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ABSTRACT In machine learning problems, we usually assume that the validation accuracy is a good
estimation of prediction accuracy for datasets without ground truth. In reality, this assumption may not
hold. Therefore, we propose an approach to estimate the prediction accuracy of a target model on unlabeled
datasets. The proposed approach uses multiple target homogeneous models to assign each unlabeled sample
a confidence value, based on the number of models agreeing on the predicted label. With the confidence
values, the prediction accuracy of the target model on the datasets can be estimated. In the experiments,
the target model is a convolutional neural network (CNN) model, and the homogeneous models only differ
in initial weights. The experiments are conducted with datasets from a wide variety of music genres. The
estimation performance of the proposed approach is compared with the reversed testing qualities (RTQ)
and the ensemble average qualities (EAQ) approaches. The RTQ approach was proposed to estimate the
prediction accuracy of trained models, and the EAQ approach was originally designed for estimating the
predictive uncertainty of individual samples. We apply all three compared models to estimate prediction
accuracy of datasets by using a linear model. The parameters of the linear model are either computed by
using multiple labeled datasets or one labeled dataset. The experimental results show that when compared
with the RTQ approach, the proposed approach has much lower estimation errors for some datasets. When
compared with the EAQ approach, the proposed approach is more robust for datasets with large distribution
shifts. Finally, we show an additional benefit of the proposed approach. In case that the estimated accuracy is
unsatisfactory, we may re-train the target model with a new training set, which contains the original training
samples plus new training samples with manual labeling from the unlabeled dataset. The experimental results
confirm that it is more effective to select (and label) new samples from those with low confidence values than
those randomly selected. Overall, the proposed approach is a promising approach for estimating prediction
accuracy on unlabeled datasets.

INDEX TERMS Prediction accuracy estimation, unlabeled dataset, machine learning, convolutional neural
network, vocal detection.

I. INTRODUCTION
One of the core problems in supervised machine learning
is to predict the classification accuracy of a model in real-
world applications. Typically, we assume that the labeled
training samples and the test samples to be classified later
are from the same source, and thus have the same (or at
least similar) distribution. Under this assumption, we may
partition the labeled dataset into, say, 10-folds and use the
accuracy of the cross validation to predict the test accu-
racy. In many applications, this assumption is reasonable.
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However, the assumption may not be true if both training and
test datasets are from different sources. Unfortunately, unless
using special techniques, the model may not be able to know
that the test samples are dissimilar to the training samples.
Moreover, even if the training dataset and the test dataset are
from different sources, the prediction accuracy may be still
high. In short, it is really difficult to know if a model has high
prediction accuracy on unlabeled datasets.

To illustrate our argument in the previous paragraph,
we present our previous studies [1], [2] here. During the
studies, we created a dataset from excerpts of soundtracks
in the free music archive (FMA) website [3], [4] and used
it as an external dataset to test a model trained with the
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Jamendo dataset [5] for detecting vocal segments. Note that
both Jamendo and FMA datasets contain western popular
music. The model trained with Jamendo training set has
94.1% accuracy on Jamendo test dataset, but only 82.7% on
FMA test dataset. On the other hand, a model trained with the
FMA training set has 92.5% accuracy on Jamendo test and
89.8% on FMA test set [2]. Based on the above observation,
we are unable to assert if these two datasets are similar or not.
We can only reasonably presume that the FMA dataset could
cover more music genres than the Jamendo dataset does.
Unfortunately, unless we closely examine the contents of both
datasets; otherwise, we are not able to know whether the
training and the test datasets cover similar contents. There-
fore, it would be very useful if we are able to estimate the
prediction accuracy of a trained model.

Although estimating the prediction accuracy of a model
is practically very useful, this problem seems to receive less
attention. Bhaskaruni et al. pointed that they could not find
any paper directly related to this topic in 2018 [6]. In their
paper, Bhaskaruni et al. considered many types of quality
metrics. To simplify the discussion, we consider only accu-
racy in this paper.

In contrast to estimating the prediction accuracy of a
model, many existing papers focused on evaluating the pre-
dictive uncertainty (or equivalently, confidence) of individual
samples based on various approaches, such as deep ensemble
networks [7]–[10] or Bayesian networks [11]–[13]. Certainly,
these two problems are strongly related to each other. How-
ever, they are not the same problem. For example, knowing
the prediction accuracy of a model on a new dataset helps
to determine whether or not a new model should be trained.
If the prediction accuracy is high enough (based on prior
knowledge), we may directly use the trained model. If, unfor-
tunately, the prediction accuracy seems low, we can train a
new model with the original training set plus some labeled
samples from the new test dataset. In this case, knowing the
predictive uncertainty of individual samples does not help us
make such a decision. Therefore, a procedure is required to
convert from the sample uncertainty to the estimated model
accuracy. We will show in the experiments that directly aver-
aging the confidence values of all samples does not yield the
best estimation.

