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ABSTRACT This study introduces an order-assorting system (OAS) in a distribution center. The system
supports assortments with worker-following carts. The workers and worker-following carts move during an
order-assortment operation before which the binning operation splits the large-volume stock-keeping units
(SKUs) into bins according to the number of aisles. We propose two mixed-integer programming models.
The batching-only model (BOM) conducts the batching operation to shorten the total travel distance. The
binning and batching model (BBM) assumes that all SKUs are split into bins according to the number of
aisles and finds the optimal point between binning and batching. We also propose the route packing-based
binning then batching (RPBB) heuristic to solve a large-sized BBM problem. RPBB consists of a binning
procedure based on route packing (BPM-RP) and a batching procedure using a simple integer programming
formulation. The results of the experiments evaluating the performance of the BBM and the RPBB heuristic
show that themodel and heuristic optimize the balance between binning and batching to reduce the total travel
distance. In the large-sized problem, the RPBB obtains near-optimal solutions by the tight lower bound that
shows 1.41-2.30% optimal gaps on average.

INDEX TERMS Binning and batching, Heuristic algorithm, order-assorting operation, warehouse, worker-
following cart.

I. INTRODUCTION
Consumers today are demanding fresher stock-keeping
units (SKUs) and greater shopping convenience. Since retail-
ers, especially convenience stores in urban areas, tend to keep
minimal inventories due to the short life cycles of SKUs and
the lack of storage space [1], their supply chains have shifted
toward supplying fresh SKUs and minimum inventory. In the
past, manufacturers generally supplied SKUs to individual
stores, but most stores now supply SKUs from their own
distribution centers (DCs) [2].

A retail convenience store’s order fulfillment center (OFC),
a type of DC, uses order-assorting (OA) to distribute the
requested SKUs. The OFC supplies SKUs more than twice
a day on average, considering the freshness of the SKUs
ordered and the amount of storage space. The OFC supplies
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the sales volume of each SKU at stores and the fluctuations
in the order sizes determine the daily supply operation.

The OFC needs to classify SKUs quickly and supply them
on time. Automated OFCs handle large assortments, small
orders, daily deliveries, and multiple types of workloads [3].
In this study, we consider a parallel-aisle order-assorting sys-
tem (OAS) based on the worker-following assortment carts
which load SKUs from a depot and unload them at the conve-
nience stores’ designated cells in the OAS. Each cart shows
the cell locations, number of SKUs and their distributions,
and other data. An example of an OAS is shown in Figure 1.

In general, batch assorting is popular in the OAS. To min-
imize the travel distance, the OAS combines the SKUs
that require distribution into one trip (batching) or divides
them into multiple trips (binning). This study makes two
contributions to the binning and batching literature. First,
we formulate a mixed-integer programming (MIP) model for
binning and batching operations. The model minimizes the
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FIGURE 1. A parallel-aisle order-assorting system with worker-following
carts (modified from Lee et al. [4]).

total travel distance of a cart by obtaining optimal bins and
batches for small-sized problems. Second, we propose the
route packing-based heuristic to solve a practical situation in
large-sized problems with the binning and batching opera-
tions in the OAS.

The remainder of this study is organized as follows.
Section II reviews the literature on the OAS, autonomous
order-picking systems, and batch operations. Section III
explains the binning and batching problems and batch
assorting in OAS. Section IV introduces the MIP model.
Section V describes the route packing-based binning then
batching (RPBB) heuristic. Section VI evaluates the pro-
posed model and heuristic via computational experiments.
Section VII summarizes the contributions of this study and
suggests possible directions for future research.

II. LITERATURE REVIEW
A. ORDER-ASSORTING SYSTEMS
Several summaries of the literature on order processing
at DCs have been published [5]–[8]. Hong [1] introduced
a worker-to-part OAS and evaluated the mean value and
variance of worker’s process time including sorting times,
walking times, empty walking times, and blocking delays in a
two-worker collaboration situation. Lee et al. [4] introduced
an order batching procedure considering optimal travel dis-
tance Tan et al. [9], who studied parcel sorting in a warehouse
using automated guided vehicles (AGVs), presented a mixed-
integer linear programming model and developed a particle
swarm optimization algorithm to minimize the completion
time for the allocation of parcels, pick stations, and AGVs.

