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ABSTRACT For the last two decades, oversampling has been employed to overcome the challenge of
learning from imbalanced datasets. Many approaches to solving this challenge have been offered in the
literature. Oversampling, on the other hand, is a concern. That is, models trained on fictitious data may fail
spectacularly when put to real-world problems. The fundamental difficulty with oversampling approaches
is that, given a real-life population, the synthesized samples may not truly belong to the minority class. As a
result, training a classifier on these samples while pretending they represent minority may result in incorrect
predictions when the model is used in the real world. We analyzed a large number of oversampling methods
in this paper and devised a new oversampling evaluation system based on hiding a number of majority
examples and comparing them to those generated by the oversampling process. Based on our evaluation
system, we ranked all these methods based on their incorrectly generated examples for comparison. Our
experiments using more than 70 oversampling methods and nine imbalanced real-world datasets reveal that
all oversampling methods studied generate minority samples that are most likely to be majority. Given data
and methods in hand, we argue that oversampling in its current forms and methodologies is unreliable for
learning from class imbalanced data and should be avoided in real-world applications.

INDEX TERMS Oversampling, SMOTE, imbalanced datasets, machine learning, Hassanat metric.

I. INTRODUCTION
When training a dataset with examples from one class greatly
outnumbering those from the other, a phenomenon known
as class imbalance emerges. The majority class is usually
referred to as such, whereas the minority class is referred to
as such. There may be more than one majority class and more
than one minority class in a single dataset. The main cause of
class imbalance is that classifiers trained on unequal training
sets have a prediction bias, which is linked to poor perfor-
mance in the minority class(es), Depending on the dataset uti-
lized, the bias could range from a little imbalance to a severe
imbalance [1]–[5]. This problem has grown and has become a
significant difficulty since the minority class is frequently of
critical importance, as it represents favorable examples that
are rare in nature or expensive to obtain [6]. This is true when
considering contexts such as Big Data analytics [7]–[13],
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Biometrics [14]–[22], gene profiling [23], credit card fraud
detection [24], [25], face image retrieval [24], content-
based image retrieval [26], [27], disease detection [28]–[32],
internet of things [33]–[43], Natural Language Process-
ing [44], [45], network security [46]–[52], image recognition
[53]–[58], Anomaly Detection [59]–[69], etc.

In formal terms, a supervised machine learning dataset D
with n instances belonging to m classes C1,C2,C3, . . . ,Cm
is said to be a class imbalanced dataset if and only if for any
Ci, Cj ∃ |Ci| � |Cj|, where i and j are indexes 1, 2, 3, . . . ,m,
and i 6= j.

There are several approaches to solving class imbalance
problem before starting classification, such as:
• More samples from the minority class(es) should be
acquired from the knowledge domain.

• Changing the loss function to give the failing minority
class a higher cost [70].

• Oversampling the minority class.
• Undersampling the majority class.
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• Any combination of previous approaches.
Each of the aforementioned approaches has its own set

of benefits and drawbacks [71], [72]. Oversampling, on the
other hand, is the most often used approach among them,
as seen by the multitude of oversampling methods published
in the last two decades. However, this does not necessarily
imply that the oversampling approach is beneficial. Over-
sampling approaches boost the quantity of minority-class
instances by creating new ones out of thin air based only on
their similarity to one or more of the minority’s examples.
This is troublesome since such methods may raise the likeli-
hood of the learning process being overfitted [73]–[75], [75],
[76]. On paper, the overfitted synthetic datasets produce good
machine learning results, however this is not always the case
in practice. Another more critical problem of oversampling
is that the fabricated examples could exist in the real world
belonging to a different class, regardless of how similar it
is to the minority’s examples, as we always have examples
from class A that are the closest to examples from a different
class B. Therefore, we argue that, even if such synthesizing
generates favorable outcomes on paper, negative results can
be easily obtained in practice. The major goal of this study,
in addition to reviewing a large number of oversampling
methods, is to prove our counterclaim on the use of oversam-
pling as a solution to the problem of class imbalance, which
is as follows:
Oversampling in its current forms and methodologies is a

misleading approach that should be avoided since it feeds the
learning process with falsified instances that are pushed to
be members of the minority class when they are most likely
members of the majority.

