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ABSTRACT With the increasing deployment of network technologies in industrial control systems (ICSs),
cybersecurity has become a challenge in ICSs. Cybersecurity risk assessment (CRA) plays an important
role in cybersecurity protection of ICSs. However, the weights of risk indices are constants in traditional
CRA methods, and they do not fully consider the requirements of risk identification. In this paper, we define
a novel order-α divergence measure for interval-valued intuitionistic fuzzy numbers (IVIFNs) and further
develop a novel CRA approach for ICSs based on the proposed divergence measure under an interval-valued
intuitionistic fuzzy environment to contribute to the research gap. First, an order-α divergence measure for
IVIFNs is defined considering flexibility and robustness of divergence measures with the parameter. Next,
a variable weight-based CRA approach for ICSs is developed. In this approach, IVIFNs are adopted to
describe evaluation values of risk indices. The weights of risk indices are variable weight vectors and they
are determined by the relative divergence closeness. Integration approaches of each node and each attack
path in attack-defense trees (ADTs) are proposed based on the operations of IVIFNs, and risk scores of
each attack path are calculated by using the score function. Finally, we apply the proposed method to the
CRA of a civil aviation fuel supply automatic control system and verify its effectiveness and advantages by
comparing it with other methods. This method can dynamically adjust the weights of risk indices considering
the relationship between each risk index and the highest risk, and therefore, it can more effectively recognize
the highest risk of ICSs than the traditional CRA method. In addition, it can also match the risk attitude of
decision-makers by adjusting the parameter α.

INDEX TERMS Industrial control systems (ICSs), cybersecurity risk assessment (CRA), order-αdivergence
measure, interval-valued intuitionistic fuzzy numbers (IVIFNs), variable weight vectors.

I. INTRODUCTION
Industrial control systems (ICSs) are widely used in electric
power, petroleum and petrochemical, nuclear energy, avi-
ation, railway, water treatment and other industries. They
play an important role in today’s industry [1]. In recent
decades, the progress of computer and network technology
has promoted the development of ICSs [2]. For example, the
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Internet of Things has entered ICSs to achieve connectivity
among enterprises and savings of cost. The integration of
advanced information technology and ICSs can realize the
remote control and monitoring of field equipment [3]. How-
ever, advanced technology not only brings some advantages
to ICSs but also makes ICSs more vulnerable and subject to
various network attacks. For instance, hackers and criminal
organizations use the loopholes of ICSs to destroy the normal
operation of ICSs in various ways and cause great impact
and loss to society and the economy. We know that the
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‘‘Stuxnet’’ virus, which swept the world’s industries in 2010,
used the loopholes ofWindows system and SIMATICWinCC
of Siemens to attack ICSs so that the centrifuge in Iran ran out
of control, covered up the failure, and sent back to the man-
agement department with ‘‘normal operation’’ records, which
resulted in misjudgment of decision-making [4]. In 2015, the
virus called blackenergy attacked an energy company in
the Ivano frankisvik region of western Ukraine, which led
to the power failure of 225,000 families in Ukraine. Since
May 12, 2017, the variant Wannacry Blackmail virus has
swept the world, and some governments, airports, hospitals,
gas stations and other public institutions have been attacked.
In 2018, one chip manufacturing enterprise in Taiwan was
also attacked byWannacry Blackmail virus. All kinds of doc-
uments and databases were locked, which led to the shutdown
of production lines. Although the number of attacks against
ICSs is small compared with that against the internet, the con-
sequences may be disastrous. Therefore, it is very important
to ensure that ICSs are protected from cyber threats [5].

Aiming at cybersecurity problems, a series of standards
have been formulated. ISO/IEC 27000 series standards on
information securitymanagement solve the security problems
of IT systems. The ISA/IEC 62443 standard provides a flex-
ible framework to solve and mitigate the current and future
security vulnerabilities in ICSs [6]. However, the cyberse-
curity problems of ICSs are difficult to eradicate. First, the
standards of industrial control networks are mostly open
to facilitate the application of users. As a result, it is not
difficult for programmers familiar with the ICS to develop
targeted malicious attack codes. In addition, the technology
of hackers and criminal organizations is also improving, and
it is difficult for ICSs to be free from network attacks. Risk
assessment can help enterprises find theweakest links of ICSs
and further take correspondingmeasures to optimizemanage-
ment, equipment and control [7]. Therefore, it is necessary to
evaluate the cybersecurity risks of ICSs.

Quantitative risk assessment is an effective method
of CRA. Some related works have been performed to assess
cybersecurity risks of ICSs by exploiting different methods.
For example, Li et al. [8] used a Petri net (PN) to estab-
lish an evaluation model and proposed a dynamic impact
assessment method based on the full recognition of asset
knowledge. Gemini and Sabu [9] presented a CRA method
of the industrial internet of things (IoT) considering the
largest loss stream based on an attack graph. Wang et al. [10]
developed a CRA method combining the factor analysis
of information risk (FAIR) model with Bayesian networks
(BNs). From the accuracy-based perspective, they performed
an in-depth analysis between FAIR and FAIR-BN under
different situations based on the J-divergence measure.
Qin et al. [11] designed an association network (AN) to
infer the probabilities of cybersecurity incidents and built
an association matrix with regard to the state variables and
the key security variables to evaluate the cybersecurity risks
of ICSs. According to the characteristics of risk assessment
of power system, Sun et al. [12] proposed an incremental

variable-based state enumeration method considering safety
margins. Bolbot et al. [13] devised a risk assessment method
for ship systems based on cyber preliminary hazard analysis.
Chang et al. [14] applied a failure mode and effect anal-
ysis model to quantify the risk level combining evidential
reasoning (ER) with a rule-based Bayesian network (RBN).
Jha et al. [15] presented a risk assessment framework for
smart grids, which applied hardware reliability and data reli-
ability to evaluate risks.

