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ABSTRACT Logistics is an important driver for the competitiveness of industries and material supply.
The development of smart logistics, powered by precise positioning and communication technologies can
significantly improve the efficiency of logistics. The emerging technology of ultra-wideband (UWB) pre-
cision positioning has attracted significant attention throughout the previous decade owing to its promising
capabilities over other radio frequency-based indoor localisation systems. In addition, UWB is characterised
by large bandwidth and data rate, short message length, low transmission power and high penetration capa-
bility, which are all favourable for indoor positioning applications. However, UWB localisation technology
faces several challenges that are somewhat similar to other technologies, such as mitigating errors that
originate from non-line-of-sight (NLOS) situations and tackling signal interference in dense environments,
and when required to operate in extreme conditions. This paper reviews the most recent advances made
in UWB positioning systems over the last five years, with a focus on high-ranking articles. In addition to
going through more conventional solutions to UWB challenges, modern solutions, which involve the use
of machine learning and sensor data fusion, are discussed. We highlight the most promising findings of the
recently implemented and foreseen UWB positioning systems by providing a summary of each reviewed
article. Additionally, we address a major challenge that faces the UWB positioning technology: NLOS
situations, focusing on some proposed remedies such as multi-sensor fusion and machine learning. As
an application, this study introduces how UWB technology promotes smart logistics by offering indoor
positioning to improve efficiencies in the delivery of goods from the source to the customer. Furthermore,
it demonstrates the benefits of UWB technology for accurate positioning and tracking of both stationary and
moving items, and machinery in an indoor logistics environment.

INDEX TERMS Ultra-wideband (UWB), indoor positioning systems (IPS), smart logistics, navigation and
localisation, machine learning, sensor fusion.

I. INTRODUCTION
In recent years, the importance of indoor positioning sys-
tems (IPS) has been significantly increasing due to the rapid
development and popularization of smart devices and tech-
nologies. The extensively used technology for positioning is
the global navigation satellite systems (GNSSs) that provide
reliable outdoor positioning information. However, due to the
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rather weak signals, their performance in the indoor environ-
ment is not sufficient. In addition, indoor surroundings are
usually complex and varying in nature due to transferable
obstacles that cause variation of signal and noise levels [1].
In such situations, substantial research and development
of indoor positioning systems are required with alterna-
tive wireless technologies such as Wi-Fi [2], geomagnetic
field [3], Bluetooth low energy (BLE) [4], dead-reckoning
technique [5], ultra-wideband (UWB), and radio signal
tags [6].
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Precise location information of people and assets is a cru-
cial element for Internet of Things (IoT) and smart logis-
tics applications [7]. The various IPS technologies have
been widely adopted by researchers and industrial compa-
nies during the past decade due to their broad spectrum of
applications, including smart logistics [8], tracking medi-
cal equipment in healthcare centres [9], tracking individuals
in crowded venues [10], ship-building and offshore indus-
try [11], and construction industry [12].

There are numerous indoor localisation technologies with
diverse properties. They are often distinguished by posi-
tioning accuracy, system robustness, computational power
and cost. When compared to indoor positioning technolo-
gies using narrowband signals, such as Bluetooth and Wi-Fi,
UWB has many advantages [10], [13].

An UWB signal contains different frequency components
due to its wide bandwidth, which increases its probability of
penetrating obstacles. In addition, because of its low power
spectral density, UWB does not interfere with most other
radio systems. Because of its short pulse duration, UWB
yields high ranging accuracy and good performance under
multipath conditions.

Several technologies have been proposed for obtaining
a tracking solution in indoor logistics. The selection of an
appropriate technology mainly depends on the required pre-
cision, number of assets that need to be tracked and speed of
the moving assets. Compared to other available technologies,
UWB can provide low-cost accurate positioning within few
centimetres accuracy; hence, it is frequently used in industrial
environments such as smart factory [14], smart logistics [15],
[16], warehouse management [17], vehicle localisation [18],
robot positioning [19], and smart city [20]. UWB enables
simultaneous real-time tracking of objects and provides their
localisation despite indoor obstructions due to the advantage
of working under non-line-of-sight (NLOS) conditions [21],
[22]. UWB technology enables an efficient combination of
accuracy, scalability and reliability, which are very crucial in
the applications of indoor logistics, such as tracking people
and assets, and controlling the automated guided vehicles
(AGVs) [23], [24].

Numerous survey articles were presented throughout the
past decade with a focus on addressing UWB as an IPS.
For example, in 2016, Alarifi et.al. [10] published their
comprehensive survey paper that presented UWB-IPS tech-
nology with new taxonomies as well as analysing the
strengths, weaknesses, opportunities, and threats (SWOT) to
form a widely acknowledged state-of-the-art review. Similar
approach to Alarifi, was presented by Mazhar et.al. [25] in
2017. Another survey article that was focused on IPSs in gen-
eral and UWB in particular was Yassin et.al. [26], in which
the authors presented a detailed review about the structure and
challenges of UWB-IPS compared to other IPS technologies.
More surveys are tacitly cited throughout the article and
discussed in the relevant sections.

This paper highlights the advances achieved in the realm of
UWB localisation during the past half-decade, with a focus

on the most recently published literature found from IEEE
Xplore, Google Scholar and Crossref platforms. The search
termswere limited to ‘‘UltraWideband’’ AND ‘‘Positioning’’
OR ‘‘Localisation’’ within the last five years. In addition to
the newness of the articles, their selection criteria were based
on impact, relevance, higher ranking in the Finnish national
system [27], novelty and citation score. However, some older
articles were also included due to their importance and the
unchanged scientific principles that they describe.

Note that the addressing of UWB throughout this arti-
cle is intended to review UWB as an IPS rather than a
communication system. Hence, we focus on presenting the
recent momentum of UWB technology from an IPS design
perspective.

Throughout the article, a particular focus was given on
applying the UWB technology to deploy indoor positioning
in smart logistics systems. For smart logistics, indoor posi-
tioning plays an essential role by tracking resources, materials
and employees in real-time. This location-based indoor nav-
igation enables logistics providers with asset tracking with
reduced search times, process automation and optimisation,
increased efficiency and safety for employees [17], [28].
In the case of assets tracking, indoor positioning offers real-
time seamless tracking of goods, pallets, vehicles and mon-
itoring of goods’ conditions, such as temperature, humidity
and dew points. For process automation and optimisation, IPS
supports automation through precise geo-based task assign-
ments. By providing precise positioning, IPS provides added
safety and security in logistics sites with access authorisa-
tions and ensures faster evacuation of employees in case of
emergencies [23], [24].

The main contribution of this article is to present the
most recent advances in the fast-developing UWB precise
positioning technology with a focus on smart logistics appli-
cations that can embrace the technology to achieve better
system enhancements and optimisations. The availability
of new UWB chips at affordable prices has catalyzed the
development of new algorithms for new application areas,
including machine learning, sensor fusion and collaborative
positioning. This article dissects the topic thoroughly down
to the basic concepts of localisation and algorithms besides
keeping a compact style of summarizing the literature to help
researchers and industrial firms copewith the recent advances
in UWB technology and its foreseen future.

In addition, a major objective of this review is to pro-
vide the researchers, practitioners of smart logistics and
related fields with a starting point to understand the poten-
tial and limitations of UWB indoor navigation. To the best
of our knowledge, other existing reviews have not adopted
a similar approach. This article explains the fundamentals
of positioning techniques and algorithms not only at the
detailed mathematical and algorithmic level but also at the
conceptual level. Commercially available equipment is pre-
sented, as well. Moreover, numerous articles are summarized
in several application-specific tables to easily compare the
methods and algorithms in the selected application areas.
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Consequently, also readers who do not have previous knowl-
edge of positioning techniques can utilize this article to obtain
the basic knowledge of UWB positioning and its use in smart
logistics.

The rest of the article is organized as follows: Section II
contains a brief review of existing IPSs and presents the role
of IPSs in smart logistics. Section III discusses the advantages
and challenges of UWB, licensing and regulations, signal
attributes, system architecture, and commercial applications.

Section IV explains the observables and positioning tech-
nologies used with UWB. Section V discusses position-
ing algorithms, such as least-squares methods, closed-form
solutions and various kinds of Bayesian filters. In addition,
NLOS identification and mitigation methods are explained.
Recent advances in UWB positioning literature is stated in
Section VI, whereas advances in sensor fusion techniques
are elaborated in Section VII. As the last few years have
witnessed a surge on the literature on the adoption of artificial
intelligence (AI) solutions, various machine learning (ML)
approaches for UWB are discussed in Section VIII. A final
discussion on indoor positioning is stated in Section IX,
while, the paper is concluded in Section X.

II. INDOOR POSITIONING SYSTEMS
An IPS is a real-time system that uniformly calculates the
location of an agent or object, moving or stationary, inside
buildings [10], [29]–[31]. An IPS has facilitated numerous
navigation applications that require continuous knowledge
of the indoor locations of people and objects. It provides
assisted navigation for limited-sight and vision-impaired peo-
ple, tracking of visitors in heavily crowded venues, such
as airports and malls, and automated guidance in tourist
attractions. Industrial applications use IPSs to ensure precise
navigation of industrial robots and accurate positioning of
personnel, tools and equipment. Medical applications include
monitoring of patients in hospitals and healthcare centres,
localisation of crucial medical equipment and enabling navi-
gation for medical robotic assistants [10].

Outdoor positioning has been made feasible owing
to GNSSs, such as Global Positioning System (GPS),
Galileo, GLONASS and stand-alone cellular positioning sys-
tems [31], [32]. However, these systems perform poorly in
indoor venues due to the satellite signal deterioration caused
by signal attenuation, shadowing and multipath fading
imposed by indoor concrete and metallic structures [26],
[32]–[34]. Thus, accurate indoor positioning techniques have
been proposed to address the deep fading of conventional
positioning methods. In addition, hybrid approaches have
been proposed to combine multiple indoor and outdoor
positioning techniques to mitigate errors and provide more
accurate and robust navigation. Numerous indoor position-
ing techniques can provide positioning accuracy of only
a few centimetres as stated in [10], [26], [30]. However,
combining multiple indoor positioning techniques requires
scrutinised studies to allocate suitable resources for each
method and identify the optimal combination as the resource

requirements vary from method to method. The optimisation
objectives and constraints may concern the energy budget,
RF bandwidth budget, infrastructure costs, number of ben-
eficiaries (users) and active time budget.

A. SMART LOGISTICS AND MANUFACTURING
Nowadays, smart logistics is considered a fundamental pillar
of Industry 4.0. It enables companies to orchestrate several
critical activities, such as demand forecasting, sales plan-
ning and inventory management [35], [36]. Smart logistics
or ‘Logistics 4.0’ promotes the acceleration of all logistics
processes through planning and controlling with smart tools,
technologies and methods. The use of smart technologies
helps to gather the necessary information to monitor and con-
trol the material flow and for many other purposes. Through
intelligent positioning technologies, tools and equipment,
global supply and logistics chains are becoming increasingly
efficient and effective [37]. Such positioning technologies
significantly contribute to end-to-end visibility, improvement
in product routing as well as control and replenishment
of inventories and mobile assets [38]. A generic supply
and logistics chain is displayed in Figure 1, which is
divided into inbound and outbound supply and logistics
chains.

Smart logistics is considered a fairly complex phenomenon
that can be easily applied in geographically dispersed areas
for tracking raw materials of the highest quality but lowest
cost. Such a phenomenon is generally characterised by the
use of new technologies, such as IoT, 5G, sensors, radio fre-
quency identification (RFID) tags, smart products, actuators
and intelligent machines [38], [39]. It has the ability, relia-
bility, traceability and authenticity of the information, which
are useful to establish intelligent contractual relationships
among the stakeholders of the supply chains.Moreover, smart
logistics includes considerable potential for improving the
logistics process through the application of communication
and information technologies at all levels of the value chain.
Figure 2 displays the fundamental elements and functional-
ities of the smart supply and logistics chain, showing that it
starts from the supplier and eventually moves forward till the
end customer through smart transportation, manufacturing,
smart warehousing and smart delivery stages.