To the best of our knowledge, the only methodology
for proving an oversampling method’s goodness is its
classification accuracy metrics after the classification of the
oversampled datasets, with no tests for the validity of the
synthesized instances and if they are appropriate for training
a model for real-world use. Therefore, we find oversam-
pling practitioners are pleased with their machine learning
outcomes in the lab, but they should consider how much
harm could be done in practice outside of the lab, partic-
ularly in medical and other vital applications. The harm is
exacerbated when we realize that several of these methods
have become integral parts of APIs and machine learning
packages, such as Python imbalanced-learn API [77] and
Smote-Variants API [78]. We prove our counterclaim in this
paper by using a number of typical oversampling methods on
several benchmark datasets, concealing some of the major-
ity examples, and then comparing the created examples to
the hidden majority examples to determine if they approx-
imately match. Finding such counter examples proves our
counterclaim.

The following is the structure of this paper: The literature
review of class imbalance problem is presented in the sec-
ond section. The mythology of proving our counterclaim is
illustrated in Section Three. And the experimental results are
listed and discussed in section four.

FIGURE 1. The number of publications that have the terms
‘‘oversampling’’ and/or ‘‘SMOTE.’’

II. LITERATURE REVIEW OF OVERSAMPLING METHODS
In the literature, there are various ways to machine learning
from class imbalance data. One of the most prevalent ways
is oversampling, particularly Synthetic Minority Oversam-
pling Technique approaches (SMOTE). On January 26, 2022,
a Google Scholar search for the term ‘‘SMOTE’’ yielded
77,300 results, while a search for ‘‘oversampling’’ yielded
297,000 results. This is merely a foreshadowing of the devel-
oping trend of oversampling. Figure 1 depicts the nearly
exponential increase in the number of articles that dealt with,
employed, or addressed oversampling and/or SMOTE.

The relevance of the well-defined class imbalance problem
and the simplicity of oversampling solutions are the reasons
for this abnormal surge in oversampling research. Anyone
with a rudimentary understanding of machine learning can
come up with a novel way to produce fresh similar examples
given some minority examples. There could be an infinite
number of such solutions.

Several studies, such as [1], [79], [80], have reviewed
various oversampling approaches; nevertheless, they are not
thorough and have not paid adequate attention to validating
the oversampling approach to the problem of class imbalance.

One of the earliest and most extensively utilized
approaches for class imbalance is the SMOTE method [81].
It interpolates synthetic examples between nearest neighbors
from the training set’s collection of minority class cases.
As a result, by merging the properties of seed instances with
randomly picked k-nearest neighbors, a synthetic sample is
generated. The earliest version of the SMOTE algorithm
relied solely on synthetic oversampling. They also used a
combination of synthetic oversampling and undersampling,
which might be useful [82]. SMOTE was tested on nine
benchmark datasets and proven to improve classification
performance.

SVMSMOTE [83], which is based on SMOTE, focuses
on constructing SVM modifications to successfully handle
the problem of class imbalance. Oversampling, cost-sensitive
learning, and undersampling are some of the heuristics used
in SVM modeling. This method produced promising results
when compared to other oversampling methods.

47644 VOLUME 10, 2022



A. S. Tarawneh et al.: Stop Oversampling for Class Imbalance Learning: A Review

Borderline-SMOTE [84] is an SMOTE-based minority
oversampling method that only oversamples the minority
examples around the borderline. In comparison to SMOTE
and other random oversampling methods investigated, their
findings show that this solution improves classification
results for the minority class.

Oversampling by a synthetic inverse minority is used
in Reverse-SMOTE (R-SMOTE) [85], a technique based
on SMOTE and the inverse near-neighbor idea. R-SMOTE
beats other over-sampling methods in terms of precision,
F-measurement, and accuracy, according to this study that
compared traditional sampling procedures to alternative
methods, including SMOTE. In the comparison, eight bench-
mark datasets were employed.