Many studies mainly focused on sortation conveyor sys-
tems or cross-docking. Boysen et al. [10], who reviewed

automated conveyor systems for sortation from the perspec-
tive of operational research, used a layout design that con-
sidered multiple inbound and outbound stations. Fedtke and
Boysen [11] introduced design alternatives for closed-loop
tilt tray sortation conveyors in a parcel DC, formulated sub-
problems for system performance evaluation, and conducted
simulations to compare system performance. Johnson and
Meller [12] developed analytical models to evaluate the per-
formance of a circular sorting conveyor system that sorted
orders from a customer or retail store.

Cross-docking is associated with assorting operations
Agustina et al. [13] proposed an integrated vehicle routing
and scheduling model for a food DC using cross-docking.
Enderer et al. [14] presented two MIP models and devel-
oped a column generation algorithm that minimized the total
cost of material handling and transportation for an integrated
cross-dock door assignment and the related vehicle routing
problem. Yu et al. [15] studied the vehicle routing problem
between the inbound and outbound routes related to cross-
docking and proposed a simulated annealing-based heuristic
algorithm. Nassief et al. [16] presented two MIP formula-
tions for the dock-door assignment problem and proposed a
column generation algorithm. Molavi et al. [17] developed
a MIP model and four meta-heuristic algorithms for inbound
and outbound truck scheduling in cross-docking systemswith
fixed due dates and shipment sorting.

B. AUTONOMOUS ORDER-PICKING SYSTEMS
Increasingly, DCs are implementing order-picking and stor-
age technologies [18]. Worker-following cart systems are
especially suitable for e-commerce DCs with strong demand
fluctuations and large inventories of small SKUs.

Foumani et al. [19] considered an automated storage and
retrieval system (ASRS). They developed a mixed-integer
linear programming model to provide the optimal solution
for robot moving sequences in small-sized problems, as well
as a metaheuristic to solve large-sized problems efficiently.
Kim and Hong [20] proposed two models for storage loca-
tion assignment and reassignment in a bypass zone picking
system with ASRS that took into account workload balanc-
ing between zones and recirculation reduction into account
Boysen et al. [21] noted that in a rack-moving mobile robot
environment, the mobile robot system transferred racks near
picking stations; the optimized order processing could reduce
the fleet size of robots by 50% or more.

Lamballais et al. [22] developed analytical models to eval-
uate the performance and utilization of robots in a robot
mobile fulfillment system (RMFS). They confirmed the effect
of the location of the workstation on the system’s maximum
order throughput. Kim et al. [23] developed a heuristic algo-
rithm to solve an item assignment problem in the RMFS.
Zou et al. [24] built a performance estimation model for
the battery management problem in an RMFS, considering
battery switching and charging strategies. They suggested a
decomposition method for solving and validating the analyti-
cal models via simulation. Bolu and Korcak [25] proposed an
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adaptive heuristic approach for centralized task management
in an RMFS. They performed simulations in a highly realistic
environment including robot charging, replenishment pro-
cess, and path planning algorithms to evaluate the proposed
algorithms. Roy et al. [26] developed analytical models to
evaluate the system operations for both single and multiple
storage zones with dedicated or pooled robots in a mobile ful-
fillment system. Gharehgozli and Zaerpour [27] considered a
scheduling problemwith the objective of minimizing the total
travel time of a mobile robot in RMFS. They developed an
adaptive large neighborhood search algorithm and validated
it by obtaining near-optimal solutions to the problem.

C. BATCHING OPERATION
Several studies have investigated batching operations to
improve system efficiency. The batching algorithms gener-
ally fall into two categories: exact solution approaches and
heuristic approaches.

Branch-and-bound algorithm [28], branch-and-price algo-
rithm [29], and a column generation algorithm [30] are exam-
ples of exact solution approaches. Gademann et al. [31]
proposed the branch-and-bound algorithm for the batching
operation in a parallel-aisle warehouse. Gademann and Velde
[32] proposed a branch-and-price algorithm to minimize the
total travel time for the batching operation. Muter and Oncan
[33] developed an order batching algorithm based on col-
umn generation considering traversal, return, and midpoint
routing policies. Muter and Oncan [34] proposed a column
generation-based algorithm to minimize a makespan objec-
tive for the integrated order batching and picker scheduling
problem.