Due to the limited prior knowledge of attacks, it is
difficult for decision-makers to accurately evaluate the prob-
abilities of attack events. Some researchers have imple-
mented fuzzy theory into risk assessments of diverse fields,
such as manufacturing corporations [16], construction project
investment [17], traffic congestion [18], buildings [19],
freight transportation systems [20], ship control systems [21],
mines [22], and so on. The assessment data were expressed
in their favor, such as fuzzy numbers [23]–[25], [30]–[32],
intervals [33], [34], Z-numbers [35], triangular fuzzy num-
bers [16], [19]–[22], [26], [27], [36], trapezoidal fuzzy
numbers [28], Pythagorean fuzzy numbers [37]–[40], lin-
guistic term sets [17], [29], and double hierarchy hesitant
fuzzy linguistic information [18]. In recent years, researchers
have studied risk assessment from different technical mod-
els, different methods and different fuzzy evaluations.
Wang et al. [18] combined double hierarchy hesitant fuzzy
linguistic term sets with the ORESTE method and proposed
a risk assessment method on the 5S traffic congestion model.
Huang et al. [23] adopted entropy weights to calculate the
relative importance of element layers in the fuzzy analytic
hierarchy process (FAHP) model and improved the correla-
tion between failure modes using the gray relation analysis
(GRA) method. Considering the lack of sufficient historical
data, Qi et al. [25] proposed a dynamic CRAmethod for ICSs
by extending the traditional BN to a fuzzy BN. Gul et al. [26]
combined a FAHP method with fuzzy VIKOR to construct a
new risk assessment framework. Gul and Celik [27] proposed
a risk assessment method by incorporating a fuzzy rule-based
expert system with the Fine-Kinney method and applied it
in rail transportation systems. Considering decision-makers’
psychological behavior, interaction relationships, and uncer-
tainty among risk indices, Wang et al. [28] presented a
hybrid failure mode and effect analysis (FMEA) framework
by combining the TODIM approach with the Choquet inte-
gral method. Li et al. [29] proposed a novel FMEA model
taking linguistic term sets into account in fuzzy Petri nets
(FPNs), which calculated the weights of decision-makers
based on the TOPSIS method. Yu et al. [31] applied the
cloud model to elaborate the risk indices, and the risk indices
were integrated by the MAX-MIN operator. Ultimately, the
method provided the risk levels under different situations,
and a detailed and in-depth discussion was made. From the
author’s point of view, the randomness of the cloud model is
very strong, which will lead to different calculation results
even though the same input values are given. Tian et al. [33]
advanced a risk assessmentmethod considering intervals with
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self-confidence. In the approach, the weights of decision-
makers were calculated by combining the subjective weights
with the objective weights, and the fuzzy inference laid the
foundation for IF-THEN rules. Onari et al. [35] introduced
the Z-number theory to risk assessment. In this approach,
the risk indices including severity, occurrence, and detection,
are expressed by Z-numbers. However, the operations for
Z-numbers are difficult, and we need to convert Z-numbers to
other fuzzy numbers for further processing. Wang et al. [36]
implemented attack-defense tree models (ADTs) for CRA
of an airport automatic fuel supply control system based
on fuzzy theory. Akram et al. [38] provided a risk evalu-
ation under a Pythagorean fuzzy environment using hybrid
TOPSIS and the ELECTRE I method. Recently, some novel
Pythagorean fuzzy interaction aggregation operators based on
Archimedean t-conorm and t-norm (ATT) have been devel-
oped [40], and applying them to CRA of ICSs will be a good
subject.

Although existing fuzzy risk assessment methods man-
age uncertainty to some extent, Atanassov and Gargov [41]
introduced the concept of the interval-valued intuitionis-
tic fuzzy set (IVIFS), which is more powerful in express-
ing uncertainty. The operations for the IVIFS have been
defined [42]–[44]. The fundamental characteristic of the
IVIFS is that the values of its membership degree and non-
membership degree are intervals rather than exact numbers.
Therefore, the IVIFS is finer and smoother for representing
the fuzzy evaluation information than the fuzzy set (FS) and
intuitionistic fuzzy set (IFS). Recently, it has still attracted
the focus of scholars [45]–[51]. Liu et al. [45] obtained
variable weights of attributes by integrating the accuracy
function and the subjective weights; on this basis, a novel
multi-attribute group decision-making (MAGDM) approach
was developed with IVIFS. Garg and Kumar [46] presented
some exponential distance measures using the connection
number (CN) of IVIFS. Kumar and Chen [47] proposed
a novel score function of CN based on set pair analysis
(SPA) theory under an interval-valued intuitionistic fuzzy
information environment. Che et al. [48] constructed a new
entropy measure in the context of IVIFS by introducing the
proposed distance function. Zhou et al. [49] raised the ratio
comparison rules of IVIFS. Bustince et al. [50] introduced
some new similarity measures between interval-valued intu-
itionistic fuzzy numbers (IVIFNs) considering the width of
intervals and admissible orders. Deveci et al. [51] proposed
a new combinative distance-based ASsesment (CODAS)
method based on Taxicab distance and the largest Euclidean
distance between the IVIFNs. Information measure is
an important topic in fuzzy decision-making problems.
Bhandari and Pal [52] defined the fuzzy divergence mea-
sure and provided a new fuzzy measure method from the
perspective of probability distribution. Since then, scholars
have conducted extensive research on this topic [53]–[63].
In recent years, Wang and Wan [58] transformed IVIFS into
IFS, defined a possibility degree of IVIFS and developed
a divergence measure for IVIFNs based on the proposed

possibility degree. Li et al. [59] presented a new cross-
entropy measure with parameters for IVIFNs based on the
J-divergence measure. Mishra et al. [60] defined the Jensen-
logarithmic divergence measure and the Jensen-exponential
divergence measure for IVIFNs. Mishra et al. [61] defined
some novel entropy and divergence measures, and applied
them in the process ofmulticriteria service quality assessment
combined with the TODIM method. Song et al. [62] intro-
duced a divergence-based cross entropy measure with param-
eters for AIFSs, which is the intuitionistic fuzzy set defined
by Atanassov and generally is also called IFS. Verma [63]
advanced some new order-α divergence measures between
two IFSs.

By combining the literature on risk assessment and
IVIFNs, we are committed to developing a new CRAmethod
for ICSs and a new fuzzy divergence measure under an
interval-valued intuitionistic fuzzy environment for the fol-
lowing reasons:

1. The weights of risk indices are constants and do
not vary with actual situations in the existing risk assess-
ment methods. The weights of risk indices are deter-
mined by decision-makers considering their experience or
determined by the entropy weight method. However, the
constant-weighting approaches are unreasonable in the fol-
lowing situation. For example, it is easy to ignore the risk in
this situation when the value of an index is very close to the
highest risk and yet its weight is very small. However, the
risks of ICSs easily cause serious consequences. Therefore,
it is necessary to develop a new assignment method for the
weights of risk indices.

2. FS only reflects the membership degree of belong-
ing to one level. IFS embodies the membership degree of
belonging to one level and the nonmembership degree of
not belonging to one level. For FS and IFS, their mem-
bership degrees and nonmembership degrees are expressed
by exact numbers. However, due to the limitations of the
decision-maker’s experience and uncertainty of risk indices,
it is difficult for decision-makers to evaluate risk indices
belonging to one level and not belonging to one level with
exact numbers. IVIFS can better describe uncertainty because
its membership degree and nonmembership degree are
intervals.