Constrained Oversampling (CO) [86] is a technique for
reducing noise in oversampling. This method is used to
extract the overlapping regions in a dataset. Ant Colony
Optimization is then used to define the boundaries ofminority
regions. Most significantly, in order to create a balanced
dataset, fresh samples are synthesized via oversampling
under constraints. This method varies from others in that it
includes noise-reduction constraints in the oversampling pro-
cess. CO outperforms a range of oversampling benchmarks,
according to their results.

In addition, theMajorityWeightedMinority Oversampling
Technique (MWMOTE) [87] was offered as a solution to the
problem of class-imbalance learning. MWMOTE finds and
weights difficult-to-learn informative minority class samples
based on their distance from nearby majority class samples.
It then creates synthetic samples from the weighted informa-
tive minority class samples using a clustering algorithm. The
primary premise of MWMOTE is that all generated samples
must belong to one of the minority class clusters. In terms of
numerous assessment measures, the provided results suggest
that MWMOTE is superior than or similar to some other
existing approaches.

Adaptive synthetic (ADASYN) [88] was given with the
goal of eliminating bias and moving the classification deci-
sion boundary in the direction of the hard examples. The
primary idea behind ADASYN is to use a weighted distri-
bution for different minority class examples based on their
learning difficulty, with more synthetic data created for more
difficult minority class examples than for easier minority
class examples. The efficacy of this method is proved by
the results of experiments conducted on a variety of datasets
using five different evaluation measures.

Synthetic Minority Over-Sampling Technique Based on
Furthest Neighbor Algorithm (SOMTEFUNA) [6] is another
exciting and recent method for machine learning from imbal-
anced datasets. To produce fresh synthetic minority exam-
ples, this method employs the farthest neighbor examples.
SOMTEFUNA has a number of advantages over some other
approaches, one of which being the lack of tuning parameters,
which makes it easier to be used in real-world scenarios.
Using Naive Bayes and Support Vector Machine classifiers,
the method compared the benefits of resampling to common

methods such as SMOTE and ADASYN. The reported find-
ings show that SOMTEFUNA is a viable alternative to the
other oversamplingmethods, according to its reported results.

Sampling WIth the Majority (SWIM) [89] is a synthetic
oversampling method that is robust in cases of significant
class imbalance. SWIM’s fundamental feature is that it uses
the density of the well-sampled majority class to direct the
creation process. SWIM’s model was built using both the
radial basis function and the Mahalanobis distance. SWIM
was put to the test on 25 benchmark datasets, and the findings
show that it beats some of the most common oversampling
methods.

Other ways of oversampling include, but are not limited to,
the work of [78], [90]–[118].

The validation process is what all oversampling methods
have in common, which is basically the evaluation of the
classifier’s performance employed to classify the oversam-
pled datasets using one or more accuracy measures such
as Accuracy, Precision, Recall, F-measure, G-mean, Speci-
ficity, Kappa, Matthews correlation coefficient (MCC), Area
under the ROC Curve (AUC), True positive rate, False neg-
ative (FN), False positive (FP), True positive (TP), True
negative (TN), and ROC curve. Table 1 lists 72 oversam-
pling methods, including their known names, references,
the number of datasets utilized, the number of classes in
these datasets, the classifiers employed, and the perfor-
mance metrics used to validate the classification results after
oversampling.

As can be seen from the previous discussion and Table 1, all
the aforementioned oversampling methods use the classifica-
tion accuracy measures of the synthesized data to verify their
goodness, assuming that the synthesised examples belong to
the minority class. On paper, however, the accuracy measures
appear to be good if the data is over-fitted, which is common
when using Oversampling methods [71]–[76].

Another critical problem with the oversampling approach
is the assumption that the synthetic examples belong to the
minority class; do they truly belong to the minority class?

None of the previous literature has answered this critical
question. This study aims to provide a validation system for
oversampling methods, in order to determine to what degree
these methods synthesize unrealistic examples; assuming
they are belonging to the minority when they are not.

