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ABSTRACT As of today, the best accuracy in line segment detection (LSD) is achieved by algorithms
based on convolutional neural networks — CNNs. Unfortunately, these methods utilize deep, heavy networks
and are slower than traditional model-based detectors. In this paper we build an accurate yet fast CNN-
based detector, LSDNet, by incorporating a lightweight CNN into a classical LSD detector. Specifically,
we replace the first step of the original LSD algorithm — construction of line segments heatmap and tangent
field from raw image gradients — with a lightweight CNN, which is able to calculate more complex and
rich features. The second part of the LSD algorithm is used with only minor modifications. Compared with
several modern line segment detectors on standard Wireframe dataset, the proposed LSDNet provides the
highest speed (among CNN-based detectors) of 214 FPS with a competitive accuracy of 78 F. Although
the best-reported accuracy is 83 F at 33 FPS, we speculate that the observed accuracy gap is caused by
errors in annotations and the actual gap is significantly lower. We point out systematic inconsistencies in
the annotations of popular line detection benchmarks — Wireframe and York Urban, carefully reannotate a
subset of images and show that (i) existing detectors have improved quality on updated annotations without
retraining, suggesting that new annotations correlate better with the notion of correct line segment detection;
(ii) the gap between accuracies of our detector and others diminishes to negligible 0.2 F¥ | with our method

being the fastest.

INDEX TERMS Convolutional neural networks, edge detection, line segment detection, U-net, LSD.

I. INTRODUCTION
Automatic general-purpose line segment detection is a
long-standing computer vision problem of high practical
importance. Line segment detectors are exploited to construct
an intermediate representation of image contents in visual
recognition systems over a wide range of applications, such as
autonomous vehicle localization [1]-[3], infrastructure main-
tenance with an UAV [4], [5], document recognition [6], [7].
Traditionally, the problem of line segment detection was
approached with so-called model-based algorithms [8]-[11].
These algorithms operate by searching an image for elements
that satisfy an explicit definition of a salient line segment,
for example, “‘line segment is a strip-like set of image pixels
with similar gradients” [8], [9] or ““an image region is a line
segment if its contour map triggers a peak in Hough space™
[10], [11]. These algorithms typically have the benefits of
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being fast and having interpretable parameters. However, they
may miss the segments that are salient for human, but for
some reason don’t match the exact explicit implemented def-
inition. They are also prone to over-segmentation (splitting a
single segment into parts) and sometimes demand nontrivial
problem-specific postprocessing [12], [13].

The troubling problem of formulating an explicit criterion
that matches the human expectation of what exactly con-
stitutes a ‘“‘salient line segment” can be avoided by man-
ually annotating images and training a CNN, which then
learns an implicit algorithm from data samples. This is an
approach that yields the best accuracy in line segment detec-
tion task today [14]-[20]. Skipping ahead, let us note that
such annotation is not a simple task either - existing datasets
on line segment detection have numerous and sometimes
extreme internal inconsistencies - probably caused by the
inherent ambiguity of the task, lack of clear labeling instruc-
tions and the tediousness of the task, leading to missed
segments.
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FIGURE 1. Overview of the proposed approach. A lightweight neural network predicts line segment mask and tangent vector field, which

are then clustered and each cluster is represented as a line segment.

From a technical perspective, there also is a challenge
in designing a CNN-based line detector. The typical solu-
tion is that CNN constructs an intermediate representation -
encoding - which is then converted into a set of answers by
some hand-crafted algorithm. Object detection networks have
solved this problem by using so-called anchors [21] and, later,
more simple anchorless detectors such as FCOS [22]. But
line segment detectors need alternative encodings, suitable
not for bounding boxes, but for line segments. The encodings
should effectively deal with the fact that the line segments to
be detected in a typical image intersect with each other a lot,
while encodings for bounding boxes are effective only when
“overlapping mostly happens between objects with consid-
erably different sizes” [22], making them hard to exploit for
line segment detection. While object detectors encondings -
after many iterations of refinement - have become fast and
elegant, we believe that intermediate representations of most
line detector used today are still either imprecise, slow or
unintuitive.

