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ABSTRACT This paper explores the question of how predictive uncertainty methods perform in practice
in Natural Language Processing, specifically multi-class and multi-label text classification. We conduct
benchmarking experiments with 1-D convolutional neural networks and pre-trained transformers on six
real-world text classification datasets in which we empirically investigate why popular scalable uncertainty
estimation strategies (Monte-Carlo Dropout,Deep Ensemble) and notable extensions (Heteroscedastic,Con-
crete Dropout) underestimate uncertainty. We motivate that uncertainty estimation benefits from combining
posterior approximation procedures, linking it to recent research on how ensembles and variational Bayesian
methods navigate the loss landscape. We find that our proposed method combination of Deep Ensemble
with Concrete Dropout, by analysis of in-domain calibration, cross-domain classification, and novel class
robustness, demonstrates superior performance, even at a smaller ensemble size. Our results corroborate
the importance of fine-tuning dropout rate to the text classification task at hand, which individually and
as an ensemble impacts model robustness. We observe in ablation that pre-trained transformers severely
underperform in novelty detection, limiting the applicability of transfer learning when distribution shift from
novel classes can be expected.

INDEX TERMS Bayesian deep learning, natural language processing, text classification, out-of-distribution
detection, cross-domain classification.

I. INTRODUCTION
Reliable uncertainty quantification is indispensable for any
machine learning system trusted in decision-making in many
application domains such as medical diagnosis, self-driving
cars and automated document processing. In any typical
industrial application, we desire predictive uncertainty to
communicate on the model’s lack of in-domain knowledge,
due to either training data scarcity or model design errors,
or its ability to flag potentially noisy, shifted or unknown
input data (see [1] for more detail on sources of uncertainty).

Supervised Deep Learning (DL) algorithms have been
found to provide ‘‘catastrophically overconfident predic-
tions’’ [2] under data distribution shift. Specifically, novel
class distributions can emerge at inference time [3], which
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desirably should be detectable in a model’s uncertainty.
To this end, scalable Bayesian DL (BDL) methods for uncer-
tainty estimation have been recently developed, generating
increased interest from practitioners in need of practical
solutions. BDL comprises an increasingly large range of
theoretically well-motivated predictive uncertainty methods,
yet only some are able to scale in network architecture and
dataset size. Additionally, most surveys and research output
on predictive uncertainty is based on multi-class image clas-
sification or regression experiments. We argue that predictive
uncertainty methods and how well they scale in Natural Lan-
guage Processing (NLP), for text classification tasks, is still
an under-explored question.

The context of our study is a production-level text clas-
sification system for automatically handling incoming com-
munications in information-intensive industries (e.g. legal,
banking, insurance). Imagine a digital-first company where
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each department has its own document classifier operating
under a closed world assumption. However, whenever a client
mistakenly sends a document (car purchase invoice request-
ing a loan) to the wrong department (say underwriting or
medical claims), this can generate high-confidence false pos-
itives that trigger the wrong action (insurance or claim settle-
ment instead of loan application). Similarly, if an insurance
broker suddenly decides to completely change the document
template that clients use to apply for a car loan, the production
model might not find previously salient features which it had
learned to rely on for accurate classification. This shows that
detection of anomalous inputs and shifting distributions is
critical to keep errors in automation low.

We investigate different techniques and procedures for
incorporating uncertainty into Deep Learning models for text
classification, analyzing the degree to which they can reliably
capture uncertainty under extrapolation (outside the support
of the training set), both individually and combined in an
ensemble. Our findings for individual predictive uncertainty
methods are overall consistent with benchmarks in other
modalities, with Deep Ensemble reporting greater robustness
than approximate Bayesian methods. However, we discover
from empirical findings that our newly proposed combina-
tions, particularlyMC Concrete Dropout Ensemble, can push
the bounds by exploiting the in-domain calibration effect
of Concrete Dropout and all-round ensemble qualities for
increased out-of-domain and novel class robustness.

We intend our work to be used as a survey and bench-
mark of scalable BDL methods, where the architectures
and datasets are drawn from NLP, thereby covering a void
in the literature on uncertainty estimation in this field.
Next to proposing a well-motivated evaluation methodol-
ogy, this paper also provides a convenient entry point for
practitioners.1

Our key contributions can be summarized as follows:
• We conduct a benchmarking study of established uncer-
tainty estimation methods applied on real-world text
classification datasets. Our analysis focuses on model
robustness and uncertainty quality in realistic data distri-
butions. We propose a practical methodology to test the
above, resulting in a better understanding of the individ-
ual shortcomings of predictive uncertainty methods.

