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ABSTRACT Due to its superlative physical qualities and its beauty, the diamond is a renowned structure.
While the green-colored perimantanes diamondoid is one of a higher diamond structure. Motivated by the
structure’s applications and usage, we look into the metric-based parameters of this structure. In this draft,
we have discussed metric dimension and their generalizations for the generalized perimantanes diamondoid
structure and proved that each parameter depends on the copies of original or base perimantanes diamondoid
structure and changes with the parameter n or its number of copies.

INDEX TERMS Vertex metric dimension, generalized perimantanes diamondoids, diamond structure,
resolving set.

I. INTRODUCTION
Due to its superlative physical qualities and its beauty, the
diamond is a renowned structure. Polishing, drilling, cut-
ting, and heatsink in electronics are numerous practical and
industrial applications of diamond. Its hardness, exceptional
thermal conductivity determines by its rigor of composition.
A single molecule with macroscopic size makes it into a
diamond crystal. The model depicting fundamental atomic
groupings undergoes alterations while going from molecules
to materials, both in terms of idea and actual manifestation,
as well as insignificant computational processing [1].

There are four types of higher diamondoids and each
have been assigned with four different colors and name.
The assigned colors are yellow, red, blue, and green, while
the names are, nonbranched rodlike zigzag catamantanes
associated with yellow. The regularly branched catamantanes
are linked with blue diamondoids, chiral diamondoids are
red-colored and the green-colored are perimantanes diamon-
doids. All these series have been isolated and found from
petroleum [2].

A chemical/molecular graph is a hydrogen-depleted
molecular structure in which the edges represent bonds and
the vertices represent atoms in the underlying organic chem-
ical compounds. The chemical graph theory is the study of
these chemical graphs [3], [4]. There are enough data avail-
able on this assumption and transformation from a chemical
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structure to a graph (vertex-edge-based structure). More
detail can be found in the recent literature such as [5]–[10].

The notion of resolving set was proposed by the researcher
in [11]. It is the first study to look at the notion of finding a
graph’s metric dimension using the definition of a resolving
set. The least cardinality of a resolving set is the metric
dimension. The impetus for inventing the notion of finding
the set came from LORAN and sonar stations. After that,
several academics took this concept and labeled it in a variety
of ways. The idea of a resolving set is dubbed as a metric
dimension in [12]’s study. While the researchers in [13],
[14] renamed the same notion with metric foundation or
resolving set in a purely theoretical fashion. Amore advanced
definition of a resolving set was developed in the last decade.
Researchers of [15] in which the idea of one node faultiness
from the resolving set is explained. The notion is referred to
as a fault-tolerant resolving set, and it is a generalized form
of the resolving set.

Many concepts and implementations sprang from the
generalized approach of resolving set. In electronics, [16],
a recent innovation reveals the implementation of locat-
ing set (and its extensions). A method for studying
diverse polyphenyl structures, especially for the polymer
industry [17]. In the broader view, this idea is used in
combinatorial optimization [18], some complex games or
robotic roving [19], image processing [11], pharmaceutical
chemistry [20].

The job of determining a graph’s resolving set is a non-
deterministic polynomial-time hard problem (NP), with an
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unknown algorithmic difficulty [20]–[23]. Metric dimension
or resolving set has a large literature because of its many vari-
ations and applications in various disciplines. Only the most
current and broad results will be discussed here. The Internet
graph and its fault-tolerant structure are discussed in [24].
Quartz structure is studied with the concept of fault-tolerant
locating number in [25]. Computer-related interconnection
networks are studied in [26]. On the topic of fault-tolerant
locating set, [27] discussed convex polytopes and found their
exact fault-tolerant locating numbers. There is extensive lit-
erature available on this topic, we refer to see some recent
research work on this definition [28]–[32]. A general graph
of a kayak paddle and some other cycle-related graphs are
dealt with in [33]. A cellulose network is studied in [34],
they computed some upper bounds for the structure. A coro-
noid structure is reestablished in the form of a metric of a
graph in [35]. A hydrocarbon-based class of structure was
studied in [36] with the concept of locating numbers and
also determined some other variants. The generalized class
of the Harary family is studied with the definition of locat-
ing set [37]. Generalized Peterson graphs and multi-graphs
are discussed in [3], with the concept of metric basis. The
researchers in [38] studied this definition on the Cayley graph
and find out the locating number for such a generalized class.
Moreover, some recent studies and literature are available
at [39]–[41]. On the topic of partition dimension we refer
to the extensive study and some bounds on this topic, the
literature is [42]–[45].

