approach and its components. Section IV and Section V lay
out the steps we followed in our work and the resulting data,
respectively. Section VI wraps up this work by providing
some insights and by declaring some paths for pursuing in
future works.

II. FUNDAMENTALS
A. JOB SHOP SCHEDULING PROBLEM
The Job Shop Scheduling Problem (JSSP) stands as a relevant
Combinatorial Optimization Problem (COP) with a plethora
of applications [18]. Even so, most of them relate to the
manufacturing industry [19]–[23]. In simple terms, solving
a JSSP requires to organize (schedule) the execution of some
tasks (jobs) to improve processing performance.

The traditional JSSP seeks to minimize the time taken to
fulfill all tasks, known as the makespan. However, it is also
customary to find JSSP variants in the literature [36]. One of
them is the cyclic flexible JSSP, where jobs can be performed
by more than one machine and which considers the effect
of the number of assigned workers [37]. Similarly, one may
find variants that consider external factors like breakdowns
and others [38]. Another common variant is the just-in-time
JSSP, where early and late completions are penalized [39].
Of course, there are lots more variants, but it is unfeasible to
cover them all here [40]–[43].

The JSSP is an NP-hard problem in which using exact
methods is out of the question [29]. Because of this, approx-
imated solvers have evolved and adapted. This process has
included the development of decision rules for scheduling
jobs, as with the approach followed by Nguyen et al. where
the authors used information from completed schedules
through a Genetic Programming approach [24]. Similarly,
other authors have used data mining techniques for develop-
ing such rules [26], [44].

A similar avenue befalls the development of simple heuris-
tics that build feasible solutions quickly. Alas, these do
not guarantee optimality. Nevertheless, they usually perform
properly when tackling sets of instances with specific natures.
Thus, it is only reasonable to try and combine them. One way
of doing so is to select a solver from a predefined pool to deal
with a complete problem instance, which is commonly known
as an algorithm portfolio [45], [46]. However, this approach
bounds the best performance to that of the best available
heuristic. So, it is customary to create a synthetic oracle based
on the best solutions obtained from isolated heuristics.

Another approach pursues a similar path. However, instead
of using a single solver per instance, it combines them. This
is usually achieved by limiting heuristic usage to a single
solution step so that a new heuristic selection can be carried
out. Literature depicts this strategy as a selection Hyper-
Heuristic (HH). However, bear in mind that there are different
kinds of hyper-heuristics [3], [4]. Moreover, their usage is not
limited to COPs, as they can also be applied in continuous
optimization problems [47]. Hyper-heuristics have been use-
ful in tackling COPs, including the JSSP [38], [48]–[50].

As aforementioned, there are several kinds of JSSPs [51].
In this work, we restrict ourselves to the traditional JSSP.
In such version, the problem assumes that operations are
ordered and that they must be performed in a fixed machine.
Moreover, only one operation of a given job can be performed
simultaneously. We also adopt the definition of a JSSP that
considers an operation as the building block of a job [34].

VOLUME 10, 2022 43983

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 1. Constraints associated with the Job Shop Scheduling
Problem (JSSP) when assigning operations. 1. Valid assignment. 2. The
assignment does not comply with the precedence of operations for the
given job. 3. Invalid assignment where one machine is processing two
operations simultaneously. 4. The assignment violates the preemption
constraint because one operation is split into two parts.

Besides, and to make things easier for the reader, we have
summarized the main symbols required for dealing with a
JSSP in Table 1.

TABLE 1. Relation of symbols associated with the JSSP and their
meaning, based on the definitions coined in [34].

Bear in mind that the traditional JSSP also includes some
restrictions about machine usage [52]. Such restrictions are
displayed in Figure 1. Briefly speaking, they imply that
machines must respect the order of operations within a
job (precedence), can only perform a single operation at
a time (capacity), and cannot partially process operations
(non-preemption).

B. UNIFIED PARTICLE SWARM OPTIMIZATION (UPSO)
UPSO is a popular variant of the traditional Particle Swarm
Optimization (PSO) algorithm. The PSO algorithm was pio-
neered by Eberhart and Kennedy back in 1995, while UPSO
was presented almost ten years later by Parsopolous and
Vrahatis [53]. Both versions take advantage of the swarm
intelligence and have found diverse applications, especially
in engineering [54]. We detail the logic behind UPSO in
Pseudocode 1.

As with the original proposal, UPSO defines a population
X ∈ RNd×Na of Na search agents (particles) that scout a prob-
lem with Nd dimensions while interacting with each other.
However, unlike PSO, UPSO divides the particles into neigh-
borhoods and provides a parameter for tuning the balance
between exploration and exploitation. This is achieved by
defining a global (Ega) and a local (Ela) velocity for each particle
a, which are obtained using Equation (1) and Equation (2).

Ega = χ
(
Evta + φ1Er1 � (Exa,∗ − Ex ta)+ φ2Er2 � (Ex∗ − Ex ta)

)
(1)

Ela = χ
(
Evta + φ1Er3 � (Exa,∗ − Ex ta)+ φ2Er4 � (Exn,∗ − Ex ta)

)
(2)

Here, φ1 and φ2 are the self and global confidence coeffi-
cients, respectively; and Eri ∈ RNd are i.i.d. random vectors
with uniform distribution between zero and one, i.e., Eri 3
ri,j ∼ U(0, 1), ∀ i ∈ {1, 2, 3, 4}. Na represents the total
number of search agents, which is commonly known as the
population size. Additionally,� is the Hadamard product and
χ is the constriction factor. The latter should be defined as
shown in Equation (3), based on the recommendations from
Clerc [55], where κ = 1 is customary.

χ =
2κ

|2− φ −
√
φ2 − 4φ|

, with φ = φ1 + φ2. (3)

The total velocity of the particle Evta is calculated as a
weighted sum between Ega and Ela, using an unification factor
u ∈ [0, 1], as shown:

Evt+1a = (1− u)Ela + uEga (4)

Additionally, each a-th particle also has a current position,
given by Ex ta ∈ RNd . Consequently, such a position is updated
with:

Ex t+1a = Ex ta + Ev
t+1
a (5)

Moreover, there are three elements of interest: Exa,∗, Exn,∗,
and Ex∗. These represent the best position found by each
particle, by each neighborhood, and by the entire swarm,
respectively, which are selected based on the fitness given by
the objective function F : RNd → R. These elements can be
calculated using Equations (6) to (8).

Exa,∗ = arginf{F(Exa,∗),F(Ex ta)} (6)

Exn,∗ = arginf{F(Exn,∗),∪Ex∈XaF(Ex)} (7)

Ex∗ = arginf{F(Exn,∗),∪Ex∈XF(Ex)} (8)

Although there are several neighborhood topologies [56],
in this work we have considered the most basic one for the
sake of simplicity. So, each neighborhood follows a ring
topology with three-nodes, such that Xa = {Ex ta−1, Ex

t
a, Ex

t
a+1}.

C. HYPER-HEURISTICS
The term hyper-heuristic (HH)was coined in 1997 to describe
a protocol that combines several artificial intelligence meth-
ods [1]. Some years later, the term was used to describe
‘‘heuristics to choose heuristics’’ [57]. This approach has

43984 VOLUME 10, 2022

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

Pseudocode 1 Unified Particle Swarm Optimization (UPSO) Algorithm
Input: Objective function F, neighborhood topologyXa, population sizeNa, parameter κ , self confidence φ1, global confidence

φ2, unification factor u, and stopping criteria: qmax and others (if they exist)
Output: Best solution Ex∗
1: Make q← 0 and determine χ with (3)
2: Initialize the population positions Ex ta and velocities Evta, ∀ a ∈ {1, . . . ,Na}
3: Find Exa,∗, Exn,∗, and Ex∗ using (6), (7), and (8)
4: while (q ≤ qmax) & (additional stopping criterion is not met) do
5: Determine Ega and Ela with (1) and (2), ∀ a ∈ {1, . . . ,Na}
6: Update Ex ta and Ev

t
a with (4) and (5), ∀ a ∈ {1, . . . ,Na}

7: Update Exa,∗, Exn,∗, and Ex∗ using (6), (7), and (8)
8: q← q+ 1
9: end while

been used to tackle various problems through different strate-
gies. For example, Sim and Hart described an immune-
inspired hyper-heuristic system that produces new heuristics
for the bin-packing and job-shop scheduling problems [58].
Similarly, Nguyen et al. proposed a hyper-heuristic pow-
ered by genetic programming for three combinatorial and
optimization problems [59]: Max-SAT, one dimensional bin
packing and permutation flow shop. Sabar and Kendall pre-
sented a Monte Carlo tree-search hyper-heuristic that evolves
heuristics [60]. They also tackled the problems considered by
Nguyen et al. and included two additional ones: travelling
salesman and personnel scheduling.

We can classify hyper-heuristics based on different cri-
teria [2]. However, it is customary to consider the kind of
solver developed by the hyper-heuristic. On the one hand,
a hyper-heuristic may create an entirely new solver. On the
other hand, it may select one from the available solvers. These
kinds are known as generation and selection hyper-heuristics,
respectively.

Another common approach for cataloguing hyper-
heuristics is to consider the kind of heuristics that they have
access to. Such heuristics can be either perturbative or con-
structive, depending onwhether they alter an existing solution
or create a solution from scratch. Bear in mind that such
classification criteria are not exclusive. So, onemay tradition-
ally find the following kinds of hyper-heuristics: generation-
constructive, generation-perturbative, selection-perturbative,
and selection-constructive. More recently, Burke et al. added
more classification criteria, including one related to the kind
of feedback used by the model [61]. In this sense, one may
find three alternatives:

Online Learning. The model keeps on learning with every
instance it solves. This means that it solves and learns
simultaneously.

Offline Learning. Themodel uses a set of instances for opti-
mizing its parameters in order tomaximize performance.
Afterward, it can be used to solve new instances but the
model is no longer updated.

No Learning. No feedback is used whatsoever to improve
the model.

Although it would be interesting to deepen into all the
existing models, doing so is beyond the scope of this
manuscript. So, to avoid overextending this section, we stop
our discussion here and invite the reader to consult [61].

III. PROPOSED APPROACH
In this section, we provide an overview of our proposedmodel
and its implementation. First, we explain the structure and
general idea of this Squared Hyper-Heuristic (SHH) model
and a possible classification scheme. Then, we explain the
training process of a SHH. Finally, we analyze the computa-
tional complexity of adding the extra decision layer. Bear in
mind that, in this work, we use instances from the literature
and instances we generated. In both cases, we assume that
the number of operations of each job equals the number of
available machines. We also assume that each hyper-heuristic
available to the SHH has been previously trained (more
details in Section IV).

A. OVERVIEW OF THE PROPOSED APPROACH
Our idea for the proposed hyper-heuristic (HH) model is
straightforward: to have a HH that selects among other HHs
when solving a problem. Of course, this implies that one
must train the base HHs so that they select among low-level
heuristics. Hence, our proposed model sits at a higher level of
abstraction than traditional hyper-heuristics. For this reason,
we opted for the name of squared hyper-heuristic (SHH).