The contributions of this paper include the following:
• Present a method to estimate the prediction accuracy of
a model on unlabeled datasets and compare its perfor-
mance with the approach proposed by Bhaskaruni et al.
and the approach based on averaging confidence values
of all samples.

• Show an efficient way to re-train the model for a new
dataset by giving priority to labeling samples with lower
confidence values and including them in the training set
for a second-run training.

• Release several labeled datasets for researchers to repeat
our experiments and to conduct new experiments easier.

This paper is arranged as follows. Section II describes the
related work. Section III discusses the proposed approach

and models used in the experiments. Section IV presents
the experiments and results, and finally section V is the
conclusion.

II. RELATED WORK
Based on the concept of the reverse testing framework [14],
Bhaskaruni et al. proposed a method to estimate the predic-
tion accuracy of unlabeled datasets [6]. Their approach is
outlined here. Suppose that A is a labeled dataset and B is an
unlabeled dataset. Let Model One be trained with the training
dataset A. Once training is complete, Model One is used to
predict the labels of samples in datasetB. The predicted labels
are called as pseudo labels. We then use pseudo labels in
dataset B to train a new model, called Model Two, and use
Model Two to predict the labels of dataset A. Because we
have the ground truth of dataset A, we can then compute the
accuracy (and other metrics) ofModel Two. By assuming that
both models have comparable prediction accuracy, we can
use the accuracy of Model Two as an estimate of the pre-
diction accuracy of Model One (when predicting unlabeled
dataset B). The prediction accuracy of Model Two is called
reversed testing qualities (RTQ). The RTQ approach will
be the comparison counterpart of our approach in the
experiments.

B. Lakshminarayanan et al. proposed a deep ensemble
approach to estimate the confidence values of test samples
based on multiple identical neural networks [7]. To smooth
the predictive distributions, they added adversarial samples
to the training set. The confidence value is computed by
averaging the predicted probabilities of all models. In fact, the
proposed approach is also based onmultiple identical models.
The difference is that our approach is mainly used to estimate
the prediction accuracy of a model, not the confidence value
of an individual sample. Nevertheless, as this approach is sim-
ilar to ours, we also include this approach in the experiments
as a comparison counterpart.

As there are many different approaches to evaluate predic-
tive uncertainty of test samples, Y. Ovadia, et al. conducted
experiments to evaluate their relative performance [8]. They
concluded that ‘‘Deep ensembles (described in the previous
paragraph) seem to perform the best across most metrics and
be more robust to dataset shift.’’

Vocal detection technique is to detect the presence of vocal
signals (singing voice) in a segment of audio work. This
technique is a fundamental step for many advanced applica-
tions and has been studied for many years. Typically, a vocal
detection approach contains a feature extraction step and a
feature classification step. The chosen features are usually
time-frequency representations, such as MFCC (Mel-scale
FrequencyCepstral Coefficients) [15] or spectrogram [1], [2].
Based on our previous experiments, we concluded that
spectrogram is a better type of features in this problem.
As to the classifier, previously the HMM (hidden Markov
model) was widely used [16]. Recently, convolutional neural
networks (CNN) have been proven to outperform con-
ventional classifiers [17]. Previously, we showed that the
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‘‘spectrogram plus CNN’’ approach actually outperformed
the ‘‘end-to-end’’ approach [2]. With this observation,
we choose the ‘‘spectrogram plus CNN’’ approach in the
experiments.

III. PROPOSED APPORACH
This section describes the proposed approach. However,
before describing our approach, we first describe the used
model for accuracy estimation, which is based on the
CNN model.

A. SCNN MODEL
We previously studied many models for the vocal
classification problem, and finally concluded that a model
of ‘‘spectrogram plus 18-layer CNN’’ is better than other
configurations [2]. In the rest of the paper, we use this
model (denoted as SCNN-18) to conduct experiments. That
is, we want to estimate the prediction accuracy of this model
on an unlabeled dataset. To do so, we also use multiple such
models, to be discussed in subsection III.B.