Figure 2 also shows that, at each stage in the smart supply
and logistics chain, several activities are orchestrated. For
instance, at the transportation stage, activities such as trace-
ability of items, location tracking and real-time routing are
orchestrated and monitored for smoother operations. Track-
ing logistics items is an essential issue in today’s supply chain
and inventory management. In addition, finding items both
in indoor and outdoor environments is most critical in any
supply chain and logistics management [40]. Due to the trend
towards autonomous systems, most logistic systems today are
operated without the direct involvement of the workforce to
control them. In such a changing environment, smart logistics
can be helpful to deliver items through various available
precise positioning technologies [41], [42].
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FIGURE 1. Various stakeholders and the flow of material, assets and information in a generic supply and logistics chain.

FIGURE 2. Fundamental elements and functionalities of smart supply and logistics chain.

Although several technologies are available to provide
outdoor positioning towards logistics items, most of them
are not suitable for indoor positioning. In indoor environ-
ments, such as warehouses and factory floors, precision posi-
tioning of components, parts and products can be achieved
through available technologies, such as UWB, Wi-Fi, 5G,
3D imaging, sensors and imaging radio signals [25], [43],
[44]. The application of such technologies helps to track
indoor logistics items, which can help in minimising the
time required to locate items and avoid delays due to the
wrong location. A precision positioning technique enables the
automatic delivery of goods by using uncrewed intelligent
vehicles and aerial vehicles (UAVs) to designated locations
while reducing environmental influences.

B. INDOOR POSITIONING SYSTEMS IN SMART LOGISTICS
AND MANUFACTURING
Due to the recent advancements in indoor positioning tech-
nologies, a growing interest has emerged to utilize location

data in logistics and manufacturing. Location data of assets
and materials can be used to improve the efficiency, safety
and security of manufacturing operations. Real-time tracking
of machines and materials yields new possibilities to improve
the production processes and follow the material flows. The
authors of [45] divided logistics units into six identification
layers: (0) raw material (items), (1) package, (2) transport
unit, (3) unit load (pallet), (4) container and (5) transportation
unit (e.g. truck, ship and train). GNSSs are typically used
for tracking containers and transport equipment (two highest
layers). However, the smaller cargo units (layers 1-3) are
typically handled indoors, which can be tracked using indoor
positioning technologies, such as UWB. However, UWB is
still a relatively expensive and power-consuming technology,
and RFID is a better technology to track the materials and
lowest level packages and items.

Real-time location tracking is increasingly attracting
global logistics companies due to the need for visibility. Espe-
cially, the application of IPSs in logistics and manufacturing
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has increased recently [46]. In the case of an indoor environ-
ment, such as a warehouse, an IPS contributes to tasks such
as minimising the time spent to look for the right pallet, opti-
mising routes and preventing accidents. In the case of smart
logistics, companies generally use RFID technology, which
can track the inventory and identify goods [42], [47], [48].
However, the limited power source of RFID tags minimises
their operational range to a couple of metres. Therefore, they
are mainly used for identification rather than positioning
purposes. Similarly, Bluetooth and Wi-Fi are also used for
indoor positioning, but their operating ranges are no more
than 3-5 m [49]. To obtain accurate positioning of logistics
items, companies are nowadays exploring UWB-based posi-
tioning systems, which enable real-time positioning of goods,
assets and people with an accuracy level of 5 to 30 cm.
It can provide out-of-the-box localisation with higher rang-
ing accuracy than Wi-Fi or Bluetooth or other active radio
solutions [50], [51].

In the case of autonomous robots operating in indoor envi-
ronments (e.g. warehouses), accurate positioning is essential
for navigation. While GNSS-based localisation is unreliable
in indoor environments, localisation by UWB technology can
accelerate the adoption and ubiquity of distributed robotics
systems. Nowadays, UWB-based technology is commonly
used in indoor robotic applications from home cleaning
to warehouse transportation, including the rapidly emerg-
ing autonomous last-mile delivery solutions [46]. In the
case of intelligent manufacturing, it is essential to track the
parts along the production chain to take the right decisions.
Real-time tracking of both stationary and moving parts in
the production floor ensures safer operation with a reduced
lead time [52], [53]. In addition to parts, it is also essen-
tial to track workers’ movement on the production floor
to enhance operational flexibility. For smart manufacturing,
UWB-based location technology is suitable because of its
inherent accuracy and reliability [15], [54]. It is considered
as the most optimal and accurate approach to ensure indoor
localisation [55]. By providing indoor localisation and track-
ing solutions for vehicles, people and goods, UWB technol-
ogy promotes increased transparency, safety and productivity
in internal logistics on the factory floors [55].

C. PERFORMANCE METRICS OF INDOOR POSITIONING
SYSTEMS
The performance of localisation technologies can be assessed
using a pyramid-like scheme with system accuracy as the
baseline, integrity as the second metric, continuity as the
third, and availability as the peak paramount [56]. System
accuracy is the degree of conformance of the estimated posi-
tioning values to the ground truth. The integrity of localisation
systems, as defined by [56], is the trustworthiness of the
information provided by the navigation engine. Continuity is
the probability of the system to maintain the desired service
level within the operation period, while availability is the per-
centage of time in which the navigation engine is up-running
for positioning and can be used by its intended users.

Accuracy of the estimated position is one of the most
important performance metrics for indoor positioning sys-
tems. Accuracy is often reported as the error distance between
the estimated and actual locations, while a location precision
is reported in percentages of position information, which is
within the distance of accuracy. The most commonly used
metrics of accuracy and location precision are the root mean
square error (RMSE), the mean absolute error (MAE), the
distance root mean square error and circular error probability.

The accuracy of the location estimate depends on the accu-
racy of individual measurements and the mutual geometry of
the tag and anchors. In the time of arrival (TOA) and time
difference of arrival (TDOA) methods, the accuracy of the
position is expressed as the product of a geometric factor and
a range measurement error factor.

In addition to the above mentioned metrics, there are other
performance metrics presented in the literature, such as scal-
ability, cost and privacy [10]. The scalability of IPS describes
how many tags the system can support per time unit per geo-
graphic area. The cost measures the physical limitations and
requirements associated with the implementation of a partic-
ular technology in terms of technical and financial resources.
Money, power consumption and hardware dimensions are
examples of cost metrics. Privacy is a concern in network-
centric systems, where the location estimation takes place in
the server. In the self-positioning model the device estimates
its own position, and no one else may know where the device
is. Coverage was mentioned as an important parameter [10];
however it can also be considered a property of IPS rather
than a performance metric.

D. INDOOR POSITIONING TECHNOLOGIES
IPSs can use various signal technologies, such as
radio frequency, infrared, ultrasonic, inertial, optical and
electromagnetic [10], [57]. In addition, the positioning sys-
tem commonly estimates the location of the target device by
fusing measurements of two or more signal technologies. The
indoor positioning applications have various requirements
in terms of the performance metrics. Thus, the technology
should be carefully chosen to satisfy these requirements [10].
For example, the navigation systems of AGVs might require
highly accurate and reliable position estimates, but the power
consumption or price of the sensor mounted in an AGV is
not critical. In contrast, low price and power consumption are
required from the tags used to locate people and assets in a
warehouse, but the accuracy of the position estimate is less
critical than that in AGV applications.

Laser triangulation is commonly used in the indoor naviga-
tion of AGVs [58]. The laser positioning system uses a laser
scanner mounted on top of the vehicle. The laser scans the
mirrors mounted at the known locations in the area and mea-
sures the angles between the vehicle and device. The vehicle’s
position is estimated using triangulation with centimetre-
level accuracy. Another commonly used approach for AGV
navigation is to use light detection and ranging (LiDAR)
and inertial motion unit (IMU) measurements [59] or
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TABLE 1. Summary of RF-based signal technologies for local positioning
systems.

image-based (visual) localisation [60] together with simul-
taneous localisation and mapping (SLAM) algorithms.

However, the laser and vision-based technologies are rela-
tively expensive, and their energy consumption is too high
for the tags required in the applications to locate people,
materials and assets. In such applications, radio frequency-
based signal technologies are commonly used for positioning.
An RF signal is used for positioning for the same reasons as
it is used for communication. The most important advantages
of RF signals are that they can penetrate obstacles and have a
wide communication bandwidth. RF-based IPSs use RFID,
UWB, wireless local area network (WLAN), Bluetooth or
cellular network signals for location estimation [10]. The
position can be estimated from the signals of these systems
by using proximity information, trilateration, triangulation
or location fingerprinting methods. The properties of these
systems are summarised in Table 1.

In the case of RFID, the proximity method is gener-
ally used. Location fingerprinting, which provides a room-
level or couple of metres accuracy, is commonly used with
WLAN [61] and Bluetooth [62] received signal strength indi-
cator (RSSI) measurements. RSSI describes only the average
attenuation of the signal in the communication channel. More
accurate and stable results may be achieved using channel
state information (CSI), such as channel impulse response
(CIR), which contains more information than a single RSSI
value [63]. Some researchers used an antenna array in a
Wi-Fi network to estimate CSI, thus, enhancing the accu-
racy and stability of the fingerprinting positioning system
to a few meters [64], [65]. A WLAN signal can also be
used for trilateration using the Wi-Fi round trip time (RTT)
measurements, referred to as 802.11mc [66]. In Bluetooth
direction finding (DF), the target’s position is estimated using
the triangulation method with the angle of arrival or departure
measurements of Bluetooth signals. According to the authors

TABLE 2. Different communication band usage scenarios and their
terminology.

of [67], Bluetooth DF can achieve accurate measurements if
not severely affected bymultipath interference. Future 5GNR
mmWave technology is expected to provide centimetre-level
positioning accuracy and one degree orientation accuracy for
the device when the TOA, TDOA and angle of arrival (AOA)
are used [68].

UWB is well suited for many positioning applications.
In the case of UWB, the position can be estimated with
centimetre-level accuracy using triangulation or trilateration
positioning methods or both, as discussed in subsequent
chapters.

III. UWB POSITIONING
UWB is a wireless short-range radio technology whose
communication channel propagates information over a wide
spectrum by modulating either a carrier-based waveform or
a carrier-less baseband signal in the form of short-width
pulses [69]. According to the Federal Communication Com-
mission (FCC) and the International Telecommunication
Union (ITU)-R, UWB possesses a spectrum that occupies a
bandwidth greater than 20% of the central frequency or has a
bandwidth of at least 500 MHz. A UWB RF signal occupies
the ultra 500 MHz bandwidth, which facilitates the trans-
mission of large data sizes upon the consumption of lesser
energy than other technologies [10], [31], [70]. To differenti-
ate among narrowband (NB), wideband (WB) and UWB, the
FCC classification scheme adopts fractional bandwidth cal-
culation, BF which is a dimensionless frequency-independent
indicator, calculated using Equation (1) as follows: [70], [71]

BF = 2
(
fh − fl
fh + fl

)
(1)

where fh, fl are the higher and lower frequency bands of the
signal, respectively. Hence, the band type is determined using
the data shown in Table 2 [70].

In 2002, the FCC described UWB technology as an
emerging promising technology that holds great advances for
various applications [72], such as imaging systems, ground-
penetrating radars (GPRs), wall-imaging systems, medical
systems, surveillance systems, vehicular radar systems, com-
munications and measurements systems [73]. UWB can
transmit high data rates using tiny pulses of the spectrum
spread over wider frequency bands with low PSD, which pro-
vides the signal higher penetration capability than most RF
waves. Moreover, some types of UWB signals (e.g. impulse
radio UWB) do not require sinusoidal carrier waves, which
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in turn reduces the power required for transmission. The
combined advantages of a UWB signal makes it a prominent
candidate for real-time applications, such as 1) tracking and
navigation, 2) sensor network communications, 3) ranging
and imaging, and 4) extremely high-data-rate short-range
communication (e.g. wireless UWB).