Heuristic approaches have introduced the first-come-first-
served rule [35], seed algorithm [36], and saving algorithm
[36], [37]. Hong et al. [38] introduced a route-packing-based
order batching procedure (RBP) for large-scale problems
that transformed the order batching problem into a route-
bin packing problem (RPP). Similarly, Hong and Kim [39]
developed an RBP for the S-shape routing policy in a parallel-
aisle warehouse Hsu et al. [40] proposed a metaheuristic
based on a genetic algorithm to minimize the total travel
distance for solving medium- and large-sized order batch-
ing problems. Pan et al. [41] proposed a metaheuristic
based on a group genetic algorithm for balancing the work-
load of each picking zone and minimizing the number of
batches in a pick-and-pass system to reduce the total oper-
ation time. Matusiak et al. [42] used simulated annealing to
solve an order batching problem with precedence constraints.
Kulak et al. [43] used a tabu search to solve the order batch-
ing and picker routing problem, and Li et al. [44] used ant
colony optimization to solve it.

We focus on the binning and batching problem in the OAS.
We believe that binning during the batching operation has
been addressed in the available literature. This study aims
to optimize the batch assorting problem concerning binning
in the OAS. Our optimization objective for the binning and
batching problem is to minimize the total travel distance for

a cart in the OAS. For the small-sized problems, we propose
two formulations: a batching only model (BOM) and a bin-
ning and batching model (BBM). The effect of binning is
demonstrated by comparing the results obtained from the two
formulations. In addition, we propose a heuristic for large-
sized problems concerning binning and batching problems.
A comparison of the heuristic’s results to those of a lower
bound model demonstrates that the heuristic provides a near-
optimal solution in large-sized problems.

III. PROBLEM DEFINITION
A. ORDER-ASSORTING IN A PARALLEL-AISLE OAS
Our study considers the order-assortment process in a
parallel-aisle OAS where the SKUs arrive in bulk unit lots
and that the DC uses worker-following carts. If there is little
customer demand for an SKU it arrives in a small volume
and is batched without splitting into smaller bins. If there is
significant customer demand for the SKU, its large volume is
first split into bins and is then batched. The batch assorting
operation for SKUs uses a one-way traversal routing pol-
icy [8] as shown in Figure 2. A cart loads SKUs from the
loading depot and travels to the cells assigned to the order.
The cart in the OAS visits all the aisles to distribute the
high-demand SKUs, and fewer aisles to distribute the low-
demand SKUs. Assuming variable order sizes consisting of
small-sized orders, the OAS uses a discrete batch assorting
operation to combine multiple SKUs in one trip as shown in
Figure 2 (a).

In an order picking operation, the DC splits and packs
orders into a single order after completion of each sub-
order retrieval, or delivers the packed shares separately to

FIGURE 2. Batch assorting operation using the one-way traversal routing
policy: (a) without binning and (b) with binning.
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the customer’s assigned bin. Although discrete assorting and
order picking can both increase the operational time and pick-
ing cost, binning in the assorting operation becomes a partial
distribution without any added cost. We aggregate multiple
SKUs in one trip (batch assorting) in order to reduce the
overall total travel distance, assuming order size variability
and collision-free carts in the OAS.

B. BINNING AND BATCHING PROBLEMS
The batch assorting operation has two problems, binning and
batching, to consider when distributing SKUs into the boxes
to be delivered to the customers. Binning refers to splitting the
SKUs according to each aisle. If theDC does not use assorting
carts, and the volume of the SKUs is small, it is necessary to
split the SKUs into a number of bins equal to the number
of aisles; but if it does use the carts, the only consideration
for binning is the carts’ volume capacity. Batching refers to
grouping or clustering the bins into batches. Grouping the
bins into batches to match the carts’ volume capacity will
reduce the number of trips and total travel distance as shown
in Figure 2 (b). Since binning is interpreted as a set partition-
ing problem, the complexity of binning is NP-Complete [45].
Batching was proven to be NP-hard when the capacity of a
batch was larger than three [32].