So whether it is the complexity of the interpreter or the
sheer weight of the CNN backbone, CNN-based detectors
that outperform the traditional ones in accuracy are also com-
putationally harder [20]. Their complexity limits the scope of
application of such algorithms in cases where speed, energy
consumption, or hardware price are critical.

In this work we propose a fast yet accurate CNN-based
line segment detection algorithm, LSDNet, built on the basis
of a widely used model-based detector, LSD [8]. LSDNet
overview is presented in Figure 1. The first step of LSD is the
calculation of image gradient’s orientation and magnitude.
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We view this step as an estimation of an intermediate rep-
resentation, composed of line segments’ heatmap, estimated
as gradient’s magnitude, and tangent field, estimated as gra-
dient’s orientation. We substitute this step with a lightweight
CNN to generate the heatmap and tangent field from a more
diverse and complex set of features than a simple gradient;
the second step, conversion the intermediate representation
into a set of line segments, is taken from the LSD almost as-
is. This substitution boosts the LSD accuracy and simplifies
the postprocessing due to more accurate heatmap and tangent
field. The heatmap and tangent field generation is a relatively
simple task - the answer can be correctly inferred from the
local context - which allows to use a lightweight CNN.

We compare LSDNet and a selection of existing detectors:
LSD [8], L-CNN [18], HAWP [15], TP-LSD [17], M-LSD
and M-LSD-tiny [20] and show that LSDNet provides com-
petitive accuracy of 78 F/ score on Wireframe dataset while
being the fastest: 214 FPS for 288 x 288 input on conventional
hardware. LSDNet outperforms the second fastest approach,
M-LSD-tiny [20], both in accuracy and speed.

We discuss considerable inconsistencies (section IV) in
ground truth labeling of current benchmarks for line seg-
ment detection accuracy - datasets Wireframe [23] and
YorkUrban [24]. The labeling in these datasets is inconsis-
tent not only between images: within the very same image
many segments, similar in appearance, are often marked up
differently - some as a positives, others as negatives. We spec-
ulate that these datasets in their current state are flawed
for assessing the accuracy of general purpose line segment
detectors.
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So, in addition to measuring the accuracy of our detector
on these datasets, we select and reannotate a part of Wire-
frame dataset - consisting mainly of simple images with less
ambiguity - and show that the reannotated subset correlates
better with conventional notion of correct line segment detec-
tion. Specifically, it narrows the accuracy gap between LSD
and CNN-based approaches, and makes the gap between the
proposed LSDNet and L-CNN [18], one the most accurate
CNN-based approaches, negligible.

Il. RELATED WORK

In this section we cover the model-based LSD algorithm [§]
and the existing CNN-based approaches to the problem of line
segment detection.

A. LSD DETECTOR

LSD is one of the most popular general-purpose line segment
detectors and serves as a common baseline for CNN-based
algorithms both in accuracy and speed [15]-[17].

The first step of LSD detector is gradient calculation;
then the algorithm builds so-called line support regions
(LSRs) [25]. LSRs are image segments (not to be confused
with line segments), spanning actual line segments in an
image. They are built by iteratively grouping neighbouring
pixels with high gradients’ magnitudes and similar orienta-
tions. After the formation of initial LSRs, they undergo sev-
eral steps of filtering and refinement. These include, among
others, splitting LSRs of “hockey stick’ shape - effectively
decoupling distinct but merged regions; removal of LSRs
with a high deviation of gradients’ orientations - possibly
false-positives. Typical resulting LSRs are long, straight and
a few pixels thick. Finally, each such region is individually
encoded as a pair of points - effectively, a line segment.

LSD detector is fast, reaching 185 FPS for 320 x 320
images on a conventional CPU, and provides an accuracy
of 63.3 F/ on the Wireframe dataset.

B. CNN-BASED APPROACHES

The CNN-based approaches are typically composed of two
modules: the CNN itself predicts an intermediate representa-
tion, then a postprocessing module reconstructs line segments
from this representation.

We consider the design of the intermediate representation
to be the key growth point of CNN-based line segment detec-
tors since the desired detector’s output - a unknown-size set
of line segments with potentially high overlap - is hard to
represent as a ‘““CNN-friendly” fixed-shape tensor [26]. The
survey below covers most popular intermediate representa-
tions used in existing CNN-based approaches.