Given below are some basic concepts elaborated for further
use in our main results.
Definition 1 [46]: ‘‘Let G be a connected graph

with vertex set V (G), the distance between two vertices
v1, v2 ∈ V (G) is the length of a shortest v1− v2 path between
them. It is denoted by d(v1, v2).’’
Definition 2: Let B be an ordered simple subset from the

vertex set of a graph, say B (G) = {v1, v2, . . . , vi}, con-
sider v ∈ V (G) . The location (position, representation)
r (v|B) of v according to the subset B is the i−tuple distances
(d(v, v1), d(v, v2), . . . , d(v, vi)) . Taking any two vertices of
a graph G, if these vertices have different locations r (v|B)
according to chosen subset B, then B is considered as a
locating set for the graph. The minimum possible members
(or the cardinality) of locating set is the metric dimension of
the graph and we will defined this with the symbol dim (G) .
Definition 3: A pertinent chosen subset B which is locat-

ing set becomes fault-tolerant locating set Bf , if it fulfills
the condition Bf \v for each vertex v ∈ lsf and it remains
locating set. The minimum possible members (or the cardi-
nality) of fault-tolerant locating set is the fault-tolerant metric
dimension of the graph and we will defined this with the
symbol dimf (G) .
Definition 4: Let Bp = {Bp1 ,Bp2 , . . . ,Bp` , } be the par-

tition of a connected graph. Now for a vertex j ∈ V (G)
the partition dimension with respect to Bp is r(j|Bp) =
(d(j,Bp1 ), d(j,Bp2 ), . . . , d(j,Bp` )), where d(j,Bw) =

min{d(j, y) : y ∈ Bw} for 1 ≤ w ≤ `. The distinct

codes of the two vertices i, j ∈ V (G) with respect to Bp,
that is r(i|Bp) 6= r(j|Bp), such a partition Bp is known as
distinguishing partition of G and denoted by pd(G) [47].
In this draft, we have discussed metric dimension and their

generalizations for the generalized perimantanes diamondoid
structure and proved that each parameter depends on the
copies of original or base perimantanes diamondoid structure
and changes with the parameter n or its number of copies. The
next section will present some main results, conclusions are
drawn and at the end, references are given for more and deep
insight into this topic and structure.

II. GENERALIZED PERIMANTANES DIAMONDOID
STRUCTURE AND MAIN RESULTS
The structure shown in Figure 1, is a green-colored periman-
tanes diamondoid and one of a higher diamond structure.
Its topological version is found in [1], [2] and motivated
by the structures applications and usage, we look into the
metric-based parameters of this structure. The perimantanes
diamondoid structure has total |V (Dn)| = 22n + 3, number
of vertices and total edges are |E (Dn)| = 38n + 2. The
labelling of vertices and edges is described in the Figure 1
and is utilized in the major results. Furthermore, vertex and
edge are stated given below.