3. The divergence measure with the parameter has the
characteristics of flexibility and robustness, yet there is a lack
of research on it for IVIFNs.

Therefore, to address these issues, we define a novel order-
α divergence measure for IVIFNs, and on this basis, we put
forward a variable weight-based CRAmethod for ICSs under
an interval-valued intuitionistic fuzzy environment. It arises
from the ADT model. First, a novel divergence measure
for IVIFNs is defined, and the weights of risk indices are
calculated based on the proposed divergence measure. Sec-
ond, a novel CRA method is established. Finally, the pro-
posed method is applied to the CRA of a civil aviation
fuel supply automatic control system, and its effectiveness is
verified.
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The main contributions of this paper are as follows:

1. We define a divergence measure with the parameter
for IVIFNs. It makes up for the gap that there is no
divergence measure with parameters for IVIFNs.

2. We expand IVIFS to the CRA of ICSs considering the
power of IVIFS and formulate integration approaches
of all nodes and attack paths with IVIFNs in the
ADT model.

3. We develop a novel CRA method for ICSs. In this
method, the weights of risk indices can vary with
actual situations in the risk assessment process and
are calculated by using the proposed divergence
measure.

The rest of this article is organized as follows: Section II
reviews the concept of the ADT model and theory
about IVIFS. Section III defines a novel order-α divergence
measure for IVIFNs. Section IV describes the framework and
implementation process of our proposed approach. In addi-
tion, it introduces the risk assessment scales with IVIFNs, the
determination method for the weights of risk indices, and the
integration expressions of all nodes and attack paths based on
the operations of IVIFNs. Section V introduces a case involv-
ing the CRA of a civil aviation fuel supply automatic control
system andmakes a comparative analysis with other methods.
Section VI summarizes our work, states the contributions and
limitations of the proposed method, and expounds further
work.

II. PRELIMINARIES
A. ATTACK-DEFENSE TREES
In 1999, Schneier [64] proposed attack trees (ATs) as a
tool to evaluate the security of complex systems. Consid-
ering the limitation of ATs that they cannot reflect the
interaction between attacks and defenses, Kordy et al. [65]
extended ATs to attack-defense trees (ADTs), which con-
stitute a graphical expression of the actions that attack-
ers might take to attack one system and the defenses
that defenders can adopt to protect the system. An ADT
model is a tree-like graph of an attack scenario, as shown
in Fig. 1.

It consists of one root node, attack leaf nodes, defense leaf
nodes and combination nodes. The attack target is defined
as the root node, the attack leaf nodes are the actions to be
implemented by attackers, and defense leaf nodes are the
measures to be taken by defenders. In Fig. 1., G0 represent
the root node, L1, L2, and L3 represent the attack leaf nodes,
and D1, D2, and D3 represent the defense nodes. In addition,
combination nodes consist of AND nodes and OR nodes.
AND nodes indicate different steps to attack the same goal,
and OR nodes are alternatives. Any path from leaf nodes to
the root node indicates a complete attack process to realize the
attack target. All attack paths can be generated by traversing
the whole attack tree.

FIGURE 1. The representation of an ADT model.

B. THEORY ABOUT INTERVAL-VALUED INTUITIONISTIC
FUZZY SET
Definition 1 [41]: Let X be a nonempty set, and then the

interval-valued intuitionistic fuzzy set (IVIFS) is defined as

A =
{
x,
([
µLA (x) , µ

H
A (x)

]
,
[
νLA (x) , ν

H
A (x)

])∣∣∣ x ∈ X}
(1)

whereµLA (x) and µHA (x) represent the upper and lower
bounds of the membership degree, respectively, and
µLA (x) , µ

H
A (x) ⊆ [0, 1]. νLA (x) and νHA (x) represent the

upper and lower bounds of the nonmembership degree,
respectively, νLA (x) , ν

H
A (x) ⊆ [0, 1], and µHA (x) + νHA

(x) ≤ 1. πLA (x) and π
H
A (x) represent the upper and lower

bounds of the hesitation degree, respectively, πLA (x) = 1 −
µHA (x)− ν

H
A (x), π

H
A (x) = 1− µLA (x)− ν

L
A (x).

The IVIFN
([
µLA (x) , µ

H
A (x)

]
,
[
νLA (x) , ν

H
A (x)

])
is expre-

ssed as
([
µLA, µ

H
A

]
,
[
νLA , ν

H
A

])
for convenience.

Definition 2 [42], [43]: Let α1 =
([
µL1 , µ

H
1

]
,
[
νL1 , ν

H
1

])
and α2 =

([
µL2 , µ

H
2

]
,
[
νL2 , ν

H
2

])
be any two IVIFNs, then

the operations of IVIFNs are defined as

α1 ⊕ α2 =
([

1−
(
1− µL1

) (
1− µL2

)
,

1−
(
1− µH1

) (
1− µH2

)]
,[

νL1 × ν
L
2 , ν

H
1 × ν

H
2

])
;

α1 ⊗ α2 =
([
µL1 × µ

L
2 , µ

H
1 × µ

H
2

]
,[

1−
(
1− νL1

) (
1− νL2

)
,

1−
(
1− νH1

) (
1− νH2

)])
;

α1 ∩ α2 =
([

min
(
µL1 , µ

L
2

)
,min

(
µH1 , µ

H
2

)]
,[

max
(
νL1 , ν

L
2

)
,max(νH1 , ν

H
2 )
])
;

43754 VOLUME 10, 2022



H. Guo et al.: CRA of ICSs Based on Order-α Divergence Measures

α1 ∪ α2 =
([

max
(
µL1 , µ

L
2

)
,max

(
µH1 , µ

H
2

)]
,[

min
(
νL1 , ν

L
2

)
,min(νH1 , ν

H
2 )
])
;

λα1 =

([
1−

(
1− µL1

)λ
, 1−

(
1− µH1

)λ]
,[(

νL1

)λ
,
(
νH1

)λ])
, λ � 0;

αλ1 =

([(
µL1

)λ
,
(
µH1

)λ]
,[

1−
(
1− νL1

)λ
, 1−

(
1− νH1

)λ])
, λ � 0;

αc1 =
([
νL1 , ν

H
1

]
,
[
µL1 , µ

H
1

])
.

Definition 3 [66]: Let A =
([
µLA, µ

H
A

]
,
[
νLA , ν

H
A

])
be an

IVIFN, and then its score function S (A) is defined as

S (A) =
1
2

(
µLA + µ

H
A +

µHA + ν
H
A

2

(
1− µLA − ν

L
A

)
+
µLA + ν

L
A

2

(
1− µHA − ν

H
A

))
(2)

where S (A) ∈ [0, 1].