The used 18-layer CNNmodel is shown in Fig. 1 [2]. In the
figure, each box contains some numbers to indicate the size
of the layered feature maps. For example, the second box
has ‘‘21 × 512 × 64’’ meaning that the input to this layer
has 64 feature maps each with a size of 21 × 512. The
input to the CNN model is a 2-second audio clip, consist-
ing of 32,000 PCM samples. The audio clip is multiplied
with a series of 2048-coefficient Hamming windows with
a hop length of 512. The windowed samples are converted
to spectral coefficients by FFT (fast Fourier transformation).
Themodulus of each spectral coefficient becomes one feature
value of the spectrogram, and the spectrogram is the input to
the first layer (i.e., the first box with numbers 63× 1024× 1)
in Fig. 1. The detailed values of the hyperparameters of this
CNN are given in Table 1. The activation functions of all
layers are ReLU (rectified linear unit), except the output layer
which is softmax. A solid box also includes a maxpooling
layer, whereas a dashed box does not.

During training, the dropout rate [18] is set to 0.5 and the
batch normalization [19] is used. The simulation programs
are developed by using the Keras library [20] and the Tensor-
flow [21] framework. In addition, we useADADELTA [22] as
the optimizer. The training epoch for each trial is 200. Unless
otherwise specified, the prediction accuracy of a particular
model is computed by an average of 10 trials, such as the
values given in Table 2 of subsection IV.A.

B. PROPOSED APPROACH
The proposed approach is based on the concept of majority
voting ensemble. To performmajority voting, multiple homo-
geneousmodels are trained first. The final prediction output is
obtained based on which class receives more votes [2]. In this
paper, CNN models with identical structure, but trained with
different random initial weights, are referred to as homoge-
neous models.

FIGURE 1. The SCNN-18 structure, from [2].

TABLE 1. Hyper-parameters of the SCNN-18 structure. The term ‘‘Same’’
in the padding field means that padding is used and the size of the
feature map does not change after convolution.

For conventional applications, finding the predicted class
based on voting is the end point. However, for an unlabeled
sample, if we consider whether the votes are close to tie or
overwhelming to one class, it may reveal some useful infor-
mation. Specifically, among the homogeneous models, some
have higher prediction accuracy (for an unknown dataset)
and some have lower accuracy. For a particular sample if
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almost all models predict the same label, say vocal, then this
sample is very likely a vocal sample. On the other hand,
if the votes are close to 50-50, then it is hard to determine
whether this sample is vocal or not. Following this simple
observation, we may consider the votes a sample received as
a confidence value of this sample.With the confidence values,
we propose an algorithm to estimate the prediction accuracy
of an unlabeled dataset.

The proposed approach is outlined as follows.
1. Use the training dataset to trainM = 2N + 1 homoge-

neous models, where N is a sufficiently large positive
number (such as 10, to be discussed later).

2. Let bi← 0 for 1 ≤ i ≤ N + 1.
3. Use the trained models to predict the label of one sam-

ple in the unlabeled dataset and record the prediction
results. Suppose that x models predict the sample as
‘‘vocal’’ and the rest as ‘‘nonvocal.’’

4. If x ≤ N , then bx+1 ← bx+1 + 1; otherwise
b2N+2−x ← b2N+2−x + 1. In the following, we say
that this sample is put in bin bx+1 (or equivalently,
b2N+2−x). The bin index, (x+1) or (2N +2− x), of the
sample is its confidence value.

5. Repeat steps 3 to 4 until all samples in the dataset are
predicted.

6. Compute R(k) over the cumulated bin number k as

R(k) = (
∑k

i=1
bi)/T (1)

where T is the number of samples in the test dataset,
and k is in the range of 1 to N + 1.

7. Use R(k) to estimate the prediction accuracy of the test
dataset with a linear model (given below).

In the following, we use a numerical example to explain
the concept of the proposed approach. Suppose that N = 10;
therefore, totally 21 models are used in the voting. If the
predicted results for a sample are 21:0 or 0:21, then b1 is
incremented by one. If the voting results are 20:1 or 1:20, then
b2 is incremented by one, and so on. When all samples are
predicted, we know that b1 contains the number of samples
with voting of 21:0 or 0:21, and b2 with 20:1 or 1:20. Next,
R(k) is the sum of bin contents from 1 to k over the total
number of samples, with an upper bound of 1. If R (4)= 0.9,
it means that 90% of samples have predicted labels agreed by
at least 18 models. If R (4) is high, the dataset is likely to have
high accuracy. Consequently, we can use R(k) as a confidence
quality for prediction accuracy. Therefore, we call R(k) as the
multi-model confidence qualities (MCQ). Although we use
SCNN-18 models in the experiments, the same concept could
be applied to estimate the prediction accuracy of other types
of models. As how to generate multiple homogeneous models
of that type, it could be accomplished by varying the value of
a less important hyperparameter.