• We motivate and introduce novel combinations of
predictive uncertainty methods, providing empirical evi-
dence for their complementary benefits. Through statis-
tical analyses and ablation experiments we discern the
importance of certain prior, model or hyperparameter
influences on the reliability of predictive uncertainty.

Organization The paper is organized as follows. Subsec-
tion I-A overviews related work in uncertainty benchmark-
ing, distribution shift, and uncertainty estimation in NLP.
We present core concepts of BDL in Section II to build up
a thorough understanding of predictive uncertainty in theory

1Our benchmarking software [TensorFlow 2] is available at https://
github.com/Jordy-VL/uncertainty-bench

and practice. We include this introductory text for readers
less familiar with uncertainty methods. Subsection II-E crit-
ically analyzes the practice of evaluating uncertainty under
distribution shift. Subsections II-D and III-A stand central in
our work, connecting recent research on how neural networks
navigate the loss landscape with posterior approximation
procedures, followed by our work’s hypotheses on comple-
mentary benefits between predictive uncertainty methods.

Section III details our methodological setup from datasets,
model architectures, uncertainty estimation and evaluation,
to experimental settings. We present in Section IV the results
of 3 large benchmarking experiments, followed by 4 smaller
ablation studies on important hyperparameters. After closing
the discussion in Section V with take-home messages tar-
geting researchers and practitioners interested in uncertainty
prediction in text classification, Section VI draws up some
limitations of our research. Finally, we synthesize our contri-
butions in Section VII and propose directions for future work
on uncertainty research in NLP.

The Appendices support the main text by detailing
implementation (A), practical considerations (compute, tim-
ings) (B), extended experiments with alternative uncer-
tainty methods (C), and detailed evaluation data for full
transparency (D).

A. RELATED WORK
In this Subsection, we overview recent literature on bench-
marking the quality of uncertainty quantification in DL and
more specifically research on uncertainty estimation for NLP
tasks.

Increasingly, there are efforts from the research commu-
nity to help BDL methods scale to real-world scenarios [4].
Benchmarks are an important tool to help researchers priori-
tize the right approaches and to inform practitioners which
methods are suited for their applications [5]. There is a
growing demand for benchmarking in BDL, since methods
must be scored both for task performance and uncertainty
quality [6], [7]. Rigorously evaluating the latter is consid-
erably more difficult, since depending on the problem set-
ting no direct uncertainty ground-truth exists, requiring a
well-defined experimental setup [8].

A standard benchmark in BDL is UCI [9], a set of curated
regression datasets, which allows to judge uncertainty quality
with the predictive log-likelihood metric. However, its gen-
eral applicability and validity has been criticized on multiple
accounts [8], [10], [11].

More recently, [11]–[15] presented large-scale evaluation
studies of BDL methods with benchmarking on real-world
datasets. These studies motivate data retention and distri-
bution shift as generic protocols for evaluating predictive
uncertainty. Similarly, we argue that even mild shifts of data
are unavoidable in real-world applications and, conditional to
specific distribution shift assumptions (see Subsection II-E),
this provides a good testing ground for uncertainty evaluation.

Reference [12] consider two types of distribution shift:
(a) out-of-distribution (OOD) data from separate datasets,
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and (b) adversarial shift, where the test distribution consists
of perturbed or corrupted ground truth data isolated from
training.

In our work we propose novel class detection as an alter-
native to a), which we motivate to be a more representative
experimental setup for testing uncertainty in text classifi-
cation (more detail in Subsections II-E and III-E3). Refer-
ence [16] bring a similar argument against b) that adversarial
examples are often overly synthetic and disconnected from
real-world performance concerns, which we assert to be espe-
cially true for perturbations applied to text data. Therefore,
we derive a challenging experimental setup for b) (more
detail in Subsection III-E2) inspired by the extensive liter-
ature in NLP on the problem of domain shifts and domain
adaptation [17]–[22]. Domain adaptation approaches aim to
mitigate performance degradation that occurs when transfer-
ring a classifier from a source domain to a target domain.
Learning under domain shift presents a complex challenge
in text classification since linguistic patterns can be highly
different across domains, even harder to tackle when domains
are unknown a priori [22]. While out-of-domain generaliza-
tion is the ultimate objective [23], we believe that accurate
uncertainty prediction has a major role to play in the detection
of out-of-domain data, which is currently under-explored.
Reference [24] is a notable exception where predictive uncer-
tainty methods are leveraged to learn domain-invariant fea-
tures in unsupervised fashion.