III. A NOVEL DIVERGENCE MEASURE FOR IVIFNs
A. EXISTING DIVERGENCE MEASURES
Wang and Wan [58] gave a standard definition of divergence
measures for IVIFSs below.
Definition 4 [58]: Let X be a finite universe, and let

IVIFSs (X) be the set of all IVIFSs on X. A mapping D:
IVIFSs (X) × IVIFSs (X) → [0, 1] is a standard divergence
measure for IVIFSs if for every A,B ∈ IVIFSs (X)which has
the following properties:

(DP1) D (A ‖B ) = 0 if and only if A = B.
(DP2) 0 ≤ D (A ‖B ) ≤ 1.
(DP3) D (A ‖B ) = D (B ‖A ).
First, we review some recent divergence measures

for IVIFNs.
Wan and Wang [58]:

DW (A ‖B ) =

√∫ 1

0

∫ 1

0
[p (a ≥ b)− p (A ≥ B)]2 dδdβ

where a= (µA, νA)=
(
µLA+δ

(
µHA −µ

L
A

)
, νLA+β

(
νHA −ν

L
A

))
and b = (µB, νB) =

(
µLB+δ

(
µHB −µ

L
B

)
, νLB+β

(
νHB −ν

L
B

))
with δ, β ∈ [0, 1] .

p (a≥b)=max
{
1−max

{
1−νB−µA

2−µA−νA−µB−νB
, 0
}
, 0
}
,

p (A ≥ B)=
∫ 1

0

∫ 1

0
p (a ≥ b)dδdβ .

Li et al. [59]:

DL (A ‖B ) =
1

γ − 1

[(
mA + mB

2

)γ
−

1
2

(
mγA + m

γ
B

)]

where mA =
(
µLA + µ

H
A + 2− νLA − ν

H
A

)/
4, mB =(

µLB + µ
H
B + 2− νLB − ν

H
B

)/
4, γ ∈ (1, 2] .

Mishra et al. [60]:

DM1 (A ‖B )

= 1−log2

1+
1
2


min

{
µLA, µ

L
B

}
+min

{
µHA , µ

H
B

}
+

min
{
νLA , ν

L
B

}
+min

{
νHA , ν

H
B

}
+

min
{
πLA , π

L
B

}
+min

{
πHA , π

H
B

}



DM2 (A ‖B )

=



1
1−e−1/2



1
2


exp

(
−

(
νLA+ν

H
A +2−µ

L
A−µ

H
A

4

))

+exp

(
−

(
νLB+ν

H
B +2−µ

L
B−µ

H
B

4

))


−exp

(
−
1
8

(
νLA+ν

H
A +ν

L
B+ν

H
B +4

−µLA−µ
H
A −µ

L
B−µ

H
B

))


if µLA+µ

H
A ≥ ν

L
A+ν

H
A

1
1−e−1/2



1
2


exp

(
−

(
µLA+µ

H
A +2−ν

L
A−ν

H
A

4

))

+exp

(
−

(
µLB+µ

H
B +2−ν

L
B−ν

H
B

4

))


−exp

(
−
1
8

(
µLA+µ

H
A +µ

L
B+µ

H
B +4

−νLA−ν
H
A −ν

L
B−ν

H
B

))


if µLA+µ

H
A ≺ ν

L
A+ν

H
A

Mishra et al. [61]:

DM (A ‖B ) = µLA ln
µLA(

µLA + µ
L
B

)/
2
+ µHA ln

µHA(
µHA + µ

H
B

)/
2

+ νLA ln
vLA(

vLA + v
L
B

)/
2
+ νHA ln

νHA(
νHA + ν

H
B

)/
2

+µLB ln
µLB(

µLA+µ
L
B

)/
2
+µHB ln

µHB(
µHA +µ

H
B

)/
2

+ νLB ln
vLB(

vLA + v
L
B

)/
2
+ νHB ln

νHB(
νHA + ν

H
B

)/
2

Now, we advance two examples to illustrate the weak-
nesses of the above developed divergence measures
for IVIFNs. The calculation results are shown in Table 1.

It can be seen from Table 1 that the divergence value
between A and B is 0 by using the divergence mea-
sure in [58] when the IVIFN A is ([0.3, 0.3] , [0.6, 0.6])
and the IVIFN B is ([0.2, 0.2], [0.3, 0.3]). Obviously,
A is not equal to B. In other words, when two
IVIFNs degenerate into two IFNs, the divergence measure
in [58] violates the property DP1. Divergence values between
A and B are all 0 by using the divergence measure DL
in [59] and the divergence measure DM2 in [60] when A is
([0.3, 0.5] , [0.3, 0.5]) and B is ([0.2, 0.3], [0.2, 0.3]). That
is, when the distributions of the membership degree are the
same as those of the nonmembership degree for two IVIFNs,
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TABLE 1. Divergence values under different divergence measures.

it is not suitable to use them to calculate the divergence,
and they do not meet the property DP1 of the divergence
measure for IVIFNs. The divergence calculated by using
the divergence measure DM1 in [60] and the divergence
measure DM in [61] is reasonable. However, we note that
the divergence measure with parameters for IVIFNs is still
a gap, which can provide better flexibility and robustness in
real decision-making problems. Therefore, in the following,
we are determined to develop a divergence measure with
parameters for IVIFNs.

B. A NOVEL DIVERGENCE MEASURE FOR IVIFNs
First, we present three Lemmas in which we provide some
support for developing the order-α divergence measure
for IVIFNs.
Lemma 1: Let two finite discrete probability distributions

be P =
(
p1, p2, · · · , pt

)
and Q =

(
q1, q2, · · · , qt

)
, 0 ≤ pk,

qk ≤ 1 for k = 1, 2, · · · , t , and
∑t

k=1 pk =
∑t

k=1
qk = 1.
If fc is a mapping, fc : [0, 1] × [0, 1] → [0, 1]. For

α ∈ [0, 1],

fc (P,Q) =
∑t

k=1
pαk

(
pk + qk

2

)1−α

≤ 1 (3)

and the equality in (3) holds if and only ifpk = qk,∀k.
Proof of Lemma 1: Consider the function φ (x) =

x1−α for every x ∈ [0,∞]. When the parameter α sat-
isfies the condition 0 ≺ α ≺ 1, the function φ is
concave. Then, according to the Jensen inequality, we can
obtain:(∑t

k=1

pk + qk
2

)1−α

=

(∑t

k=1
pk
pk + qk
2pk

)1−α

≥

∑t

k=1
pk

(
pk + qk
2pk

)1−α

=

∑t

k=1
pαk

(
pk + qk

2

)1−α

Because,
∑t

k=1 pk =
∑t

k=1 qk = 1,(∑t
k=1 (pk + qk)

/
2
)1−α
= 1.