In actual applications, we need to find an equation to
covert from R(k) to the estimated accuracy Â. This can be
accomplished by using a simple linear equation, i.e.,

Â = a0R(k)+ b0 (2)

where a0 is the slope of the line and b0 is the y-intercept. If we
have multiple labeled datasets, we can obtain the values of a0
and b0 by using the linear regression equation [23] based on
known (R (k) , Â) pairs of the labeled datasets. On the other
hand, if we do not have multiple datasets, we can always
partition the labeled dataset into a training set and a validation
set. Then, use the training set to train the models and use the
Â of the validation set to determine a0 by assuming b0 = 0.

IV. EXPERIMENTS AND RESULTS
This section covers experiments and results. Before describ-
ing the experiments, we first explain the experimental
datasets and experimental environment. We then describe the
experiments to determine the suitable values for N and k in
the proposed approach and the experiments to compare the
MCQ with two other approaches in estimating the prediction
accuracy of various datasets. Finally, we show an additional
benefit of the proposed approach when retraining the model
is necessary.

A. EXPERIMENTAL DATASETS
In order to conduct the experiments, we collect many sound-
tracks from various sources. Next, the audio segments of
2s are excerpted from the soundtracks. Each audio segment
is a sample in a dataset. The labels (vocal/nonvocal) of the
audio segments from soundtracks without annotations are
determined by human listeners. The datasets are available to
public [24]. The listing of the datasets is given in Table 2
along with the actual accuracy of the datasets predicted by
using the SCNN-18 models trained by Jamendo Train dataset
or FMA-C-1 Train dataset, respectively. In the table, some
datasets are further divided into training and test sets. With
this arrangement, we can train a model and use the model to
predict samples from the same source (such as KTV).

The following briefly describes the listed datasets.
Jamendo Train and Jamendo Test datasets are excerpted
from the Jamendo dataset [15]. The labels of the excerpted
segments are based on the associated annotations. The
FMA-C-1 and FMA-C-2 datasets are excerpted from the
FMA website [4]. A distinct feature of these two datasets
is that only one segment is excerpted from one sound-
track [1]. All other datasets may contain multiple segments
from the same soundtrack. The difference between FMA-C-1
and FMA-C-2 is that C-2 has a similar number of samples
for each (broad) music genre. The Test-Hard dataset is an
artificial dataset, containing collections of samples wrongly
predicted by a simple 4-layer CNN classifier [25]. The dataset
A-Cappella, as its name suggests, contains A-Cappella works
collected from the Internet. Thus, this dataset has only vocal
samples. The Instrumental dataset has segments containing
instrumental performance only (such as piano, flute, horn,
etc.), and thus it contains no vocal samples. The music gen-
res of the Instrumental dataset are mostly easy listening (or
background music). The KTV samples are excerpted from
Karaoke videos. The videos in KTV discs have two audio
channels, one with accompaniment only and the other one
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TABLE 2. Datasets used in the experiments with true prediction accuracy.

with a mix of vocal and accompaniment. The vocal and
nonvocal samples are from these two channels, respectively.
The MIR-1K dataset is originally used for MIR contest [26].
Therefore, it has a complete annotation for many different
purposes. In our case, we rely on the annotation to label
samples. The Chinese-CD and Taiwanese-CD datasets are
excerptions from various Chinese or Taiwanese CD titles.
The audio soundtracks in the CDs are mostly popular music,
with a few folk or traditional songs. The Taiwanese-stream
dataset contains segments of Taiwanese songs collected over
the Internet. The Classical dataset contains only classical
music. In this dataset, the nonvocal samples are mostly from
orchestra works, whereas vocal samples are from solo or cho-
rus in opera performance. Finally, the RWC dataset [27]–[29]
was purchased from C Music Corporation [30]. We excerpt
segments only from the ‘‘PopularMusic Database&Royalty-
Free Music Database’’ and use the given annotation for label-
ing. Unlike other datasets mentioned here where only one
or some segments are excerpted from a soundtrack, each of
the soundtracks in this dataset is partitioned into a maximum
number of nonoverlapping segments of 2s duration. Thus, a
120 seconds soundtrack is partitioned into 60 segments.