V (Dn)

= {aji : i = 1, 2, . . . , 19, j = 1, 2, . . . , n}

∪ {bi : i = 1, 2, . . . , 3 (n+ 1)},

E (Dn)

= {ajia
j
i+1 : i = 1, 2, 4, 5, 7, 9, 10, 12, 14, 15, 17, 18,

j = 1, 2, . . . , n} ∪ {bibi+1 : i = 1, 4, 7, . . . , 3n+ 1,

i = 2, 5, . . . , 3n+ 1} ∪ {bia
j
2 : i = 1, 4, 7, . . . , 3n− 2,

j = 1, 2, . . . , n} ∪ {bia
j
3, bia

j
4 : i = 2, 5, 8, . . . ,

3n− 1, j = 1, 2, . . . , n} ∪ {bia
j
5 : i = 3, 6, 9,

. . . , 3n, j = 1, 2, . . . , n} ∪ {bia
j
15 : i = 4, 7, 10, . . . ,

3n+ 1, j = 1, 2, . . . , n} ∪ {bia
j
16, bia

j
17 : i = 5, 8,

11, . . . , 3n+ 2, j = 1, 2, . . . , n} ∪ {bia
j
18 : i = 6, 9,

12, . . . , 3n+ 3, j = 1, 2, . . . , n}.

Presented below are the main results of this novel
structure.
Lemma 1: Let Dn is a structure of perimantanes diamon-

doid with n ≥ 1, and B is the vertex resolving set of
Dn for n = 1. Then one of the possible resolving set
is stated by

B = {b1, b4, a17}.

Proof: To demonstrate that the resolving set for the
structure of perimantanes diamondoid, shown in the Figure 1
and labeled as D1, for its particular value of n = 1. Let B be
a resolving set and stated by, B = {b1, b4, a17}. Moreover its
resolving set shown in the Figure 2. The unique locations of
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FIGURE 1. Vertex-edge sets of perimantanes diamondoid structure Dn.

the full vertex set of D1, with regard to the elements of B are
as follows.

r
(
aji|B

)
=



(3− i, 5− i, i) , if i = 1, 2;

(2, 4, i) , if i = 3;

(2, i, i+ 1) , if i = 4;

(i− 2, i, i+ 1) , if i = 5, 6;

(10− i, 10− i, i− 7) , if i = 7, 8;

(i− 7, i− 7, i− 7) , if i = 9, 10, 11;

(i− 8, i− 8, i− 5) , if i = 12, 13;

(18− i, 16− i, i− 13) , if i = 14, 15;

(4, 2, i− 13) , if i = 16;

(i− 13, i− 15, i− 12) , if i = 17, 18, 19.
(1)

r (bi|B) =

{
(i− 1, 3+ i, i+ 2) , if i = 1, 2, 3;

(i, i− 4, i− 1) , if i = 4, 5, 6.
(2)

We also observe that each vertex has a different representation
and satisfy the concept of resolving set based on the argu-
ments given above in the form of identifications of the whole
vertex set of D1, which leads to the conclusion that defined
B is one of a possible resolving set with |B| = 3. �
Lemma 2: Let Dn is a structure of perimantanes diamon-

doid with n = 1. Then

dim (D1) = 3.

Proof: We employ the double inequality method and
refer to Lemma 1 to establish that the metric dimension of
D1 is 3. This plainly demonstrates that the resolving set has
cardinality 3, which is described by B = {b1, b4, a17}.
Now on contrary we have dim (D1) = 2. from the assertion

dim (D1) ≥ 3. Consider the resolving set B′ with cardinality
2. This assumption is discussed in the following cases.
Case 1: Let a chosen subset B′ having two distinct ele-

ments, say B′ = {b1, b2}. The contradiction will be arise due
the vertices which have two distance to any of the chosen ele-
ment of B′. Mathematically, it can be written as r

(
a1i |B

′
)
=

r
(
a1j |B

′

)
= d

(
a1i , b1

)
= 2.

Case 2: Let a chosen subset B′ having two distinct ele-
ments, say B′ = {b1, b3}. The contradiction will be arise due

FIGURE 2. Resolving set of Diamond structure D1.

the vertices which have two distance to any of the chosen ele-
ment of B′. Mathematically, it can be written as r

(
a1i |B

′
)
=

r
(
a1j |B

′

)
= d

(
a1i , b1

)
= 2.