Our approach still selects a solver from a pool of available
alternatives, as with traditional selection hyper-heuristics.
Nonetheless, such a pool is filled with already trained
selection hyper-heuristics instead of the traditional approach
that uses low-level heuristics. The selected hyper-heuristic
ultimately chooses a low-level heuristic, but the selection
changes with each step of the solution. Thus, our model
retains the traditional behavior of a selection hyper-heuristic.
Hence, its name.

Figure 2 exemplifies our idea. Here, the proposed
model (SHH) can select among two traditional HHs (HH1 and
HH2) when solving a problem instance. The SHH follows a
traditional rule-based scheme for such a selection. Moreover,
the objective remains: to optimize the values of each rule

VOLUME 10, 2022 43985

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

so that the solver selects the best approach for the current
conditions.

For simplicity, we use the same optimization strat-
egy (i.e., UPSO) to train SHHs and HHs. We selected
this metaheuristic because of different reasons. For starters,
it organizes search agents (particles) into neighborhoods and
so the search is not focused on a single direction. Moreover,
the information of such neighborhoods is combined through a
couple of constants that allow balancing the local and global
search behaviours. Additionally, we have worked with UPSO
in the past [34] and so it was readily available. Notwith-
standing, bear in mind that UPSO could be replaced by any
other metaheuristic or optimization algorithm, with virtually
no changes to the proposed model.

The training process consists of minimizing an objec-
tive function. For this work, said function is related to the
makespan of the set of instances. To this end, we used UPSO
to adjust, via the training phase, the parameters of the hyper-
heuristic model, until reaching a set of values that offer good
performance, as we explain in III-D. Moreover, since HHs
use heuristics for altering the problem states, each rule of the
SHH ultimately translates into using a given heuristic. In this
way, a region of influence for each heuristic can be defined for
the SHH. These regions represent the combinations of feature
values required for a given heuristic to be selected by the high-
level solvers. So, with the proposedmodel, wemight generate
more complex maps than with traditional HHs. These can be
achieved since the regions of influence derived from the SHH
overlap the regions belonging to the base HHs, based on the
rules from the former.

The right-most part of Figure 2 presents an example of
two different maps using the same base HHs. Such HHs
contain three rules each and share three low-level heuristics,
represented as H1,H2, and H3. As one may notice, one SHH
leads to a more complex distribution of solvers (top right) by
using two rules for selecting among the base hyper-heuristics.
However, our model is not limited to combining all the
available solvers, or providing complex regions of influence.
If needed, it can disregard one or more solvers, providing
simpler regions of influence, as we show in the bottom right
part of Figure 2. Do note that heuristic H3 does not appear in
the final model.

As aforementioned, the actions taken through a SHH ulti-
mately translate into heuristics. This hints at the idea that
the proposed layer might be unnecessary. Notwithstanding,
we believe that it allows finding more complex regions
of influence more easily than training a HH that directly
achieves these patterns. Additionally, it may prove fruitful
to try and develop some translation algorithm in the future,
seeking to transform a high-order hyper-heuristic model into
one with a lower order.

Since our proposed model can use high-level solvers,
we consider an attribute based on the kind of solver the
SHH incorporates. Moreover, we attempt to build upon the
classification given by Burke et al. [61]. So, we consider
that a SHH may be either closed or flexible. The former

exclusively uses traditional hyper-heuristics. Moreover, this
particular model selects a traditional hyper-heuristic to alter
the problem instance, based on the current features values
of said instance. The flexible SHH, theoretically, can access
other kinds of solvers that fit the problem, e.g., a single
heuristic, a neural network, etc. Bear in mind that the neural
network and the low-level heuristic are only indicated as
illustrative examples of feasible solvers and they are not the
only alternatives. Actually, the model can accommodate any
kind of algorithm that could function as a solver for the SHH,
i.e., a solver that returns a modified version of a problem
instance. Figure 3 shows an example of each category. This
leads to the following categories:

1) Closed generation constructive
2) Closed generation perturbative
3) Closed selection perturbative
4) Closed selection constructive
5) Flexible generation constructive
6) Flexible generation perturbative
7) Flexible selection perturbative
8) Flexible selection constructive

Since it would be unfeasible to cover all categories in this
work, we limit ourselves to analyzing the closed selection
constructive squared hyper-heuristic model shown in Fig-
ure 3.

B. HEURISTICS CONSIDERED FOR THIS WORK
Throughout this work, we consider four different heuristics.
Bear in mind that all heuristics select an activity that complies
with problem restrictions. This means that they only select
among upcoming activities for each job. We include two
heuristics based on the processing times of the activities.
While one of them focuses on scheduling jobs that take longer
to complete (i.e., Largest Processing Time, LPT), the other
targets small jobs first (i.e., Shortest Processing Time, SPT).
Similarly, we include two heuristics that seek to schedule
a whole job quickly or evenly. To achieve this, we target
the number of pending activities for each job. Thus, heuris-
tic MPA strives to follow a breadth-first approach since it
selects the job with the Most Pending Activities. Conversely,
heuristic LPA follows a depth-first approach, seeking to first
complete jobs with the Least PendingActivities. It is essential
to highlight that in the case of ties, i.e., if two or more
activities are valid options for the heuristic, the one belonging
to the job with the lowest ID is selected.

C. FEATURES CONSIDERED FOR THIS WORK
In this work, we considered a total of five features. It is essen-
tial to highlight that these features are taken from the work
of Mirshekarian et al. and that their definitions can become
relatively complex [62]. We refer to them by a five-letter
code associated with the first author and a number corre-
sponding to its position within the original list of features.
Bear in mind that we only consider those features related
to the problem instance and unrelated to specific heuristics.

43986 VOLUME 10, 2022

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 2. An example of two different squared hyper-heuristics that can be created with the same base solvers and the way heuristic
selection changes.

FIGURE 3. Overview of the Squared Hyper-Heuristic (SHH) model. The SHH evaluates the Job Shop Scheduling Problem features
and selects a solver to perform the next action, based on the action defined in the closest rule. In a closed SHH (right) such actions
are restricted to hyper-heuristic models. Conversely, a flexible SHH (left) has access to a variety of methods.

So, we do not necessarily use features with consecutive IDs.
Similarly, we sought to select some of the most representative
features the authors found, as long as they are unrelated
to heuristics. The rationale behind this decision is to avoid
biasing information towards a single heuristic. Additionally,
some of these features use an expanded metric, calculated as
shown in:

Fe =
Ff (Ff + 1)

2
(9)

whereFe is the expandedmetric, andFf is the original feature
value. Such features are thoroughly explained in previous
works [34], [62]. Hence, for the sake of brevity we only
provide an overview of them:
Mirsh15. Standard Deviation of Job Processing Times

divided by the mean of Job Processing Times. A rather
straightforward feature based on the accumulated pro-
cessing times of all operations within each job.

Mirsh29. Standard Deviation of Machine Processing
Times divided by mean of Machine Processing Times.
Similar to Mirsh15 but it considers processing times
across machines instead of jobs.

Mirsh95. Mean of OSRMA divided by the number of
machines. This feature relates the number of machines
that are repeated in each operation (across jobs) and the
total number of available machines.

Mirsh222. Mean of OSCOMBA divided by the product
between the number of machines and the mean of Oper-
ation Processing Times. This feature relates upcoming
activities within the instance with their processing times
and with the number of times that each machine is used.

Mirsh282. Mean of Machine Load Voids Amplified
divided by the number of machines. This feature ana-
lyzes machine usage but considering the number of
zeros (voids) per operation. Such a zero is given by a
machine that is not used at all in an operation.

VOLUME 10, 2022 43987

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

D. MODEL TRAINING
Our training process for a SHH (Algorithm 2) requires several
inputs, such as the number of rules Nr and the number of
features Nf . Do note that this code can be generalized for
a SHH model with more layers with few changes, but it
escapes the scope of this work. Algorithm 2 assumes that
one has access to a population-based optimizer for training
the HH model. In this work, we use UPSO. Other inputs
required for the process are the problem domain PD (JSSP
in this case), the set of available solvers SL (e.g., the set of
HHs), the set of training instances TR, the optimizer OP, the
performance metric PM for evaluating candidate solutions,
and the number of search agents Na. Do note that the trained
SHH is the one that yields the best PM when solving all
instances in TR, and it may or not correspond to the final value
of a search agent, depending on OP. The algorithm begins
by initializing the set of agents, i.e., the candidate SHHs,
with random values. These agents will explore the solution
space based on the policies set by the optimizer. Then, the
algorithm assesses the quality of each agent by evaluating
its PM when solving TR. This implies using all SHHs to
solve every training instance. A loop is then started, where
the values of each SHH are updated based on the policy given
by OP for up to qmax iterations. Note that the process may
stop earlier if a stop criterion is reached, such as performance
stagnation. Additionally, a record of the best agent is updated
with each iteration, so that the best solver is returned to the
user.

This process is quite similar to the training of a tradi-
tional HH. The only difference is that each search agent in our
model represents a SHH and that whenever an action is used,
the corresponding HH must be analyzed to select a heuristic
ultimately. In this way, the process can be extended to higher
orders. This requires, however, some kind of recursion for
traversing the decision layers.

E. COMPLEXITY ANALYSIS
Before ending this section, we feel that it is important to
provide a complexity analysis of our proposed approach
(Algorithm 2). The initialization step has a multivariate linear
complexity that depends on the number of rules Nr , the num-
ber of features Nf and the number of agents Na, i.e., O(Na ∗
Nf ∗ Nr). The second step requires constant time, and so we
can omit it.

The core of the complexity lies in the evaluation phase
(steps 3 and 6), which requires solving all training instances
(Ntr = |TR|) with each one of theNa agents. Thus, agents and
instances increase complexity in a linear fashion. Moreover,
when evaluating an instance tr ∈ TR we must calculate the
current feature values. The time complexity for this operation
is given by Equation (10), whereO(Ff (tr)) is the complexity
of calculating a given feature.

Nf∑
f=1

O(Ff (tr)) (10)

Afterward, we need to calculate the distances between each
rule and the current feature values. The complexity of this
step is given by Equation (11), whereK (Nf) is the complexity
of calculating the chosen distance metric for one rule, which
depends on the number of features.

O(Nr ∗ K (Nf)) (11)

The closest rule must now be selected, which implies
finding the minimum distance. This adds a linear complexity
given byO(Nr). Now, we need to add the complexity of using
the selected heuristic H for moving the solution one step
further, i.e., O(H). In this way, we complete one step of the
solution process. So, we must multiply such complexity for
the number of steps required to solve the problem, which is
given by the number of jobs (Nj) and machines (Nm).
In this work, we use the Euclidean distance metric. So, the

cost of the distance metric grows linearly w.r.t. Nf . Moreover,
Equation (10) is bounded by the worst cost of all features,
i.e., O(FW). Therefore, the complexity of evaluating the set
of search agents grows as Equation (12) shows.

O(Ntr ∗ Na ∗ Nj ∗ Nm ∗ (FW + Nr ∗ Nf + Nr + H)) (12)

We must now analyze the cost of the other operations
within the loop. Step five has a complexity that is directly
linked to the OP, i.e., O(OP). Step six has the same cost that
we just analyzed for step three, i.e., Equation (12). The next
step performs a search within a list, and so its complexity
grows as O(Na). The remaining steps represent fixed costs,
and so their complexity can be disregarded. Moreover, each
loop requires evaluating the stopping criteria, which can be
associated with a constant value. Additionally, we need to
include the effect of the number of training iterations. In the
worst-case scenario, the process will be repeated for up to
qmax iterations. So, the final complexity of the training stage
rises as shown in Equation (13).