In this work we only consider methods that directly esti-
mate the predictive posterior and aim at obtaining high qual-
ity uncertainty estimates by discriminative models without
any additional OOD components. However, there exists a
large number of alternative OOD detection and generaliza-
tion approaches. We surmise that these can be more effec-
tive in handling the above distribution shifts, yet they have
different modeling assumptions which complicates a direct
comparison, for instance, access to (auxiliary) OOD data
[25], [26], generative modeling [27], focus on abstention
mechanisms [28], or characterization of dataset shifts with a
two-sample-testing approach [29]. We recommend [30], [31]
for an overview of these approaches.

While previous BDL benchmarks have helped standardize
protocols, metrics and analysis tools, the effort is not spent
equally across all modality and problem settings (as can be
observed in the survey of [32]). Arguably, most research on
uncertainty estimation focuses on regression and image clas-
sification tasks as they offer visual validation on uncertainty
quality, e.g., [33].

Tasks in the NLP field involve discrete natural language
units (word, sentence, paragraph) as input, which requires
a translation to the continuous domain by embedding dis-
crete units to form high-dimensional distributed representa-
tions [34]. This presents additional complexity compared to
image or time-series data which as continuous signals can
be directly fed into a Neural Network (NN). Furthermore,
specialized algorithms (e.g., dealing with long sequences,
attention for larger memory [35]) and progressively more

complex architectures [36] are being created to tackle this
unique challenge in NLP, which can affect the performance
of predictive uncertainty techniques. With our work, we start
the exploration into effects of field characteristics, notably
different NLP architectures, inherent task complexity, and
properties of language in text processing (e.g., ambigu-
ity [37], document length [38], pre-defined vocabulary [39])
that could cause problems when predicting uncertainty. More
specifically, we seek to answer how uncertainty research
translates to a prototypical language task such as text clas-
sification, which more frequently than vision tasks is char-
acterized by non-mutually exclusive labels [40], a problem
setting ignored by existing BDL benchmarks.

BDL research on NLP tasks is generally limited, certainly
when considering quantitative evaluation of predictive uncer-
tainty quality. While we draw inspiration from the uncer-
tainty estimation methods of [41], their study focuses on the
performance increase of non-probabilistic measures (mean-
squared error) and only reports sentiment regression results.
Moreover, we find no quantitative evaluation of the quality
of the uncertainty scores and comparison to simpler mea-
sures of uncertainty, for instance, softmax score or predictive
entropy. [42] does focus on the robustness of pre-trained
Transformers to distribution shift, yet without application of
any predictive uncertainty methods. References [43], [44]
present similar setups applyingMonte Carlo Dropout to regu-
lar NLP architectures in an active learning setup, yet they only
aim to increase overall predictive performance by relying on
in-domain calibration. Our work benchmarks individual and
joint predictive uncertainty methods in multiple text clas-
sification task settings over two well-motivated uncertainty
evaluation setups, testing robustness to distribution shift for
NLP problems.

II. UNCERTAINTY METHODS
The first Subsection formally presents how to quantify uncer-
tainty in BDL and how popular methods approach infer-
ence differently. Subsection II-B treats predictive uncertainty
methods with a focus on the algorithmic procedure, fol-
lowed by representative method extensions for more reliable
uncertainty estimation. Subsection II-C describes from what
sources uncertainty originates and how to quantify uncer-
tainty at test-time. In Subsection II-D we present the rationale
of our study, connecting recent research on howNNs navigate
the optimization landscape with the posterior approximation
procedure of methods from Subsection II-B. Subsection II-E
provides a critical note on how distribution shift impacts
uncertainty estimation and the evaluation thereof.