B. EXPERIMENTAL ENVIRONMENT
We use three computers with NVIDIA graphic cards to
carry out the experiments. The specifications of the com-
puters are listed in Table 3. The simulation programs are
written in Python with Tensorflow [21] and Keras [20]
tools. The detailed versions of the tools are listed
in Table 4.

TABLE 3. Computers used in the experiments.

TABLE 4. Software versions used in the experiments.

C. DETERMINING CLASSIFIER NUMBER M AND
CUMULATED BIN NUMBER k
Before conducting the experiments, we want to have visual
observations of the proposed approach to see if R(k) is
close to the true accuracy for some datasets. To this end,
we arbitrarily set M= 21 (i.e., N= 10). The 21 SCNN mod-
els are trained with the Jamendo Train dataset. Then, the
values of R(k), 1 ≤ k ≤ 4, for the following datasets
are calculated: FMA-C-1 Train, FMA-C-2 Train, Test-Hard,
A-Cappella, Instrumental, KTV Train, MIR-1K, Chinese-
CD Train, Taiwanese-CD Train, Taiwanese-stream Train, and
Classical Train. Next, one 2-D point (Rs (k) ,As) is con-
structed with the true accuracy As and the MCQ Rs (k) for
a dataset s. By placing all points obtained from all datasets
on plots, we obtain Fig. 2, where the horizontal axis is the
accuracy of datasets and the vertical axis is Rs (k). The lines
and the score values in the figure are computed by using
the linear regression tool in the Scikit-learn library [31].
Fig. 2 shows that if k is 2, 3 or 4, the linear regression line
fits the data points pretty well. Also note that it is reasonable
to have higher regression scores if k increases. When k = 11,
the regression line will be a horizontal line and the score
is 1.00. However, in this case, we are unable to do any
prediction because Rs (k) = 1.0 for any dataset s. Therefore,
the regression score is not a useful indicator for evaluating the
estimation performance.

In addition to the visual inspection in Fig. 2, we also use
the computed regression lines to observe the errors of the
estimated model accuracy versus different k values. To this
end, we use the points (Rs (k) ,As)in Fig. 2 to perform a leave-
one-out cross validation (see also subsection IV.D.I). As there
are 11 points on the plot, we then use 10 points to construct a
linear regression model, and use this linear model to estimate
accuracy Âp on dataset p (i.e., the left 11th-point) based on
Rp (k). The results are shown in Fig. 3. We observe from
Fig. 3 that the best k value for Jamendo-trained models is 3,
whereas this value is 5 for models trained with the FMA-C-1
dataset. After that, the estimation errors slightly increase.
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FIGURE 2. The value of R(k) versus true accuracy for some datasets, where (a) to (d) are for k = 1 to 4, respectively.

To further investigate if the proposed approach is sensitive
to the number of models, M , we again use the leave-one-
out cross validation mentioned in Fig. 3 for various M and
1 ≤ k ≤ 4 for models trained with Jamendo Train, FMA-C-1
Train, FMA-C-2 Train, and Chinese CD Train, respectively.
The results are shown in Fig. 4, where we observe that there
is no specific ‘‘trend’’ or stable regions on the curves for
all training sets. Therefore, no universal optimal value of M
could be obtained. Consequently, it is acceptable to use any
reasonable value of M . In addition, M does not significantly
affect the prediction errors as the errors are less than 2%
for most cases. Actually, Y. Ovadia, et al. also observed a
similar situation of insensitivity of performance overM when
conducting experiments with deep ensemble (the origin of the
EAQ approach): ‘‘We found that relatively small ensemble
size (e.g. M = 5) may be sufficient’’ [8]. With this obser-
vation, we use M= 21 and k= 4 in the experiments. Please
note that the chosen M and k are not the optimal ones in any
of the training datasets (i.e., Jamendo Train, FMA-C-1 Train,
FMA-C-2 Train, or Chinese-CD Train).

D. COMPARISON COUNTERPARTS AND PROCEDURE
To have a comparative study of the performance of the
proposed approach, we choose the RTQ [6] approach
and the ensemble approach modified from

B. Lakshminarayanan et al. [7] as the comparison targets.
Note that the RTQ does not need any hyperparameter. For
Lakshminarayanan’s ensemble approach, as it only provided
an uncertainty value for each test sample, we simply average
the computed uncertainty values in a dataset, and call it EAQ
(ensemble average qualities). Specifically, assume that there
are M models and T samples in the experiments. Let pi,j be
the vocal probability for model i and sample j. According
to [7], the uncertainty predictive value for sample j to be a
vocal sample is estimated as

p̄j =
1
M

∑M

i=1
pi,j. (3)

In terms of implementation, pi,j is the softmax output of
the vocal class in one model. We then use the average of
max(p̄j, 1−p̄j) as the EAQ, i.e.,

EAQ =
1
T

∑T

j=1
max(p̄j, 1− p̄j). (4)

The chosen models are the same trained models as used
in MCQ approach. As the RTQ approach does not benefit
from using adversarial samples, we did not use them in the
experiments for fair comparison.