The first CNN-based detectors represented line segments
in an image as a set of endpoints and their connectivity
graph [18], [23]. The endpoints were detected as local max-
ima of a CNN-produced heatmap. The connectivity of the
endpoints was deduced either with the help of edge map
heuristics [23] or with a trainable classifier [18]. To generate
the classifier’s input, a fixed number of uniform spaced points
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was sampled from the feature map between the endpoints.
This operation was called Lol pooling [18].

In [14] arepresentation called attraction field was proposed
(distance field [19] is a similar concept). Line segments
were represented as a 2D vector field of translations to
a nearest line segment. The postprocessing step for such
a representation required nontrivial line segments extrac-
tion from heatmap-like prediction. Interestingly, the post-
processing of even a perfect attraction field generated
from dataset annotations did not provide absolute detection
accuracy [14] - in other words, such representation is inher-
ently ambiguous.

The covered representations of endpoints and attraction
field were combined and modified in [15]. The proposed
CNN predicted both the endpoints and the attraction field,
which was enriched to encode the translations to the both seg-
ment’s endpoints as 4D vector field. Then the endpoints and
the attraction field were used to refine each other. The refined
line segments proposals underwent final verification with the
help of Lol pooling and a trainable classifier. The detector
provides state-of-the-art quality of 83 F¥ on Wireframe [23]
dataset to date, but with low speed of 33 FPS on GPU.

The recently proposed ‘‘tri-points” representation [17]
is focused on speeding up the detector. A line segment
was represented by its center point and two vectors to its
endpoints. It allowed to significantly boost the speed up
to 50 FPS, driven by a much faster postprocessing requiring
trivial conversion from “tri-point” to a line segment and non-
maximum suppression. The CNN itself remained comparably
slow. In [20] some further enhancements were proposed.
A lightweight CNN was designed and the training procedure
was improved by augmentations and more sophisticated loss
function. It resulted in the fastest CNN-based detector to date
with 200 FPS overall and 241 FPS for standalone CNN.

IIl. PROPOSED APPROACH

A perfect line segments representation should make it possi-
ble to design a CNN and a postprocessing module both being
fast and accurate. We argue that in the search for such a rep-
resentation there is no need to develop a brand new one from
scratch; instead, the representation used implicitly by LSD
detector - line segments heatmap and tangent field - already
possesses all the desired properties. Indeed, the heatmap and
tangent field could be inferred from local image context and
does not require the reasoning of complex abstract features,
which allows to use a lightweight CNN. On the other hand,
as proven by LSD, the representation could be efficiently
postprocessed to actual line segments. In the next sections we
cover each step of the algorithm in detail.

A. CNN

1) LINE SEGMENT REPRESENTATION

We represent a set of line segments in an image as a 2-channel
feature map of the same height and width as the image. The
first channel denoted by M contains a line segment mask.
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The second channel denoted as F contains tangent vector
field of line segments. Since the values of F are unit vectors,
we encode F as one channel feature map.

Let I = (x1, y1,x2,y2) be a line segment, ¢; - segment’s
level line angle in range [0, ), p = (x, y) - an image pixel,
L, = I1,h,... - set of line segments crossing p. Then if
L, = @, then M(p) = 0 and F(p) is arbitrary; otherwise
M@p)=1LF@p) = a,.

Note that in case of overlapping segments (||L,|| > 1)
F(p) is defined by one arbitrary segment of overlap. This
ambiguity probably can be ignored since only about 1%
of line segments’ pixels lie on overlaps - as measured on
Wireframe dataset [23].

2) LOSS FUNCTION

The loss function L = Lyask + otLfieiq used to fit the network
is composed of two independent weighted terms, one respon-
sible for mask M, other - for the tangent vector field F.

While the prediction of mask M is a straightforward seg-
mentation problem with L, being a conventional cross
enthropy loss, to correctly estimate error in prediction of
the tangent field F' we should account for the follow-
ing property of line segments’ level line angles - the dis-
tance between angles 0°, 10% and 0° 170° should be
equal.