A. QUANTIFYING UNCERTAINTY IN DEEP LEARNING
In modern Deep Learning, two common uncertainty (or
inversely ‘‘confidence’’) estimates are the maximum pos-
terior class probability, known as softmax-score, and
the predictive entropy over posterior class probabilities
[45], [46]. However, [47]’s work on confidence calibration
demonstrated these to be unreliable estimates of Neural
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Networks’ uncertainty. While post-hoc calibration methods
such as Temperature or Vector Scaling [47], [48] can easily
calibrate classifier uncertainty in-domain (further discussed
Subsection II-E), they have been found to be less effective
under increasing distribution shift [12], [14].

Bayesian Deep Learning (BDL) methods build on solid
mathematical foundations and hold promise for more reli-
able learned uncertainty estimates [7]. Drawing on the
ground-laying works of [49]–[53], the ‘‘second-generation’’
in BDL [54] is geared towards finding practical and scal-
able approximations to the analytically intractable Bayesian
posterior (Eq. 1). Inferring a prediction and the associated
uncertainty for a new test input x∗ (with its associated label
vector y∗) requires computing the conditional probability of
x∗ given the training data D =

{(
x(n), y(n)

)}N
n=1,

P(y∗ | x∗,D) =
∫
P(y∗ | x∗,D, θ)P(θ | D)︸ ︷︷ ︸

posterior

dθ, (1)

with θ representing all Bayesian Neural Network (BNN)
parameters: weights w, biases b.
In our study we will focus on two strategies with repre-

sentative methods that circumvent the inference problem and
have seen more widespread adoption given their ability to
scale both in network architecture and dataset size.

I. The weight snapshots direction, Deep Ensemble [55],
which aims to find different sets of model parameters. Snap-
shots can be collected during different stages of training [13],
[56], [57], or by using a sampling process such as Markov
Chain Monte-Carlo (MCMC) [58]–[60]. II. The stochastic
computation-graph direction, Monte Carlo Dropout [61],
involves introducing noise over weights during training
and estimating uncertainty with multiple stochastic forward
passes. Recent works [62], [63] have proposed ‘‘single-
model’’ uncertainty methods that ideally compute posterior
uncertainty in one forward pass.

Our work benchmarks representative methods from both
categories (denoted by cursive), motivating a cross-category
comparison and analyzing their individual-joint effectiveness
in modeling predictive uncertainty.

Additionally, we experimented with alternative scalable
uncertainty methods, namely stochastic gradient MCMC
methods, cyclical SG-MCMC (cSG-MCMC) [60], and a
single forward pass uncertainty method incorporating a
Gaussian Process (GP) output layer, Spectral-normalized
Neural Gaussian Process (SNGP) [63]. Results and discus-
sion for these are included as self-contained Subsections in
Appendix C.

B. PREDICTIVE UNCERTAINTY METHODS
We will first introduce each method by explaining the algo-
rithm, followed by advantages or identified shortcomings,
with subsequent method extensions from the same procedure
category. Finally, we will zoom in on how to quantify uncer-
tainty using each method.

1) MONTE CARLO DROPOUT
The seminal work of [61] on Monte Carlo Dropout (MC
Dropout, MCD) proposes efficient model uncertainty estima-
tion by exploiting dropout regularization as an approximate
Variational Inference (VI) method. In practice, the MCD
procedure boils down to (i) applying dropout on all non-linear
layers’ weights, and (ii) activating dropout both during train-
ing and evaluation. Quantifying ‘‘epistemic’’ model uncer-
tainty using MCD involves sampling T stochastic weight
sets from the variational Bernoulli distribution θ̂t ∼ q(θ )
to calculate the lower-order moments of the approximate
Gaussian posterior, respectively the predictive mean and
variance (Eq. 2).

µ̂pred (x∗) =
1
T

T∑
t=1

P(y∗|x∗, θ̂t ),

σ̂ 2
pred (x

∗) =
1
T

T∑
t=1

[P(y∗|x∗, θ̂t )− µ̂pred ]2 (2)

MCD’s simplicity and computational tractability,
i.e., dropout training is a standard DL practice and prediction
only requires 1 model to sub-sample from, has made it one of
the most popular predictive uncertainty methods. However,
an important shortcoming of VI, and in consequence MCD
in [61]’s formulation, is that it is known to underestimate
predictive variance [64]. We will touch on a selection of
method extensions in further subsections (II-B3, II-B4).