Recently, UWB has been widely adopted in personal area
networks (PANs), precise indoor positioning, indoor track-
ing and navigation systems. UWB positioning relies on the
unique radio frequency characteristics associated with UWB
technology to provide accurate estimates for indoor locations
based on the TOA, AOA and TDOA of the signal. The UWB
positioning signal takes the form of a low-power short-pulse
transmission with large bandwidth [10], [31], [70], making it
robust, precise and secure.

A. ADVANTAGES AND CHALLENGES OF UWB COMPARED
TO OTHER INDOOR POSITIONING TECHNOLOGIES
1) ADVANTAGES
UWB was first commissioned by the FCC for public use
in 2002. Earlier, it was utilized solely by the US military
for classified applications [13]. The structure of a UWB
signal comprises the transmission of short pulses within large
bandwidth ranges between 3.1 and 10.6 GHz, which yields
UWB superiority over NB signals. Owing to the large band-
width and short duty cycle, UWB possesses a larger capacity
and higher data rate, which make it a suitable candidate for
RF-based IPS implementation. Moreover, UWB lies in the
unlicensed spectrum, which can be used by anyone without
prior notification. Additionally, the pulse nature of the UWB
signal increases its penetration capability. Therefore, UWB
tags on mobile targets do not require a direct line of sight
(LOS) with its anchors.

However, some scenarios found in dense environments
might have negative effects on the UWB signal, causing
multipath deterioration and interference with neighbouring
frequencies in the spectrum [10]. In addition, the low trans-
mission power can be ineffective in large-sized indoor spaces,
as it disallows the signal from travelling to longer distances
due to path loss attenuation. Hence, additional UWB anchors
are required, which increases costs and complexity [13].

UWB offers numerous benefits over narrowband signals,
which widens the range of affected applications. First, UWB
is an unlicensed free spectrum that can be used without
prior licensing. The UWB spectrum was made free for
commercial use in 2002, but before that, it was restricted
to military operators, mainly the Department of Defense,
for classified applications [13]. UWB has a larger band-
width than other positioning techniques, ranging from 3.1 to
10.6 GHz [73], [74], which provides it with the superiority in
many aspects. For example, based on Shannon’s law, the large
UWB bandwidth provides large capacity for an RF signal,
which implies a high data rate transmission that can support
real-time applications, such as instant video streaming [13],
[73]. Owing to their large bandwidth, UWB communication

FIGURE 3. Comparison between the attributes of UWB and other various
positioning technologies (the dimensions of the shapes are only
indicative).

systems are highly robust, operating at higher data rates
(110 Mbps) than other RF technologies, making it the highest
data rate achieved so far in the precise positioning realm.
Another benefit of the large bandwidth is the UWB system’s
capability of performing in low signal-to-noise-ratio (SNR)
communication channels [13], which provides immunity
against multipath degradation. The high level of multipath
resolution is mainly attributed to the nature of pulse-based
RF communication, which occupies the entire bandwidth for
each pulse, unlike other carrier-based communications [75],
UWB systems do not require a clear LOS, but the UWB
communication is perfectly possible under NLOS conditions.
However, in positioning applications, NLOS situations might
produce erroneous sensor readings, which can disturb the
position estimation. Additionally, the short-pulse low-power
nature of UWB signals is a major advantage of UWB,making
it a suitable candidate for indoor positioning applications,
as demonstrated in Figure 3 [26], [76].

Additionally, the UWB signal transmits at low average
power due to the short-pulse nature of transmission, submerg-
ing it within the noise floor(-40 dBm/MHz), which helps
in saving transmitter energy, enhancing the battery life and
bestowing resistance against jamming and interception.

2) CHALLENGES
Although UWB technology offers numerous benefits for
indoor positioning applications, the technology faces several
challenges and drawbacks that affect its performance.

UWB technology is known for its coexistence with other
RF systems, but this is not always true. The technical report
published by the US National Institute of Standards and
Technologies [77] stated that UWB can cause interference
to existing nearby RF systems and vice versa. Examples
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of the potentially affected RF technologies are the GPS,
3G and WiMAX communication systems [10], [77] due to
the misconfiguration of wireless transceiver devices. Many
countries have imposed regulations to mitigate the possible
interference, which are covered in the following sections.

The low power transmission of UWB is considered an
advantage, yet it limits the overall power consumption for
the transmitter and receiver. For example, the low-power
UWB signal can either travel short distances at a high data
rate or long distances at a low data rate [78]; hence, the
range of the UWB anchor will be limited. This can only be
compensated by using more UWB anchors, which limits the
scalability [51], [79] and increases the system complexity and
computational load, thus compromising the system accuracy
and robustness. Additionally, the processing of wide-band
signal usually leads to high power consumption [80]. The
high power consumption can be mitigated using a multiband
approach in which the signal is split into sub-bands. The
sub-band processing method will be briefly discussed in
subsection III-C3.

Another advantage that creates a challenging situation is
the short pulse nature of UWB signals. The coding of short
width pulses requires longer synchronisation times, limiting
the data capacity. Moreover, the short-width pulses increase
the number of multipath components [77], which also com-
promises the overall system performance. Researchers have
proposed a solution for this issue by devising special schemes
and protocols to avoid repeated synchronisation [77]. In addi-
tion, the authors of [81] proposed the use of multiple-
input multiple-output systems to mitigate the effect of short
communications. One last disadvantage of UWB is its lim-
ited usage outdoors. According to various countries’ regu-
lations, fixed UWB transmitters operating outdoors are not
allowed [82], [83], refer to subsection III-B for more details.

B. UWB LICENSING AND REGULATIONS
The UWB bandwidth license is free for indoor applications,
yet the regulations for UWB devices are country- or region-
specific to define the technical requirements and certifica-
tion procedures for legal and safe operation [84], and more
importantly, to minimise the potential interference to licensed
services [69]. These regulations comprise the boundaries and
safety limits of the operating frequency, power levels, emis-
sions, energy disruptions, service times and antenna loca-
tions. For example, the regulations for UWB devices in the
United States are published by FCC in 2002 under the ‘‘Code
of Federal Regulations Part 15, subpart F’’ [82], while those
in the EU region are issued by the Harmonised European
Standard in 2016 (the process started in 2006) under the radio
equipment directive ‘‘ETSI EN 302 065 – 1 to 5’’ [83].

Additionally, these official UWB regulations distinguish
between the different types and usages of UWB devices, and
each type and usage has its own regulation. For example,
the FCC has set specific rules for each category of UWB
devices and their respective application, such as indoor UWB
systems, handheld UWB devices, GPRs and wall imaging

systems, surveillance and transportation systems (e.g. UWB
on-board aircrafts and UWB installed on rail vehicles) [69].

According to the FCC, the bandwidth of the UWB systems
belonging to the indoor and the handheld categories must be
kept between 3100 MHz and 10,600 MHz [82]. The indoor
UWB systems may not be used outdoors, and they must be
designed so that they are capable of operating only indoors.
The emissions from UWB devices may not be intentionally
directed outside of a building to perform an outside function.
Also, the use of outdoor mounted antennas is prohibited. The
device may only transmit when sending information to an
associated receiver.

An UWB device belonging to the handheld category must
be relatively small. These devices are primarily kept in hand
while being operated, and they do not employ a fixed infras-
tructure [82]. Antennas may be mounted only on the hand-
held UWB device. The use of antennas mounted on outdoor
infrastructure is prohibited.

Part 1 of the EU regulation ’’ETSI EN 302 065’’ contains
requirements for generic UWB applications, and it applies to
fixed (indoor only), mobile or portable applications [83]. The
UWB transmitter conforming to that document may not be
installed at a fixed outdoor location, for use in flying models,
aircraft and other forms of aviation. Allowed operation fre-
quency band is from 3.1 to 4.8 GHz and from 6.0 to 9.0 GHz.

Requirements for UWB location tracking are defined in
Part 2 of the EU regulation ’’ETSI EN 302 065’’. This
document covers three types of UWB location tracking sys-
tem, of which two are applicable for smart logistics applica-
tions [85]:
• LT1 systems: These systems, operating in the 6 GHz
to 9 GHz region, are intended for general location track-
ing of people and objects. They operate on an unlicensed
basis. The transmitting terminals in these systems are
mobile (indoors or outdoors), or fixed (indoors only).
Fixed outdoor LT1 transmitters are not permitted.

• LT2 systems: These systems, operating in the 3.1 GHz
to 4.8 GHz region, are intended for person and object
tracking and industrial applications at well-defined loca-
tions. The transmitting terminals in these systems may
be located indoors or outdoors, and may be fixed or
mobile. They operate at fixed sites and may be subject
to registration and authorization.

The regulation documents contain additional points
describing the operation peak powers and tabulated emission
limits for UWB devices, which vary regionally (e.g. US and
EU). Both the ETSI and the FCC regulations allow the use
of UWB indoor location tracking, which is very important
formany industrial and smart logistics applications. However,
the unlicensed outdoor use of UWB is limited to handheld or
mobile devices. Because the FCC or LT1 of ETSI do not allow
fixed outdoor transmitters, development of UWB outdoor
positioning systems becomes difficult. Without transmitting
anchors, it is not possible to use TW-TOA and multilatera-
tion for position determination. In addition, TDOA scheme
with wireless clock synchronization is inapplicable, since
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the anchors must transmit synchronization messages to each
other. Thus, the only possible way to implement outdoor
UWB location system, operating under the provision of FCC
or ETSI LT1, is to use TDOA approach with a wired clock
synchronization. However, implementing the wired clock
synchronization is complex and expensive.

LT2 of ETSI allows the fixed outdoor transmitters in the
EU, but the LT2 systems are subject to registration and
authorization. In addition, local coordination with possible
interference victims has to be performed, and the possible
permission would be granted only to a specific site [85].
Currently, developing an UWB-based positioning system for
outdoor environment is very difficult.

In June 2020, the fine-ranging alliance (FiRa), the largest
UWB consortium, was founded to pave the way for the
widespread adoption of UWB-driven applications. Some
well-known company members of the FiRa alliance are NXP,
Samsung, Qorvo, Qualcomm, Cisco, Apple and BOSCH.
The FiRa consortium is committed to providing seamless
user experience through secured fine ranging and positioning
capabilities of interoperable UWB technologies [86].

C. UWB SIGNAL ATTRIBUTES
The earliest attempt of UWB standardisation within IEEE
standards was made by the WiMedia alliance workgroup in
IEEE 802.15.3a-2003. This workgroup was responsible for
standardising the physical and medium access control (MAC)
layers of UWB indoor signals for wireless PANs. The detailed
technical aspects of a UWB signal are described in the cur-
rently, active UWB standard (802.15.4z-2020), which was
developed by the ‘‘LAN/MAN Standards Committee’’ of the
IEEE Computer Society [87]. UWB signals can be generated
using different techniques, the most popular of which is the
impulse radio (IR) method. However, there are several other
methods that can be adopted in UWB systems. The authors
of [69] classified the types of UWB signals into the following
six categories:

1) IMPULSE RADIO ULTRA WIDEBAND (IR-UWB)
The IR-UWB modulates the baseband signal through short
pulses (order of nanosecond duration each), which have a low
duty cycle to transfer information. The frequency spectrum
characteristics of IR-UWB can be controlled by varying the
pulse shape, phase, amplitude and duration to formulate the
spectrum envelope of the signal. IR-UWB can be carrier-
based, which requires an external high-frequency sinusoidal
carrier signal and a mixer, or carrier-less, which can oper-
ate without a local oscillator (LO) in the transceivers, only
using the baseband signal. The IR-UWB is typically the most
adopted system and is standardised in the IEEE 802.15.4z
UWB standard.

2) DIRECT SEQUENCE ULTRA WIDEBAND (DS-UWB)
Direct sequence spread spectrum (DSS) version of the
IR-UWB forms the DS-UWB, which treats the signal by
a pseudorandom number (PN) code before the amplitude

modulation of a train of short pulses. The new bandwidth of
the transmitted signal is affected by a spread code, which is
typically much higher than the symbol rate at which the chip
interval is longer than the pulse width.