Case 3: Let a chosen subset B′ having two distinct ele-
ments, say B′ = {b2, b3}. The contradiction will be arise due
the vertices which have two distance to any of the chosen ele-
ment of B′. Mathematically, it can be written as r

(
a1i |B

′
)
=

r
(
a1j |B

′

)
= d

(
a1i , b1

)
= 2.

Case 4: Let a chosen subset B′ having two distinct ele-
ments, say B′ = {a1i , a

j
1}, with distinct i, j. The contradiction

will be arise due the vertices which have two distance to any
of the chosen element of B′.Mathematically, it can be written
as r

(
a1α|B

′
)
= r

(
a1β |B

′

)
= d

(
a1α, a

1
i

)
= 2.

Similarly, There is not just one option among the available
combinations |V |C2 =

|V (D1)|!
2!(|V (D1)|−2)!

=
(25)!

2×(23)! = 300 of
the entire vertex set of D1. This indicate that two metric
dimension of D1 is not possible. Hence; dim (D1) ≥ 3.
Hence,

dim (D1) = 3. (3)

�
Theorem 1: Let Dn is a structure of perimantanes diamon-

doid with n ≥ 2. Then

dim (Dn) = n+ 2. (4)

Proof: To show that dim (Dn) = n+2,we will applying
the induction method on n showing the number of copies
of base perimantanes diamondoid graph. The base case for
n = 1 proved in the Lemmas 1 and 2, now assume that the
assertion is true for n = α.

dim (Dα) = α + 2. (5)

We will show that it is true for n = α + 1. Suppose

dim (Dα+1) = dim (Dα)+ dim (D1)− 2. (6)

Using Equations 3 and 5 in Equation 6, we have

dim (Dα+1) = α + 2+ 3− 2,

= α + 3. (7)
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FIGURE 3. Resolving set of Diamond structure Dn.

As a result, the conclusion holds for all positive
integers n ≥ 1.
Moreover, the generalize resolving set for the gener-

alized structure of perimantanes diamondoid, shown in
the Figure 3 and stated by in the set form B =

{b1, b3n+1, a17, a
2
7, a

3
7, . . . , a

n
7}.

This concludes. �
Lemma 3: Let Dn is a structure of perimantanes diamon-

doid with n ≥ 1, and Bf is the vertex fault-tolerant resolving
set of Dn for n = 1. Then one of the possible vertex
fault-tolerant resolving set is stated by

Bf = {b1, b3, b4, b6, a17, a
1
13}.

Proof: To demonstrate that the fault-tolerant resolving
set for the structure of perimantanes diamondoid, shown in
the Figure 1 and labeled as D1, for its particular value of
n = 1. Let Bf be the fault-tolerant resolving set and stated
by, Bf = {b1, b3, b4, b6, a17, a

1
13}. Moreover its resolving set

shown in the Figure 4. The locations of the full vertex set of
D1, in regard to the elements of Bf are described as (8) and
(9), as shown at the bottom of the page.

FIGURE 4. Fault-tolerant resolving set of Diamond structure D1.

We can look over the entire vertex set of perimantanes dia-
mondoid structure D1, have unique locations and fulfilling
the idea of fault-tolerant resolving set, which leads to the
conclusion that defined Bf is one of a possible resolving set
with

∣∣Bf ∣∣ = 6. �
Lemma 4: Let Dn is a structure of perimantanes diamon-

doid with n = 1. Then

dimf (D1) = 6.

Proof: We employ the double inequality approach
and refer to Lemma 3 to establish that the fault-tolerant
metric dimension of D1 is 6. This clearly demonstrates
that the fault-tolerant resolving set defined as Bf =

{b1, b3, b4, b6, a17, a
1
13}, has cardinality 6.