Therefore, it holds that
∑t

k=1 p
α
k

(
(pk + qk)

/
2
)1−α

≤ 1,
and the equality holds if and only if pk = qk,∀k.
Lemma 2: Let A = (µA, νA) and B = (µB, νB) be any

two intuitionistic fuzzy numbers (IFNs). If fI is a mapping,
fI : IFN × IFN → [0, 1]. For α ∈ [0, 1], then it
holds:

fI (A,B) = (µA)α
(
µA + µB

2

)1−α

+ (νA)
α

(
νA + νB

2

)1−α

+ (πA)
α

(
πA + πB

2

)1−α

≤ 1 (4)

where πA = 1− µA − νA, πB = 1− µB − νB
Proof of Lemma 2: Based on the definition of IFS,

we obtain the following: µA + νA + πA = 1, and µB + νB +
πB = 1, which imply that (µA + µB)

/
2 + (νA + νB)

/
2 +

(πA + πB)
/
2 = 1.

Therefore, we conclude that fI (A,B) ≤ 1 by Lemma 1,
and the equality holds if and only if A = B, that is, µA = µB
and νA = νB.
Lemma 3: Let A =

([
µLA, µ

H
A

]
,
[
νLA , ν

H
A

])
and B =([

µLB (xi) , µ
H
B

]
,
[
νLB , ν

H
B

])
be any two IVIFNs. If fIV is a

mapping, fIV : IVIFN × IVIFN → [0, 2]. For α ∈ [0, 1],
then it holds:

fIV (A,B)

=

(
µLA

)α (µLA + µLB
2

)1−α

+

(
νLA

)α (νLA + νLB
2

)1−α

+

(
πLA

)α (πLA + πLB
2

)1−α

+

(
µHA

)α (µHA + µHB
2

)1−α

+

(
νHA

)α (νHA + νHB
2

)1−α

+

(
πHA

)α (πHA + πHB
2

)1−α

≤ 2. (5)

where πA =
[
πLA , π

H
A

]
=

[
1− µHA − ν

H
A , 1− µ

L
A − ν

L
A

]
,

πB =
[
πLB , π

H
B

]
=
[
1− µHB − ν

H
B , 1− µ

L
B − ν

L
B

]
.

Proof of Lemma 3: Based on the definition of IVIFS,
we obtain the following: µLA + ν

L
A + π

H
A = 1, µHA + ν

H
A +

πLA = 1, µLB + ν
L
B + π

H
B = 1 and µHB + ν

H
B + π

L
B = 1, which

imply that:
(
µLA + µ

L
B

)/
2+

(
νLA + ν

L
B

)/
2+

(
πHA + π

H
B

)/
2 =

1 and
(
µHA + µ

H
B

)/
2+

(
νHA + ν

H
B

)/
2+

(
πLA + π

L
B

)/
2 = 1.

Therefore, we conclude that fIV (A,B) ≤ 2 by Lemma 2,
and the equality holds if and only if A = B, that is, µLA = µ

L
B,

µHA = µ
H
B , ν

L
A = ν

L
B , and ν

H
A = ν

H
B .

Now, we present the order-α divergence measure
for IVIFNs.
Definition 5: Let A =

([
µLA, µ

H
A

]
,
[
νLA , ν

H
A

])
and B =([

µLB (xi) , µ
H
B

]
,
[
νLB , ν

H
B

])
be any two IVIFNs, and then we

define the order-α divergence measure between two IVIFNs
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A and B given by

D (A |B )

=
1

α − 1



log2



(
µLA

)α (µLA + µLB
2

)1−α

+
(
µHA

)α (µHA + µHB
2

)1−α

+
(
νLA

)α (νLA + νLB
2

)1−α

+
(
νHA

)α (νHA + νHB
2

)1−α

+
(
πLA

)α (πLA + πLB
2

)1−α

+
(
πHA

)α (πHA + πHB
2

)1−α



− 1


(6)

To satisfy the symmetry of divergence measures, we define

D (A ‖B ) = 1/
2 (D (A |B )+ D (B |A )) (7)

as an order-α divergence measure for two IVIFNs A
andB. Obviously,D (A ‖B )satisfies the properties DP1, DP2,
and DP3.

Proof of Property DP1: We have fIV (A,B) ≤ 2 by
Lemma 3. Then, for α ∈ [0, 1], we obtain D (A |B ) ≥ 0 and
D (B |A ) ≥ 0. Therefore, it holds that D (A ‖B ) ≥ 0, and the
equality holds if and only if A = B.

Proof of Property DP2:When the distribution difference
between A and B is the largest, their divergence value is also
the largest. The maximum distribution difference between A
and B has the following situations:
(1) A = ([1, 1] , [0, 0]) ,B = ([0, 0] , [1, 1]);
(2) A = ([0, 0] , [1, 1]) ,B = ([1, 1] , [0, 0]);
(3) A = ([0, 0] , [0, 0]) ,B = ([0, 0] , [1, 1]);
(4) A = ([0, 0] , [0, 0]) ,B = ([1, 1] , [0, 0]);
(5) A = ([0, 0] , [1, 1]) ,B = ([0, 0] , [0, 0]);
(6) A = ([1, 1] , [0, 0]) ,B = ([0, 0] , [0, 0]).

Their divergence values are also 1 in these cases by using (6)
and (7). In other words, themaximumdivergence is 1 between
two IVIFNs A and B.

Therefore, 0 ≤ D (A ‖B ) ≤ 1. Property DP2 is
established.
Property DP3 in fact holds when we define the order-α

divergence measure for IVIFNs.
In summary, the order-α divergence measure in (7) is a

standard divergence measure for IVIFNs.
Theorem 1: For all A,B,W ∈ IVIFS, the divergence

measureD (A ‖B ) satisfies the following properties:
(1) D (A ‖A ∪ B ) = D (B ‖A ∩ B );
(2) D (A ‖A ∩ B ) = D (B ‖A ∪ B );
(3) D (A ∪ B ‖A ∩ B ) = D (A ‖B );
(4) D (A ‖A ∪ B )+ D (A ‖A ∩ B ) = D (A ‖B );

(5) D (A ∪ B ‖W ) ≤ D (A ‖W )+ D (B ‖W );

(6) D (A ∩ B ‖W ) ≤ D (A ‖W )+ D (B ‖W );

(7) D (A ∪ B ‖W ) + D (A ∩ B ‖W ) = D (A ‖W ) +

D (B ‖W );

(8) D (A ‖B ) = D (Ac
‖Bc );D (A ‖Bc ) = D (Ac ‖B );

Their proofs are straightforward by the operations and the
definition of the order-α divergence measure for IVIFNs.
Hence, we omit their proofs from here.
Now, we solve two examples in Table 1 again with our

proposed measure, and the obtained divergence values are
shown in Table 2.