O
(
qmax

(
OP+Ntr ∗Na∗Nj∗Nm∗(FW+Nr∗ Nf +H)

))
(13)

Let us now see what happens when we train a SHH. For
the sake of simplicity, we analyze a closed SHH model,
i.e., where all solvers are already trained HHs, since it is the
kind of solver we use in this work. Moreover, we assume that
all HHs have the same number of features Nf and rules Nr .
The main difference w.r.t. the previous analysis rests on

the way a solver given by the selected rule is used. So, the
addition of this layer only alters the cost of steps 3 and
6 from Algorithm 2. Since the SHH selects a trained HH,
we must use the current feature values to calculate new
distance metrics to the corresponding set of rules. This has
the same computing cost from the previous analysis (minus
the current feature values since we already have them). In this
way, we finally arrive at a heuristic that can be used to tackle
the problem. Hence, the complexity of evaluating a set of
SHHs is represented by Equation (14).

O(Ntr ∗ Na ∗ Nj ∗ Nm ∗ (FW + 2 ∗ Nr ∗ Nf + 2 ∗ Nr+H))

(14)

43988 VOLUME 10, 2022

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

Pseudocode 2 Squared Hyper-Heuristic Training Algorithm
Input: Number of rules Nr , problem domain PD, solvers SL, training instances TR, optimizer OP, number of features Nf ,

performance metric PM, number of search agents Na
Output: Best solution SHHq
1: Initialize a set of Na SHHs with Nr rules, Nf features, and a problem PD, using random values
2: Make q← 0
3: Evaluate each SHH by calculating its PM value when solving TR
4: while (q ≤ qmax) & (additional stopping criterion is not met) do
5: Update the values of each SHH using the policy given by OP
6: Evaluate each SHH by calculating its PM value when solving TR
7: SHHq← SHH with best PM value between the current set of SHHs and SHHq
8: q← q+ 1
9: end while

As one may notice, the only difference when evaluating
a set of HHs or SHHs is a constant with the value of two,
which is negligible for this kind of analysis. So, the overall
computational complexity of training bothmodels grow in the
same fashion, i.e., following Equation (13). Notwithstanding,
and by recursion, a model with more layers would increase
linearly as the number of layers go up.

IV. METHODOLOGY
This work explores the performance of the proposed SHH
model through a four-stage methodology, as indicated in
Figure 4. For doing so, we analyze the method’s behavior
when subject to different training and testing scenarios. For
the sake of simplicity, we use the same optimization method,
i.e., UPSO, for training all HHs and SHHs.

Due to the amount of experiments, using a single machine
will require way too much time. Therefore, we used four
different machines across all experiments: a MacBook Pro
2019 (Intel Core i5-8257U @ 1.4 GHz with 8 GB RAM),
two Dell Inc desktops (one with an Intel Core i5-6200U @
2.30 GHz with 8 GB RAM, and one with an Intel Core i7-
6700 @ 3.40 GHz with 16 GB RAM), and an Alienware
desktop (Intel Core i7-8700 @ 3.20 GHz with 16 GB RAM).
Since mixing the computational times reported by different
machines could bias conclusions, we opt for not providing
such data.

It is important to remember that the metaheuristic and the
SHH model require different sets of parameters. However,
our goal is to focus on the SHH model and not on how
the metaheuristic parameters affect training performance.
So, we seek to assess the functionality of our proposal for
some arbitrarily selected parameters. However, we know that
future work should analyze their effect to properly tune the
model and improve its performance. We use the following
fixed parameters, based on preliminary tests: φ1 = 2.00,
φ2 = 2.50, and u = 0.25. Besides, we consider a fixed
limit of 100 iterations for most tests and vary the number of
particles between 15, 30, and 50 agents, as we detail below.

We use several sets of training and testing instances that
we generate using a previously proposed instance gener-
ator that allows for a fixed performance gap (1) [34].

Additionally, we consider some randomly created instances
and some publicly available instances that Taillard reported.1

These represent larger instances that we mainly use to vali-
date our findings. Table 2 details the sets of training instances
and Table 3 contains the testing ones.

TABLE 2. Training sets used in this work with different performance
gaps (111). Instances are equally distributed and they all have the same
size (three jobs and four machines), unless otherwise stated.

Throughout all our tests, we use a performance met-
ric (PM) given by the total makespan. This means that each
time the model is tested (e.g., during the training process) we
sum the makespan achieved across all instances (e.g., from
the training set). We incorporate this metric because it is a
straightforward way of obtaining information about the per-
formance achieved across a set of instances while incurring
in a low computing burden. Moreover, in this work we are
interested in analyzing data variation. So, we provide a set
of violin plots that contain the distribution of the makespans
achieved for each instance.

A. FEASIBILITY TESTS
Our first approach seeks to determine the feasibility of the
proposed model. So, we try out different scenarios and ana-

1Taillard’s publicly available instances: http://mistic.heig-vd.ch/taillard/
problemes.dir/ordonnancement.dir/ordonnancement.html

VOLUME 10, 2022 43989

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 4. Four-stage methodology followed throughout this work.

TABLE 3. Testing sets used in this work with different performance
gaps (111). Instances are equally distributed and they all have the same
size (three jobs and four machines), unless otherwise stated.

lyze whether the SHH obtains better performance than the
base models. First, we focus on assessing whether the pro-
posed SHH adequately performs when solving a single JSSP.
Then, we analyze if the performance gain also applies when
solving a whole set of instances. For this stage, we use
a single SHH and two trained HHs: HH1 and HH2. Each
HH has access to four heuristics (see Section III-B for
details): LPT, SPT, LPA, and MPA. Moreover, we train HH1
with 30 LPTvsSPT instances, i.e., favoring LPT, and HH2
with 30 SPTvsLPT instances, i.e., favoring SPT.Additionally,
we train the SHH with a set of 30 random instances of the
same size, i.e., three jobs, and four machines.

1) FIRST APPROACH
Our approach for this experimental step is relatively straight-
forward. We solved a total of four instances. The first two are
random instances. The others are specialized to a particular
heuristic. We consider one instance favoring LPT while hin-
dering SPT, i.e., one instance from the LPTvsSPT class. The
remaining instance has the opposite nature, thus favoring SPT
while hindering LPT; the SPTvsLPT class. Then, we compare
the performance of the three solvers while solving these

instances. Note that the four testing instances are different
from those used to train the solvers.

2) EXTENDED APPROACH
Afterward, we test the SHH model on whole instance sets,
striving to detect if the patterns observedwith single instances
can be generalized. So, we perform a total of four tests that
use sets TE01, TE05, TE08, and TE03, respectively (see
Table 3). In each one, we solve the dataset with all the
available solvers.

The first test might give us an overview of the general-
ization capabilities since it contains random instances. The
second and third ones seek to determine if our proposed
model can learn to focus on a particular solver, as instances
preserve the nature of those we used to train HH1 and HH2,
respectively. The final test mixes both kinds of instances.
Consequently, each HH should exhibit an average perfor-
mance, as we trained them as specialized solvers. Conversely,
if the SHH properly learns when to use each solver, it should
outperform both HHs.

B. EXPLORATORY TESTS
The exploratory stage focuses on varying the parameters and
solvers of the model. This stage aims to find a set of values
that allow training a SHH with good performance w.r.t. the
HH models and low-level heuristics. We train several SHHs
using the sets from Table 2 and test them on the sets from
Table 3. We define a total of 15 tests with different foci,
as Table 4 shows. For example, we use random instances
for tests 1-3. In other tests, we vary the parameters of the
SHH, such as the number of rules. Also, we alter training
parameters in a few cases, such as the number of instances
and the number of search agents for UPSO.

For the first three sets, we combine specialized and
non-specialized HHs while training the SHH with random
instances. Then, we use specialized training instances and
remove the best heuristic from the list of available solvers

43990 VOLUME 10, 2022

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

(tests 4 and 5). In tests 6-11, we use arbitrary combinations
of HHs and training instances.

Test 12 represents our first test where the SHH has access
to more than two solvers. Afterward, in test 13, we expand
upon the testing conditions by providing the SHH with one
more solver and raising the number of rules in the model to
10. Bear in mind that whenever the model has more rules than
solvers, some will appear more than once. The optimization
process will also determine the specific values for each rule
and the number of repetitions for each solver. In the follow-
ing test (test 14), we seek to favor the model by training
it with instances exhibiting mixed behaviors and including
more search agents throughout the optimization procedure.
Nonetheless, we also include test 15 to determine the model’s
behavior when using instances from the literature. However,
such instances are larger than the ones we tailored, restricting
the number of tests we can carry out with the available
computing resources.

TABLE 4. Experiments performed in the exploratory stage. The definition
of each instance set is given in Table 2. These tests use the following
UPSO parameters: φ1 = 2.00φ1 = 2.00φ1 = 2.00, φ2 = 2.50φ2 = 2.50φ2 = 2.50, u = 0.25u = 0.25u = 0.25, and 100 iterations.
Parameter NaNaNa changes as indicated. All available solvers are
hyper-heuristics trained with different sets, as indicated by their names.

C. DETAILED TESTS
As we shall discuss further on, test 14 provides the con-
ditions where SHHs perform best. Hence, in this section,
we exploit this scenario feature-wise, instance-wise, and rule-
wise. To do so, we select the best performing run from each
kind of hyper-heuristic. Hence, the analysis for this stage
considers that SHHs always have access to the same set of
four hyper-heuristics. Thus, we can focus the discussion on
the effect of the training process of the SHH rather than on
the variability of HHs.

Our first scenario explores the 31 combinations of the five
available features (Section III-C), which Table 5 summarizes.
We train 30 SHHs for each combination while preserving

the remaining testing conditions, and thus we analyze the
performance of 930 SHHs. We rank them all based on their
performance for the set of instances. We use such a ranking
to analyze the variability of the data through a set of violin

TABLE 5. Feature combinations used in detailed stage. The ‘‘×××’’
represents the features that appear in the respective combination.

plots. With this information, we select the subset of features
that seems to perform best.

Afterward, we tackle the remaining parameters to detect
the effect of having larger or smaller sets of training
instances and considering more or fewer rules for the model.
We create a total of nine training subsets with a different
amount of instances from set TR09. All the subsets have
the same number of instances from each kind (LPTvsAll,
SPTvsAll, LPAvsAll, MPAvsAll). The smallest one includes
12 instances, and subsequent subsets increase their size lin-
early until they arrive at 108 instances. These subsets are
labeled from IT1 to IT9, where IT1 is the smallest one.
We also vary the number of rules of the SHH between 1 and
10. By merging both ranges, we obtain a total of 90 com-
binations. We repeat each experiment 30 times, and so we
analyze 2700 SHHs in this stage.