III. METHOD AND DATA
The proposed validation system for oversampling methods
works by hiding a subset of the majority’s examples, which
is referred to as the hidden subset. Although the hidden
majority examples are part of the population, we excluded
them from the training dataset since we assumed they were
not obtained from the real-world knowledge domain. Because
all oversampling approaches do not access the entire real-
world population, this assumption is correct.

It is important to make sure that the class imbalance prob-
lem still exists after concealing the hidden subset.
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TABLE 1. Summary of the methods used in this study. In this table, C4.5 is Decision Tree C4.5, LR is Logistic Regression, LDA is linear discriminate
analysis, NB is naive bayes, RF is random forest and ANN is artificial neural network.
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TABLE 1. (Continued.) Summary of the methods used in this study. In this table, C4.5 is Decision Tree C4.5, LR is Logistic Regression, LDA is linear
discriminate analysis, NB is naive bayes, RF is random forest and ANN is artificial neural network.
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TABLE 1. (Continued.) Summary of the methods used in this study. In this table, C4.5 is Decision Tree C4.5, LR is Logistic Regression, LDA is linear
discriminate analysis, NB is naive bayes, RF is random forest and ANN is artificial neural network.
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FIGURE 2. Flow diagram of the proposed validation system.

After that, we apply the oversampling method that needs
to be validated on the remaining dataset in order to generate
new examples, which is referred to as the synthetic subset.
The hidden subset is then returned to the training set.

The generated examples in the synthetic subset are claimed
to belong to the minority class by all oversampling meth-
ods. We compare the similarity between these examples (the
synthetic subset) and all examples in the original training
set before oversampling to see if these synthesized examples
belong to the minority or the majority.

Figure 2 illustrates the proposed validation system.
In order to determine the degree of similarity, we need a

similarity measure such as Euclidean distance (ED), Manhat-
tan distance (MD), Hassanat distance (HD) [182], etc. In this
paper, we opt for HD as being invariant to noise, outliers
and data scale, since the nature of this metric prevents each
feature from having a distance greater than one, regardless of
the scale of the features in the targeted dataset. Furthermore,
HD had been shown to outperform a wide range of machine
learning similarity measures, including the most common
ones like ED and MD [183]–[187].

HD can be expressed mathematically as in equation1.

D(pi, qi) =


1−

1+ min(pi, qi)
1+ max(pi, qi)

, min(pi, qi) ≥ 0

1−
1+ min(pi, qi)+ |min(pi, qi)|
1+ max(pi, qi)+ |min(pi, qi)|

,

min(pi, qi) < 0
(1)

and for the total distance between two examples is

HD(p,q) =
N∑
i=1

D(pi, qi) (2)

where p and q are feature vectors and N is the number of
features in each vector.

It is worth mentioning that we are proposing a validation
system, not an evaluation system, the similarity measure
using HD is meant to find the number of examples taken
from the synthetic subset that are similar to the minority
as the core of our validation system. i.e. HD is calculated
between the generated examples and the original examples.
Those generated examples, which are more similar/nearest to
the majority indicate the error of the oversampling method
validated. This error is calculated according to equation 3.

Error =
CM
SS

(3)

where CM is the number of synthetic examples that are more
similar to majority examples using HD and SS is the total
number of examples in the synthetic subset. The number of
incorrectly synthesized examples, CM , and the total number
of synthesized examples, SS, are used to determine the over-
sampling error, i.e., each example belonging to CM is closer
to one of the instances belonging to the Majority class than
any example belonging to the Minority class, despite the fact
that it should be the other way around.
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TABLE 2. Description of the datasets used in this study.

IV. DATASETS
We employ nine real-life datasets to put our validation system
to the test, such as Yeast4, Yeast5, and Yeast6, which are rou-
tinely used by many oversampling methods. On [188], all of
the datasets are freely available. Table 2 contains information
about these datasets.

Table 2 shows that the datasets have different minority and
majority distributions, despite the fact that the number classes
is the same. It is not necessary to address the problem with
multi-class datasets to prove our counter claim, as most over-
sampling approaches only use binary class datasets, as shown
in Table 1.