The comparison consists of four parts. The first one is
again a leave-one-out cross validation. The second one uses
Jamendo Test or FMA-C-1 Test to determine a0 by assuming
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FIGURE 3. The estimation errors of the models for various k values.

b0 = 0 in Eq. (2). The third one uses both leave-one-out and
one dataset approaches to estimate the accuracy of the RWC
dataset. We conduct this experiment is because the RWC
dataset is not used in subsection IV.C to determine k and M
in the proposed approach. Finally, we compute the correlation
coefficients of MCQ, EAQ, and RTQ versus true accuracy to
justify the results of the above three experiments.

The chosen datasets in the first two comparisons are as
follows: Jamendo Test, FMA-C-1 Test, FMA-C-2 Test, KTV
Test, Chinese-CD Test, Taiwanese-stream Test, Taiwanese-
CD Test, Classical Test, MIR-1K, Instrumental, A-Cappella,
and Test-Hard. Note that if a dataset, such as Chinese-CD,
has a training set and a test set, we always use the test set to
conduct experiments here, as the training sets have already
been used to select the k and M values. We use the RWC
dataset in the third experiment because it is a new dataset to
all compared approaches.

1) LEAVE-ONE-OUT CV COMPARISON
This experiment again uses the leave-one-out cross validation
to compare the errors of prediction accuracy estimated by
three approaches. For the RTQ and EAQ approaches, we fol-
low the same procedure as we did for the MCQ approach in
subsection IV.C.

Fig. 5 (a) and (b) show the errors between the true accu-
racy (given in Table 2) and the estimated accuracy of three
approaches with the Jamendo Train and the FMA-C-1 Train
datasets to train SCNN-18 models, respectively. The results
show that the errors of the RTQ approach fluctuate signif-
icantly, some very small and some very large, for models
trained with both training sets. Both the proposed and the
EAQ approaches have comparable estimation errors for some
datasets. However, the proposed approach has notable lower
errors on Test-hard and MIR-1k datasets for models trained
with the Jamendo Train dataset. For models trained with
FMA-C-1 Train, the EAQ yields an unacceptably large esti-
mation error on the Test-hard dataset.

2) USING ONE DATASET TO PREDICT ACCURACY OF OTHER
DATASETS
In our experiment in subsection IV.D.I, we assume that mul-
tiple labeled datasets are available. In practical applications,

FIGURE 4. The results of leave-one-out cross validation for various
numbers of M (up to 21) and k, where the legend Top 1 means
k = 1, and so on.

we may have only one labeled dataset. Therefore, we also
investigate the estimation errors of all three approaches with
only one labeled dataset. We conjecture that the experiment
in subsection IV.D.I is to determine the performance upper
bound of the proposed approach, whereas the experiment here
is to determine the performance lower bound.
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FIGURE 5. Estimation errors of leave-one-out cross validation for all
three approaches. (a) Training set is Jamendo Train. (b) Training set is
FMA-C-1 Train.

In this experiment, we use the Jamendo Train dataset to
train models, and the Jamendo Test dataset to determine a0
by assuming b0 = 0 in Eq. (2) for the MCQ and EAQ
approaches. The same rule also applies to the FMA-C-1 Train
dataset. In addition, the experimental datasets are the same as
those used in subsection IV.D.I except the one used for a0
calculation. For the RTQ approach, the RTQ value is directly
used to estimate the prediction accuracy, which is the same
as the original paper [6]. Equivalently, it means a0 = 1 and
b0 = 0 in Eq. (2).
The estimation errors are shown in Fig. 6 (a) and (b).

It is observed that the proposed approach now has larger
estimation errors when compared with Fig. 5. However, the
estimation errors are mostly within the range of 2 ∼ 4%.
As to the RTQ approach, it has pretty large estima-
tion errors. For Jamendo training set, three datasets have
estimation errors greater than 20%, and similarly for
FMA-C-1 training set, two datasets have estimation errors
over 40%. When comparing the MCQ and EAQ approaches,
the EAQ approach has a larger average error on models
trained with Jamendo. For models trained with FMA-C-1,
although the EAQ is slightly better than the proposed
approach, its estimation error on Test-hard dataset is not to be
neglected.