D. CONFIRMATORY TESTS
In our final testing stage, we explore the performance of
a simple flexible SHH. So, we train SHHs with simul-
taneous access to hyper-heuristics and heuristics. The
training and testing sets used in this section are TR09
and TE09, respectively. Moreover, we use the following

VOLUME 10, 2022 43991

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 5. Heuristic distribution for all tests related to the first approach stage.

conditions: Four rules, 30 repetitions, four available HHs
(trained on TR07, TR08, TR10, and TR11, respectively), and
four available heuristics (LPT, SPT, MPA, and LPA). We also
use a subset of features for the models, given by Mirsh222,
and Mirsh95. We make this decision based on the data
achieved for the previous stages, as we discuss further on.

V. RESULTS AND DISCUSSION
We now move on to presenting the most relevant data from
our experiments. For the sake of readability, we preserve the
structure from Section IV.

A. FEASIBILITY TESTS
Remember that our first experimental stage is split into two
phases. First, we tackle single instances. Then, we use whole
sets.

1) FIRST APPROACH
For the first random instance (test 1), all solvers (HH1, HH2,
and SHH) reach the same makespan value, i.e., cmax(s) =
27.0784. This is rather interesting since HH2 actually leads
to a different sequence of heuristics, as shown in Figure 5a.
Nonetheless, with another random instance (test 2) HH1,
HH2, and SHH lead to cmax values of 38.7128, 31.6054,
and 31.4236, respectively. Hence, the SHH outperforms the
HHs. We may explain this because we trained the SHH with

a set of random instances. Therefore, it may be easier for
SHH to solve this instance correctly. Nonetheless, bear in
mind that SHH has access to only HH1 and HH2, which
represent solvers trained for other kinds of instances. So, such
an outcome is noteworthy.

Let us now analyze the solutions yielded by each solver
(Figure 6). Note that there is a substantial difference between
the schedules yielded by HH1 and those given by the other
solvers. Besides, the schedules from HH2 and SHH only
differ in step nine: while the former schedules job three, the
latter schedules job one. Therefore, a slight difference can
lead to improved performance. Moreover, all solvers lead
to a different sequence of heuristics (Figure 5b), which is
unexpected due to the similarities between HH2 and SHH .

The two final tests use specialized instances. For test 3,
HH1, HH2, and SHH yielded a cmax of 39.9648, 88.8860, and
39.9648, respectively. As expected, HH1 performs well since
we trained it with instances of the same kind (LPTvsSPT).
Interestingly enough, SHH yields the same makespan. Simi-
larly, HH2 performs poorly since we trained it with instances
of the opposite kind (SPTvsLPT). The sequence of heuristics
used by HH1 and SHH are quite similar, as Figure 5c shows.
They only differ in the first two steps, where SHH used HH2.
This suggests that it does not matter whether one uses SPT
or LPT for the two first steps of this instance. Conversely, the
heuristics used by HH2 shows a very different, yet expected,
distribution.

43992 VOLUME 10, 2022

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 6. Schedule of Test 2 with different high-level solvers.

FIGURE 7. Action zones of different high-level solvers.

In the case of test 4, the makespan values were 79.3781,
39.3781, and 39.3781 for HH1, HH2, and SHH , respectively.
As one may see, the performance of the HHs inverted since
we used an instance of the opposite nature (SPTvsLPT).
Notwithstanding, SHH once again replicates the performance
of the best solver (HH2), indicating that it might be pos-
sible for a SHH model to learn how to solve special-
ized instances through a training process based on random
instances.

This is a rather interesting phenomenon. It seems as if the
HHs somehow transferred their learning to the SHH. Bear in
mind that a traditional approach would seek to train the SHH
with a set of instances representing the union of the training
sets used for each HH. However, we use a completely dif-
ferent set of instances. This may prove helpful for scenarios
where the original instances are no longer available or where
training with themmay require vast computational resources.
In fact, for these tests, all solvers used the same number of
training instances (30). Nevertheless, if a traditional approach
were to be followed, it would have required 60 instances
(30 from each HH). Although this merits deeper research,
it escapes the scope of this work.

The instance distribution for this last test (Figure 5d) is
a bit more dynamic, i.e., SHH switches solvers more often.
Although SHH selectedHH1 in half the steps, it still managed
to replicate the makespan of HH2. A possible explanation is
that at this point both HHs target the same heuristic, thus

being irrelevant to which one is chosen. Another explanation
is that, by this point, in the solution process, the available
heuristics select the same activity to schedule. This hints that
small changes in the early stages of the solution process can
be more relevant than larger ones at late stages.

Let us now analyze the action zones of the three solvers.
These zones represent the regions of feature values where a
solver uses each one of their available approaches. The LPT
heuristic predominates in HH1, as we expected (Figure 7a).
Similarly, SPT dominates in HH2 (Figure 7b). Bear in mind
that, for the sake of simplicity, these plots show the action
zones from the perspective of the first two features. Nonethe-
less, other features could be used. However, since we are
interested in glancing at the performance of the SHH model,
we omit such a detailed analysis.

Figure 7c show the action zones for SHH . At least from
this perspective, SHH seems to lean towards using HH2.
Nonetheless, the number of times that each HH is used
depends on the feature values that the instance produces
throughout its solution process. For example, feature values
may stagnate in a small region, or shift throughout the whole
domain.

As a final analysis consider Figure 7d, where we show the
intersection of the action zones for both HHs. Although they
are specialized for two opposing kinds of instances, there are
three regions where both solvers agree on the kind of heuristic
that should be used.

VOLUME 10, 2022 43993

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 8. Makespan achieved by each solver (SHHSHHSHH , HH1HH1HH1, and HH2HH2HH2) for each test from the extended approach. The testing sets are
indicated in parenthesis.

2) EXTENDED APPROACH
Figure 8 shows the results achieved by SHH , HH1, and HH2,
over four instance sets (TE01, TE05, TE08, and TE03).
Remember that we trained SHH , HH1, and HH2 with 30 ran-
dom, 30 LPTvsSPT, and 30 SPTvsLPT instances, respec-
tively (see Section IV-A2). We can appreciate from test 1
(Figure 8a) that SHH and HH1 perform better when solv-
ing a set of random instances. Their violins have a similar
shape, which suggests that SHH mimicksHH1 to some extent.
A similar pattern emerges in test 2, as those instances favor
HH1 (Figure 8b). Again, SHH reached a similar performance
level. Although there are some instances where SHH per-
forms worse than HH1, they have virtually the same median
value. In contrast, HH2 performs poorly in all instances,
as expected.

Test 3 provides a similar but opposite trend. In this case,
SHH strives to mimic HH2, whereas HH1 performs poorly.
This behavior is somewhat expected because of the instances
considered for this test. Even so, the tests hint at the possi-
bility of reaching a more general solver that can deal with
both kinds of instances simultaneously through the use of
specialized solvers.

This is precisely what we explore in test 4. Remember that
this test considers a mix of 15 LPTvsSPT (i.e., favoring LPT

FIGURE 9. P-values of data about each test from the extended approach.
The first row compares SHH against HH1. The second row compares SHH
against HH2.

and hindering SPT) and 15 SPTvsLPT (i.e., favoring SPT and
hindering LPT) instances. Therefore, HH1 and HH2 should
perform well in only half of the instances. Conversely, SHH
should excel in all of them. Even if the effect is not as strong

43994 VOLUME 10, 2022

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 10. Normalized makespan values for the data shown in Figure 8. The normalization is carried out by dividing the
performance of a solver into that of the best-performing HHHHHH .

FIGURE 11. SHH performance distribution throughout the first three exploratory tests for two different numbers of rules. The testing sets are indicated
in parenthesis and in all cases the SHHs were trained using TR01.

as we suspected, Figure 8d shows that SHH achieves a good
overall performance. This is reflected in a median makespan
30% smaller than the next best solver (HH1) and in a majority
of instances with smaller makespan values.

We ran a Wilcoxon test between the SHH and each HH
across the four testing scenarios to assess these differences
better. Figure 9 provides a heatmap that summarizes the
resulting data. The p-values from test 1 reveal that there
is not enough evidence to state that the SHH is signifi-
cantly different from any of the HHs. Conversely, the dif-
ference becomes statistically significant in tests 2 and 3.

Notwithstanding, test 4 shows a peculiar behavior. Data
suggest that there is a statistically significant differ-
ence w.r.t. HH1 but not w.r.t. HH2. Even so, the
median performance of SHH is better than those of the
others.

Since all instances can have different lower bounds,
we also provide a plot of the normalized makespan data
(Figure 10). To do so, we divide each makespan into that
of a ‘hyper-oracle’, which contains the best solution given
by a HH for each instance. This means that any single HH
can never reach a value below unity. However, since the SHH

VOLUME 10, 2022 43995

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 12. Performance of exploratory tests 4 and 5 when solving TE04. The HHs displayed in each plot represent the available solvers for SHHSHHSHH . The
oracle is given by the best makespan achieved by all heuristics over each JSSP instance.

FIGURE 13. Performance of exploratory test 6 when solving TE01. Training set TR01. SHHrdSHHrdSHHrd summarizes the performance of SHHs with randomly
generated rules. The HHs displayed in each plot represent the available solvers for SHHSHHSHH . The oracle is given by the best makespan achieved by all
heuristics over each JSSP instance.

is free to swap HHs throughout the solution process, it may
reach a better solution, reflecting in a lower than unity nor-
malizedmakespan. Hence, it seems that it is better to combine
specialized hyper-heuristics throughout the solution process
when solving random instances (test 1). For tests 2 and 3,
hyper-heuristics behave as expected and it is evident that
SHH becomes distracted in some instances by the presence
of the other solver. Nevertheless, it is also evident that there
is something to gain from using our proposed model to solve

mixed sets (test 4). This plot makes it easier to validate that
SHH selects a proper solver for about half the instances, as the
near unity median value reveals. Evidently, training a HH or
SHH with a balanced set of specialized instances could yield
better performance. Notwithstanding, at this point, we are
not confident whether our model would still outperform the
others given similar training conditions. But considering the
limitations that a HH presents against a SHH, the latter should
fare better.

43996 VOLUME 10, 2022

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 14. Performance achieved by SHHs from exploratory tests 7 to 11, when solving three different testing sets.

B. EXPLORATORY TESTS
Before diving into the data, we want to mention that, from
this point onward, we refer to a hyper-heuristic trained with
a specific instance set by using a subscript with the training
set. So, HHTR01 is a hyper-heuristic trained with the TR01
instance set.

Figure 11 shows the data for the first three experiments,
where the SHHs are trained with the same set of ran-
dom instances (TR01). Note that these tests were originally
devised with four rules and that each HH has access to
four heuristics. However, we also provide data for the per-
formance of SHHs with two rules, seeking to analyze the
effect of varying this parameter. In all three tests, the SHHs
with four rules reached a smaller median makespan than
the SHHs with two rules. Notwithstanding, in the second
and third tests, we trained the HHs with different kinds of
instances (LPTvsAll and SPTvsAll for test 2, and MPAvsAll
and LPAvsAll for test 3). This is somehow mapped into the
shapes of performance metrics, seemingly being less relevant
when using random instances (test 1).

Next, we discuss tests 4 and 5. These tests involve set
TE04, which incorporates instances that hinder MPA. Fig-
ure 12 shows the performance of the SHHs. We include the
performance of the base HHs, the heuristics, and the oracle
for reference purposes. In test 4 (Figure 12a), HHTR04 should
lose against HHTR05. The reason: the former specializes in
instances favoring MPA, while the latter does so in instances
favoring LPA, and LPA exhibits good performance on set
TE04.