This problem can be approached by computing several
distances between the original angles and the angles, shifted
by £, and picking the minimum distance [27]. The calcula-
tion can be done simpler: let ¢, ¢, - angles between which
the distance is to be computed, z; = vz = € e C
- the representation of the angles as complex numbers with
unit length and phases ¢1, @2, then

p(e1, ¢2) = Iz} — 2311 4))

This distance function has a geometrical interpretation, illus-
trated in Fig. 2a. It equals to ¢?-norm of vector difference
between unit vectors with phases 2¢1, 2¢,. Turning to the
aforementioned example, the doubled phase makes vectors,
corresponding to angles 10° and 170°, equally close to the
horizontal, corresponding to angle 0°.

Given the angle distance function p, the predicted field F,
the reference mask M, and reference field F;, the tangent
vector field loss Lgeq is defined as

1

_ 2(Fi(p), Fy(p)), 2
> 00 > PPE@. @),

pM;(p)=1

Lfielq =

where M; is the reference line segment mask - essentially,
loss is the average tangent angle discrepancy over the pixels
that correspond to the ground truth line segments.

3) CNN ARCHITECTURE

To predict the proposed feature map, we use a CNN of
U-Net [28] family. The architecture we use differs from
the original one in the following simplifications. We exploit
padded convolutions providing the same input and output
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FIGURE 2. (a) A visualization of the distance function between
angles ¢1, ;. It accounts for the periodicity of angles.
(b) Line segment extraction from a region.

spatial sizes of convolutional layers, which allows not to crop
the feature maps feeded to skip connections. Instead of trans-
posed convolutions we use bilinear upsampling. We reduce
the depth of encoder-decoder branches up to 3 maxpooling
and 3 upsampling layers, correspondingly, and use fewer
filters in convolutional blocks - 16, 32, 64, 128 filters per
block (the number of blocks is greater than the number if
maxpooling layers by one). The resulting CNN has ~ 0.5M
trainable parameters and can run at 48 FPS on CPU and
at 695 FPS on GPU (refer to section V for benchmarking
details).

B. LINE SEGMENTS RECONSTRUCTION

Let us consider how the predicted segments mask M and
tangent field F are converted into the desired output - a set
of line segment ((x1, y1), (x2, ¥2)), . . .. This process has three
steps: firstly, the predicted features are coarsely segmented
into lines and background (section ‘“Foreground segmenta-
tion”). Secondly, the lines are finely segmented into several
line support regions (LSRs) (section ‘“Region grouping”).
Finally, a line segment and its confidence is extracted from
each LSR (section “Line segments extraction”).

1) FOREGROUND SEGMENTATION
The first step of line segments reconstruction is to segment
foreground (lines) from background (not lines).

We use a coarse-to-fine binarization approach by multiply-
ing the masks of global thresholding M(p) > t and local
thresholding

Mp)> Y WydM(d)—6 3)

deK(p)

where 0 - threshold, K, - a window centered at pixel p,
W, (d) - Gaussian averaging weight.

Global thresholding with a small threshold gives a coarse
extraction of line segments mask, but often incorrectly joins
close - but separate - line segments. On the contrary, local
thresholding provides much finer local distinction of line
segments, but can produce clumps of false positive detections
in low intensity areas (Fig. 3). The combination of these
binarizations by simple multiplication of the resulting masks
allows to filter out false positives of both types and achieve
better accuracy.
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FIGURE 3. Binarization of CNN prediction. Global binarization joins close
regions, while local binarization is noisy for the regions of near-zero
intensity. The combined binarization is free of both drawbacks.

(d) Combined

2) REGION GROUPING

The goal of this step (being a modification of a similar step of
LSD algorithm [8]) is to split the foreground, binarized at the
previous step, into narrow strip-like LSRs, one per true line
segment.

Informally, we want neighbouring pixels pi, p2 to be
assigned to one LSR, if the values of M (p1), F (p1) and M (p»),
F(py) are similar. The algorithm grows LSRs iteratively,
starting from pixels with highest M value and adding new
pixels to the existing LSR which are geometrically close to
the pixels and have similar features.