2) DEEP ENSEMBLE
Deep Ensemble [55] (DE) involves independently training
multiple probabilistic NNs with different random weight ini-
tializations and aggregating predictions from individual mod-
els. An ensemble of NNs trades off computational resources,
due to the need to train and store M models, for uncer-
tainty estimation and robustness to dataset shift [12], [65],
[66]. In comparison to MC Dropout, DEs are treated as a
uniformly-weighted Gaussian Mixture model, to which the
formula for predictive variance is adapted:

σ̂ 2
pred (x

∗) =
1
M

∑
m

(
σ 2
θm
(x∗)+ µ2

θm
(x∗)

)
− µ2

∗(x
∗),

µ∗(x∗) =
1
M

∑
m

µθm (x
∗) (3)

The empirical performance increase of ensembles can be
attributed to the diversity of uncorrelated errors between
ensemble members [67]. Without functional diversity in
sets of model parameters, posterior approximation quality
will be lower (zero variance) and for this reason, ensem-
ble diversity promotion is a promising avenue for further
improvements [68], [69]. Alternatively, the interplay between
ensembling and regularization, ‘‘the effect of a prior’’, war-
rants more thought, since not regularizing risks overfitting,
while too strong regularization risks constraining diversity
(see Subsection II-D).
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FIGURE 1. Visualization of output layer blocks. The left block denotes
standard softmax (multi-class) or sigmoid (binary/multi-label) output.
On the right, the heteroscedastic model outputs a normal distribution
N (µ(x),diag(σ2(x)) parametrizing mean and variance by the logits
coming from two separate preceding feedforward layers.

3) CONCRETE DROPOUT
Reference [70] proposes a Continuous-discrete distribution
relaxation to adapt and optimize the dropout probability p
as a variational parameter using standard gradient descent.
This overcomes the limitations of uncertainty underestima-
tion, miscalibration, and the computational complexity of
manually tuning layer-wise dropout probability in deeper
models [71]. By taking advantage of the reparametrization
trick, the Concrete distribution approximation z̃ of the orig-
inal Bernoulli random variable z conveniently parametrizes
to a simple sigmoid distribution (φ = sigmoid) allowing
for gradient-based optimization. Given a uniform random
noise variable u and a temperature r , the expression varies
with respect to the dropout probability p, which for p →
0.5 produces by a rate of 1

r values approaching 1.

z̃ = φ
(
1
r
(log p− log(1− p)+ log u− log(1− u))

)
(4)

Since the dropout probability characterizes the overall pos-
terior uncertainty, Concrete Dropout can positively influence
in-domain calibration at an almost negligible cost.

4) HETEROSCEDASTIC EXTENSIONS
References [41], [72], [73] proposed similar approaches to
extend MC Dropout to allow measuring uncertainty infor-
mation from different sources. Estimating input-dependent,
‘‘heteroscedastic aleatoric’’, data uncertainty (detail Subsec-
tion II-C3) requires slightly modifying the model’s architec-
ture and objective function following [72].

Firstly, the output layer of model f
θ̂
is extendedwith a set of

learnable variance variables σ 2 per unique class output. The
model’s output logits, v, are sampled from the stochastic out-
put layer parametrized byN (f

θ̂
(x), diag(σ 2(x))). This model

adaptation will be referred to as the heteroscedastic model.
Fig. 1 visualizes the difference in output layer design.

Next, it requires incorporating a heteroscedastic loss:

LHET(θ̂ )=
N∑
i=1

log
1
T

T∑
t=1

exp

(
v(t)i,c−log

K∑
k

exp v(t)i,k

)
+logT

(5)

with N the number of training examples passing through an
instance t of the model f

θ̂t
(x)+ σ (t) ((2 omitted for sampling

superscript) to generate for example i a sampled logit vector
v(t)i ∈ RK , where predicted value for class k , v(t)i,k ∈ R, and
c the index of the ground truth class. The above loss formu-
lation shares notation with a categorical cross-entropy objec-
tive, although the loss is computed over T sampled logits v(t)i
perturbed with parameterized Gaussian noise. By learning
to predict log variance over T dropout-masked samples, the
model will be able to output high variance (uncertainty) for
inputs where the predictive mean is far removed from the true
observation, which by design has a smaller effect on the total
loss.

C. UNCERTAINTY ESTIMATION
In this Subsection, we will introduce sources of uncertainty,
a categorization of uncertaintymeasures, and how uncertainty
is quantified in practice.