IV. BATCH ASSORTING FORMULATION
We develop two mathematical models: a batching-only
model (BOM) and a binning and batching model (BBM)
for the batch assorting. The aim is to form batches that can
take the shortest routes. The constraints of the two models
are of three types: (i) batching constraints, (ii) cart capacity
constraints, and (iii) route constraints. Batching constraints
ensure that at least one SKU is assigned to each batch, and
cart capacity constraints ensure that the total volume of all
the SKUs in each batch does not exceed the cart’s maximum
capacity. For simplicity, we consider only the volume of
SKUs and neglect their shape of SKUs in satisfying cart
capacity constraints. Route constraints ensure that a batch
holds all of all SKUs in a route. CAPA represents the vol-
ume capacity of the carts. Route information is expressed
by the aisle incidence (RAra), and the route length is LTr .
The parameters related to the SKUs are the list of SKUs,
volume information of each SKU, and information on the
aisles that the SKUs should visit. Let s be an SKU in a set
of SKUs S. Let b be a batch in a set of batches B. In the
BOM, an SKU is assigned to a batch. In the BBM, we allow
the possibility for each SKU to be grouped into multiple
batches. The volume of the SKU s that must be sorted in
aisle a, Vsa, is measured in liters. PAsa is the set of aisles
that must be visited to sort the SKU s. To obtain a feasible
solution, we assume the cart capacity must at least meet the
following relationship:

∑
a∈ôA Vsa ≤ CAPA,∀s ∈ ôS. The

notations for the batch assorting formulation are summarized
in Table 1.

TABLE 1. Notations for the batch assorting formulation.

TABLE 2. Decision variables for the BOM.

A. BATCHING-ONLY MODEL
The batch assorting model assigns the SKUs into bins to
shorten the total travel distance. For simplicity, we consider
that each SKU is assigned to exactly one batch and the volume
of each SKU is containedwithin the cart capacity.We propose
a mixed-integer programming (MIP) model for the BOM.
The BOM is the mathematical model for batching the SKUs
without splitting them into bins. The decision variables for
the BOM are summarized in Table 2.

BOM : min
∑

b∈B

∑
r∈R

LT r · Ybr , (1)

subject to
∑

b∈B
Xsb = 1, ∀s∈S, (2)

Xsb ≤ Zb, ∀s∈S,∀b∈B, (3)∑
s∈S

∑
a∈A

Vsa · Xsb ≤ CAPA,

∀b∈B, (4)∑
r∈R

Ybr ≤ Zb, ∀b∈B, (5)

Xsb · PAsa ≤
∑

r∈R
RAra · Ybr ,

∀s∈S,∀a∈A,∀b∈B, (6)

Xsb∈ {0, 1} ∀s∈S,∀b∈B,

Ybr∈ {0, 1} , ∀b∈B,∀r∈R,

Zb∈ {0, 1} , ∀b∈B.

Objective function (1) minimizes the total travel distance
that is, the sum of the length of the assigned route. We obtain
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TABLE 3. Decision variables for the BBM.

the appropriate route r for each batch. Constraint (2) assigns
one SKU to each batch for the batch assorting without bin-
ning operation. An SKU cannot be separated into multiple
batches. Constraint (3) validates a batch if a bin is assigned
to the corresponding batch. Constraint (4) ensures that the
total number of SKUs in one batch does not exceed the
cart’s capacity. Constraint (5) ensures that each batch takes
a single type of route, and Constraint (6) ensures that the
route assigned to a batch holds all the SKUs in the corre-
sponding batch. The possible maximum number of batches
that could be constructed in the BOM is the number of
SKUs (|S|).

B. BINNING AND BATCHING MODEL
The binning and batching model splits all the SKUs into bins
to shorten the total travel distance; for simplicity, we consider
the volume of the SKU in the cart capacity. We propose a
mixed-integer programming (MIP) for the BBM. We allow
for the possibility that each SKU can be assigned to a few
batches. The parameters related to the SKUs are the list of
SKUs, volume information of each SKU, and information on
the aisles that the SKUs should visit. The decision variables
for the BBM are summarized in Table 3.