V. EXPERIMENTS AND RESULTS
In our experiments, we used all of the oversampling meth-
ods listed in Table 1 on each of the datasets listed in
Table 2, after eliminating some majority examples at random.
We employed varied numbers of hidden examples, namely
10%, 25%, and 50% of the majority examples of each dataset
examined, to see the effect of the number of hidden examples
on the validation process. Furthermore, each experiment is
repeated five times, with the average of the results for each
hidden ratio for each oversampling method on each dataset
being reported. Table 3 shows the number of erroneous syn-
thetic examples (NE), which are ones that are generated as
minority examples but appear to be more comparable to
majority examples, as the proposed validation system sug-
gests. It also shows the number of synthetic examples (SE)
generated by each oversampling method, in addition to the
error rate (ER) which is calculated using Equation 3. All the
result reported in Table 3 were obtained by hiding only 10%
of the majority examples. Table 4 continues the results of
Table 3 on the rest of the datasets.

The averages of five trials on each dataset for each
approach are provided in Table 3 and Table 4. In addition, for
each approach, the average error is calculated for the error
rates the eight datasets mentioned in Tables 3 and 4. The last
column in Table 4 shows the average rank of each method
based on the eight used datasets; the lower the rank, the better
the oversampling performance; for example, rank 1 shall be
awarded to the method with the smallest error rate.

FIGURE 3. Box plot of the average error rates of all oversampling
methods on different datasets with varied hidden percentages.

The thorough examination of Tables 3 and 4 demonstrates
that all oversampling methods result in errors in the syn-
thesized examples. That is, they generate examples that are

47650 VOLUME 10, 2022



A. S. Tarawneh et al.: Stop Oversampling for Class Imbalance Learning: A Review

TABLE 3. Oversampling methods’ validation results on the used datasets using 10% hidden percent.
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TABLE 3. (Continued.) Oversampling methods’ validation results on the used datasets using 10% hidden percent.

FIGURE 4. Methods ranking based on their average error rates on the datasets mentioned in Tables 3 and 4.

meant to be minority, yet are similar to the majority or fall
within the majority class’s decision boundary. Despite the
fact that all methods generate such examples, the quantity of
fake examples generated differs from one method to another.
On the Yeast4 dataset, for example, the oversampling method
(M51) generates 14 incorrect examples, whereas other meth-
ods, such as M70, generate more than 1K incorrect examples.

That is whyM51 is ranked first, whereasM70 is ranked much
higher. Similar findings were achieved when 25% and 50%
of the majority examples were used as hidden examples, thus
there is no need to include them in tables; however, we show
them in Figure 3.

The average error rate of all oversampling methods
increases somewhat as the hidden percent increases, as seen
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TABLE 4. Oversampling methods’ validation results on the used datasets using 10% hidden percent.
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TABLE 4. (Continued.) Oversampling methods’ validation results on the used datasets using 10% hidden percent.

in Figure 3. This is logical since when oversampling methods
synthesize their minority examples, they become unaware of
some majority examples; in fact, we expected a significant
error rise as the size of the hidden subset grew larger. In terms
of the effect of the dataset on the average oversampling error,
we can observe in the same figure that some datasets, such
as (Yeast5), are easier to be oversampled than others, such as
(Yeast6) and (Yeast4). However, the difference is not substan-
tial, andmore importantly, as the Box plots show, the standard
deviation of the error rates produced by all oversampling
methods on each dataset is extremely high.

In order to compare oversampling methods, we ranked
them according to their average error across eight datasets.
The average ranks of the methods are plotted against the
average errors they produced on all used datasets as shown
in Figure 4.

Despite the fact that all of the methods discussed generate
false examples, Figure 4 indicates that certain methods do
better than others in avoiding the formation of false examples.
As a result, if oversampling is unavoidable, the method’s
reliability should be verified using a validation tools such as
ours. Methods like M24, for example, have error rates close
to 0%, whereas others like M7 and M16 have error rates near
to 99%.