Now we need to prove that dimf (D1) ≥ 6.On contrary we
suppose dimf (D1) = 5. For this, consider the fault-tolerant

r
(
aji|Bf

)
=



(3− i, 5− i, 5− i, 7− i, i, 8− i) , if i = 1, 2;

(2, 5− i, 4, 7− i, i, 8− i) , if i = 3;

(2, 6− i, i, 8− i, i+ 1, 7− i) , if i = 4;

(i− 2, 6− i, i, 8− i, i+ 1, 7− i) , if i = 5;

(i− 2, 2, i, i− 2, i+ 1, 7− i) , if i = 6;

(10− i, 12− i, 10− i, i− 2, i− 7, 15− i) , if i = 7;

(10− i, 12− i, 10− i, 4, i− 7, 15− i) , if i = 8;

(i− 7, 12− i, i− 7, 13− i, i− 7, 14− i) , if i = 9;

(i− 7, 13− i, i− 7, i− 14, i− 7, 14− i) , if i = 10, 11;

(i− 8, i− 10, i− 8, i− 14, i− 5, 13− i) , if i = 12, 13;

(18− i, 20− i, 16− i, i− 14, i− 13, 20− i) , if i = 14;

(18− i, 20− i, 16− i, 18− i, i− 13, 20− i) , if i = 15;

(4, 20− i, 2, 18− i, i− 13, 20− i) , if i = 16;

(i− 13, 21− i, i− 15, 19− i, i− 12, 20− i) , if i = 17, 18;

(i− 13, 4, i− 15, 2, i− 12, 20− i) , if i = 19.

(8)

r
(
bi|Bf

)
=

{
(i− 1, 3− i, 3+ i, 7− i, i+ 2, 6− i) , if i = 1, 2, 3;

(i, 10− i, i− 4, 6− i, i− 1, 9− i) , if i = 4, 5, 6.
(9)
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resolving set B′f with cardinality 5. This assumption is dis-
cussed in the following sections.

Let a chosen subset B′f having five distinct elements, say

B′f = {a
1
i , a

j
1}, with distinct i, j. The contradiction will be

arise due the vertices which have two distance to any of the
chosen element of B′f . Mathematically, it can be written as

r
(
a1α|B

′
f

)
= r

(
a1β |B

′
f

)
= d

(
a1α, a

1
i

)
= 2.

Similarly, there is not a single case among the avail-
able combinations |V |C5 =

|V (D1)|!
5!(|V (D1)|−5)!

=
(25)!

5!×(20)! =

53130 of the entire vertex set of D1. This indicate that five
fault-tolerant metric dimension of D1 is not possible. Hence;
dimf (D1) ≥ 5.
Hence,

dimf (D1) = 6.

�
Theorem 2: Let Dn is a structure of perimantanes diamon-

doid with n ≥ 2. Then

dimf (Dn) = 2 (n+ 2) . (10)

Proof: To show that dimf (Dn) = 2 (n+ 2) , we will
applying the induction method on n showing the number of
copies of base perimantanes diamondoid graph. The base case
for n = 1 proved in the Lemmas 3 and 4, now assume that
the assertion is true for n = α.

dimf (Dα) = 2 (α + 2) . (11)

We will show that it is true for n = α + 1. Suppose

dimf (Dα+1) = dimf (Dα)+ dimf (D1)− 5. (12)

Using Equations 10 and 11 in Equation 12, we have

dimf (Dα+1) = 2 (α + 2)+ 6− 5,

= 2 (α + 2)+ 1. (13)

As a result, the conclusion holds for all positive
integers n ≥ 1.
Moreover, the generalize fault-tolerant resolving set for

the generalized structure of perimantanes diamondoid,
shown in the Figure 5 and stated by in the set form
Bf = {b1, b3, b3n+1, b3n+3, a17, a

2
7, a

3
7, . . . , a

n
7, a

1
13, a

2
13,

a313, . . . , a
n
13}.

This concludes. �
Lemma 5: Let Dn is a structure of perimantanes diamon-

doidwith n ≥ 1, andBp is the vertex partitioning resolving set
of Dn for n = 1. Then one of the possible vertex partitioning
resolving set is stated by

Bp = {Bp1 ,Bp2 ,Bp3 ,Bp4},

Bp1 = {b1},Bp2 = {b4},Bp3 = {a
1
7},Bp4

= V (Dn) \{b1, b4, a17}.