BBM : min
∑

b∈B

∑
r∈R

LT r · Ybr , (7)

subject to
∑

b∈B
Xsab ≥ 1, ∀s∈S,∀a∈A, (8)

Xsab ≤ Zb, ∀s∈S,∀a∈A,∀b∈B, (9)∑
s∈S

∑
a∈A

Vsa · Xsab ≤ CAPA,

∀b∈B, (10)∑
r∈R

Ybr ≤ Zb, ∀b∈B, (11)

Xsab · PAsa ≤
∑

r∈R
RAra · Ybr ,

∀s∈S,∀a∈A,∀b∈B, (12)

Xsab∈ {0, 1} , ∀s∈S,∀a∈A,∀b∈B,

Ybr∈ {0, 1} , ∀b∈B,∀r∈R,

Zb∈ {0, 1} , ∀b∈B.

Objective function (7) minimizes the total travel distance
that is the sum of the length of the assigned route. Constraint
(8) calculates the number of batches required. The BBM
considers the binning problem in batch assorting. An SKU
can be separated into multiple batches. The binning of SKUs

considers the route including the aisles, which are the location
of stores that find the SKUs. If the items in aisle a in an
SKU s are included in batch b, SKU s should be filled by
batch b. Items in an aisle are not split into multiple batches.
Constraint (9) assigns items in at least one aisle to one batch.
Constraint (10) ensures that a batch does not exceed the
capacity of the carts. The equation sums the volume of items
per aisle of the SKUs in a batch, then compares it with the cart
capacity. Constraint (11) ensures that each batch takes only
one route. Constraint (12) ensures that the route assigned to a
batch covers all bins or parts of the SKUs in the corresponding
batch.

V. THE ROUTE PACKING-BASED BINNING
THEN BATCHING
This section describes the proposed heuristic algorithm for
the large-sized problems. Due to the problem’s NP-Hard
and practical size, BBM is difficult to solve in a reasonable
amount of time. The heuristic algorithm develops from BBM
using the route packing-based binning then batching (RPBB)
procedure. RPBB builds batches from the bins that hold the
SKUs divided into bulk units. Simultaneously, it considers
all the SKUs for each customer, splits the SKUs into bins,
assigns the bins to batches, and performs the route selection.

RPBB consists of a binning and a batching procedure.
In the binning procedure, the bulk units of SKUs are divided
into the requirements for each route using a partitioning
problem-based route packing (hereinafter, BBM-RP) model
(Section 5.A). In the batching procedure, the SKUs that
are divided by each route are assigned to batches, consid-
ering the capacity of the batches using a simple integer
programming (IP) model (BPr , Section 5.B). RPBB solves
the BBM-RP model and BPr model using an IP solver.

FIGURE 3. A flowchart of the RPBB.
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TABLE 4. Decision variables for the BBM-RP.

Figure 3 illustrates a flow chart for the relationship between
the BBM-RP and BPr models in RPBB.

A. BBM-RP MODEL FOR THE BINNING PROCEDURE
We simplify the BBM by removing the batching variables
to develop the BBM-RP model. By skipping the batching
stage, we relax the batching problem to assign the bins to
routes and identify the number of routes required to assort the
bins.

We reuse the two decision variables, Xsab and Ybr (intro-
duced in Table 3), which we derive from the BBM. Using
the following two equations, xsar =

∑
b∈B Xsar × Ybr and

yr =
∑

b∈B Ybr , we define xsar as the SKU s’s bin that
should visit aisle a if a is assigned to route r , and yr as the
number of SKUs assigned to route r . The decision variables
for the BBM-RP are summarized in Table 4. The details and
reformulation are as follows.

BBM− RP :min
∑

r∈R
LT r · yr , (13)

subject to
∑

r∈R
xsar ≥ 1,

∀s∈S,∀a∈A, (14)∑
s∈S

∑
a∈A

Vsa · xsar ≤ CAPA

· yr , ∀r∈R, (15)

xsar · PAsa ≤ RAra · yr ,

∀s∈S,∀a∈A,∀r∈R, (16)

xsar∈ {0, 1} , ∀s∈S,∀a∈A,∀r∈R,

yr∈ {0, 1, . . . , } , ∀r∈R.