TABLE 2. Divergence values with the proposed divergence measure.

The results presented in Table 2 clearly show that the diver-
gence values are all not 0 by using the proposed divergence
measure when A is not equal to B. Hence, the proposed mea-
sure is a valid and flexible divergence measure for IVIFNs,
which can be employed to handle some problems related to
various application fields.

IV. THE PROPOSED CRA APPROACH FOR ICSs
The framework of our proposed variable weight-based CRA
approach for ICSs is shown in Fig. 2.

FIGURE 2. Framewor of ourvariable weight-based CRA approach.

The architecture of our approach consists of three main
aspects: establishment of a decision matrix, determination of
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variable weights, and risk assessment of ICSs. The establish-
ment of a decision matrix includes the division of the risk
level and the evaluation values of each attack accident given
by experts. Evaluation values are expressed in the form of
IVIFNs. The weights of risk indices are determined by the
proposed divergence measure for IVIFNs. To ensure that the
risks of ICSs can be better identified, the weights of risk
indices are changed in the decision-making process, which is
different from traditional CRA methods for ICSs. When the
decision matrices and the weights of all attack accidents and
defense strategies are obtained, all leaf nodes and each possi-
ble attack path can be integrated according to the operations
for IVIFNs, and then, we can assess the highest risk with the
score function of IVIFNs.

The implementation process of the CRA approach is shown
in Table 3.

TABLE 3. The implementation process of the CRA approach.

A. RISK ASSESSMENT SCALES
The risk assessment scales in this study are from [36].
We transform triangular fuzzy numbers (TFNs) into IVIFNs
considering the same quantitative results. The quantization
results of TFNs are calculated by the method in [67], in which
the decision-maker’s attitude is neutral. The scores of IVIFNs
are calculated by using (2). The risk assessment scales in the
form of IVIFNs are shown in Table 4.

B. DETERMINATION OF THE WEIGHTS
Since the maximum IVIFN is ([1, 1] , [0, 0]), the highest risk
of leaf nodes A+ in ICSs is defined as

A+ = {([1, 1] , [0, 0]) , ([1, 1] , [0, 0]) , ([1, 1] , [0, 0])}.

Since theminimum IVIFN is ([0, 0], [1, 1]), the lowest risk
of leaf nodes A−in ICSs is defined as

A− = {([0, 0], [1, 1]) , ([0, 0], [1, 1]) , ([0, 0], [1, 1])}.

Next, we present the relative divergence closeness between
the leaf nodes Lij and the highest risk A+ given by

ζij =
D
(
Lij
∥∥∥A+j )

D
(
Lij
∥∥∥A+j )+ D (Lij ∥∥∥A−j ) (8)

where i is the number of leaf nodes and j is the number of risk
indices.

The greater the relative divergence closeness is, the farther
the leaf node is from the highest risk, and the smaller its
weight should be. Conversely, the weight should be larger.
The normalized weight of the leaf nodes Lij is defined as

ωij =
1− ζij

n−
∑n

j=1 ζij
(9)

where ωij ∈ [0, 1] ,
∑n

j=1 ωij = 1.

C. THE CALCULATION OF THE RISK ASSESSMENT
We define the integration expressions of attack leaf nodes,
defense leaf nodes, combination nodes and attack paths in the
ADT model based on the operations of IVIFNs.

1) INTEGRATION OF THE NODES
a: INTEGRATION OF ATTACK LEAF NODES
Suppose the evaluation values of the attack cost, attack
difficulty and detection possibility for the ith attack
leaf node are

([
µLAi,cos t , µ

H
Ai,cos t

]
,
[
νLAi,cos t , ν

H
Ai,cos t

])
,([

µLAi,diff , µ
H
Ai,diff

]
,
[
νLAi,cos t , ν

H
Ai,diff

] )
and

([
µLAi,det

,

µHAi,det

]
,
[
νLAi,cos t , ν

H
Ai,det

] )
, respectively, and its compre-

hensive evaluation value ZAi is defined as

ZAi =
n∑
j=1

ωAi,jrAi,j =
([
µLAi , µ

H
Ai

]
,
[
νLAi , ν

H
Ai

])

=




1−

(
1−µLAi,cos t

)ωAi,cos t (1−µLAi,diff)ωAi,diff(
1−µLAi,det

)ωAi,det
,

1−
(
1−µHAi,cos t

)ωAi,cos t (1−µHAi,diff)ωAi,diff(
1−µHAi,det

)ωAi,det

,


(
νLAi,cos t

)ωAi,cos t (
νLAi,diff

)ωAi,diff(
νLAi,det

)ωAi,det
,(

νHAi,cos t

)ωAi,cos t (
νHAi,diff

)ωAi,diff(
νHAi,det

)ωAi,det




(10)

where ωAi,cos t , ωAi,diff and ωAi,det represent the weight of the
attack cost, attack difficulty and detection possibility for the
ith attack leaf node, respectively, and

ωAi,cos t + ωAi,diff + ωAi,det = 1.

b: INTEGRATION OF DEFENSE LEAF NODES
Suppose that the evaluation values of the defense cost,
defense difficulty and defense time for the ith defense leaf
node are

([
µLDi,cos t , µ

H
Di,cos t

]
,
[
νLDi,cos t , ν

H
Di,cos t

])
,
([
µLDi,diff ,

µHDi,diff

]
,
[
νLDi,diff , ν

H
Di,diff

])
, and

([
µLDi,time, µ

H
Di,time

]
,[

νLDi,time, ν
H
Di,time

])
, respectively, then its comprehensive
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TABLE 4. Risk assessment scales in the form of IVIFNs.

evaluation value ZDi is defined as

ZDi =
n∑
j=1

ωDi,jrDi,j =
([
µLDi , µ

H
Di

]
,
[
νLDi , ν

H
Di

])

=




1−

(
1−µLDi,cos t

)ωDi,cos t (1−µLDi,diff)ωDi,diff(
1−µLDi,time

)ωDi,time
,

1−
(
1−µHDi,cos t

)ωDi,cos t (1−µHDi,diff)ωDi,diff(
1−µHDi,time

)ωDi,time

 ,


(
νLDi,cos t

)ωDi,cos t (
νLDi,diff

)ωDi,diff(
νLDi,time

)ωDi,time
,(

νHDi,cos t

)ωDi,cos t (
νHDi,diff

)ωDi,diff(
νHDi,time

)ωDi,time




(11)

where ωDi,cos t , ωDi,diff and ωDi,time represent the weight of
the defense cost, defense difficulty and defense time for the
ith defense leaf node, respectively, and