3) MULTIBAND ULTRA WIDEBAND (MB-UWB)
The orthogonal frequency division multiplexing (OFDM)
version of the IR-UWB can be considered to form the
MB-UWB, in which the total bandwidth is divided into multi-
ple frequency sub-bands (minimum500MHz each) to occupy
the spectrum efficiently. The MB-OFDM approach utilizes
the quadrature phase-shift keying (QPSK) modulation with
128 subcarriers and five-band groups containing two or three
bands each (14 sub-bands in total). The MB-OFDM recently
received approval from ISO/IEC and ETSI.

4) FREQUENCY HOPPING ULTRA WIDEBAND (FH-UWB)
It is a non-conventional carrier-based method in which the
transmission occurs through fixed frequency hops over a
broad bandwidth and using variant frequency carriers. The
hopping sequence is determined by a spreading code or a PN
sequence set by the user in which a narrow-band transmission
occurs periodically, which can be smaller than (fast hopping),
greater than (slow hopping) or equal to the symbol rate.
The total spectrum bandwidth is determined by the range of
hopping frequencies and not the symbol rate.

5) STEPPED FREQUENCY HOPPING ULTRA WIDEBAND
(SFH-UWB)
SFH-UWB is a particular case of FH-UWB, in which the
hopping frequencies are selected by the spreading code to
form linearly increasing discrete steps until the desired band-
width is achieved. Then, the hopping frequency is reset to the
starting sequence, and the process is repeated.

6) SWEPT FREQUENCY ULTRA WIDEBAND (SF-UWB)
SF-UWB is also known as ‘Chirp signalling’. It is the
frequency variation of the FH-UWB, in which the carrier fre-
quencies of the UWB waveform are generated by a voltage-
controlled oscillator using a continuous variable speed. The
symbols are modulated on the slope (chirp) using M-ary
modulation and then sent sequentially or superimposed.

D. ARCHITECTURE OF UWB POSITIONING SYSTEM
A typical UWB indoor positioning system includes fixed
UWB sensors (anchors), mobile UWB targets (tags), location
server and system interface. The location server stores and
processes the sensors data, and the system interface (e.g.
smartphone, computer or tablet) is for viewing the positioning
results, as illustrated in Figure 4. Planar, two-dimensional
positioning requires at least three anchors to solve the coordi-
nate equations of the tag, while three-dimensional positioning
requires at least four anchors.

Additional optional units can be added to the previous
structure to obtain a real-time location system (RTLS).
For example, the location server is optional in small-scale
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FIGURE 4. Elements of UWB positioning system. User with a tag or mobile
phone is located through UWB anchors. The location server can determine
the position and provide an API for accessing the location information.

systems but crucial in large-scale systems. There are addi-
tional front-end and back-end units for complex indoor envi-
ronments, such as navigation framework, network gateways,
user interface and facilities for IoT integration or other
accompanying multi-sensor technologies.

The process of UWB precise positioning commences with
relative positioning between the anchors. A single initia-
tor anchor is specified as a reference point or origin (0,0).
An auto-positioning feature, such as Decawave’s (Qorvo)
RTLS application, measures the relative distance between all
anchors and thus positions them in the coordinate system.
A block diagram depicting an example of a complete process
of UWB precise positioning is illustrated in Figure 5.

After fixing the coordinate system, the UWB system starts
ranging the mobile UWB tag(s) within the indoor environ-
ment before sending the measured raw data to the position-
ing framework for additional processing. The positioning
algorithm, which is pre-specified by the user, uses the raw
measurements and a kinematic model to carry out position
estimation. Precise position can be achieved by using the
UWB system when the ranging method and the positioning
algorithm are appropriate to the application and the properties
of the environment.

Many applications in various environments require specific
NLOS mitigation methods to improve the performance. This
article focuses on two NLOS mitigation approaches, multi-
sensor fusion and ML algorithms. Both approaches are dis-
cussed in detail in section VIII.

In the multi-sensor fusion approach, additional accompa-
nying IPS technology is used to aid the UWB system with

a fusion algorithm that fuses data obtained from all sensors
based on their weights and shares.

In contrast, theML approach is designed using large offline
data to train a learning algorithm to identify the outlier mea-
surements caused by the NLOS conditions. This approach has
its performance metrics as ML algorithms are assessed from
the training and testing accuracies. Nevertheless, the overall
efficiency of the system is determined by the combined met-
rics of each phase, in addition to the degree of relevance of
the final positioning results to the ground truth.

E. COMMERCIAL PRODUCTS
The growing demand for location-based services in an indoor
environment has increased the size of the UWB market dur-
ing recent years. In addition, the recent advances in UWB
technology have provided opportunities for new commercial
applications.

The major manufacturers providing UWB chips for open
markets are Qorvo and NXP. Qorvo entered the UWBmarket
by acquiring the Irish semiconductor company Decawave in
January 2020 [88]. Decawave has been one of the major
providers of UWB technology during the past 15 years,
along with some other companies, such as Ubisense and
BeSpoon [89]. Decawave’s UWB technology has been
very popular and its chips have been used extensively in
research [16], [90]–[93] and commercial IPS [94]–[97].

NXP launched its UWB precision chips in February 2020.
Currently, NXP provides Trimension UWB modules for IoT,
industrial, mobile and automotive market segments [98]. Tri-
mension UWBmodules can be used, for example, like tags or
anchors in IPS systems, in mobile devices and in secure car
access applications.

One of the most important markets for UWB is mobile
phones. In 2019, Apple launched iPhones having an UWB
chip called U1 [99]. Samsung released its first high-end
mobile phones with UWB technology in 2020. Samsung was
one of the founders of the FiRa consortium together with
NXP and some other companies [100]. UWB technology
provides new opportunities for mobile phone use cases, such
as secure access control, location-based services and device-
to-device communications. To support third-party application
development, Apple has released its ‘‘nearby interaction’’
framework for developers and chipset manufacturers building
UWB-based applications [101].

The automotive industry is developing UWB applications
for secure access control and localisation. For example,
Bosch’s Perfectly Keyless key management system utilizes
UWB in mobile phones for secure access control [102]. The
vehicle access and start are controlled via a digital key on a
mobile phone and the precise localisation of the phone.

IV. UWB POSITIONING TECHNIQUES
The positioning can be based on either multilateration or
multiangulation techniques. When using multiangulation, the
position of the unknown tag can be determined from known
anchors geometrically by observing the angles of the received
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FIGURE 5. Suggested building blocks of the UWB precise positioning process, based on the surveyed UWB literature.

signal either in anchors or in tags. When using multilatera-
tion, the ranges between the anchors and tags are obtained by
measuring the time of flight (TOF) and multiplying it by the
speed of light or by applying a channel attenuation model to
the received signal strength (RSS) observations.

In general, the following four active strategies are used for
estimating the TOF needed for multilateration:
• TOA: TOAof the signal ismeasured and subtracted from
the known transmission time. The arrival timestamps are
obtained by either using a precise clock (synchronous
TOA) or by solving them together with the tag position
by using at least N+1 anchors, where N is the number of
spatial dimensions. The latter method is used in GNSS
systems and is known as the pseudorange method. The
clock synchronisation accuracy of the sub-nanosecond
range is not feasible for moving targets [103], [104],
and therefore, the pseudorange method is typically
used.

• RTT: The RTT of signal propagation between two
objects is measured, and the processing time is reduced
to obtain double ToF. This method is also called two-
way ranging (TWR) or two-way TOA (TW-TOA). The
measurement is repeated between a tag and at least N
anchors. This method is sometimes called asynchronous
TOA. [105]

• Time of transmission (TOT): The arrival time of the
signal sent by a tag is observed by at a minimum of N+1
anchors, and the TOT is solved together with the position
of the tag.

• TDOA: The signal sent by the tag is received by at
least N+1 anchors, which calculate the time differences
of arrival times, avoiding the need for absolute time
synchronisation in a tag.

The positioning techniques used with UWB are (1) TOA
or TW-TOA; (2) AOA; (3) received signal strength (RSS);
(4) TDOA and (5) a hybrid algorithm [10], [104]. The typical
UWB system estimates position using a two-step procedure.
In the first step, observables related to an unknown position
of the tag and known positions of the anchors are determined.
Among these, TOA, TDOA, AOA and RSS are given as
examples [25], [26]. From these measurements, the RSS is
considered the least suitable for use with UWB because its
accuracy in an NLOS and a multipath environment is lower
than that of time-based methods [104]. In the second step,
the position of the tag can be computed using estimation
methods such as least-squares (LS) method, Kalman filters
(e.g. EKF and UKF) and particle filter (PF). In addition to
the previous methods, some recent literature has adopted the
AI approach through supervised learning to account for the
position estimation in which the raw UWB data are com-
pared with a trained ML model (e.g. support vector machine
(SVM)) for predicting the unknown position of the target
node [106]. Selecting a suitable positioning technique is vital
to the whole precise positioning process as it affects the over-
all accuracy and defines the system complexity, and hence,
the resources’ total costs [76]. In this section, we summarise
the most widely adopted techniques in the literature, high-
lighting their methodology, pros and cons.

A. ANGLE OF ARRIVAL
The position of an object can be estimated from the AOA
or the angle of departure (AOD) of the signal. Each angle
measurement defines a line between the base station and a
mobile device. The object’s location is determined from the
intersection of these lines, as illustrated in Figure 6 a.
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FIGURE 6. Ranging and angulation techniques. a) AOA, b) TOA, TWR and RSS and c) TDOA. In AoA, TOA and TDOA techniques, the tag position is
determined from the intersection of the lines, circles and hyperbolas, respectively.

In theAOAmethod, the tag transmits a signal using a single
antenna, and the anchor (base station) receives the signal with
multiple antennas arranged in an array. The signal direction
is determined from different propagation delays of the signal
between multiple antennas of the receiver antenna array and
the single transmitter antenna.

In the AODmethod, there is a single antenna at the receiver
and multiple antennas arranged in an array at the transmitter.
Usually, the anchor (beacon) transmits the signal, and the tag
receives it. The signal direction is determined from different
propagation delays of the signal betweenmultiple antennas of
the transmitter antenna array and the single receiving antenna.

The advantage of the AOA (or AOD) observable is that
there is no need to time-synchronise the anchor clocks. How-
ever, the antennas have to be precisely calibrated to the
correct orientation. The AOA can be measured with various
techniques, but currently, antenna arrays are mostly used in
positioning systems.

There is a significant advantage of using a UWB signal
over a narrow band signal in phase difference-based AOA
estimation. Due to the short duration of the pulse, the UWB
receiver can separate the direct signal from the reflected
signal better than the receiver of the NB signal [92].

In UWB-based systems, the AOA measurements are often
used together with TOA or TDOA measurements [92]. For
instance, the authors of [107] proposed an AOA estimation
method for a UWB positioning system using a lower-cost
single-anchor system. A centimetre-level UWB position-
ing system was proposed by [108] using a mono-station
TOA/AOA positioning method. In addition, the cell phone
applications of Samsung and NXP use both the TOA and
AOA observables [109]. The Ubisense positioning system
uses both AOA and TDOA measurements, but according
to [89], this system is less accurate than theDecawave system,
which uses the TOA observable only.

Authors of [110] have developed a TDoA-Based posi-
tioning system using a single hotspot. This hotspot consists
of anchors placed very close to each other. The tag to be
localised is around the hotspot. The system estimates the

range and AOA between the hotspot and the tag. According
to the authors, the error in AOA estimate is less than 3 degrees
when the target is in 15 m distance. The error in the estimated
range may be 4 m.

B. TIME OF ARRIVAL
Most of the UWB-based positioning systems use the concept
of TOA ranging to determine the user position. This concept
is based on measuring the time taken for an RF signal trans-
mitted by an emitter to reach a receiver. The time interval, due
to signal propagation delay is multiplied by the speed of light
to obtain the distance between the emitter and the receiver.