Objective function (13) minimizes the total travel distance
which is the sum of the lengths of all the routes assigned.
Constraint (14) assigns all the bins to exactly one route,
Constraint (15) ensures that the capacity of the assigned route
should be greater than or equal to the total volume of bins to
assort, and Constraint (16) ensures that the aisle incidence
vector of route r should contain the aisle incidence vector of
each bin s that has been assigned to route r .
Based on the two decision variables, xsar, and yr , we derive

Constraints (14), (15), and (16) using Gaussian elimination
from the BBM. We match the constraints specified by bin
s in Constraint (9) to the same constraints in constraint
(14). Constraints (9) and (10) are valid after aggregating
the constraints related to route r . We replace batching index
b with route index r by aggregating the constraints with
the same route index r . Therefore, the BBM-RP model has
no batching index. Given route r , Constraint (15) denotes

TABLE 5. Decision variables for the BPr.

the number of routes required. We repeat the process for
Constraint (12) to obtain Constraint (16), which ensures that
route r can assort bin s by comparing the aisle indicator
parameters of route r and the SKU s’s bin that should visit
aisle a. We skip the batching constraints to derive a relax-
ation model without the batching variables. The BBM-RP
model, however, still contains the partitioning constraints
(Constraint (14)).

B. BPR MODEL FOR THE BATCHING PROCEDURE
The BPr model constructs batches with routes using the bins-
to-route assignment information derived from the BPM-RP
model. The BPr in the RPBB merges bins into batches and
determines the number of batches (zb) per route. The maxi-
mum number of Br is the one that assumes Max (the number
of SKUs, yr+ 3). We reuse the parameter, Vsa (introduced
in Table 1), using the following equation,

∑
r∈R

∑
s∈Sr Vs =∑

s∈S
∑

a∈A Vsa, we defineVs as the bin volume of pair s from
bin-to-route assignment information. The decision variables
for the BPr are summarized in Table 5.

BPr : min
∑

b∈Br
zb, (17)

subject to
∑

b∈Br
xsb = 1, ∀s∈Sr , (18)∑

s∈Sr
Vs · xsb ≤ CAPA · zb,

∀b∈Br , (19)

xsb∈ {0, 1} , ∀s∈Sr ,∀b∈Br ,

zb∈ {0, 1} , ∀b∈Br .

Objective function (17) minimizes the number of batches,
Constraint (18) assigns one bin to each batch, and
Constraint (19) ensures that the total volume of bins in a batch
does not exceed the capacity of carts.

VI. EXPERIMENT
Studying the effectiveness of binning allows us to compare
batch assorting via the without binning model (BOM,
Section 4) with the with binning model (BBM, Section 4).
To evaluate the performance of the heuristic algorithm,
we use the small-sized problems to compare the heuris-
tic algorithm with BBM and the large-sized problems to
compare the heuristic algorithm with the lower bound (LB,
Appendix A). We also test the heuristic algorithm against the
performance for various problem sizes.
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TABLE 6. Experimental characteristics.

A. EXPERIMENTAL DESIGN
We generate orders using a random order generator. The
parameters include SKU information, route method, lay-
out information, and worker-following cart information. The
SKU information includes the number of SKUs and volume
data. We assume the sets of a number of SKUs to be 10, 20,
30, 360, and 720, and consider a unit-size volume of SKUs
such as milk, yogurt, and other dairy SKUs. The volume fol-
lows a uniform distribution from 0.5 to 5.0. The layout infor-
mation includes number of aisles, aisle length, and distance
between two adjacent aisles. Table 6 lists the experimental
characteristics. Each experiment is repeated 25 times using
random instances.

We conduct all the experiments on a PC with Windows 10
running on Intel i5-8600K @ 3.60 GHz and 32.0 GB RAM.
All the experiments comprise five random instances. We use
IBM ILOG CPLEX version 12.6 to solve the MIP formula-
tions. We implement the MIP models using Concert Technol-
ogy in IBM Java.

We use the following notations:

• BOM: Exact solution of the batching only model (with-
out binning)

• FFD: Shortest route with first-fit decreasing
(Appendix B)

• RPBB: The route-set packing based binning then
batching

• BBM: Exact solution of the binning and batching model
• LB: Lower bound for the evaluation of heuristics

FIGURE 4. Results of the average travel distance per SKU in small-sized
problems.