Table 5 shows the average estimation errors of the
approaches under comparison. Overall speaking, the pro-
posed approach has lower average estimation errors for unla-
beled datasets.

FIGURE 6. Estimation errors with one labeled dataset for all three
approaches. (a) Training set is Jamendo. (b) Training set is FMA-C-1.

TABLE 5. Average errors of various methods.

3) ESTIMATING PREDICATION ACCURACY FOR RWC
DATASET
Since we used a wide variety of music genres in our pre-
vious experiments, the experimental results might be pes-
simistic in some applications where the training and test
datasets likely have similar styles or genres. In addition, in
subsection IV.C we have used some datasets to deter-
mine k and M for the proposed approach. Considering
these cases, we use the RWC dataset to repeat the above
experiments. Recall that the RWC dataset is never used in
subsection IV.C and it also contains western popular music,
similar to Jamendo or FMA-C-1 training datasets.

The experimental steps are the same as previous experi-
ments, and thus omitted here. The experimental results are
shown in Fig. 7(a) and (b). It can be observed that all three
approaches now have lower estimation errors although the
RTQ approach still performs poorly. As to the MCQ and the
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FIGURE 7. Estimation errors of the RWC dataset by using all three
approaches. (a) Use leave-one-out cross validation. (b) Use one test
dataset.

EAQ approaches, the MCQ has lower estimation errors for
models trained with Jamendo. If the models are trained with
the FMA-C-1 dataset, the EAQ performs slightly better if
only one dataset is used for estimation. However, in this case,
the MCQ still has an acceptable estimation error (≈2%) for
practical applications. Therefore, this experiment confirms
that the proposed approach can be applied to real applications
if both labeled and unlabeled datasets have similar music
genres.

4) CORRELATION COEFFICIENTS OF COMPARED
APPROACHES
To further justify the performance differences among three
approaches, we compute the correlation coefficients of the
qualities versus true accuracy for the datasets used in sub-
section IV.D.I. The computed results are given in Table 6.
The results show that both the MCQ and EAQ have high
correlation coefficients (more than 0.9), whereas the RTQ is
not (-0.26 or -0.5). For models trained with Jamendo, the pro-
posed approach has a slightly higher correlation coefficient.
This number, in a sense, justifies that the proposed approach
has noticeably lower estimation errors in Jamendo-trained
models.

E. RE-TRAINING THE MODELS
In this subsection, we show that an additional benefit of
using the proposed approach. Suppose that a new dataset
is estimated to have low prediction accuracy. If we need
to improve the prediction accuracy, what can we do?

TABLE 6. Correlation coefficients of all three methods.

A straightforward solution is to label a small number of
samples from the unlabeled dataset. Then, the labeled new
samples and the original training samples together are used to
train newmodels. The question is how to select the samples to
maximize the prediction accuracy, i.e., new models after re-
training have highest possible accuracy for a given number
of newly labeled samples. If we have no a priori knowledge
of the unlabeled samples, we have to randomly pick samples
to label. However, in our case, we know that the bin number
associated with a sample can serve as the confidence value of
the sample. Therefore, with the proposed approach, we can
give priority to labeling samples with large bin numbers
(i.e., low confidence values). In our case N = 10, so we can
pick samples in bin11 first. If necessary, then pick samples in
bin10, bin9, and so on.
To evaluate if the presented selectionmethod is more effec-

tive than a random selection, we conduct the following exper-
iment. The original SCNN-18 models are trained with the
Chinese-CD Train dataset. The models are used to compute
the confidence values of samples in the Taiwanese-stream
Train and Classical Train datasets. The number of samples
to be labeled in each dataset is from 100, 200, until 800.
The newly labeled samples are added to the Chinese-CD
Train dataset to train new SCNN-18 models. The new mod-
els are then used to predict the labels of samples in the
Taiwanese-stream Test and Classical Test datasets. The aver-
age accuracy of ten trials is shown in Fig. 8, where we
observe that the original SCNN-18 model has relatively high
accuracy for Taiwanese-stream Test dataset (in Fig 8(a)),
up to about 89.2%. By adding 200 labeled samples from
Taiwanese-stream Train, we are able to improve the accuracy
by 1.6% with the proposed approach. On the other hand, the
random selection approach improves the accuracy by only
about 0.4%. When adding 800 additional training samples,
the proposed approach has 92.6% accuracy whereas the ran-
dom approach has only 90.9%.