In the case of test 5 (Figure 12b), HHTR02 and HHTR03
specialize in instances favoring LPT and SPT, respec-
tively. Hence, they should perform well when tested on
instances hindering MPA. Notwithstanding, HHTR02 outper-
forms HHTR03. We may explain this since whenever we train
a HH with instances favoring SPT, the resulting solver seems
to considerably select MPA (Figure 5).

The SHHs select the best solver in both tests. This tendency
is clearly stated in test 4, since SHH has amedian performance

metric virtually equal to that of HHTR05. But the pattern
for test 5 is rather interesting. Even if HHTR02 is a better
solver for this kind of instances, HHTR03 does not perform
poorly. Therefore, SHH does not discard it and the resulting
median performance lands slightly above that of the best
solver.

Since MPA dominates when solving random instances,
in test 6, we trained HHs with instances favoring MPA and
added them to the pool of solvers for SHH . Figure 13 shows
the results of training and testing with random instances.
The median performance achieved by SHH (second violin)
and its solvers (third and fourth violin) is similar to the
performance achieved by MPA in both training and testing.
It seems that both HHs always perform well, which tells us
that the training should not have gone wrong. Additionally,
in both scenarios, we added the performance of 10 SHHs
containing the same HHs, but with randomly generated rules,
i.e.,where no training was carried out. This SHH is located in
the first column of each figure and, as we can see, it performs
almost identically to the trained SHH in both, the training and
testing subsets. This indicates that if solvers perform properly,
we may arbitrarily choose between them and expect a good
performance.

The subsequent five tests (7-11) represent SHHs with
access to arbitrary pairs of HHs. We summarize their per-
formance in Figure 14, where the subscript indicates the
test number associated with the SHH. The SHHs from tests
7 and 8 (SHHT7 and SHHT8, respectively) outperform the
others over the three testing sets (TE01, TE02, and TE03).
Bear in mind that SHHT7 has access to a hyper-heuristic
trained with random instances (HHTR01) and one trained with
instances favoring SPT (HHTR03). Therefore, it is notewor-
thy that SHHT7 excels in all tests. Even though TE01 and
TE03 include random instances and instances favoring SPT,
respectively, SHHT7 only really has an advantage with TE01
(Figure 14a). In the case of set TE03, SPT is good only at
solving half the set. Similarly, set TE02 contains instances
unrelated to SPT.

VOLUME 10, 2022 43997

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 15. Performance of exploratory test 12. Training set: TR01. Testing
set: TE01.

The SHH from test 8 can use HHTR04, which focuses on
MPA. So, it may solve half of set TE02 correctly. Neverthe-
less, we must still analyze how it manages to handle the other
half properly. As Figure 14b suggests, the other available
solver (HHTR01) seems good at solving LPAvsMPA instances,
which helps to explain the behavior we observed.

The following best SHH appears in test 9. This SHH
contains two HHs specialized in the same kind of instances
(LPTvsSPT). Still, it is pretty stable and performs rather
well when solving set TE02, which contains instances of a
different kind. Moreover, its performance impoverishes set
TE03 since half the set contains instances of an opposing
nature (SPTvsLPT).

FIGURE 16. Performance of exploratory test 12 when using different
training (TE01) and testing (TR14) sets.

The SHHs developed for tests 7 and 8 exhibit good perfor-
mance on their own. However, training a SHH that uses their
specialized solvers (test 10) proves no benefit when solving
these testing sets. Hence, it seems that HHTR01 plays a key
role by complementing the specialized HHs.

Similarly, test 11 contains a HH specialized in ran-
dom instances and a HH suited to specialized instances.
Notwithstanding, it yields the worst performance among the
five SHHs. One may explain this by the fact that LPA is not a
good heuristic in an overall sense (Figure 13a). So, combining
HHTR01 with either HHTR03 or HHTR04 is a good approach,
as HHTR03 tends to use MPA.

43998 VOLUME 10, 2022

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 17. Performance achieved by SHHs throughout the exploratory test 13 for the training set (TR14) and three different testing sets (TE01 - TE03).

For test 12, we doubled the number of available solvers
(HHs). We use the following specialized HHs: HHTR02,
HHTR03, HHTR04, and HHTR05. So, we expect that perfor-
mance will improve. Figure 15a shows that this indeed
happens and that SHH outperforms the oracle. Notwith-
standing, if we test the model in another set of random
instances (such as TE01), performance diminishes drastically
(Figure 15b).

The performance of each HH on the testing set does not
differ much from the one achieved when training. Among
the high-level solvers, HHTR04 keeps yielding the best total
makespan, reaching a performance similar to MPA and worse
than the oracle. This may be due the fact that HHTR04

specializes in MPAvsAll instances. Although these experi-
ments are based on random instances, MPA is a good over-
all heuristic. Hence, a hyper-heuristic that takes advantage
of that heuristic may achieve a better performance more
easily.

Data suggest two reasons for such a behavior. One is that
the algorithm becomes over-specialized to the instances, thus
hindering generalization. This might happen because we have
a small amount of training instances. Conversely, it may be
that SHH gets confused due to its available solvers. The
performance of HHTR02 in the training set is similar to that of
HHTR04. But, it does not perform well on TE01. So, learning
to use HHTR02 actually becomes counterproductive.

VOLUME 10, 2022 43999

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 18. Performance achieved by SHHs in the exploratory test 14
when solving the training set (TR09) and two testing sets (TE01 and TE09).

To better analyze this performance drop we now change
the training set for TE01. This should reduce the chance
of over-fitting the model, since it has twice the training

instances. Figure 16a shows the resulting performance. There
is a bigger difference between the two best HHs (HHTR04 and
HHTR02). This, in conjunction with the larger set of instances,
should direct the rules of SHH towards HHTR04.

Figure 16b corroborates that swapping the training set
for TE01 allows for a better performance. In fact, some
SHHs outperform HHTR04 and all the available heuristics.
Moreover, and although the oracle still performs better, the
difference is not abysmal.

Through test 13, we push our experiments a little bit fur-
ther. Here, we train using set TR14 (100 random instances),
and we add an extra HH, which specializes in random
instances (HHTR01). Moreover, we preserve the number of
rules for the SHH (four). Figure 17a shows the training data.
Although the oracle performs best, SHH outperforms all the
remaining solvers. The best solver within SHH appears to be
HHTR04, as we expected.

Let us now glance at how performance changes when
solving the testing sets (TE01 - TE03). In all experiments
(Figures 17b to 17d) SHH seems to exhibit similar behavior: it
performs better than the available solvers (HHs or heuristics),
but worse than the oracle. Notice that the HHs and heuristics
vary their performance across tests. The only exceptions are
MPA andHHTR04, which excel in all instance sets. For exam-
ple, HHTR02 performs averagely in TE01, properly in TE02,
and poorly in TE03. Notwithstanding, our proposed approach
remains stable across sets. Our interpretation of these data is
that SHH seeks to replicate HHTR04, which excels in all sets.
So, one should strive to incorporate solvers within SHH with
a similar performance level, to avoid biasing the model. This
leads us to our next test.

In test 14, we consider a balanced training set. Our idea is
to have a set where all solvers (both HHs and heuristics) yield
a similar performance level. So, we consider a set of instances
built with bounded instances of different kinds (TR09). The
chief reason is to bound the performance of MPA, as it out-
performs the other solvers. Moreover, we train the HHs with
bounded instances of opposite kinds. For example, we train
HHTR07 using 30 instances with 1 = 20: 15 favoring
LPT (LPTvsAll) and 15 favoring SPT (SPTvsAll). Figure 18a
shows that all HHs and heuristics yield a total makespan for
the training set around 2800. Even so, MPA remains the best
heuristic. However, its overall performance is closer to the
other heuristics than in previous tests.

The best HH when training is HHTR08 as it portrays the
lowest median. Notwithstanding, it exhibits the highest vari-
ation across repetitions. We believe this is due to the presence
of LPA. Conversely, SHH excels upon the other solvers and it
performs close to the oracle.

Figure 18b shows the performance distribution when solv-
ing the set of random instances TE01. We already know that
MPA is good at solving this set. Consequently, the best HHs
in this test are HHTR08 and HHTR10, which contain instances
that favor MPA in their training sets. Although the SHH
performed well in previous tests (see Figure 18b), this time it
does not excel, yielding a median that is only better than the

44000 VOLUME 10, 2022

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 19. Left: Performance achieved by SHHs with access to the best (SHHbSHHbSHHb) and worst (SHHwSHHwSHHw) base HHs during the exploratory test 14 and when
solving the test set (TE09). Right: Effect on the training performance of SHHs (set TR09) when using different feature subsets.

second best HH. However, when solving TE09 it outperforms
the other solvers (Figure 18c). Nonetheless, it is hard to beat
the oracle in this set of specialized instances, since they were
tailored to different heuristics.

Another variable to explore is the way in which the per-
formance of HHs affect the performance of the SHH. For
doing so, we select the best and worst runs for each kind
of HH from test 14, i.e., those with the lowest and highest
makespans for set TE09, respectively. Figure 19a shows the
performance distribution of SHHs trained with the best (first
violin) and worst (second violin) HHs. The former yields a
better performance, as onemay expect. The remaining violins
in the figures represent the other solvers and the oracle. Note
that SHHs trained with the worst HHs still managed to obtain
a better median than the best solver, which is noteworthy.

Throughout this test, we also explored the effect of varying
the features considered for analyzing the problem. Figure 19b
shows seven combinations of features, and the total makespan
yielded for different SHHs. Even if we only present some
feature combinations, it is evident that performance can
change drastically. For example, using F1 (Mirsh222) and
F5 (Mirsh95) leads to a good median result but with a high
variance across repetitions. Oppositely, performance remains
stable and at an average level when using F4 (Mirsh282).
This opens a door for exploring the remaining combinations
and finding the subset of features that might be a better option
when training SHHs.

Figure 20 compares representative solvers from Figures 18
and 19. Moreover, we include the performance distribution
of a set of 10000 SHHs that use ten randomly generated
rules each and the same four HHs than for the SHHs from

FIGURE 20. Performance distribution of SHHs obtained with the best
testing conditions from exploratory test 14 when solving TE09 and
including the performance of 10000 SHHs with randomly generated rules
(SHHSHHSHHrd), for comparison purposes. SHHSHHSHHF1F5 represents SHHs trained with
features F1 (Mirsh222) and F5 (Mirsh95).

Figure 18c. We also include the performance of the oracle for
comparison purposes. It is noteworthy that all sets of SHHs
yield a similar median value. This is interesting because of the
random nature of the SHHs from the first violin. Although
this suggests that we may not need the training to reach
this performance level, it is important to remember that this
approach tests the performance of a high number of SHHs.