As a result, all Oversampling methods validated produce
misleading examples, regardless of the hidden percentage or
dataset used. Figure 5 visualizes the Oversampling results on
eight datasets usingM1, displaying various sorts of examples,
including hidden, minority, majority, and synthesized exam-
ples while hiding 10% of the majority examples. For the sake
of illustration, we limited the data to only two features.

As seen in Figure 5, many synthetic examples are created
on the basis of or near hidden examples, producing almost
identical feature values. Even in higher dimensional feature
space, such a situation has the potential to occur. The common
mistake that all oversampling methods make is to feed such
data to a classifier, assuming that all of the examples are real-
istic and labeled based on reality. The classifier has no other
knowledge and learns based on the false assumption, which
produces excellent results in labs but unexpected behavior in
real-world scenarios.

The results shown thus far do not necessarily imply that
incorrect example synthesis occurs just when the majority
examples are hidden from the oversampling method. Even
though the majority examples are completely visible to the
methods, some methods generate false examples. The pub-
lished findings of all of the oversampling methods demon-
strate this, as none of them claimed to be an accurate method
with no errors.

We validated some of the best performers on a ninth
machine learning dataset, Vehicle3, because some oversam-
pling approaches passed our validation test by presenting
a relatively small number of unrealistic examples, and to
further support our counterclaim against the validity of the
oversampling approach in general. The validation results
some of the good performers are shown in Table 5.
As can be seen in Table 5, when we changed the dataset,

the errors of the ‘‘best’’ oversampling methods increased sig-
nificantly, demonstrating once again that these oversampling
methods fill in the features space gap without considering
whether the generated examples are truly belong to theminor-
ity, and falsely consider them as such. This makes the training
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FIGURE 5. Visualization of validating the SMOTE method on three datasets. When the figure is scaled up, more information is obtained.

TABLE 5. ER on vehicle3 dataset using 25% hidden data and some of the
methods with the least ER.

of these examples deceptive, and it could lead to the classifier
being overfitted on incorrect data if robust generalization
techniques are not used. As a result, when applied to real-
world tasks, it is possible that the entire machine learning
system fails spectacularly, particularly in critical applications
such as security, autonomous driving, aviation safety and
medical applications, where even one unrealistic false syn-
thesized example could do catastrophic harm.

VI. CONCLUSION
Oversampling methods have been used and developed for
decades to handle the problem of class imbalance learning,
and there is a near exponential growing trend for such type of
research. The main question of this research is oversampling
approach in its current form and methods provide applicable
and viable solution for learning from class imbalance data?
We claim that the current oversampling approach is deceptive
and could lead to severe failures in real-world applications.
In order to answer the main question and to prove our coun-
terclaim, we reviewed a large number of oversampling meth-
ods and analyzed their performance in terms of providing
unrealistic examples, for this purpose we propose a new
validation system for oversampling methods, which we uti-
lized to validate over 70 different oversampling methods. Our
validation results on nine real-world common datasets reveal
that all of the oversampling methods investigated generate
false examples, assuming that they are minorities when they
are not, causing classifiers to perform well in labs but more
likely fail in practice.

The Oversampling methods investigated in this paper are
ranked according to how many incorrect examples they
generate. When used to solve real-life problems, the ranking

shows that some methods are less harmful than others. When
the datasets were changed, however, they were found to
produce intolerable number of errors. Therefore, we recom-
mend avoiding such methods when dealing with sensitive
applications such as security, autonomous driving, aviation
safety, and medical applications that use machine learning
from class imbalanced data. Instead, we seriously encourage
using ensemble approaches to problems of class imbalance,
such as Easy Ensemble [189], RandomData Partitioning [71],
etc. Because these methods do not create data out of thin air
and do not, as the Undersampling approach suggests, deny
the learning process from critical data.

More research should be done in the future to confirm the
validity or invalidity of oversampling approach, investigating
more methods and incorporating more data. Furthermore,
we recommend that additional research be conducted on
real-world applications, including measurements of incorrect
predictions made with and without the use of oversampling
methods, as well as comparisons with ensemble methods.
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