The TOA technique exploits trilateration to determine the
position of the mobile users based on the range from the
mobile unit to at least three (3D) anchors at known locations.

In the TOA method, the position is estimated by intersect-
ing circles (2D) or spheres (3D) with radius ri and centre
(x i, yi, zi), as illustrated in Figure 6 b. The radius of the circle
r i is obtained from the propagation delay of the signal. Point
(x i, yi, zi) is the known location of the anchor.

The 3D location of the object (xu, yu, zu) can be derived
from the set of nonlinear equations as in Equation (2):

ρi =

√
(xi − xu)2 + (yi − yu)2 + (zi − zu)2 (2)

where i ranges from 1 to 3 and references the base stations
at known locations, (x i, yi, zi) denote the i-th base station
coordinates in three dimensions and r i is the range measured
from the i-th base station.

The TOA method illustrated above requires the anchors
and tags to be accurately synchronised. To avoid the syn-
chronisation requirement, the TWRmethod can be employed
to measure the signal propagation delay. The range between
two devices is determined through the two-way exchange of
a message and by measuring its arrival time. This method is
also known as two-way time-of-arrival (TWR-TOA) or RTT.

The simplest version of the two-way ranging cancels the
effect of the clock offset between the terminals, but the
clock drifts of the terminals can still cause significant error
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FIGURE 7. Double-sided two-way ranging method to estimate signal
flight time cancelling the effects of clock offset and drift.

in the signal flight time estimate. The error caused by the
clock drift can be eliminated by making the two-way ranging
measurement transaction two times [111]. This method called
as double-sided two-way ranging is illustrated in Figure 7,
and the TOF of the ranging message is expressed as in
Equation (3):

τf =
1
4
(τRTT1 − τd1 + τRTT2 − τd2) (3)

where τRTT1 is the RTTmeasured by the tag, and τRTT2 is that
measured by the anchor. The terms τd1 and τd2 are the reply
times of the anchor and the tag, respectively. τRTT1 and τd2 are
measured using the tag oscillator, and both measurements are
biased by the oscillator offset of the tag. Similarly, τRTT2 and
τd1 are biased by the oscillator offset of the anchor. Double-
sided TWR cancels these oscillator offsets.

C. TIME DIFFERENCE OF ARRIVAL
One method to obtain the signal propagation delay is the
TDOA method, which measures the difference in the arrival
times of two signals. The anchor clocks must be precisely
synchronised, but the tags do not need to be synchronised.
The tag position is obtained from the intersection of multiple
hyperbolas (Figure 6 c).

The distance difference between the tag and the
anchor where the signal arrives first, is expressed as in
Equation (4): [112]

ri,1 = cdi,1 = ri − r1

=

√
(xi − xu)2 + (yi − yu)2 + (zi − zu)2

−

√
(x1 − xu)2 + (y1 − yu)2 + (z1 − zu)2 (4)

where c is the speed of light, r i,1 is the distance difference
between the first and the ith anchor, r1 is the distance between
the first anchor and the tag and di,1 is the measured TDOA
between the first and the ith anchor. Equation (4) defines a
set of nonlinear hyperbolic equationswhose solution provides
the 3D coordinates of the tag.

In principle, the TDoA approach can be implemented in
two ways, called as unilateral and multilateral techniques
[113], [114]. In the unilateral system, the anchors transmit
a signal and the tags measure the TDOA from the received
signals. Also, the anchors transmit a signal with different time
delays to avoid a signal collision. The unilateral technique has
some advantages, such as infinite scalability in the number of
tags [115]. As in GNSS, in the unilateral TDOA system the
location privacy is preserved, since the position is estimated
in the tag. However, in the unilateral architecture the design of
the tag is complex and it has high energy consumption [114].

Because of the drawbacks of unilateral approach, most
of the UWB-based systems using the TDOA scheme are
based on multilateral technique. In multilateral approach the
tag sends one message, often called a blink, and the arrival
time is then measured by multiple anchors with respect to a
common time reference. These arrival times are then sent to a
master node or server, which computes the TDOA estimates
by subtracting the arrival time of the pivot anchor from those
of the other anchors. Thus, the number of TDOA estimates is
one less than the number of arrival time measurements.

Even though the multilateral approach is less scalable than
unilateral approach, it can still support many more tags than
the TW-TOA system. In the multilateral TDOA architecture
a tag needs to send only one message per range measure-
ment, while in the TW-TOA scheme, several messages are
required [51]. Scheduling techniques are needed to avoid
packet collisions in the TW-TOA approach, limiting the
number of supported tags. In the TDOA approach, the tags
need not to be aware of the anchors, which makes message
scheduling easier than in TW-TOA. The authors of [51] inves-
tigated the scalability of UWB-based indoor positioning for
TDOA and TW-TOA approaches with different MAC pro-
tocol combinations. In the mathematical model proposed by
the authors, when using a TDOA approach and time division
multiple access (TDMA), more than 6000 tags per second can
be supported in a single domain shell. The drawback of the
TDOA method is that the anchors have to be accurately syn-
chronised. Because the radio signal propagates at the speed
of light, 1 ns time offset in the anchor clock would introduce
a 30 cm error in the estimated range. Decawave DWM1001
achieves measurement accuracy within 10 cm in the TOA
mode, which is equal to 333 ps accuracy in the propagation
delay measurement. The synchronisation accuracy must be
even better to achieve similar accuracy in the TDOA mode.

The anchors of the UWB-based positioning system can be
synchronised either throughwires or wirelessly. In wired time
synchronisation, the clocks of all anchors are synchronised by
means of wires or fibres. In wireless time synchronisation,
each anchor has its own clock running independently of
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the clocks of the other anchors. The time estimates of the
different anchors are synchronised to the common time by
sending synchronisation messages.

A time synchronisation mechanism for the TDOA-based
UWB positioning system was investigated in [116]. The
authors developed a test setup to measure the time synchroni-
sation errors of wired and wireless approaches. The standard
deviation of the wireless synchronisationwas 400 ps, whereas
that of the wired synchronisation was 133 ps. However, the
time synchronisation of the anchors might be challenging.
Wired clock synchronisation or more stable clocks makes the
positioning system complex and expensive. Wireless clock
synchronisation techniques lower the range estimation accu-
racy when unstable clocks are used. Many commercial UWB
applications, such as Eliko [97] and Exafore [95], use the
TW-TOA approach. Some UWB systems, such as Sewio [96]
and Pozyx [94], support both the TDOA and TW-TOA
schemes. According to Pozyx, the TW-TOAmethod provides
more accurate position estimates, while TDOA is better suited
for large-scale applications, which need multiple tags to be
supported.

D. RECEIVED SIGNAL STRENGTH
The measurement of RSS is straightforward and is per-
formed in most radio receivers. RSS decreases as the
receiver–transmitter distance increases. This phenomenon
can be used to estimate the location of a mobile device
from the RSSmeasurements either by trilateration or location
fingerprinting.

Radio signal attenuation is not only affected by the dis-
tance between the transmitter and receiver but also by mul-
tipath interference and any obstruction on the signal path.
Thus, indoor positioning systems seldom compute the object
position by using geometric range estimates derived from
RSS. Instead, RSS-based indoor positioning systems use
location fingerprinting more often. RSS is seldom used with
UWB, because using the RSS observable does not completely
exploit the benefit of UWB signals [117].

E. PASSIVE POSITIONING
In addition to previous active positioning techniques, loca-
tion can also be determined by passively monitoring the
communication of the UWB network [118] or by special
arrangement; where a tag listens passively to the positioning
messages sent by the anchors simultaneously [115]. Passive
monitoring is not as accurate as active positioning, and the
simultaneous positioning message method requires special
hardware. Another passive UWB positioning strategy is to
use UWB anchors as radars. In this case, the round trip
time of the signal sent from the anchor and reflected from
the target is measured [93], [119], [120]. Both magnitude
and phase of the channel state can be used, in addition to
signal reflections from walls. This method is called device-
free positioning since it does not require any UWB specific
hardware in the target. Passive and device-free methods are
still under research. They are not as precise as the active

methods and are more sensitive to environmental changes and
variation. Thus, they are not discussed further in this review.

V. UWB POSITIONING ALGORITHMS
The position can be estimated from TOA and TDOA observ-
ables by using various methods. When the position is esti-
mated using measurements of a single time epoch, it is called
static positioning, where the previous or future measurements
are not accounted. The most common approach to solve the
nonlinear system of equations of TOA and TDOA is to use
the iterative LS method. Alternatively, the position can be
estimated using closed-form solutions or methods based on
likelihoods or probability.

Static positioning is not an optimal solution in most sit-
uations, as it does not account for the dynamic state model
of the target. In many cases, a Kalman filter and PF provide
a better position estimate, as they use the time series of the
measurements for computing the current state estimate.

A. ITERATIVE LEAST SQUARES AND CLOSED-FORM
SOLUTIONS
The overdetermined and nonlinear system of equations can be
solved using the Gauss-Newton algorithm. As the linearisa-
tion of this algorithm is based on Taylor-series expansion, it is
also called the Taylor algorithm. In this algorithm, the user’s
position is determined using an iterative process starting from
an approximate position.

The true distance between the anchor i and the tag is as
described in Equation (5):

ri =
√
(xi − xu)2 + (yi − yu)2 + (zi − zu)2 (5)

where (xi, yi, zi) is the position of the i-th anchor
and (xu, yu, zu) is the position of the tag. If (xv, yv, zv) is the
initial approximate position, let xu = xv + δx , yu = yv + δy
and zu = zv + δz. By linearising Equation (5) using Taylor-
series expansion and omitting the second-order and higher
terms as in Equations (6)–(10) we have: [121]

Hδ = b (6)

where

b =

r1 − rv1r2 − rv2
r3 − rv3

 , H =

ax1 ay1 az1
ax2 ay2 az2
ax3 ay3 az3

 , (7)

δ = [δxu, δyu, δzu]T (8)

axi =
xi − xv
rvi

, ayi =
yi − yv
rvi

, azi =
zi − zv
rvi

(9)

and

rvi =
√
(xi − xv)2 + (yi − yv)2 + (zi − zv)2 (10)

The LS solution to the position estimation problem is
obtained from Equation (11): [121]

δ = (HTH)−1HTb (11)

The position of the object (xu, yu, zu) is calculated using an
iterative process. In the beginning, the approximated position,
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(xv, yv, zv) is set to an initial value. Next, the direction cosine
matrix H and the predicted-minus-observed range vector b
are computed. Then, the unknown displacement vector δ is
calculated using Equation 8. The iteration process is repeated
until the length of the displacement vector does not decrease
any further.

The ordinary LS method described above assumes that
the error variance in each measurement is the same. The
method of weighted LS (WLS) can be used when the error
variances of the measurements are not constant.WLSmethod
weights observations by the reciprocal of the error variance
wi = 1/σ 2

i for that observation.
The weight matrix is calculated using Equation (12):

W =


ω1 0 0 0
0 ω2 0 0
...

...
. . .

...

0 0 . . . ωL

 (12)

The WLS solution is obtained from Equation (13):

1x = (HTWH)−1HTW1p (13)

In addition to the Taylor-series method, several closed-
form solution methods have been proposed to solve the set
of TOA or TDOA equations. Caffery [122] presented a geo-
metrical interpretation in which straight, rather than circular,
lines of positions were used to determine the target device’s
position. This method is called the linear lines of position
(LLOP) method [121], [123] or simply LS method [112]; it
does not use linearisation. Another well-known closed-form
solution is the Chan algorithm, which estimates the target
position from TDOA equations [124].

Many authors have preferred closed-form solutions over
the Taylor method [122], [124]. The Taylor-series method
has been criticised as it converges towards a local minimum
if the initial guess is not close enough to the true posi-
tion. However, in a GNSS, for example, the Taylor-series
method seldom converges towards the minima. The authors
of [112] compared the LLOP, Chan algorithm and Taylor-
series method and found that the Taylor algorithm provides
the best positioning accuracy. A fusion algorithm combining
both the Chan and Taylor algorithms can improve the posi-
tioning accuracy in the presence of NLOS errors [125].