We have shown that combining HHs improves perfor-
mance. Despite this, we are unaware of the best performance
level that the model may achieve and whether it is better than
the oracle’s. For shedding some light on this matter, we create

VOLUME 10, 2022 44001

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

a sort of hyper-oracle, identified as HH-oracle, which stores
the result of the HH that yields the lowest makespan over
every single instance. However, this oracle can be approached
from two perspectives. First, we have an absolute HH-oracle,
which analyzes all runs simultaneously and chooses the best
ones for each solver. We can also define a relative HH-oracle
in a similar way, but which only compares the HHs from a
single run. So, the latter provides a variance related to the
variation of the solvers across the runs.

When we applied such oracles to test 14, we noticed that
they both excel in the training and testing sets. Notwithstand-
ing, and although differences are small, the heuristic oracle
remains the best performing solver, even outperforming both
HH-oracles. However, we omit the plot for the sake of brevity.

Our last experiment in this stage covers some of the classic
benchmarks.More specifically, we use our model for tackling
Taillard instances. As mentioned in the methodology, we use
set Tai1515 for training, containing ten instances with 15 jobs
and 15machines each.With it, we train the SHH and the HHs,
arriving at the performance levels shown in Figure 21a.

It is interesting to see that these solvers outperform the
oracle. Another element that stands out is that the HH-oracles
also perform better than the heuristic oracle. This tells us
that for these instances, combining HHs is better than only
combining heuristics, which favors the existence of our SHH
model. So, we use these solvers for tackling sets Tai2015 and
Tai2020 (Figure 21b). The performance is similar to when
training, with the difference that the performance of the SHH
and the HHs is slightly worse in set Tai2015. Moreover, when
solving set Tai2020, all solvers yield a median similar to
the oracle and MPA. Besides, MPA remains the dominant
heuristic.

The results of this last exploratory experiment are very
favorable for the SHH, but there are a couple of issues.
The first one is that the instances are unbalanced for the
kind of heuristics that we are using, as MPA predominates.
As we showed before, this may lead to troubles during the
training. The second setback is that Taillard instances are
large instances, which reduces the number of experiments
that we can run in the same amount of time. For these reasons,
and given that we also have another positive experiment,
we exploit test 14 in the next section, searching for a com-
bination of parameters that improve the performance of our
proposed model.

C. DETAILED TESTS
In this section, we explore two paths. The first one assesses
whether a subset of features might yield better performance
than the whole set. As we mentioned in Section III-C,
throughout this work, we consider a set of five features from
the literature. So, we tested all combinations of such features
(Figure 22). Data reveal that violin 16 is the best combination
of features, which corresponds to F1 and F5 (i.e., Mirsh222
and Mirsh95, respectively). This is actually of benefit since
a model with fewer features also requires lower computa-
tional resources. Moreover, this enhances the possibilities

FIGURE 21. Performance achieved by SHHs and by the available solvers
when tackling Taillard instances (test 15) in the training set (Tai1515) and
two testing sets (Tai2015 and Tai2020). The figures also display the
performance of three kinds of oracles, for comparison purposes.

of finding a good model throughout the training stage since
UPSO needs to tune fewer variables, i.e., it needs to search
within a smaller search domain. Therefore, we use these two
features from this point onward.

The next path focuses on varying the number of training
instances and the number of rules, leading to 90 parame-
ter combinations. Figure 23 summarizes the median perfor-
mance of the resulting SHHs. Bear in mind that this figure
is built considering the inverse median value throughout the
30 runs of each parameter combination. This is done for
the sake of figure readability. So, taller bars represent better
performing SHHs when solving TE09.

Even though the SHH models trained with eight rules
and 72 instances seem to work best, the data of all other

44002 VOLUME 10, 2022

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 22. Performance distribution of SHHs trained using different feature subsets. Each SHH has 4 rules and was
trained with TR09. Violins contain the ranking distribution of the median performance (30 runs) achieved by SHHs across
all available testing sets. Feature combinations are given in Table 5.

FIGURE 23. Median inverse total makespan yielded by SHHs trained with
different number of training instances and rules (30 runs each), and when
solving the testing set (TE09).

models remain somewhat stable. So, let us now analyze what
happens when solving the training set. Nonetheless, such
a comparison is not straightforward. The reason is that in
varying the number of training instances, the total makespan
changes. Hence, SHHs trained with smaller sets would seem
to perform better, which may not be accurate.

To remove this bias, we migrate to a normalized value of
the previous metric. This value is calculated by subtracting
the performance achieved by the oracle from the median
performance of the SHH, and then dividing such a differ-
ence by the number of training instances. The resulting pat-
tern is presented in Figure 24. This time, the figure shows

FIGURE 24. Median normalized inverse total makespan yielded by SHHs
trained with different number of training instances and rules (30 runs
each), and when solving their corresponding training sets (subsets from
TR09).

two tendencies. First, performance improves when there are
fewer training instances. This happens because it becomes
easier to over-fit the SHH model to the training set.

The second tendency is that performance increases as the
number of rules grow. This is favorable because a SHH with
more rules can generate more complex action zones, which
allows it to adapt to more varied scenarios. Nonetheless,
caution must be taken as an excessively high number of rules
may lead to overly complex models. This kind of model may
overfit the training data more easily, and they are also more
difficult to train since they have a higher number of design
variables. In any case, we recommend training the model

VOLUME 10, 2022 44003

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

FIGURE 25. Performance distribution of SHHs, HHs, and heuristics (30
runs) when solving the training (TR09) and testing (TE09) subsets. Each
SHH has access to the HHs and heuristics shown in the figure.

with a higher number of instances and rules, as it seems to
generalize better.

D. CONFIRMATORY TESTS
As a final experiment, we train SHHs with access to both,
HHs and heuristics (Figure 25). Comparing their performance
against that of previous SHHs (cf. Figure 20) evidences that
performance remains similar for both training and testing.
However, it is also clear that the inclusion of the heuristics
dampened the training performance. Moreover, the median
performance of the SHH is worse than the median ofHHTR07,
which is a previously unseen behavior. This suggests that
combining both kinds of solvers (HHs and heuristics) might
hold the model back.

FIGURE 26. Solver composition of the SHHs created for the confirmatory
stage (Figure 25). Regions shaded in yellow relate to heuristics and
regions shaded in blue relate to hyper-heuristics.

One reason for the reduced performance stems from the
fact that more solvers imply a larger search domain. Thus,
the search becomes more difficult. Besides, these heuristics
perform poorly when solving TE09 and TR09 (the testing and
training set of this experiment). So, another reason is that the
heuristics bind the performance of the SHHs, thus reducing
overall performance. Therefore, unless we have a different set
of heuristics, it seems better for the SHH to only use HHs.

Figure 26 shows the distribution of solvers regarding the
SHHs trained in this stage. The proportions are obtained by
counting the number of times each solver appears in a rule of
the 30 SHHs. The pie clearly shows that about two-thirds of
the rules target HHs (regions shaded in blue), with HHTR07
being the most popular one. Regarding heuristics (regions
shaded in yellow), LPT is the most common one by far.
As we can see in Figure 25a, the heuristics by themselves
do not perform well when solving the training set (TR09).
Therefore, the model seeks to disregard them, albeit not
completely.

VI. CONCLUSION AND FUTURE WORK
In this work, we proposed a new approach for solving Job
Shop Scheduling Problems (JSSPs): a dual-layered hyper-
heuristic. Our goal was to propose a model akin to current
Hyper-Heuristics (HHs) but with an extra layer of freedom.
We feel that such a layer could be paramount for widening the
generalization capability of hyper-heuristics. So, we called
this model a Squared Hyper-Heuristic (SHH). To assess its
feasibility, we pursued four testing stages. We first solved
simple scenarios and compared the results against an existing
model. Then, we explored 14 scenarios to determine the effect
of the kind of instance used for training and the number of
rules and solvers. Afterward, we analyze the influence of the
features and the combination of the number of rules and train-
ing instances for one selected scenario. Finally, we delved
into the idea of training a SHH that uses both HHs and
heuristics.

Our feasibility tests hint at the idea of transferring knowl-
edge from the HHs into a SHH. This may prove to be an

44004 VOLUME 10, 2022

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

interesting path worth pursuing, as it could allow applying the
ideas from transfer learning into hyper-heuristics. Moreover,
it improves the reusability of a hyper-heuristic, as it can be
trained for a specific purpose and then combined with another
one to enhance their generalization capability.

In the exploratory section, we learned that increasing the
number of rules leads to better performance. Moreover, if a
particular solver excels over the training instances, the SHH
will strive to mimic it. So, one should aim at having a
balanced set of solvers for the training set. For this work,
we achieved it by using bounded instances. As a result, the
SHH distributed its rules across the available solvers, which
allowed it to outperform them.

The detailed tests revealed that features play a crucial
role and that having more features is not necessarily better.
When using features Mirsh222 and Mirsh95, our pro-
posed model performed better than when using the entire set
of features. So, we recommend using the reduced set in future
works. We also analyzed the effect of changing the number
of training instances and the number of rules for the SHH.
Data suggest that using more rules usually translates into
better training performance. However, caution must be taken
as an excessively complex model could prove worthless and
challenging to train.

Although our results are noteworthy, there are some prac-
tical implications to note when seeking to apply an SHH
for real-life situations. One of them is the modeling of the
problem as a JSSP. Another one is the set of instances
available for training. Finally, we have the issue of the set
of available solvers. In the first case, there can be external
issues that deviate the problem from the one we considered
here. Consider, for example, the issue of controlling traffic
lights to minimize traffic jams. Even if it is straightforward
to think of the travel time as the makespan of a JSSP, the
stochastic behavior of car arrivals makes its implementa-
tion difficult. In this sense, each car could be considered a
job, where operations are given by each traffic light the car
encounters along its path, and each traffic light represents
a machine. This, however, poses two issues. First, there is
an interdependence in some machines (traffic lights at each
crossing), which our model does not consider. Second, the
JSSP changes the order in which jobs are scheduled, implying
changing the ordering in which cars arrive. In the case of
instances, the issue befalls to collecting real data where there
can be numerous traffic lights and where external issues may
affect the data (e.g., extra lanes or issues down the road).
This leads to the last issue, which appears because of the
size of real-life instances. Even if our model assumes that
traditional hyper-heuristics have been already trained, in a
practical scenario, one must carry out such training. If the set
of instances is huge, it will require considerable computing
time.

Despite the good results we achieved, our work exhibits
some drawbacks. Although the main reason for such draw-
backs is the already substantial number of tests and related
data, it is evident that several elements remain unexplored.

These can be grouped in: experiment variety, cross-domain
applicability, and model generalization. For example, it shall
prove interesting to see what happens if we use instances with
fixed feature values during the training of a SHH. In doing so,
each HH could identify the set of solvers that works best at
different regions of the feature domain. By combining these
HHs, the SHH may recognize each solver better and improve
its performance.

Dynamic JSSPs is a current trend and is a path worth pur-
suing. Consequently, we recommend analyzing the effect of
higher-order hyper-heuristics when tackling dynamic JSSPs.
Also, bear in mind that, in principle, it is possible to
tackle multi-objective problems with our proposed approach.
That is, if the HH solvers of the SHH are trained with
a multi-objective approach, the SHH is prepared to tackle
multi-objective goals as well. Naturally this requires the
definition of a multi-objective fitness function and a multi-
objective solver, such as a MOEA. Additionally, extensive
tests should be run to assess the capability of the method,
as this approach is currently theoretical.