We consider three performance measures: total travel dis-
tance, number of batches, and computation time. The nota-
tions are as follows:
• # of batches: Number of batches (EA)
• Obj: Total travel distance (meters)
• Opt Gap: Objective gap between the BBM and
heuristics:

OptGap(%) = 100

×

(
Obj.of the heuristics−Obj.of the Opt

Obj.of the heuristics

)
• LB Gap: Objective gap between the LB and heuristics:

LBGap(%) = 100

×

(
Obj.of the heuristics− Obj.of the LB

Obj.of the heuristics

)
• CPU: Computation time (seconds)

B. COMPUTATIONAL RESULTS FOR
SMALL-SIZED PROBLEMS
We consider 10-, 20-, and 30-SKU cases in 4- and 6-aisle
OAS. The results are reported in Table 7. The optimal model
obtains the shortest total travel distance (this measure is the
objective function of BBM) within 60 s for the 10-, 20-, and

TABLE 7. Computational results for small-sized problems.
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TABLE 8. Computational results for large-sized problems.

30-SKU cases in the 6-aisle OAS. BBM always guarantees
shorter travel distances and fewer batches. The binning con-
tribution is shown by comparing BBM and BOM in opera-
tional performance. The shorter the travel distance, the more
likely that each cart will maintain its dedicated area, i.e., the
lesser the congestion. Moreover, a decrease in the number of
batches can save loading and unloading times. In the 4-aisle
OAS, FFD obtains 3.12-20.16% optimal gap solutions within
0.01 s and RPBB obtains 1.32-4.88% optimal gap solutions
within 0.02-0.20 s for the 10-, 20-, and 30-SKU cases. In the
6-aisle OAS, FFD obtains 7.40-18.31% optimal gap solutions
within 0.01 s, and RPBB obtains 0.50-10.87% optimal gap
solutions within 0.06-0.65 s for the 10-, 20-, and 30-SKU
cases.

Figure 4 shows the average travel distance (ATD) per SKU
to compare four results (BOM, FFD, RPBB, and BBM) for
small-sized problems in an OAS with 6 aisles and 12 cart’s
capacity. BBM, FFD, and RPBB developed for the binning
and batching operations show significant improvements in
the ATD per SKU over BOM. The ATD per SKU of BBM
is 21.56-22.69% shorter than that of BOM. Meanwhile, the
ATD per SKU of RPBB and FFD are compared, it is con-
firmed that RPBB is 3.90-9.76% shorter than FFD.

FIGURE 5. The results of the average travel distance per SKU in
large-sized problems.

All the results in Figure 4 indicate that, as the number of
SKUs increases from 10 to 30, the optimal gap decreases.
Additionally, the optimal gap of RPBB is 0.50-3.65% com-
pared to that of BBM,which is an optimal solution, indicating
a slight difference.

C. COMPUTATIONAL RESULTS FOR
LARGE-SIZED PROBLEMS
For the large-sized problems, we consider 360-, 540-,
and 720-SKU cases with 4-, 6-, and 8-aisle OAS. In the
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24-cart-capacity scenarios, the average number of batches
created is 4.45, and in 30-cart-capacity scenarios, the average
number of batches created is 2.56, and in 36-cart-capacity
scenarios, the average number of batches created is 1.92 more
in FFD than in RPBB.

We evaluate heuristic solutions in large-sized problems
using the LB model. Because BBM was unable to obtain
reasonable results in the problems within 3600 s. We follow
Hong et al. [22] to avoid the computational burden when
solving the problems and to derive the LB. The LB gap
solutions between FFD and LB is approximately 5.68-8.27%
as |P| is 360, 540, and 720, respectively. Similarly, the LB
gap solutions between RPBB and LB is about 1.41-2.30%
as |P| is 360, 540, and 720, respectively. The results of
RPBB imply that RPBB consistently outperforms FFD and
produces solutions within 2.30% of LB solutions. The results
are reported in Table 8.

Figure 5 shows the ATD per SKU to compare the results of
FFD, RPBB, and LB for large-sized problems in an OASwith
8 aisles and 36 carts’ capacity. It shows that the ATD per SKU
reduces when the number of SKUs increases from 360 to
720 for FFD, RPBB, and LB. The ATD per SKU of RPBB
is 4.08-5.39% shorter than that of FFD. Additionally, the
results of FFD andRPBB indicate that as the number of SKUs
increases from 360 to 720, the optimal gap decreases. The
LB gap solutions of RPBB is 1.77-2.17% compared to LB,
indicating a small difference.