Proof: To prove that the partitioning resolving set
for the structure of perimantanes diamondoid, shown in
the Figure 1 and labeled as D1, for its particular value of
n = 1. Let Bp be the partition resolving set and stated by,

FIGURE 5. Fault-tolerant resolving set of Diamond structure Dn.

Bp = {Bp1 ,Bp2 ,Bp3 ,Bp4},Bp1 = {b1},Bp2 = {b4},Bp3 =
{a17},Bp4 = V (Dn) \{b1, b4, a17}. The locations of the full
vertex set of D1, with regard to the elements of Bp are as
follows.

r
(
aji|Bp

)

=



(3− i, 5− i, i, 0) , if i = 1, 2;

(2, 4, i, 0) , if i = 3;

(2, i, i+ 1, 0) , if i = 4;

(i− 2, i, i+ 1, 0) , if i = 5, 6;

(10− i, 10− i, i− 7, 1) , if i = 7;

(10− i, 10− i, i− 7, 0) , if i = 8;

(i− 7, i− 7, i− 7, 0) , if i = 9, 10, 11;

(i− 8, i− 8, i− 5, 0) , if i = 12, 13;

(18− i, 16− i, i− 13, 0) , if i = 14, 15;

(4, 2, i− 13, 0) , if i = 16;

(i− 13, i− 15, i− 12, 0) , if i = 17, 18, 19.
(14)

r
(
bi|Bp

)
=

{
(i− 1, 3+ i, i+ 2, z) , if i = 1, 2, 3;

(i, i− 4, i− 1, z) , if i = 4, 5, 6.
(15)

where

z =

{
1, if i = 1, 4;
0, otherwise.

(16)

We can observe that each vertice has a different representation
and satisfy the concept of partition resolving set seen from
presentation of the entire vertex set of D1, in the form of
representations which leads to the conclusion that defined Bp
is one of a possible resolving set with

∣∣Bp∣∣ = 4. �
Lemma 6: Let Dn is a structure of perimantanes diamon-

doid with n = 1. Then

3 ≤ pd (D1) ≤ 4.

Proof: To show that the partition dimension of D1 is
either 3 or 4, We employ the method of twofold inequality
and refer to Lemma 5. This clearly shows that the partition
resolving set has the cardinality 4 and has been stated by
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Bp = {Bp1 ,Bp2 ,Bp3 ,Bp4},Bp1 = {b1},Bp2 = {b4},Bp3 =
{a17},Bp4 = V (Dn) \{b1, b4, a17}.
This shows that the partitionmetric dimension ofD1 is four

or less. Two partition dimension is reserved for the path graph
with if and only if condition, so the structure of perimantanes
diamondoid can not have two partition dimension and left
with

3 ≤ pd (D1) ≤ 4. (17)

�
Theorem 3: Let Dn is a structure of perimantanes diamon-

doid with n ≥ 2. Then

pd (Dn) ≤ n+ 3. (18)

Proof: To show that pd (Dn) ≤ n+ 3, we will applying
the induction method on n showing the number of copies
of base perimantanes diamondoid graph. The base case for
n = 1 proved in the Lemmas 5 and 6, now assume that the
assertion is true for n = α.

pd (Dα) ≤ α + 3. (19)

We will show that it is true for n = α + 1. Suppose

pd (Dα+1) ≤ pd (Dα)+ pd (D1)− 3. (20)

Using Equations 17 and 19 in Equation 20, we have

pd (Dα+1) ≤ α + 3+ 4− 3,

= α + 4. (21)

As a result, the conclusion holds for all positive integers
n ≥ 1. This concludes. �

III. CONCLUSION
In this draft, we have discussed metric dimension and their
generalizations for the generalized perimantanes diamondoid
structure and proved that each parameter depends on the
copies of original or base perimantanes diamondoid structure
and changes with the parameter n or its number of copies.
Future direction can be considered as to discussed its other
parameters which are also based on the metric of structure.
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