Another topic to develop in the future is reducing the
SHH model into a simplified HH, e.g., with some translation
algorithm. This could be done by looking at the action zones
of a SHH. For example, if a SHH always chooses one or
two HHs, then we may replace them with their component
heuristics. This process will lead to a HH model since it will
only have heuristics as solvers. Notwithstanding, this process
must be tackled with caution as it may lead to unusually
complex models.

We also need to figure out the possible applications this
model might have and in which domains it shall prove the
most useful. One application to keep in mind is the recom-
bination of different techniques from the literature without
having to train the solvers from scratch. This can be done
by using them as solvers for the SHH while using the same
training instances across all solvers. Conversely, one may use
a new set of instances for training the SHH to learn how
to combine solvers properly for this new goal. This would
allow working in layers so that the final model exhibits an
enhanced performance and generalization without incurring
in excessive training costs.

Another idea that comes to mind is to delve deeper into the
layered architecture. So far, we have added one extra layer to
the hyper-heuristic model. Nevertheless, our proposed model
can recursively add more layers until it finds the desired gen-
eralization level. Alas, this concept may be easier to describe
than to develop, as it might end up being computationally
infeasible.

An additional possibility is using the higher-order model to
simplify the resulting regions of influence, thus streamlining
the final model. This, of course, requires that the simplified
solver outperforms the others. For example, consider a set of
two complementary hyper-heuristics, which have the same
shape for the regions of influence but with contradictory
solvers. Let us consider, for simplicity, that one of these
solvers excels across all instances. So, in creating the SHH,

VOLUME 10, 2022 44005

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

the resulting model may learn to always use said heuristic.
Nonetheless, it is necessary to run extensive tests to assess
the reach of this idea.

Finally, it is important to disclose that, in this work, we con-
sider a performance metric given by the total makespan.
However, this is not the only feasible metric (nor we pretend
it to be the best one). So, it should also prove interesting to
analyze the effect of using different metrics.

REFERENCES
[1] J. Denzinger, M. Fuchs, and M. Fuchs, ‘‘High performance ATP systems

by combining several AI methods,’’ in Proc. 15th Int. Joint Conf. Artif.
Intell. (IJCAI), 1997, pp. 102–107.

[2] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
R. Qu, ‘‘Hyper-heuristics: A survey of the state of the art,’’ J. Oper. Res.
Soc., vol. 64, no. 12, pp. 1695–1724, 2013.

[3] N. Pillay and R. Qu, Hyper-Heuristics: Theory and Applications. (Natural
Computing Series). Cham, Switzerland: Springer, 2018.

[4] J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, ‘‘Recent advances in
selection hyper-heuristics,’’Eur. J. Oper. Res., vol. 285, no. 2, pp. 405–428,
Sep. 2020.

[5] D. Wei, F. Wang, and H. Ma, ‘‘Autonomous path planning of AUV in
large-scale complex marine environment based on swarm hyper-heuristic
algorithm,’’ Appl. Sci., vol. 9, no. 13, p. 2654, Jun. 2019.

[6] S. Yu, A. Song, and A. Aleti, ‘‘A study on online hyper-heuristic learning
for swarm robots,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019,
pp. 2721–2728.

[7] H. Majeed and S. Naz, ‘‘Deja vu: A hyper heuristic framework with
record and recall (2R) modules,’’ Cluster Comput., vol. 22, no. S3,
pp. 7165–7179, May 2019.

[8] A. Adnan, A. Muhammed, A. A. A. Ghani, A. Abdullah, and F. Hakim,
‘‘Hyper-heuristic framework for sequential semi-supervised classification
based on core clustering,’’ Symmetry, vol. 12, no. 8, p. 1292, Aug. 2020.

[9] R. Cui, W. Han, X. Su, Y. Zhang, and F. Guo, ‘‘A multi-objective hyper
heuristic framework for integrated optimization of carrier-based aircraft
flight deck operations scheduling and resource configuration,’’Aerosp. Sci.
Technol., vol. 107, Dec. 2020, Art. no. 106346.

[10] J. Zhong, Z. Huang, L. Feng, W. Du, and Y. Li, ‘‘A hyper-heuristic
framework for lifetime maximization in wireless sensor networks with a
mobile sink,’’ IEEE/CAA J. Automatica Sinica, vol. 7, no. 1, pp. 223–236,
Jan. 2020.

[11] A. Toledo, M.-C. Riff, and B. Neveu, ‘‘A hyper-heuristic for the orienteer-
ing problem with hotel selection,’’ IEEE Access, vol. 8, pp. 1303–1313,
2020.

[12] R. Bai, J. Blazewicz, E. K. Burke, G. Kendall, and B. McCollum, ‘‘A sim-
ulated annealing hyper-heuristic methodology for flexible decision sup-
port,’’ 4OR, vol. 10, no. 1, pp. 43–66, Mar. 2012.

[13] P. B. C. Miranda, R. B. C. Prudêncio, and G. L. Pappa, ‘‘H3AD: A hybrid
hyper-heuristic for algorithm design,’’ Inf. Sci., vol. 414, pp. 340–354,
Nov. 2017.

[14] J. M. Cruz-Duarte, I. Amaya, J. C. Ortiz-Bayliss, S. E. Conant-Pablos, and
H. Terashima-Marin, ‘‘A primary study on hyper-heuristics to customise
metaheuristics for continuous optimisation,’’ in Proc. IEEE Congr. Evol.
Comput. (CEC), Jul. 2020, pp. 1–8.

[15] J. M. Cruz-Duarte, I. Amaya, J. C. Ortiz-Bayliss, S. E. Conant-Pablos,
H. Terashima-Marín, and Y. Shi, ‘‘Hyper-heuristics to customise meta-
heuristics for continuous optimisation,’’ Swarm Evol. Comput., vol. 66,
Oct. 2021, Art. no. 100935.

[16] S. S. Choong, L.-P. Wong, and C. P. Lim, ‘‘Automatic design of hyper-
heuristic based on reinforcement learning,’’ Inf. Sci., vols. 436–437,
pp. 89–107, Apr. 2018.

[17] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, ‘‘Automatic design of a
hyper-heuristic framework with gene expression programming for combi-
natorial optimization problems,’’ IEEE Trans. Evol. Comput., vol. 19, no. 3,
pp. 309–325, Jun. 2015.

[18] M. Sanchez, J. M. Cruz-Duarte, J. C. Ortiz-Bayliss, H. Ceballos,
H. Terashima-Marin, and I. Amaya, ‘‘A systematic review of hyper-
heuristics on combinatorial optimization problems,’’ IEEE Access, vol. 8,
pp. 128068–128095, 2020.

[19] J. J. vanHoorn, ‘‘The current state of bounds on benchmark instances of the
job-shop scheduling problem,’’ J. Scheduling, vol. 21, no. 1, pp. 127–128,
Feb. 2018.

[20] G. Da Col and E. Teppan, ‘‘Google vs IBM: A constraint solving challenge
on the job-shop scheduling problem,’’ Electron. Proc. Theor. Comput. Sci.,
vol. 306, pp. 259–265, Sep. 2019.

[21] L. Hernández-Ramírez, J. Frausto-Solis, G. Castilla-Valdez,
J. J. González-Barbosa, J. D. Terán-Villanueva, and M. L. Morales-
Rodríguez, ‘‘A hybrid simulated annealing for job shop scheduling
problem,’’ Int. J. Combinat. Optim. Problems Informat., vol. 10, no. 1,
pp. 6–15, 2019.

[22] I. González-Rodríguez, J. Puente, J. J. Palacios, and C. R. Vela, ‘‘Multi-
objective evolutionary algorithm for solving energy-aware fuzzy job shop
problems,’’ Soft Comput., vol. 24, no. 21, pp. 16291–16302, Nov. 2020.

[23] J. Liang, Y.-H. Zhu, Y.-Z. Luo, J.-C. Zhang, and H. Zhu, ‘‘A precedence-
rule-based heuristic for satellite onboard activity planning,’’ Acta Astro-
nautica, vol. 178, pp. 757–772, Jan. 2021.

[24] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, ‘‘Learning iterative
dispatching rules for job shop scheduling with genetic programming,’’ Int.
J. Adv. Manuf. Technol., vol. 67, nos. 1–4, pp. 85–100, Jul. 2013.

[25] C. Y. Lee, S. Piramuthu, and Y. K. Tsai, ‘‘Job shop scheduling with a
genetic algorithm and machine learning,’’ Int. J. Prod. Res., vol. 35, no. 4,
pp. 1171–1191, 1997.

[26] S. Olafsson and X. Li, ‘‘Learning effective new single machine dispatching
rules from optimal scheduling data,’’ Int. J. Prod. Econ., vol. 128, no. 1,
pp. 118–126, Nov. 2010.

[27] C. W. Pickardt, T. Hildebrandt, J. Branke, J. Heger, and B. Scholz-Reiter,
‘‘Evolutionary generation of dispatching rule sets for complex dynamic
scheduling problems,’’ Int. J. Prod. Econ., vol. 145, no. 1, pp. 67–77, 2013.

[28] E. Hart and K. Sim, ‘‘A hyper-heuristic ensemble method for static job-
shop scheduling,’’ Evol. Comput., vol. 24, no. 4, pp. 609–635, 2016.

[29] E. Lara-Cardenas, A. Silva-Galvez, J. C. Ortiz-Bayliss, I. Amaya,
J. M. Cruz-Duarte, and H. Terashima-Marin, ‘‘Exploring reward-based
hyper-heuristics for the job-shop scheduling problem,’’ in Proc. IEEE
Symp. Ser. Comput. Intell. (SSCI), Dec. 2020, pp. 1–8.

[30] C.-C. Wu, D. Bai, J.-H. Chen, W.-C. Lin, L. Xing, J.-C. Lin, and
S.-R. Cheng, ‘‘Several variants of simulated annealing hyper-heuristic for a
single-machine scheduling with two-scenario-based dependent processing
times,’’ Swarm Evol. Comput., vol. 60, Feb. 2021, Art. no. 100765.

[31] H. Fan, H. Xiong, and M. Goh, ‘‘Genetic programming-based hyper-
heuristic approach for solving dynamic job shop scheduling problem with
extended technical precedence constraints,’’ Comput. Oper. Res., vol. 134,
Oct. 2021, Art. no. 105401.

[32] W. Bouazza, Y. Sallez, and D. Trentesaux, ‘‘Dynamic scheduling of manu-
facturing systems: A product-driven approach using hyper-heuristics,’’ Int.
J. Comput. Integr. Manuf., vol. 34, pp. 1–25, Jul. 2021.

[33] F. Garza-Santisteban, I. Amaya, J. Cruz-Duarte, J. C. Ortiz-Bayliss,
E. Ozcan, andH. and Terashima-Marin, ‘‘Exploring problem state transfor-
mations to enhance hyper-heuristics for the job-shop scheduling problem,’’
in Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2020, pp. 1–8.

[34] A. Vela, J. M. Cruz-Duarte, J. C. Ortiz-Bayliss, and I. Amaya, ‘‘Tailoring
job shop scheduling problem instances through unified particle swarm
optimization,’’ IEEE Access, vol. 9, pp. 66891–66914, 2021.