Let us formally introduce the similarity measure used to
decide whether pixel g is fit to be joined into a LSR. Let
R = p1,p2,...,pn be the set of pixels of this LSR, Ip =
1/n - ZpeR M (p) be the mean line segments’ mask over it,

and ¢r = £,/3" g e?FP) - the average tangent field (here

/z = atan2(Im(z)/ Re(z)) is the phase of a complex number).
Then the similarity function is given by

du F(g, R) = p*(F(g), pr) + a(M(g) — I)* 4)

The first term defines similarity of tangent field orientation
(refer to Eq. (1) for details), the second - the similarity of line
mask, o - weighting coefficient. Given the distance function,
LSRs are built with an iterative growing algorithm, presented
in Algorithm 1.

3) LINE SEGMENTS EXTRACTION
EachLSR R = p1, pa, ..., pu, should be converted into a line
segment satisfying the following criteria.

« The segment goes through LSR’s center of mass p,,

1
= M(p)p. 5
S M@)Z ) ©)

PER

o The segment is collinear with minor eigenvector a of
region’s inertia tensor / defines as follows

I=>"MPI*(p-pu (6)
PER
. ¥ -y
I"(x,y) = (_xy 2 ) @)

o The segment spans the furthest LSR’s points, projected
onto axis a. The segment’s confidence is mean value of
M over the region R.

Line segment extraction is visualized in Figure 2b.
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Algorithm 1: Region Grouping Algorithm. dys r(p, R) -
Distance Function Between Pixel p and Region R,
N3(R) - 8-Neighbours of Region R

input : Line heatmap M € [0, l]hw, tangent field
F € [0, 7)™

output: Set of line support regions R = {R}

param: T € R - distance threshold

param: n € N - minimum region size

B € {0, 1} - foreground segmentation of M

P = (pi), such that B(p) = 1, M (p;) = M(pit1);

Pysea < 9;

forp € Pdo

if p € P5eq then

| continue;

end

R <« p;

do

region_updated < False;
for g € Ng(R) \ Pyseq do
if dy r(g, R) < T then
AddR <« g;
Add Pygeq < g;
region_updated < True;
end
end
while region_updated,
Add R < R;

end
for R € R do
if |R| < n then
‘ remove R from R;
end

end

IV. DATASET

In this section we analyze the issues of the existing line
segment detection datasets and propose a dataset Wireframe-
tiny+4, a subset of Wireframe dataset [23] with refined
annotations.

A. THE EXISTING DATASETS
To the best of our knowledge, there are two widely-used
public line segment detection datasets: Wireframe [23] and
YorkUrban [24]. The former is composed of 5.000 train and
462 test images, the latter is composed of 120 test images.
The datasets contain both indoor and outdoor colour images
of various man-made environments. Some samples from
the datasets are presented in Figures 4 and 5. The datasets
are annotated with a list of point pairs, representing line
segments.

York dataset was annotated under so-called Manhattan
world assumption [29], which means that the annotated line
segments are those aligned with the basis of some Cartesian
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coordinate system (specifically, with axes parallel to image
sides), while the others are ignored. Wireframe dataset did not
follow Manhattan world assumption and was annotated with
line segments, from which “meaningful geometric informa-
tion of the scene can be extracted” [23], which also resulted
in some salient line segments being not annotated.

So, the ground truth labeling in these datasets is explicitly
limited to some category of line segments - which means
other categories of line segments are viewed as negatives.
CNNs that are trained on these datasets (and/or with high
accuracy on them) will have to systematically classify these
categories of line segments as negatives and therefore - by
design! - can’t be viewed as general-purpose line detectors.

While such annotations can be useful to train and test
some specific niche line segment detectors (e.g. for indoor
robot navigation [30]) we believe they are flawed as datasets
for general purpose line segment detection. Specifically,
we would like to highlight the following problems (also
illustrated in Fig. 4b).

One problem is the inconsistency of the annotations - it
is easily noticeable on strip-like objects having two side line
segments looking almost exactly alike - however one of them
is annotated while the other is not.

Some categories of salient line segments are systematically
not annotated - e.g. shadows and reflections. We believe
the fact that these segments are not “‘real” physical objects
should not be considered in the context of general purpose
line segment detection and these segments should be anno-
tated as well.