1) TOTAL UNCERTAINTY
Classification models trained by minimizing negative
log-likelihood quantify global uncertainty over class out-
comes with entropy (H ) over logits. Therefore, the entropy
of the posterior predictive distribution provides a measure of
the total uncertainty, which is a combination of model and
data uncertainty [74]. Instead of entropy, posterior predic-
tive variance can also be decomposed into model and data
uncertainty using the law of total variance [75]. Decomposing
total uncertainty into the different sources is beneficial for
determining actions to evaluate the room for improvement.

2) MODEL UNCERTAINTY
Epistemic uncertainty presents the inherent ignorance [71] of
the model with regards to the true values for its parameters
and structure after having seen the training data. Next to
predictive variance, Mutual Information (MI) [76] has been
proposed as a measure of epistemic uncertainty, as intuitively
it captures the amount of information that would be gained
about model parameters through ‘‘knowledge’’ of the true
outcome [77].

3) DATA UNCERTAINTY
Aleatoric uncertainty captures the inherent stochasticity
and noise in data. It can be further decomposed into a
homoscedastic component, which represents constant noise
over inputs such as the numerical accurateness of a mea-
suring device, and heteroscedastic uncertainty representing
input-dependent noise generated by class overlap, complex
decision boundaries or label noise [75]. Heteroscedastic data
uncertainty allows for the expression of instance-level uncer-
tainty together with the best possible prediction.

4) UNCERTAINTY CATEGORIZATION
Here follows a categorization of the uncertainty mea-
sures from methods (and combinations) of Subsection II-B.
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We directly provide estimators for the theoretical quan-
tities that are defined as either arising from entropy or
variance-based uncertainty decomposition in [75]. To esti-
mate for a new test sample x∗ the prediction and uncertainty
of model f

θ̂
(x∗) we typically seek to obtain the predictive pos-

terior distribution P(y∗|x∗, θ̂ ) over class membership proba-
bilities with y∗k ∈ {1, . . . ,K }.
For MC Dropout at inference time, we presume

P(y∗|x∗, θ̂ ) ≈
1
T

T∑
t=1

P(y∗|x∗, θ̂t ), with prediction obtained

after applying softmax/sigmoid function for sample t , p̂t =
P(y∗|x∗, θ̂t ). For Deep Ensemble, the above notations would
require a change from T toM , but for consistency over quan-
tity formulas, we maintain T to denote posterior sampling.
For ease of notation, we define a helper entropy function on

H (x∗, ·) = −
K∑
k=1

P(yk |x∗, ·) logP(yk |x∗, ·) with · an input

argument to the function.

Quantity Formula

Softmax-score S = max
k

exp f
θ̂ ,k (x

∗)∑K
j=1 exp fθ̂ ,j(x

∗)

Predictive Entropy Hpred = H (x∗, θ̂ )

Mutual Information I = Hpred − 1
T

∑T
t=1H (x∗, θ̂t )

Model Uncertainty σ̂ 2
model =

1
T

∑T
t=1

(
p̂t − µ̂pred

)2
Data Uncertainty σ̂ 2

data =
1
T

∑T
t=1

1
K

∑K
k=1 var

(t)
k (x∗)

For any classification model, it is possible to compute the
softmax-score and predictive entropy. For multi-label classi-
fication, the softmax-score does not take into account multi-
ple winning classes and a standard approximation2 would be
to average over the sigmoid-scaled probabilities of predicted
classes.

Model uncertainty can be quantified with Monte Carlo
integration or the aggregation of individual models [78].
In practice, it is quantified by either (a) calculating the aver-
age sigmoid/softmax variance over the predictive mean from
MC samples (Eq. 2) or (b) computing the total variance
from an ensemble mixture distribution (Eq. 3). Changing to
the heteroscedastic extensions allows to quantify data uncer-
tainty. More specifically, data uncertainty is quantified with
as ‘‘surrogate’’ [41] the average over variance logits var = σ 2

(see Fig. 1). Whenever ensembling is applied where a single
model estimates a quantity, one typically averages over the
ensemble components’ uncertainty.

2Intending to compare directly with multi-class results, averaging uncer-
tainty estimates to obtain a single summary statistic for multi-label predic-
tions is more straightforward than reporting class-wise results. In particular,
the tested multi-label datasets share low average label cardinality, a high
degree of label correlation, and a large set of unique classes (K > 50).