[35] V. López, I. Triguero, C. J. Carmona, S. García, and F. Herrera, ‘‘Address-
ing imbalanced classification with instance generation techniques: IPADE-
ID,’’ Neurocomputing, vol. 126, pp. 15–28, Feb. 2014.

[36] J. Zhang, G. Ding, Y. Zou, S. Qin, and J. Fu, ‘‘Review of job shop
scheduling research and its new perspectives under industry 4.0,’’ J. Intell.
Manuf., vol. 30, no. 4, pp. 1809–1830, Apr. 2019.

[37] T. Borreguero-Sanchidrián, R. Pulido, Á. García-Sánchez, and
M. Ortega-Mier, ‘‘Flexible job shop scheduling with operators in
aeronautical manufacturing: A case study,’’ IEEE Access, vol. 6,
pp. 224–233, 2017.

[38] C.-C. Wu, D. Bai, J.-H. Chen, W.-C. Lin, L. Xing, J.-C. Lin, and
S.-R. Cheng, ‘‘Several variants of simulated annealing hyper-heuristic for a
single-machine scheduling with two-scenario-based dependent processing
times,’’ Swarm Evol. Comput., vol. 60, Feb. 2021, Art. no. 100765.

[39] M. M. Ahmadian, A. Salehipour, and T. C. E. Cheng, ‘‘A meta-heuristic
to solve the just-in-time job-shop scheduling problem,’’ Eur. J. Oper. Res.,
vol. 288, no. 1, pp. 14–29, Jan. 2021.

[40] G. A. Rolim and M. S. Nagano, ‘‘Structural properties and algorithms for
earliness and tardiness scheduling against common due dates andwindows:
A review,’’ Comput. Ind. Eng., vol. 149, Nov. 2020, Art. no. 106803.

44006 VOLUME 10, 2022

A. Vela et al.: Beyond HHs: SHH Model for Solving JSSPs

[41] M. E. Bruni, S. Khodaparasti, and E. Demeulemeester, ‘‘The distribution-
ally robust machine scheduling problem with job selection and sequence-
dependent setup times,’’ Comput. Oper. Res., vol. 123, Nov. 2020,
Art. no. 105017.

[42] M. Mahmoodjanloo, R. Tavakkoli-Moghaddam, A. Baboli, and
A. Bozorgi-Amiri, ‘‘Flexible job shop scheduling problem with
reconfigurable machine tools: An improved differential evolution
algorithm,’’ Appl. Soft Comput., vol. 94, Sep. 2020, Art. no. 106416.

[43] D. Yüksel, M. F. Taşgetiren, L. Kandiller, and L. Gao, ‘‘An energy-efficient
bi-objective no-wait permutation flowshop scheduling problem to mini-
mize total tardiness and total energy consumption,’’ Comput. Ind. Eng.,
vol. 145, Jul. 2020, Art. no. 106431.

[44] X. Li and S. Olafsson, ‘‘Discovering dispatching rules using data mining,’’
J. Scheduling, vol. 8, no. 6, pp. 515–527, Dec. 2005.

[45] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘‘SATzilla: Portfolio-
based algorithm selection for SAT,’’ J. Artif. Intell. Res., vol. 32,
pp. 565–606, Jul. 2008.

[46] C. Ansótegui, J. Gabàs, Y. Malitsky, and M. Sellmann, ‘‘MaxSAT
by improved instance-specific algorithm configuration,’’ Artif. Intell.,
vol. 235, pp. 26–39, Jun. 2016.

[47] J. M. Cruz-Duarte, I. Amaya, J. C. Ortiz-Bayliss, S. E. Conant-Pablos, and
H. Terashima-Marin, ‘‘A primary study on hyper-heuristics to customise
metaheuristics for continuous optimisation,’’ in Proc. IEEE Congr. Evol.
Comput. (CEC), Jul. 2020, pp. 1–8.

[48] F. Garza-Santisteban, I. Amaya, J. Cruz-Duarte, J. C. Ortiz-Bayliss,
E. Ozcan, and H. Terashima-Marin, ‘‘Exploring problem state transforma-
tions to enhance hyper-heuristics for the job-shop scheduling problem,’’ in
Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2020, pp. 1–8.

[49] C. Yu, P. Andreotti, and Q. Semeraro, ‘‘Multi-objective scheduling in
hybrid flow shop: Evolutionary algorithms using multi-decoding frame-
work,’’ Comput. Ind. Eng., vol. 147, Sep. 2020, Art. no. 106570.

[50] F. Garza-Santisteban, R. Sanchez-Pamanes, L. A. Puente-Rodriguez,
I. Amaya, J. C. Ortiz-Bayliss, S. Conant-Pablos, and H. Terashima-Marin,
‘‘A simulated annealing hyper-heuristic for job shop scheduling prob-
lems,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019, pp. 57–64.

[51] P. Taylor, ‘‘Addressing the gap in scheduling research: A review of opti-
mization and heuristic methods in production scheduling Addressing the
gapin scheduling research: A review of optimization and heuristic methods
in production scheduling,’’Manuf. Eng., vol. 31, pp. 37–41, Jan. 1993.

[52] C. Mencía, M. R. Sierra, and R. Varela, ‘‘Depth-first heuristic search
for the job shop scheduling problem,’’ Ann. Oper. Res., vol. 206, no. 1,
pp. 265–296, Jul. 2013.

[53] K. Parsopoulos and M. Vrahatis, ‘‘UPSO: A unified particle swarm
optimization scheme,’’ in Proc. Int. Conf. Comput. Methods Sci. Eng.
(ICCMSE), Jan. 2019, pp. 868–873.

[54] M. Klusch,M. Pechoucek, andA. Polleres,Artificial Intelligence:Method-
ology, Systems, and Applications (Notes in Computer Science), vol. 4183.
Berlin, Germany: Springer, 2006.

[55] M. Clerc and J. Kennedy, ‘‘The particle swarm–explosion, stability, and
convergence in a multidimensional complex space,’’ IEEE Trans. Evol.
Comput., vol. 6, no. 1, pp. 58–73, Aug. 2002.

[56] E. S. Peer, F. van den Bergh, and A. P. Engelbrecht, ‘‘Using neighbour-
hoods with the guaranteed convergence PSO,’’ in Proc. IEEE Swarm Intell.
Symp. (SIS), Aug. 2003, pp. 235–242.

[57] P. Cowling, G. Kendall, and E. Soubeiga, ‘‘A hyperheuristic approach
to scheduling a sales summit,’’ in Practice and Theory of Auto-
mated Timetabling III (Lecture Notes in Computer Science), vol. 2079,
E. Burke and W. Erben, Eds. Berlin, Germany: Springer, 2001, doi:
10.1007/3-540-44629-X_11.

[58] K. Sim and E. Hart, ‘‘An improved immune inspired hyper-heuristic for
combinatorial optimisation problems,’’ in Proc. Annu. Conf. Genetic Evol.
Comput., New York, NY, USA, Jul. 2014, pp. 121–128.

[59] S. Nguyen, M. Zhang, and M. Johnston, ‘‘A genetic programming based
hyper-heuristic approach for combinatorial optimisation,’’ in Proc. 13th
Annu. Conf. Genetic Evol. Comput. (GECCO), NewYork, NY, USA, 2011,
pp. 1299–1306.

[60] N. R. Sabar and G. Kendall, ‘‘Population based Monte Carlo tree
search hyper-heuristic for combinatorial optimization problems,’’ Inf. Sci.,
vol. 314, pp. 225–239, Sep. 2015.

[61] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
J. R. Woodward, ‘‘A classification of hyper-heuristic approaches: Revis-
ited,’’ Int. Ser. Oper. Res. Manage. Sci., vol. 272, pp. 453–477, 2019.

[62] S. Mirshekarian and D. N. Šormaz, ‘‘Correlation of job-shop scheduling
problem features with scheduling efficiency,’’ Expert Syst. Appl., vol. 62,
pp. 131–147, Nov. 2016.

ALONSO VELA was born in Piedras Negras,
Coahuila, Mexico, in 1996. He received the
B.Sc. degree in biomedical engineering and the
M.Sc. degree in computer science from the
Tecnologico de Monterrey, in 2019 and 2021,
respectively.

In 2018, he worked at O-I Packaging Solutions
as a Systems Engineer, where he was in-charge
of the Quality Laboratory. His research interests
include machine learning, artificial intelligence,

engineering design, and combinatorial optimization problems solved through
the field of hyper-heuristics.

JORGE M. CRUZ-DUARTE (Member, IEEE)
was born in Ocaña, N.S., Colombia, in 1990.
He received the B.Sc. and M.Sc. degrees in elec-
tronic engineering from the Universidad Industrial
de Santander, Bucaramanga, Santander, Colom-
bia, in 2012 and 2015, respectively, and the Ph.D.
degree in electrical engineering from the Universi-
dad de Guanajuato, Mexico, in 2018.

He was a Postdoctoral Fellow with the Research
Group with Strategic Focus in Intelligent Systems,

Tecnológico deMonterrey, Mexico, from 2019 to 2021, where he is currently
a Research Professor with the School of Engineering and Sciences. His
research interests include data science, optimization, mathematical methods,
thermodynamics, digital signal processing, electronic thermal management,
and fractional calculus.

JOSÉ CARLOS ORTIZ-BAYLISS (Member,
IEEE) was born in Culiacan, Sinaloa, Mexico,
in 1981. He received the B.Sc. degree in computer
engineering from the Universidad Tecnologica de
la Mixteca, in 2005, the M.Sc. degree in com-
puter science from the Tecnologico de Monterrey,
in 2008, the Ph.D. degree from the Tecnologico
de Monterrey, in 2011, the M.Ed. degree from
the Universidad del Valle de Mexico, in 2017,
the B.Sc. degree in project management from the

Universidad Virtual del Estado de Guanajuato, in 2019, and the M.Ed.A.
degree from the Instituto de Estudios Universitarios, in 2019.

He is currently an Assistant Research Professor with the School of
Engineering and Sciences, Tecnologico de Monterrey. His research interests
include computational intelligence, machine learning, heuristics, meta-
heuristics, and hyper-heuristics for solving combinatorial optimization prob-
lems. He is a member of the Mexican National System of Researchers,
the Mexican Academy of Computing, and the Association for Computing
Machinery.

IVAN AMAYA (Senior Member, IEEE) was born
in Bucaramanga, Santander, Colombia, in 1986.
He received the B.Sc. degree in mechatronics
engineering from the Universidad Autónoma de
Bucaramanga, in 2008, and the Ph.D. degree in
engineering from the Universidad Industrial de
Santander, in 2015.

From 2016 to 2018, he was a Postdoctoral Fel-
low with the Research Group with Strategic Focus
in Intelligent Systems, Tecnologico de Monterrey,

where he has been a Research Professor with the School of Engineering and
Sciences, since 2018. His research interests include numerical optimization
of both, continuous and discrete problems, through the application of heuris-
tics, metaheuristics, hyper-heuristics, and finding new ways of using feature
transformations for improving hyper-heuristic performance. He is a member
of the Mexican National System of Researchers, the Mexican Academy of
Computing, and the Association for Computing Machinery.

VOLUME 10, 2022 44007

http://dx.doi.org/10.1007/3-540-44629-X_11