Finally, some line segments lying on the same straight line
are falsely merged (vertical segments on the bed canopy’s
frame in Fig. 4b). It happens when a long line segment is
intercepted by another object. Although for some applications
it could be desirable to avoid such a splitting and there are
approaches to achieve that [12], [13], we believe, that for
general-purpose detector splitting is the desired detector’s
behaviour.

B. WIREFRAME-TINY++

To approach the covered issues with the existing datasets,
we selected 20 random images from Wireframe test subset
and reannotated them to make the annotations more accurate
and consistent. We call the selected subset of images with
the original markup Wireframe-tiny, and the resulting dataset
with enhanced annotations - Wireframe-tiny++.

Comparing to the original annotations, we mainly added
unannotated segments, 9 per image on average. Some seg-
ments are removed as undetectable. Some segments are
divided into several smaller segments due to occlusion. The
refined annotations are presented in Fig. 4c.

V. EXPERIMENTAL SETTING

A. DATASETS

The proposed algorithm is trained and evaluated with the
following datasets. Wireframe dataset [23] consisting of
5000 training and 462 test images is used both to train and
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evaluate LSDNet. Datasets YorkUrban [24], Wireframe-tiny
and its reannotated version Wireframe-tiny++ (refer to the
previous section for details), composed of 120 and 20 images
correspondingly, are used solely for evaluation.

B. ACCURACY

To evaluate LSDNet accuracy we use standard [15], [18]
quality score F¥ = 100 - 2 - p - r/(p + r), where
p, r stand for precision and recall. Multiplier 100 is added
for readability, making F H £a1l in [0, 100] range. The score
is evaluated pixel-wise by rasterizing both the predicted and
the reference line segments. A pixel of a predicted line seg-
ment is considered true positive, if its distance to a pixel
of a reference segment does not exceed 1% of image diag-
onal. For evaluation we use F implementation provided
with L-CNN [18].

Quality score F was criticised [18] for being not sensitive
towards overlapping and splitted line segments. We con-
sider such an insensibility is not critical: LSDNet can not
produce overlapping segments by design, since line support
regions (LSRs) can not overlap, and we did not observe a
notable amount of splitted line segments for any CNN-based
algorithm.

C. SPEED

CNN is benchmarked on Quadro GV100 GPU for compari-
son with other detectors. Reconstruction algorithm is bench-
marked on Core i5 9300hf CPU. CNN and the reconstruction
algorithm are benchmarked independently. The speed of the
latter depends on its input, we report the average speed over
the dataset given the trained preprocessing network.

D. BASELINES

We compare the proposed LSDNet with classical algo-
rithm LSD [8] and several state-of-the-art CNN-based detec-
tors L-CNN [18], HAWP [15], TP-LSD [17], M-LSD and
M-LSD-tiny [20].

The reported FPS for all CNN-based methods is cited
as in [20], where benchmarking was performed on Tesla
V100 GPU with practically the same characteristics as the
GPU used in our experiments.

The reported F H is also cited as in [20] for all methods
except LSD and L-CNN [18], for which it was reproduced
by our means. We tried to reproduce the stated quality mea-
surements for other approaches with the help of their open-
source implementations, but they appeared notably lower
than the reported ones. Therefore on datasets Wireframe-tiny
and Wireframe-tiny++ we compare LSDNet only to L-CNN
and LSD.

E. PREPROCESSING

For LSDNet, all images are resized to 288 x 288, which
appeared to be the optimal input shape in terms of
speed-accuracy tradeoff. Pixel intensities are simply con-
verted from 8-bit unsigned integer to 32-bit floating-point
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(a) Original image

(b) Wireframe annotation

(c) Wireframe-tiny++ annotation

FIGURE 4. An image from Wireframe dataset (a) and two versions of its annotation - original (b) and proposed (c). Best viewed in color and

zoom-in.

with 1/255 scaling coefficient. During training, random hor-
izontal and vertical flips and gamma correction are applied.

For baseline methods, the preprocessing from the corre-
sponding paper is applied. For LSD, we use 320 x 320 image
shape.