B. BAYESIAN FILTERS
Recursive Bayesian state estimation, or Bayes filter is an
abstract concept for tracking object’s position in kinematic
case, by combining a dynamic state model with observations.
Bayesian filters recursively update the posterior belief to the
current state as in Equation (14):

Bel(xk ) = p(xk | y0..k−1), (14)

where xk is the current state and yk are the observations.
Practical implementations require the definition of

dynamic and perceptual models and representation of beliefs.
Depending on the implementation, the properties of Bayes

filters are different [126]. Some most common implementa-
tions are different variations of Kalman Filters, Particle Filter
and factor graph optimisation, which are described in the
following subsections.

C. KALMAN FILTERS
The Kalman filter algorithm is a recursive estimation method
used for predicting the new optimal states in linear state-space
systems considering additive white Gaussian noise [127]. The
algorithm is based on using a priori knowledge to estimate the
posterior states, calculate the Kalman gain and measurement
residual caused by the mismatch error and then calculate the
new state and covariance vectors and use them as input to the
next iteration [127]–[131].

1) EXTENDED KALMAN FILTER
The extended Kalman filter (EKF) is an adapted version of
the ordinary linear Kalman filter to estimate states in non-
linear dynamic systems [132]. A discrete-time Kalman filter
follows two steps: 1) prediction step, where the next state of
the system is predicted given the previous measurements fed
to the system, and 2) update step, where the current state of
the system is estimated given the measurement performed at
the active time step [131], [133]. Then, the Kalman filter algo-
rithm is used to satisfy the equations of state-space estimation
in Equations (15) as follows:

xk = f (xk−1, k − 1)+ qk−1
yk = h(xk , k)+ rk (15)

whereas xk and yk are the state and measurement vectors of
the system at time step k and qk−1 and rk are the process
and measurement noises at time step k-1, where qk−1 ∼
N (0,Qk−1) and rk ∼ N (0,Rk ), f (.) and h(.) are the nonlinear
functions of model dynamics and measurement, respectively.

In EKF, the state transition matrix F and measurement
matrix H in the linear Kalman filter are replaced by the
nonlinear state transition function f (.) and nonlinearmeasure-
ment function h(.), respectively, to map the algorithm through
Gaussian distribution to work under nonlinear conditions.
The complete Kalman algorithm for nonlinear systems is
demonstrated in Table 3, which is adapted from [131].

Whereas mk̄ and Pk̄ are the predicted mean and covariance
of the state, respectively, at time step k before checking the
measurement, and mk and Pk are the estimated mean and
covariance of the state at the time step k after checking the
measurement. yk is the measurements vector of the system at
the time step k. Sk is the measurement prediction covariance
at the time step k. Kk is the filter gain (i.e. the prediction
correction coefficient at the time step k). f (.) and h(.) are the
nonlinear functions of model dynamics and measurements.

2) UNSCENTED KALMAN FILTER
Unlike EKF, the unscented Kalman filter (UKF) employs
the sigma-point Gaussian transformation to map the non-
linear state transition function of the system and tends to
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TABLE 3. EKF algorithm for nonlinear systems, adapted from [131].

linearise it through the so-called unscented transform [131],
[134], [135]. In other words, while the EKF approxima-
tion relies only on one point (the mean), UKF uses more
than one point, including the distribution mean. UKF selects
additional weighted points (called sigma points) plus the
mean for more accurate transformation. This procedure is
called the unscented transform. Thus, UKF sometimes out-
performs EKF in severely nonlinear systems, whereas EKF
performs well in systems with modest nonlinearity [136]. In
an ideal case, both EKF and UKF can be used to solve the
spatial positioning equation when Newtonian equations of
motion are used to form the state transition function and
the measurements from motion sensor (e.g. inertial unit,
gyroscope or accelerometer) are being filtered. However,
various recently proposed approaches use measurements
obtained from various sensors to input as the state-transition
matrix. The authors in [137]–[139] implemented a fusion
positioning method, whereas the state-transition function
originates from inertial navigation sensors, such as the iner-
tial measurement unit (IMU) or inertial navigation system
(INS), while the measurement function is obtained from
UWB sensors. The two streams are fed to EKF/UKF for
optimal positioning. The procedures vary from method to
method. In some cases EKF is used with multiple anchor
readings and a single-observation anchor, whereas another
method involves the use of EKF and UKF as a cascaded
system to obtain the input parameters of the second fil-
ter from the outputs of the first filter. The results showed
that the fused UWB, along with the inertial sensor data
exhibited improved overall positioning accuracy and system
robustness.

Kalman filters also perform well when they coexist with
PFs, as in [136], where the authors developed a framework
comprising three filters (EKF, UKF and PF) with detailed
evaluative metrics. The results showed that the developed
structure could be used for numerous purposes besides posi-
tioning improvements, such as target tracking and robot local-
isation. Numerous realisations that involve the use of Kalman
algorithms and their variations have been proposed in [22],
[34], [51], [136], [140]–[151].

D. PARTICLE FILTERS
Particle Filter (PF) is another realization of Bayes filters for
position estimation. PF is a popular choice for positioning
because it can be used for solving the DSS shown in Equa-
tion (15) without assuming that the dynamic or perceptual
models are linear and that the noise is Gaussian. However,
it is also possible to implement a PF which assumes Gaus-
sian posterior distribution if a lighter but more restricted
version is needed [152]. The reasons for using PF are that the
conditions of linearity and Gaussian noise do not hold very
often, and linearisation is only possible if the model is well
known [152], [153].

PF estimates the posterior belief Bel(xk ) of DSM through
a sequential Monte Carlo (SMC) algorithm. The SMC is
similar algorithm shown in Table (3), without resorting to
linearisation nor Gaussian noise assumption. The posterior
distribution can be anything representable by discrete sam-
ples (particles). Increasing the number of particles makes it
possible to describe more complex distributions, but it also
increases the computational cost of the method.

The algorithm is simple to implement, consisting of the
following steps:

1) Initialisation: N particles are initialised according to
the a priori knowledge described as probability distri-
bution p(xk−1). This distribution can be any suitable
empirical distribution which can be presented with
particles, or uniform distribution, if more informative
distribution is not available.

2) Estimation loop

a) Predict: All particles are moved based on the
current DSM by sampling new particles, x ik , i ∈
[1,N ], from the distribution obtained by con-
volving the a priori distribution with the process
model:

∫
p(xk |xk−1, uk )p(xk−1)dxk−1. The pro-

cess model includes also possible inputs, uk , and
process noise.

b) Update: The weights of particles are updated
according to the belief of the observations, wik =
p(yk |x ik ) assuming that the particle, x ik , represents
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the correct location. Finally the weights are nor-
malized so that their sum is 1.

c) Resample: New set of particles is generated by
sampling the existing set of particles using their
weights so that particles with higher weights are
selected more probably than the others.

d) Estimate:The position estimate is obtained as a
weighted average of the posterior distribution rep-
resented by particle locations and weights.

In NLOS conditions, the probability distribution of the
position can be multimodal [154], and De Angelis et al.
showed that ranging, which is based on RTT measurements
can be affected by non-Gaussian noise even in LOS situa-
tions [143]. Therefore, PF can be more competitive in some
realistic indoor environment than LS or EKF.

Many researchers have compared the performance of PFs
with classical solutions for UWB-based indoor positioning.
Usually, the performance is evaluated by examining the RMS
error [155] or more often with the cumulative density func-
tion (CDF) of the positioning error in one to three dimen-
sions [143], [148], [156]. These benchmarks show that, in
many cases, a PF provides more accurate positioning results
than classical methods, but in some cases, spurious errors
are also detected when applying a PF (e.g. in the case of a
kidnapped robot) [157]

It is also claimed that, instead of using the RMS error, com-
paring the whole posterior distributions of algorithms is more
affective [152]. For example, the posterior distribution pro-
vided by a standard PF was assumed to be the most accurate
and was compared with the Gaussian posterior distributions
provided by EKF, UKF and GPF through Kullback-Leibler
divergence and χ2 information metrics. In this benchmark,
the GPF was found to be more accurate in location track-
ing than EKF or UKF but incurred higher computational
cost [152].

In addition to the increased computational cost, the prob-
lems identified in applying PF are sample degeneracy and
impoverishment caused by the reduction in particle diver-
sity [158]. A PF might also perform poorly in the kidnapped
robot case when the robot is suddenly transferred to another
location without allowing it to make measurements during
the transfer. In this case, there might not be any particle near
the actual position of the robot, and the robot might take a
long time to find its new location. Counterintuitively, a PF
does not also perform well when the measurement noise is
too little [159], which is precisely the case in the controlled
UWBpositioning system.However, manymethods have been
proposed to overcome these problems. For example, dual MC
localisation is a solution for too accurate sensor readings,
and the kidnapped robot case can be solved by uniform
particle augmentation [159]. Some other improvements are
evolved distribution sampling methods [160], particle reset-
ting approach [155], [161] or replacing PF with adapted FIR
filter [157]. Zhu et al. improved the accuracy of a PF in UWB
positioning by using a pre-build error distribution map [162].

At the cost of pre-computation, they gained increased 2D
positioning accuracy.

It is relatively easy to fuse information from many sources
into the PF estimations to compensate for NLOS issues, for
example. Many researchers have fused INS sensors [91],
[148], [156], mixing an EKF as a pre-processor of PF infor-
mation [148]. The PF positioning algorithm can also include
other models, such as UWB uncertainty model [91] or a
model to predict the UWB signal obstruction caused by a
pedestrian’s own body [163]. The authors in [164] showed
that the inclusion of digital maps into the PF model improved
the positioning accuracy. The positioning of the anchor itself
can be included in the PF-based positioning system [156].

E. FACTOR GRAPH OPTIMISATION
Factor Graph Optimisation (FGO) is a relatively new
positioning algorithm among Bayesian filters. Some earlier
publications from 2012 propose using FGO for multipath
mitigation of GNSS positioning [165] and for multi-sensor
fusion of GPS, IMU and stereo vision [166]. FGO models
previous states as nodes and measurements as factors. Like
KF and PF, FGO assumes Gaussian noise and utilizes the
Bayesian filtering principle for solving the position estima-
tion. The differences are that the FGO does not assume the
Markov condition, but it uses information from previous
states in addition to utilizing the latest state only. FGO solves
the position by optimising the factor graph model with an
iterative solver, therefore requiring more resources than KF
or PF. However, it is still solvable in real-time, for example,
by combining expectation-maximization and nonlinear opti-
misation methods [167], [168].

Even though FGO shares the unimodal Gaussian model
with EKF, it can be more reliable in urban canyon envi-
ronments for GNSS positioning cases [169]. Recently
FGO has raised plenty of interest in positioning research,
and it has been also applied to indoor navigation,
including UWB positioning [167] and tight coupling of
UWB and INS [170]. Besides, FGO can be useful in
indoor positioning where multipath propagation causes
channel impairments or in complex multi-sensor fusion
situations.

F. PARTICLE SWARM OPTIMISATION
Particle Swarm Optimisation (PSO) algorithm belongs to
the family of swarm intelligence, which also includes, for
example, artificial Bee colony (ABC), Ant colony (AC) and
Firefly algorithms. PSO was originally presented by Eberhart
and Kennedy [171], [172]. PSO is an iterative global search
technique that imitates the social behaviour of the swarm of
birds. The algorithm is initialized with a random population
of candidate solutions from a D-dimensional search space.
Each candidate solution has a position and a velocity, and it
is thus described as in Equation (16):

(xi, vi) = ([xi,1, xi,2, . . . , xi,D]T , [vi,1, vi,2, . . . vi,D]T ) (16)
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The quality of a solution represented by each particle is
estimated by evaluating the loss function L(xi). The position
of the best solution found by a particular particle is stored
as the best local solution, Pi,best, and the position of the best
solution among all particles is stored as global best Gbest.
In each simulation step, the velocity and the position of

each particle are updated according to the formula (17): [126]{
vk+1i = wvki + c1ξ (Pi,best − x

k
i )+ c2η(Gbest − xki )

xk+1i = xki + rv
k
i ,

(17)

where w is the weight coefficient corresponding to the inertia
of the particle, c1 and c2 are respectively the self cognition
and social knowledge coefficients determining how much
the model utilizes local knowledge vs. swarm knowledge.
Stochasticity to the model is provided by selecting random
variables ξ and η from range [0..1]. Position updating ratio is
constrained by a constant factor r .