ωDi,cos t + ωDi,diff + ωDi,time = 1.

c: INTEGRATION OF COMBINATION NODES

Let ZAi =
([
µLAi , µ

H
Ai

]
,
[
νLAi , ν

H
Ai

])
(i = 1, 2, · · · , n) repre-

sent the comprehensive value of n attack leaf nodes, and then
the integration value Zi of the AND node is defined as

Zi = ZA1 ⊗ ZA2 ⊗ · · · ⊗ ZAn

=


[

n∏
i=1

µLAi ,

n∏
i=1

µHAi

]
,[

1−
n∏
i=1

(
1− νLAi

)
, 1−

n∏
i=1

(
1− νHAi

)]
 (12)

The integration value of the OR node Zi is defined as

Zi = ZA1 ∪ ZA2 , · · · ,∪ZAn

=



[
max(µLA1 , µ

L
A2
, · · · , µLAn ) ,

max(µHA1 , µ
H
A2
, · · · , µHAn )

]
,[

min(νLA1 , ν
L
A2
, · · · , νLAn ) ,

min(νHA1 , ν
H
A2
, · · · , νHAn )

]

. (13)

d: THE OPERATION BETWEEN THE ATTACK NODES AND
DEFENSE NODES

Let ZAi =
([
µLAi , µ

H
Ai

]
,
[
νLAi , ν

H
Ai

])
represent the com-

prehensive value of one attack leaf node, and let ZDi =([
µLDi , µ

H
Di

]
,
[
νLDi , ν

H
Di

])
represent the comprehensive value

of one defense leaf node. Therefore, the operation between
the attack nodes and defense nodes is defined

Ri = ZAi ⊗ Z
c
Di

=

([
µLAi , µ

H
Ai

]
,
[
νLAi , ν

H
Ai

])
⊗

([
νLDi , ν

H
Di

]
,
[
µLDi , µ

H
Di

])

=


[
µLAiν

L
Di , µ

H
Aiν

H
Di

]
,[

1−
(
1− νLAi

) (
1− µLDi

)
,

1−
(
1− νHAi

) (
1− µHDi

)]
 (14)

2) INTEGRATION OF ATTACK PATHS
Assume that Xpath = {X1,X2, · · · ,Xn} is the attack path,
where Xt =

([
µLt , µ

H
t
]
,
[
νLt , ν

H
t
])
(t = 1, 2, · · · ,m).

The comprehensive value of the attack path is expressed as

ZXpath = X1 ⊗ X2 ⊗ · · · ⊗ Xm

=

([
m∏
t=1

µLt ,

m∏
t=1

µHt

]
,[

1−
m∏
t=1

(
1− νLt

)
, 1−

m∏
t=1

(
1− νHt

)])
(15)

3) DETERMINATION OF RISK SCORES

Let p =
([
µLp , µ

H
p

]
,
[
νLp , ν

H
p

])
be the comprehensive value

of any one attack path; and then the risk score of this attack
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FIGURE 3. The network structure of an ICS for one civil aviation.

path is obtained by (12).

S (p) =
1
2

µLp + µHp +
µHp + ν

H
p

2

(
1− µLp − ν

L
p

)
+
µLp + ν

L
p

2

(
1− µHp − ν

H
p

)

(16)

V. APPLICATION AND ANALYSIS OF THE PROPOSED
METHOD
A. APPLICATION
To demonstrate the application of the proposed cybersecu-
rity risk assessment method, we consider the case discussed
in [36]. The civil aviation fuel supply automatic control sys-
tem is mainly divided into three logical levels: the enterprise
management layer, process monitoring layer and field control
layer. The network structure is shown in Fig. 3.

Fig. 4 is an ADT model against the civil aviation fuel
supply automatic control system. The attack goal in the sys-
tem is gaining access to the SCADA system. This is the
root node in the ADT model. The possible risk events in
the system include hardware failure, operator errors, Havex
malware, Lnk file vulnerability, Printer Service Vulnerability,
and MS08-067 vulnerability, which is to call the NetPath-
Canonicalize function in the server service program through
the MSRPC over the SMB channel, causing the stack buffer
to overflow to obtain Remote Code Execution, U disk injected
with virus, Wincc vulnerability, Denial of service attack,
replay attack and eavesdropping attack are the attack leaf
nodes in the ADT model. The defense measure adopted in
the system is to set up a firewall, which is the defense leaf
node in the ADT model.

The CRA process of the proposed method for the system
is shown in Fig. 5.

FIGURE 4. The ADT model of the automatic fuel supply control system.

FIGURE 5. The CRAprocess of the proposed method for the system.

The calculation process of the cybersecurity risk assess-
ment for the civil aviation fuel supply automatic control
system is as follows:
Step 1: The evaluation values of attack leaf nodes and the

defense leaf node are obtained by the method in Section 5.1,
as shown in Table 5 and Table 6.
Step 2: The weights of all attack leaf nodes and the defense

leaf node are obtained by the method in Section 4, respec-
tively, as shown in Table 7 and Table 8 (α = 0.5).
Step 3: Comprehensive values of all leaf nodes are calcu-

lated by using (10) and (11). The calculation results are shown
in Table 9.
Step 4: Comprehensive values of each attack path are

calculated by using (12), (13), (14), and (15). The results are
shown in Table 10.
Step 5: Scores of all attack paths are obtained by using (16).

The results are shown in Table 10.
Table 10 shows that the score of attack path AP2 is the

highest, that is, the risk caused by operation error is the
highest. The score of hardware failure is the second highest.
The calculation results show that the key factor affecting the
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TABLE 5. Evaluation values of attack leaf nodes.

TABLE 6. Evaluation values of the defense leaf node.

TABLE 7. The weights of attack leaf nodes.

TABLE 8. The weights of defense leaf node.

securities of the civil aviation fuel supply automatic control
system is internal security vulnerability. Measures should

TABLE 9. Comprehensive values of leaf nodes.

TABLE 10. Comprehensive values of each attack path.

be strengthened in the training of personnel operation and
maintenance of aircraft.

B. SENSITIVITY ANALYSIS OF THE PARAMETER
In what follows, the influence of different values of the
parameter α on the risk ranking results of the system is
discussed. The risk scores of all attack paths and the ranking
results under different parameter α in the interval [0.1, 0.9]
are shown in Table 11.