VII. CONCLUSION
In this study, we optimized the balance between binning
and batching to shorten the overall total travel distance. Two
MIP models were proposed. BOM describes assortment as a
traditional batching model, which does not consider the cost
of binning. BBM minimizes the total travel distance of carts
for the OASs that use worker-following cart systems.

We propose BBM and RPBB that shorten the total travel
distance by optimizing the balance between binning and
batching. In the large-sized problem, RPBB obtains near-
optimal solutions by the tight lower bound that shows
1.41-2.30% optimal gaps on average and can solve large-
sized problems within 2 min.

Due to the economies of scale, very large DCs are
replacing smaller DCs and warehouses [8]. The DCs’ use
of autonomous cart systems in assorting operations could
manage strong fluctuations in demand at reduced cost. In par-
ticular, the performance of the RPBB could be beneficial for
large DCs.

The proposed models and solutions in this study did not
account for the blocking between carts. As a DC’s square
footage and number of carts increases, the impact of the
blocking between carts on the operational performance is
expected to increase. Research on a manual order picking
system has considered the blocking between workers [38].
Future research should evaluate the congestion with an anal-
ysis of bottlenecks in multi-cart operations and develop

optimal binning and batching procedures considering the
blocking between carts.

Algorithm 1 Two Procedures in FFD
Step 1: Construct two lists that are the candidate bins and

bulk units of SKUs

(Binning procedure)

Step 2: If no SKU remains in the bulk units of SKUs,
terminate; otherwise, divide the SKUs composed
of bulk units into bins per aisle.

Step 3: Sort in ascending order according to the volume of
bins for each aisle.

(Batching procedure)

Step 4: Select the shortest route in the route-set to all bins
by referring to the location of cells that the bin
should visit.

Step 5: If no bin remains in the list of bins, terminate;
otherwise, assign the bins in each route to batches
considering the batch capacity.

Step 6: Reconstruct the bins in the batch configured at the
end of each route to reduce the total number of
batches.

Step 7: Sum of the total travel distance of all batches and
obtain a solution to the FFD

APPENDIX
A. LINEAR PROGRAMMING RELAXATION
We use the linear programming (LP) relaxation of the
BBM-RP model (Section V.A) to derive a lower bound (LB)
model by relaxing the integer restrictions.

LB :min
∑
r∈R

LT r · yr , (20)

subject to constraints(14), (15), and(16)

xsar ≤ yr ,∀s∈S,∀a∈A,∀r∈R, (21)

0 ≤ xsar ≤ 1,∀s∈S,∀a∈A,∀r∈R, (22)

0 ≤ yr ,∀r∈R. (23)

After LP relaxation, xsar becomes the portion of SKU s’s
bin at aisle a at route r (Constraint (22)) and yr becomes
the number of SKUs assigned to route r (Constraint (23)).
Constraint (21) ensures that if SKU s’s bin that should visit
aisle a is assigned to route r , there is at least one batch
within route r . The LP relaxation of the BBM-RP model
by Constraints (22) and (23) provides a weak lower bound.
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The valid inequalities based on Constraint (21) enforces yr
to be equal to or greater than maximal xsar for route r and
strengthens the lower bound.

B. SHORTEST ROUTE FIRST WITH FIRST-FIT DECREASING
We use Algorithm A1 to quickly construct batches for large-
sized problems. We term the heuristic solution the Shortest
route first with first-fit decreasing (FFD) [4]. The SKUs
delivered in bulk units to the DC need binning in consider-
ation of the quantity (volume) required by the order lists of
customers located in each aisle. The bins are distributed in
batches to shorten the workers’ total travel distance.

Batches are formed depending on the routes available to
the workers in compliance with the routing policy and the
cart capacity. The FFD consists of a binning and a batching
procedure. The binning procedure writes the lists of candidate
bins to be covered by each route. The batching procedure
constructs the batches using the lists of candidate bins for
each route. We assume that all SKUs are split into bins by
the number of aisles.
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