Some examples of using variations of PSO in positioning
are: the use of ensembles of particle swarms to enhance the
robustness and accuracy of UWB positioning [173], [174],
and [175]. Being a global search strategy, PSO can be use-
ful in finding the global minimum from the search space,
but since the UWB positioning problem is often unimodal,
simpler optimisation methods are usually more effective.
However, in NLOS conditions, for example, the probability
of the position can be multimodal [154], then, the global
optimisation strategies can be superior in a similar way to PF.

G. NLOS IDENTIFICATION AND MITIGATION
In addition to using PF and PSO algorithms, the robustness
of positioning in NLOS conditions can also be increased by
specific NLOS identification and mitigation strategies.

Although UWB has several advantages in indoor position-
ing, it can still suffer from errors caused by NLOS conditions.
In an NLOS condition, only the reflected signal is received,
while the direct path signal is missing, as shown in Figure 8.
The use of reflected signals can cause a significant bias to
the position estimate. Various methods have been developed
to reduce the inaccuracies imposed by an NLOS condition
in UWB-based positioning. The authors in [176] categorised
these methods as NLOS identification and NLOS error mit-
igation techniques. The signal can be identified as an NLOS
signal, for example, by analysing the channel statistics param-
eters, such as mean delay, excess delay, amplitude and SNR.
When the faulty observable is identified, it can be excluded
from further analysis to improve the positioning accuracy.

Various methods can be used for mitigating NLOS errors,
such as outlier detection, PFs, ML and weighted least squares
(WLS). The authors in [177] proposed an NLOS identifi-
cation technique based on multipath channel statistics, such
as the kurtosis, the mean excess delay spread and the RMS
delay spread. A likelihood ratio test was conducted for LOS
and NLOS identification. Smaller weights were assigned to
the measurements, which were likely biased. The authors
analysed the WLS method, which deployed the likelihood

FIGURE 8. NLOS and LOS situations in UWB positioning system. The
anchors in the left and right upper corners do not have a LOS connection
to the tag, but the signal is received only through reflections, and
therefore, the flight time is longer than expected, and the distance
estimate fails. The anchors in the lower corners receive the LOS signal
first.

functions obtained from the multipath components of the
received signal. Recently, ML has been extensively applied
for NLOS identification and error mitigation, which is pre-
sented in Section VIII-A.

A commercial solution was coined by Decawave (Qorvo)
in [178] for systems that contain the DW1000 chips. This
embedded resolution comprises the use of additional registers
to assign a level of confidence to the received timestamps.
Afterwards, it post-processes accumulators to allow the iden-
tification of a falsely detected first path, hence, identifying
NLOS situations.

VI. RECENT ADVANCES IN UWB POSITIONING
LITERATURE
The main contribution of this paper is that it summarises the
most recent advances in UWB positioning literature that have
spanned the previous five years; hence, we provide a compact
summary, as shown in Tables 4–9. The tables categorise
each article concerning the publication year, ranging methods
used, applied algorithms, whether they use the fusion-based
technique and field of application, as well as a summarised
description explaining the rationale, methodology and find-
ings for each article. In addition, several other articles are
summarised as in-text review outside the table, which can be
found in the relevant sections.

VII. ADVANCES IN SENSOR FUSION TECHNIQUES
Sensor fusion is a computational procedure to combine the
measurements from multiple sources such that the output
information after fusion is maximized [179].
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TABLE 4. Summary of UWB literature: General methodology development.
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TABLE 5. Summary of UWB literature: NLOS mitigation and integration with fingerprinting.

TABLE 6. Summary of UWB literature: IoT.

As sensor technology becomes more sophisticated (and
owing to its erroneous nature), multi-sensor fusion has been
trending recently. The reliance on multiple measurement
devices in positioning applications can result in fewer uncer-
tainties, and greater reliability and accuracy than depending
on a single measurement sensor [180]. Numerous tracking
systems can be fused with a UWB system to produce more
accurate and reliable estimations. Common examples of these
systems are GNSSs, inertial navigation systems (INSs), dead
reckoning (DR), visual map matching (VMM) and computer
vision. The optimal positioning estimations that result from

fusing multiple positioning methods follow a unified frame-
work, which is illustrated in Figure 9.

GNSSs (e.g. GPS, GLONASS and Galileo) provide
satellite-based positioning estimations for outdoor environ-
ments within an acceptable error range. However, the signal
suffers from multiple degradation factors, such as multipath
fading, path loss and shadowing, which reduce its applicabil-
ity in indoor positioning applications [147], [181].

INSs are highly reliable positioning systems, as they are
not influenced by external factors. However, they accumulate
significant errors over time [182], [183]. The main role of
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TABLE 7. Summary of UWB literature: Autonomous systems.

FIGURE 9. Fusion-based positioning framework, adapted from [179],
[180].

UWB precise positioning technology is to refine INS errors
by tightening the position estimate to the absolute coordinate
system, while an INS provides more accurate delta position

updates in the short term, making the integrated INS/UWB
system more accurate and robust [26], [76]. An IMU differs
from an INS as it is not an integrated dynamic system as an
INS. However, IMU units are the main building block of an
INS [184]. IMUs can still be used independently in fusion-
based localisation endeavours, but INSs have recently been
widely adopted in positioning systems.

A. SENSOR FUSION POSITIONING IN TRANSPORTATION
APPLICATIONS
As cooperative positioning is a crucial element in intelligent
transportation systems (ITSs), the authors in [185] developed
a cooperative scheme supported by vehicle-to-infrastructure
(V2I) communications as a prototype implementation of an
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TABLE 8. Summary of UWB literature: Industrial applications.

TABLE 9. Summary of UWB literature: Pedestrian positioning.

ITS. This method comprises a tightly coupled sensor-fused
GPS/UWB/INS algorithm built upon an error detection unit,

in addition to a robust Kalman filter. The UWB compo-
nent acts as a refining agent for noisy GPS measurements.
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The results showed that the fusion of UWB with GPS/INS
improved the overall positioning accuracy of the vehicles
down to a sub-metre level with an added pseudo-range gross
error in different scenarios (the highest positioning error was
0.78 m) and, thus, increased the system reliability.

In ITSs, various low-cost positioning systems can be fused
to improve the overall accuracy and reliability, as demon-
strated in [147]. The authors used a federated Kalman filter
(FKF) to combine GNSS, UWB, DR and visual map match-
ing (VMM) in one framework, which the authors called an
‘intelligent positioning strategy’. VMM is a common method
in GNSS positioning, which uses pre-stored maps to correct
the fusion error. Three input sources to VMM were prop-
agated: (i) result of GNSS/UWB/DR fusion, (ii) captured
images from a vehicle camera and (iii) pre-stored visual
map repository, sampled by frame and pose. The integrated
GNSS/UWB/DR/VMM strategy was tested in a simulation
environment and a real-vehicle test platform on a university
campus. The results of both tests showed that the framework
improved the accuracy (MAE 0.9 m) and system reliability.

Intelligent logistics (also known as smart logistics) have
recently adopted AGV robots which possess key transporta-
tion capabilities to maximise the efficiency of logistics traf-
fic. The authors in [139] developed an INS/UWB integrated
approach along with an interactive multiple model (IMM)
algorithm that involves dual Kalman filters in both LOS and
NLOS situations by combining their probabilities through a
Markov chain transform. The INS and UWB position errors
were fused, and the error covariance was updated using
another Kalman filter, which compared the INS measure-
ments against the UWB estimated values. Finally, the Kalman
filter yielded the estimated position as the output and pro-
ceeded to the weighted fusion step. The results showed that
the proposed INS/UWB-IMM method reduced the influence
of a LOS/NLOS mixed situation; the average localisation
error obtained was 0.2 m.

B. FUSION-BASED POSITIONING IN INDOOR
APPLICATIONS
Fusion-based indoor positioning has recently gained
significant attention due to advances made in wireless sensor
networks, enhancements achieved in positioning technolo-
gies and its optimisation capabilities [180]. Another tightly
coupled technique was presented by [186], where the authors
used an INS/UWB sensor fusion approach to address the
problem of accumulated errors in inertial navigation sys-
tems, which can localise and track indoor mobile robots in
real-time. A 2D kinematic model of a mobile robot was
developed for positioning and tracking, in addition to an
autoregressive algorithm, to accommodate a third-order error
equation for the gyroscope and accelerometer. In addition,
an IAKF algorithm was developed, and a covariance match-
ing method was used to identify the estimated position
outliers. The results showed that IAKF outperformed the
KF algorithm, and the error of the INS/UWB integrated

FIGURE 10. Structure of the federated Kalman filters.

system was improved to 0.24 m, which is an accept-
able level for the practical requirements of the system
model.

The concept of an FKF filter in multi-sensor data fusion
has been implemented as a group of sub-filters correspond-
ing to each sensor measurement in addition to the master
combining filter, which regularly fuses sensor data to achieve
optimal estimations [187], [188]. The concept of federal fil-
ters is illustrated in Figure 10. The authors of [189] adopted
a federated extended finite impulse response (EFIR) filter
as the sub-filter to fuse INS/UWB measurements between
the reference nodes and target tag. Another EFIR was used
as the master filter to achieve optimal position estima-
tion based on the sub-filter outputs to mitigate the INS
error.

The results obtained from [189] showed that the EFIR
sub-filter approach was more accurate (RMSE = 0.45 m)
and robust than the normal FEKF. In [190], the same authors
introduced the problem of missing UWB measurements and
proposed the combination of an INS augmented by a predic-
tive unbiased finite impulse response (PUFIR) filter. The per-
formance of the proposed method was compared with those
of the other three filters: the Kalman filter, an ordinary UFIR
and a PKF. Although the ordinary UFIR filter performed the
worst, the PUFIR filter yielded a smaller RMSE (0.5 m) and
more robustness than the Kalman filter and yielded reliable
navigation accuracy (maximum error = 2.28 m) amid tempo-
rary missing UWB range measurements.

The authors of [183] addressed the multipath effect dur-
ing NLOS situations on a UWB signal in dense, compli-
cated environments for the indoor navigation of autonomous
robots. The authors introduced an adaptive filter called Sage-
Husa fuzzy adaptive filter (SHFAF) for outlier detection.
Such filters assume that the noise is time-varying, especially
in an NLOS situation, in contrast to Kalman filters, which
assume time-invariant noise. In a SHFAF, noise covariance
is estimated by adjusting the innovation weight adaptively,
which results in more accurate estimations (88.2% of the
time, the positioning error is less than 0.2 m) and enhanced
robustness, as demonstrated by the simulation and experi-
mental results.
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C. FUSION-BASED POSITIONING IN EXTREME
CONDITIONS
GNSS signal is not available in underground mines, and
all positioning systems in those conditions are prone to
signal deterioration and multipath effects. Being quite tol-
erant against multipath propagation, UWB positioning has
been used in Coal mine robots (CMRs) for precise under-
ground positioning to function in excavation, mining and
security control rescue tasks. The authors of [34] developed
an IMU/UWB-based localisation system to equip CMRs
with reliable Estimations, which can mitigate the navigation
uncertainties in underground tunnels. The UWB measure-
ments were propagated into an EKF. Subsequently, its output
was federated with IMU measurements through an ESKF
to realise six-degree-of-freedom state estimations. The esti-
mates were compared with LiDAR odometry methods. The
simulations and small-scale experiments exhibited improved
robustness but slightly decreased positioning accuracy for the
proposed fusion method ESKF-UWB over EKF-UWB. The
authors attributed these results to two reasons: (i) the EKF
method did not comprise orientation errors, or (ii) the crawler
robot suffered movement vibrations, generating additional
IMU noise. This implementation is yet to be investigated on
a larger scale.