From Table 11, we notice that the risk scores of all attack
paths increase with the increase of the parameterα. If the
attitude toward the risk level is conservative, set the parameter
αto be small. If the attitude toward the risk levels is neutral,
the parameterα is set to 0.5. If the attitude toward the risk
levels is aggressive, the parameter α is set to be large. How-
ever, the risk ranking results varying with the parameter α are
the same, and the attack paths of the highest risk are all AP2;
that is, the changes in the parameter α do not have an effect
on the risk ranking results, which indicates that the proposed
order-α divergence measure for IVIFNs has good robustness.

C. COMPARISIONS AND DISCUSSION
To further prove the effectiveness of the proposed method in
this paper, we still solve the CRA problem of the civil aviation
fuel supply automatic control system by using these methods
in [36], [45] and [61]. Triangular fuzzy numbers are adopted
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TABLE 11. Ranking results under different parameter α.

to describe evaluation values of risk indices and theweights of
risk indices are determined by subjective weighting methods
in [36]. IVIFNs are adopted to describe evaluation values
of risk indices and the weights of risk indices are deter-
mined by the hybrid weighting method in [45]. IVIFNs are
adopted to describe evaluation values of risk indices and
the weights of risk indices are determined by the objective
weighting method based on entropy in [61]. Among them,
the weights of risk indices assigned by decision-makers are
w=(0.500,0.333,0.167) in [36]. The range of the parameterγ
is −12.27 ≤ γ ≤ 8.60 according to evaluation values of
this example in [45]. The weights of risk indices obtained
by using the entropy method are w=(0.287,0.340,0.373)
in [61]. Ranking results under different methods are shown
in Table 12.

Table 12 shows that the highest risk is all AP2 by using
these methods. The ranking results in this paper are fully
consistent with those in [45] (γ = 0) and almost identical to
those in [45] (γ = 12.87 and γ = 8.60) and [61], except that
the rankings of AP3, AP4 and AP6 are slightly different. The
method in [36] cannot distinguish the risks of AP5 and AP6.
Therefore, our proposed method is effective, and it can be
used to handle the cybersecurity risk assessment problems
of ICSs.

To further prove the advantages of the developed method
in this paper, we give a counterexample to show that the
ranking results of risks based on the existing approaches are

TABLE 12. Ranking results under different methods.

TABLE 13. Evaluation values of Example 1.

unreasonable in some cases, while the proposed method can
better identify risks.
Example 1: Suppose an expert evaluates the risk level of

three attack leaf nodes (L1, L2, and L3) with regard to risk
indices, including attack cost (G1), attack difficulty (G2) and
detected probability (G3) in the form of IVIFNs, and their
evaluation values are shown in Table 13.

We still utilize the above four methods to rank the risks,
and the results are shown in Table 14. In this example, the
range of the parameter γ is −13.54 ≤ γ ≤ 11.21 in [45].
From Table 14, we find that the highest risk is L1 by

using the proposed method, and the ranking results of risks
are the same as those in [61]. However, the highest risk is
L2 by using the methods in [36] and [45]. Table 11 shows
that for leaf node L1, the evaluation value of attack cost
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TABLE 14. Ranking results under different methods of Example 1.

is ([0.001,0.115],[0.751,0.885]), which is very small and
far from the highest risk, while the evaluation value of the
detected probability is ([0.751,0.885],[0.001,0.115]), which
is very high and close to the highest risk. From the per-
spective of risk identification, the detected probability of
leaf node L1 should be assigned a large weight, while the
weight of attack cost should be assigned a small weight,
so we allocate the weight of detected probability to 0.454
(α = 0.10), 0.535 (α = 0.50), and 0.573 (α = 0.90).
At the same time, we allocate the weight of attack cost to
0.213 (α = 0.10), 0.132 (α = 0.50), and 0.094 (α = 0.90).
However, the weight of attack cost assigned to all leaf nodes is
always 0.500, and the weight of detected probability is always
0.167 in [36]. The weights of each index do not change with
the evaluation information in the decision process; in that
way, the identification of risks is easily confused when the
evaluation of attack cost is relatively safe and the evaluation
of detected probability is relatively dangerous. Although the
weights of each index change with the evaluation information
in the decision process in [45], the adjustments of weights
depend on the discrimination between individual information
and mean information with the parameter γ . As shown in

Table 14, we find that the weight of attack cost is 0.220
(γ = −13.54), 0.500 (γ = 0), 0.732 (γ = 11.21), and
the weight of detected probability is 0.073 (γ = −13.54),
0.167 (γ = 0), 0.244 (γ = 11.21) in the leaf node L1. The
weights calculated by the method in [61] are 0.164, 0.557,
and 0.279, respectively. Obviously, the assignment of weights
is unreasonable and inconsistent with the actual situation
in [36], [45] and [61]. Consequently, the proposed method
fully considers the requirements of risk identification and can
lead to a more reasonable risk assessment result.

Through the above discussion and analysis, we summarize
the advantages of our methods compared with the other meth-
ods in detail below.

1. Different from traditional risk assessment methods,
the weights of risk indices can be adjusted in
the decision-making process by using our proposed
method. They are determined by their closeness to
the highest risk. Our proposed method can effectively
recognize the highest risk because it fully considers the
requirements of risk identification.

2. Our approach has good robustness and flexibility. Its
ranking result of risks is stable and does not change
with the change of the parameter α. In addition,
decision-makers can also choose different values of the
parameter α according to the different risk attitudes.

VI. CONCLUSION
In this paper, we define an order-α divergence measure for
IVIFNs and develop a novel CRA method for ICSs under an
interval-valued intuitionistic fuzzy environment. Finally, we
apply the proposed method to the CRA of a civil aviation fuel
supply automatic control system, verify its effectiveness and
demonstrate its advantages.

In summary, our research has three main contributions:
1. We define an order-α divergence measure for IVIFNs,
which can make up for the gap that there is no divergence
measure with the parameter for IVIFNs. 2. We expand IVIFS
to the CRA of ICSs and formulate integration approaches of
all nodes and attack paths with IVIFNs in the ADT model.
3. We propose a novel CRA method for ICSs. In our method,
we regard the weights of risk indices as variable weight vec-
tors and develop a new technology to determine the weights
of risk indices based on the proposed divergence measure.
The proposed method can effectively avoid irrationality in
the results of risk assessment compared with traditional CRA
methods.

However, the proposed method also has its limitations: 1.
It is only applicable to CRA problems in which evaluation
values are expressed in the form of IVIFS. 2. The risk indices
are regarded as independent without considering their mutual
interaction in the integration process of leaf nodes.

In future research, we are committed to the following
two aspects: 1. We will extend other fuzzy sets to the CRA
of ICSs, for instance, interval-valued q-rung orthopair fuzzy
sets. 2. We will advance some novel CRA methods for ICSs
considering the interactions among risk indices.
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