For the Classical Test dataset, the original model has
an accuracy value of 83.2%, shown in Fig. 8(b). Again,
by adding 200 labeled samples from the Classical Train
dataset, the accuracy is boosted to 91.9%, whereas the accu-
racy is 91.1% with the random selection. Based on the results
in Fig. 8, we conclude that the proposed selection approach is
more effective, especially if the number of selected samples
is small, such as 200. Actually, it is more cost-effective to add
200 new labeled samples in this dataset because the accuracy
is improved by more than 8%. Adding another 600 new
samples only further improves the accuracy by about 1.5%.
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FIGURE 8. The accuracy of new models after adding various numbers of
new samples in training.

From this experiment we conclude that we may just need to
label a few hundred new samples for the new model to reach
satisfactory (say, 90+%) accuracy.

F. DISCUSSIONS AND FUTURE DIRECTIONS
We showed the relative estimation errors of MCQ, EAQ,
and RTQ approaches in subsections IV.D.I to IV.D.III. From
the experimental results we observe that all three approaches
could achieve low estimation errors if the distributions of the
training dataset and the unlabeled dataset are close to each
other, such as the case of estimating the prediction accuracy
of the RWC dataset based solely on the Jamendo training
set. On the other hand, if the distributions of the training
dataset and the unlabeled dataset are different, then the RTQ
approach is not a good approach for accuracy estimation.
In this case, both MCQ and EAQ approaches are better
choices.

As both MCQ and EAQ approaches are based on the
use of multiple homogeneous models, the performance dis-
crepancy between these two approaches is only due to

the calculation of the estimation qualities. When closely
observing Fig. 5, 6, and 7, and comparing the accuracy given
in Table 2, we know that the EAQ has a small estimation error
if the trained model has high actual accuracy, or small distri-
bution shift, such as the KTV Test dataset. On the other hand,
if the actual accuracy of a dataset is low, the EAQ approach
has a noticeably higher estimation error, such as the Test-
hard dataset. In comparison, the proposedMCQ approach has
much lower estimation errors in the Test-hard dataset. For real
applications, we are unable to foresee whether the accuracy
predicted by a model is high or low. In this regard, the EAQ
approach is not robust enough for datasets with any degree
of distribution shifts. On the other hand, the proposed MCQ
approach is more robust to distribution shifts, and is a better
approach for real applications.

Though the proposed approach is promising, the proposed
accuracy estimation approach has some limitations, given
below.

• The proposed approach was developed for binary clas-
sification problem. Modifications are needed to extend
the proposed approach to multi-class problems.

• The labeled dataset must have samples on all classes. For
example, we are unable to use the proposed approach
with a vocal-only training set, such as A-Cappella.

• As the proposed approach uses multiple identical deep
networks, training these deep networks requires a lot
of computational resources. Therefore, it is not suitable
for applications that are time sensitive and have lim-
ited computing resources. For such applications, alter-
native approaches using only one model could be more
appropriate.

• We used 16,343 samples in the Jamendo dataset and
16,339 samples in the FMA-C-1 dataset to conduct the
experiments. When the proposed approach is applied
with a small training set, performance degradationmight
occur.

Previously we mentioned that the experiment with the
leave-one-out cross validation could be used to estimate the
performance upper bound of the proposed approach. The
experimental results given in Table 5 confirm this conjec-
ture. A meaningful future direction is how to approach the
performance attained with the leave-one-out cross validation
approach, but with one set, not multiple sets, of labeled data.
For this problem, we prepare to study various types of data
augmentation methods [32] to see if any of the methods could
artificially producemultiple labeled datasets so that the leave-
one-out cross validation approach could be applied.

Recently, the self-supervised learning approach [33] has
received lots of attention. It would be interesting to investigate
if the proposed approach could also be applied to models
trained with the self-supervised learning approach.

V. CONCLUSION
In this paper, we present the use of multiple models to
estimate the prediction accuracy of an unlabeled dataset.
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The experimental results show that, when compared with the
RTQ method, the proposed approach has lower (or much
lower) estimation errors. When compared with the EAQ
approach, the proposed approach is more robust for out-of-
distribution datasets. In addition, we propose to use the bin
number as the confidence value for unlabeled samples. The
confidence value helps to determine which samples to label
first in case a re-training is necessary. In the future, we plan
to investigate how to use the data augmentation technique
to improve the estimation accuracy and how to apply the
proposed approach to models trained with the self-supervised
learning approach.
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