F. HYPERPARAMETERS

LSDNet is initialized with He uniform initialization [31] and
trained by Adam optimizer [32] with 10~* weight decay and
8 images per batch for 180 epochs. The initial learning rate
is 1073 and is reduced by half if the value of loss function
does not improve for 15 epochs.

G. IMPLEMENTATION

CNN training and inference is implemented in Tensor-
Flow [33] and ONNX Runtime [34], correspondingly. Recon-
struction algorithm is implemented in C++ with the help of
OpenCV [35].

VI. RESULTS AND ANALYSIS

In this section we quantitatively and qualitatively analyze
LSDNet performance and compare it to a wide range of state-
of-the-art line segment detectors. Please refer to Section V for
evaluation and comparison details.

A. PUBLIC DATASETS

Table 1 and Figure 5 summarize the results on Wireframe and
York Urban datasets. It shows that LSDNet achieves state-of-
the-art inference speed of 695 FPS for standalone CNN and
214 FPS for overall detector alongside competitive accuracy
with 77.5 FH and 64.6 F on Wireframe and York Urban
datasets, correspondingly.
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TABLE 1. Detection accuracy on datasets Wireframe and York Urban. Bold
and underlined values stand for top-1 and top-2, correspondingly. Column
“postproc” shows the speed of postprocessing the CNN’s prediction.

accuracy, FH speed, FPS
Method Wireframe  York | CNN  postproc | total
LSD [8] 63.3 59.0 - 185 185
L-CNN [18] 81.2 65.4 55 24 17
HAWP [15] 83.1 66.3 55 82 33
TP-LSD [17] 82.0 67.3 65 201 49
M-LSD [20] 80.0 64.2 132 883 115
M-LSD-tiny [20] 76.8 61.9 241 1203 200
LSDNet (proposed) 77.5 64.6 695 301 214
85 HAWP
.o @ -0 MLSD
L-CNN - LSDNet
o
i M-LSD-tiny
i 75
70 1
65
«LSD
0 50 100 150 200
FPS

FIGURE 5. Speed (FPS) and accuracy (F/) (accuracy) comparisons of
different line segment detectors. Size of circles indicates the number of
trainable parameters. LSD is marked as cross since it has no trainable
parameters. The proposed LSDNet outperforms all previous detectors in
speed with 214 FPS and outperforms the nearest fastest counterpart,
M-LSD-tiny, both in speed and F¥ quality.

In comparison with the nearest fastest counterpart,
M-LSD-tiny, LSDNet outperforms it both in quality and
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FIGURE 6. Qualitative evaluation. From left to right - images from Wireframe dataset of varying number of salient line segments. From top to bottom -
original image, detection results from LSD [8], the model-based detector; HAWP [15], the most accurate CNN-based detector; M-LSD-tiny [20], the fastest
CNN-based detector except for the proposed one; the proposed LSDNet. Best viewed in color and zoom-in.

speed with the absolute increase in accuracy of 4+1.0 F on approach is approximately two times faster with 214 FPS
Wireframe, +2.7 F/ on York Urban and +14 FPS speed-up. against 115 FPS. The fastest algorithm to outperform LSDNet

Compared to the fastest detector outperforming LSDNet on both datasets is TP-LSD, which is approximately four
in accuracy on Wireframe dataset, M-LSD, the proposed times slower with 49 FPS.
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TABLE 2. Detection accuracy on datasets Wireframe, Wireframe-tiny,
Wireframe-tiny++ datasets. Bold and underlined values stand for top-1
and top-2, correspondingly.

Method detection accuracy, FH

Wireframe  Wireframe-tiny ~ Wireframe-tiny++
LSD [8] 63.3 69.0 73.2
L-CNN [18] 81.2 83.6 85.5
LSDNet (proposed) 77.5 82.0 85.3

B. CUSTOM DATASETS

Table 2 summarizes the results on Wireframe dataset, its sub-
set Wireframe-tiny and its reannotated version Wireframe-
tiny++. Please refer to section IV-B for details.