The strap-down inertial navigation system (SINS) is com-
monly employed in Chinese coal mines to measure the
position and attitude of a shearer on rails; however, it suffers
from the accumulation of error drifts over time. Hence, the
authors of [191] proposed an integrated SINS/UWB system
through a multimodel intelligent fault-tolerant algorithm to
refine the positioning errors by switching between a tightly
coupled model and a decision tree model based on the
working state of UWBanchors. The switchingwas performed
by assessing the ability of all anchor nodes to accurately
measure the range between each stationary node and the
mobile node. Afterwards, the determined UWB epochs,
along with SINS estimations were fed to a Kalman filter
to obtain the final position and speed. The results showed
that the tightly coupled model could accurately localise
the shearer amid partial node failure. In contrast, the deci-
sion tree model could produce accurate positioning during
total node failure situations. The maximum SINS/UWB
multimodel method error was 0.93 m, accumulated
in 327 s.

VIII. ADVANCES IN MACHINE LEARNING APPROACHES
IN PRECISION POSITIONING
The multilateration techniques directly estimate the position
of an agent using distance observables with a direct signal
propagation model. The reliability of the estimation can be
increased using a dynamic state model, which in addition to
current observations, uses the previous positions in estima-
tions as well through Bayesian statistics (e.g. Kalman- and
PF-based solutions). These are the most common methods
and are particularly functional inside a controlled positioning

infrastructure. While plain multilateration and dynamic state
models have been the most common methods for positioning
estimation, more advanced MLmodels have become increas-
ingly popular due to their increased calculation capacity and
advances in ML methods. They are used for positioning in
situations in which simple models do not work efficiently
(e.g. due to heavy nonlinearities, abruptly changing condi-
tions, heterogeneous information sources, skewed noise dis-
tribution or non-convexity). Typical reasons for using ML are
to increase robustness, allow adaptation to changes, imple-
ment a collaborative or model-free positioning system, use
heterogeneous information sources or select the most useful
features for positioning. These methods allow the use of ad
hoc observations not originally intended for positioning, such
as optical images and RSSs from Wi-Fi base stations. Often
traditional positioning algorithms are supplemented with ML
methods.

ML methods have been found helpful in many use cases,
some of which are listed in the following subsections. More-
over, a summary that describes the properties, strategies and
purposes of the reviewed ML algorithms is presented in
Table 10.

A. RESOLVING NLOS UNCERTAINTY
UWB systems that are augmented by ML approaches play
an important role in resolving NLOS situations. For instance,
the basic ML algorithms, such as a naïve Bayesian filter and
gradient descent algorithms were adopted by [213] and [206],
respectively, to address NLOS conditions by recognising
measurement outliers, hence improving the overall accu-
racy. Using large datasets, the authors of [106] proposed
a radar system augmented by a multiclass support vec-
tor machine algorithm to localise and identify targets by
specifying the location within the building rooms, which
reduced the uncertainty associated with NLOS. A simi-
lar approach with a novel NLOS identification algorithm
based on an import vector machine (IVM) algorithm,
along with a feature selection strategy was proposed
by [198].

The suitable performance of neural network deep-learning
approaches have also been rising in dominance in the most
recent UWB literature (in a span of the past three years).
In [196], the use of a multilayer perceptron, with transfer
learning and convolutional neural networks (CNNs) as NLOS
classifiers, not only enhanced the overall training accuracy
from 44% to 98% but also achieved faster training times than
those achieved using CNNs alone in an unmeasured envi-
ronment. Another neural network approach was presented
in [195], where the authors employed a long short-termmem-
ory (LSTM) algorithm for predicting the user position based
on the received TOA measurements. This LSTM approach
resulted in a 7 cm accuracy, which outperformed several other
techniques, including the recurrent neural network (RNN)
method. The ML methods can be used to increase the robust-
ness of the well-known model-based traditional methods,
such as Kalman filter [214].
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TABLE 10. Summary of machine learning methods used for positioning.

B. ADAPTIVE POSITIONING
The parameters of the prediction models can be tuned or
changed according to the change in the operating conditions
detected by ML models, for example, when an agent moves
from outdoors to indoors or the detection of NLOS situations.
Some researchers have been able to improve the positioning
accuracy by using various dynamic-state models simultane-
ously and selecting the most suitable model according to the
conditions detected by the MLmodel [215]. Neural networks
and reinforced learning methods allow even more flexible
adaptation to the changing environment [216].

C. COLLABORATIVE POSITIONING
Collaborative positioning means that agents share informa-
tion with each other while performing positioning. The solu-
tion does not necessarily conform to the preconditions of the
static or dynamic state model-based methods, as the noise
distribution might be skewed, and the problem might be non-
convex. Therefore, traditional optimisation methods might
not find the global optimum.

Hoang et.al. studied collaborative positioning of vehi-
cles using onboard GNSS, IMU, odometer and UWB
for inter-vehicle distance measurement. They formed an
ad hoc communication network using the ITS-G5 stan-
dard for collaborative positioning [217]. The data fusion
was performed using Bayesian frameworks with EKF
and PF for pre-processing and data fusion, and they
noticed that the PF outperformed the EKF. The experi-
mental result showed that collaborative positioning using

vehicle-to-vehicle communication could secure accurate
positioning during GNSS outage in some cases [217].

The noise in DGNSS observables is not Gaussian, and
the collaborative positioning problem is not convex. There-
fore, the ML approach was used to create a cognitive PF
for positioning for industrial IoT purposes [218]. They also
noticed that if the noise probability distribution of the sen-
sor data can be properly estimated and used in particle
weight computation, the positioning accuracy can be further
improved.

Infrastructure-free multi-robot localisation using UWB
and PF [219]–[221], including functionality for system auto-
calibration [105], has been extensively studied. Both relative
position and orientation of robots can be obtained by attach-
ing several UWB requesters and responders in robots and
measuring ranges using TW-TOA [222].

D. MODEL-FREE POSITIONING
In many cases, ML is used for solving problems without
pre-defined models, which can be particularly useful when
using ad hoc information for positioning. Inside positioning
infrastructure, model-based methods are often more efficient
than model-free methods. ML learns the model of the prob-
lem domain by itself based on the optimal information gain.
In addition to positioning itself, ML can also be used for
studying the problem and revealing the hidden dependen-
cies between variables. For example, Wi-Fi fingerprint-based
positioning is implemented withML [223]. Nonlinear ensem-
ble regression methods, such as random regression trees and
deep learning, can be efficient in this domain [224], [225].
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E. DEVELOPMENTS IN MISCELLANEOUS APPLICATIONS
With the rapid development of ML approaches in various
sectors, there is a growing need to investigate and analyse
ML suitability for localisation applications. In the case of
location-based services, ML is growing in popularity as it
can produce accurate positioning information for naviga-
tional purposes. An ML approach can support the achieve-
ment of better positioning performance both outdoors and
indoors [226]. This positioning system allows real-time track-
ing and tracing of goods and enables the optimisation of
logistics processes in many application areas [227]. In an
indoor warehouse scenario, an ML algorithm allowed, for the
first time, a monocular optical positioning application [227].

The authors of [228] proposed a visible light positioning
(VLP) algorithm, which is based on ML and works to mea-
sure the relative distance between the receiving and transmit-
ting ends of the camera. The combination of VLP systems and
dual-function ML algorithms enables an increase in position-
ing accuracy by reducing the negative effect and eliminating
low-intensity reflective signals [229]. In this approach, the
position is determined by a proposed triangulation algorithm.
The authors of [230] proposed an automated visual position-
ing system using deep learning, which aids to correctly place
a workpiece on a fixture. This approach requires template
matching across the image in which the template is compared
with the local pixels.

ML methods are also used in fingerprint-based algorithms
to enhance the precision and robustness of indoor positioning.
The advancement of fingerprint localisation technology is a
promising method for indoor positioning in various applica-
tions [231]. The authors of [232] developed a fingerprint-
based localisation method, which is combined with ML
and a heterogeneous feature fusion model. Another promis-
ing positioning method is smartphone-based indoor track-
ing, exploiting opportunistic sensing and machine learning
techniques, e.g. SLAM. The SLAM method offers a new
intelligent filtering approach to maintain good positioning
performance [233].

F. SUMMARY
The research interest towards ML methods in positioning has
been continuously increasing during the last five years [234].
ML facilitates the use of more data sources for position-
ing and development of collaborative positioning schemes,
which are too complex for traditional methods. ML plays an
important role in developing future location-based services
by seamlessly usingmany available positioning infrastructure
and other information sources [234].

IX. DISCUSSION
As UWB is a relatively new standard, the maturity in chip
production is rapidly increasing. New accurate and affordable
UWB hardware has been recently introduced by Decawave
and NXP for industrial applications, and UWB chips are
included in recent phonemodels and other consumer products

by the biggest mobile phone manufacturers. This develop-
ment hasmadeUWBan attractive technology for indoor posi-
tioning purposes. Recent UWB positioning systems support
decimetre-level accuracy and 60 m distance [105].

Most of the positioning algorithms used with UWB are
the same, which have been used for positioning for decades,
including multilateration, LS solution, Kalman filtering and
particle filtering, but the increased popularity and lowering
prices of UWB positioning are also attracting new application
areas, solutions and algorithms. While traditional approaches
are still optimal for the standard multilateration problem,
different ML methods have been proposed to cover special
situations, such as the use of heterogeneous data, detection of
outliers, mitigation of NLOS situations and automatic adapta-
tion to changing conditions. Automatically calibrated multi-
robot positioning systems with collaborative positioning and
pose estimation methods have been proposed to assist in con-
trolling industrial robots, drones or cars [159], [235]. Multi-
sensor fusion has been studied for increasing the reliability
and availability of the positioning service andMLmethods to
allow seamless roaming between positioning systems and the
use of signals of opportunity together with actual positioning
observables. Similarly, collaborative positioning can increase
the positioning reliability under difficult conditions.

The recent literature in UWB positioning for smart logis-
tics contains adaptation of UWB positioning to many new
application areas and increasing the flexibility and reliability
using new algorithms.

In the future, low-earth orbit (LEO) satellites can be used to
provide an additional mode for both outdoor, and indoor nav-
igation [236]. We intend to implement our proposed position-
ing system (mobile App), which involves the use of GNSSs,
inertial sensors and UWB for smart logistics applications and
researching the possibility of using LEO-based positioning
observables fused with other available information.

X. CONCLUSION
Due to its versatility, accuracy and robustness, UWB technol-
ogy is considered an efficient and reliable localisationmethod
for implementing smart logistics. The wide adoption of UWB
in location-based services confirms its ability to make an
effective compromise among the cost, resource budget and
precision. This paper summarises the most recent studies
that have adopted UWB in sensitive applications that require
high precision positioning in which UWB has successfully
reduced the localisation error to a few centimetres. UWB
advances for location provision are foreseen to grow as the
adoption of this technology in mass-market devices increases
via standards and related developments. UWB will likely not
only be providing location solutions for special industrial
applications but also consumer devices in the future. More-
over, this paper presents a compact review that focuses on
using multi-sensor fusion-based systems in specific applica-
tions. We highlight the use of inertial sensors, remote sensing
devices, visual sensors and other RF-based navigational sen-
sors to achieve seamless navigation under various conditions.
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Additionally, we present a higher perspective on the algo-
rithms used for either single-sensor systems or multi-sensor
fusion systems, such as Kalman filter, LS, PF, federated filter
structure andMLmethods.We have designed the architecture
of this article to be a compact tutorial for researchers seeking
an overall view on UWB positioning technology, aiming to
make it a landmark article on the literature track of UWB.
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