On Wireframe-tiny++, all the detectors demonstrate
higher accuracy than those on Wireframe-tiny. Since these
datasets are composed of the same images and differ only
in annotations, such a consistent accuracy growth indicates
that Wireframe-tiny++ annotation is more suitable for the
problem of general purpose line segment detection.

All the approaches, being arranged by F | show the same
relative order on all the datasets, but the absolute differ-
ences change significantly. The gap between LSDNet and
L-CNN has shrinked from 3.7 F# on Wireframe to negli-
gible 0.2 F¥ on Wireframe-tiny-++. We believe it could be
explained by different learning capacity of detectors” CNNs.
Expressive L-CNN with 9.8M parameters managed to learn
the subtle notion of a line segment implied by Wireframe
train dataset annotation (discussed in Sec. IV-A); whereas
lightweight LSDNet with only 0.5M parameters learned the
general line segment detection with no capacity to learn
the subtle details. It made L-CNN good for wireframe-like
detection problems with the goal to detect line segments,
from which “meaningful geometric information of the scene
can be extracted”. But it could possess confusing properties
in terms of general-purpose line segment detection, making
LSDNet a better choice in such a case.

C. QUALITATIVE RESULTS

Qualitative comparison of LSDNet to other line segment
detectors is illustrated in Figure 6. In this section we refer to
LSD and LSDNet as LSR-based and to HAWP and M-LSD-
tiny as endpoint-based detectors, since the methods within
these groups demonstrate similar behaviour.

Endpoint-based detectors demonstrate the selectivity of
line segments, which could not be attributed to overall seg-
ments’ saliency. This effect is mostly notable in the fore-
ground in the right column in Figure 6. LSR-based LSD
detects all the shadows and the carpet in front of the sofa,
while it can’t “see” floor tiles due to their low contrast.
LSDNet detects all the shadows, the carpet and the floor tiles.
Whereas endpoint-based detectors HAWP and M-LSD-tiny
detect these objects poorly, but at the same time they detect
way less salient segments in the background. We believe
such a selectivity could be attributed to the combination of
high expressive power of the underlying CNN and annotation
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inconsistencies of train dataset, discussed in Section IV-A.
This effect could be undesirable in an application requiring
that very class of segments, which is missed by endpoint-
based detectors.

Another interesting difference between the detectors’
groups occurs due to the types of misdetections. In terms of
a quality measure, LSR-based LSD and LSDNet can detect
false positives, typically corresponding to line segment-like
patterns on highly structured image regions, and miss some
annotated segments (false negatives), which are usually
poorly visible. These errors could be, at least partially,
attributed to the ill-posed nature of the task. The endpoints-
based methods are also prone to miss poorly visible segments,
and possess an advantage of not detecting false positives on
structured image regions. However, an potential drawback of
endpoints-based detectors is that they can produce hard false
positives — line segments of high confidence score with no
evidence of a true line segment in an image. We believe the
reason for hard false positives is a classification error of line
segment verification module. An example could be seen in the
middle column in Figure 6, please note the salient diagonal
segments in the bedhead (fourth row) and right part of the
carpet (third row). This issue is to be approached prior to
successful exploitation of an endpoint-based detector.

VIl. CONCLUSION

In this study we introduce a fast and accurate line segment
detector LSDNet. The detector is composed of a lightweight
encoder-decoder CNN, which predicts line segment heatmap
and tangent field, and a postprocessing module — a modifica-
tion of the famous LSD algorithm. When benchmarked on the
traditional Wireframe dataset against several SOTA methods,
LSDNet shows the highest FPS of 214 — though it achieves
detection accuracy of 78 F¥ — lower than the best methods
(82 and 83.1 FH).

However, we speculate that this gap in detection accu-
racy is primarily caused by the imperfections of the dataset
rather than the network itself. We analyze the commonly
used line segment detection datasets — Wireframe and York
Urban — and point out numerous and significant inconsis-
tencies in their annotation. By carefully reannotating a part
of the Wireframe test dataset, we show that (i) all detectors
demonstrate better quality on improved annotations (without
any re-training), which indicates that the refined annotations
correlate better with the notion of correct line segment detec-
tion, (ii) the gap between accuracies of our detector and others
is reduced to almost non-existent - with our method being the
fastest.
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