D. MOTIVATING HYBRID APPROACHES
This Subsection will motivate the theorized complementarity
of VI-based and ensembling methods for improved uncer-
tainty estimation and robustness.

In light of the empirical success of Deep Ensemble, recent
research [7], [79] raises an important question concerning
the difference in function-space between variational Bayesian
NNs (MC Dropout and extensions) and Deep Ensemble.
Deep NNs are parametrized (typically non-linear) func-
tions presenting a high-dimensional non-convex optimiza-
tion problem, which may concern widely varying curvature
and many flat regions with multiple locally optimal points
within each [80]. Applying an optimization procedure to a
maximum-a-posteriori (MAP) objective involves a search for
parameter values (hypotheses) for which the loss function
is low by navigating the high-dimensional loss landscape.
Once model training converges, one ends up with a weight-
space solution, representing a single mode of the parameter
posterior. One such mode is a local optimum of the loss
functionL(θ ), representing unique functions fθ as a set of NN
parameters [57]. Eachmode potentiallymarks ameaningfully
different representation of the data.

The true posterior is generally a highly complex and
multimodal distribution, with multiple possible but not nec-
essarily equivalent parametrizations θ able to fit the train-
ing data. To accurately quantify posterior uncertainty, we
wish to capture as many modes or separated regions as
possible [7], [81].

Correspondingly, the common goal is to achieve reliable
uncertainty and, following the BDL paradigm, one resorts
to modeling a Bayesian posterior. What differs among the
selected predictive uncertainty methods, is the form of the
prior P(θ ) over model parameters and likelihood P(D|θ ) [82],
from which to determine a procedure. Below we expound on
the difference in posterior approximation procedure:
• MC Dropout is a common VI procedure with Bernoulli
dropout and Gaussian (L2) priors on weight-space,
assuming a posterior Gaussian distribution from which
to draw stochastic samples. VI-based methods tend to
locally approximate uncertainty surrounding a single
mode, intra-modal posterior approximation. Specif-
ically, MC Dropout’s procedure can be interpreted
as imposing a spike-and-slab parameter prior with
peaked variance [83], which offers a plausible expla-
nation for approximated uncertainty centered tightly
around 1 mode.

• An ensemble of NNs makes no direct assumptions on
the form or distribution of the prior and just ‘‘obtains’’
different samples from the parameter posterior. It gener-
ates a series of MAP estimates which through inherent
stochasticity in weight initialization and optimization
end up at different regions in weight space, leading to
functionally dissimilar but more or less equally accurate
modes of the solution space. Due to randomness in
the optimization, some solutions may be significantly
worse than others as measured by different metrics
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(e.g., accuracy vs. calibration). Ensembles are effec-
tive at exploring the weight-space and by solving the
MAP estimation problems converge to multiple modes
[81], [84], allowing for inter-modal posterior approx-
imation. Furthermore, by considering more possible
hypotheses they will be better at approximating multi-
modal posterior distributions and avoid the collapse to a
single mode [7].

Combining both procedures is to generate a mixture over
priors [85], which in itself is again a prior, all under the same
likelihood function. There is no guarantee that a combination
of methods from both procedures captures the true posterior,
yet in our work wewill empirically analyse if combining inter
and intra-modal posterior approximation offers the hypothe-
sized complementary benefits.

E. UNCERTAINTY CALIBRATION UNDER DISTRIBUTION
SHIFT

In this Subsection, we motivate the meaningfulness of
evaluating uncertainty methods under distribution shift and
what restricted assumptions one should reasonably specify to
guarantee useful empirical results.

We consider the problem of detecting out-of-distribution
data from a trained classifier’s uncertainty. Let PS (x, y)
and PT (x, y) denote two distinct distributions, respectively
in-domain and out-of-domain. Further we assume the clas-
sifier f → [0, 1] trained on PS , whereas in the experimental
setup we test on a mixture distribution P(S,T )(x, y). Given an
input x from the mixture, we test if the classifier’s uncertainty
can be exploited to distinguish from which distribution the
sample comes. To be clear, in this setting we expect to detect
uncertainty arising from distribution shift and not from a lack
of training data. It can be argued that there is a relationship
between both, as having few in-domain samples complicates
generalization, in turn increasing the chance of flagging a new
data point as OOD.

Uncertainty estimation is generally well-defined in the
context of in-domain data with the standard assumption that
samples are independent and identically distributed (IID).
In this setting, evaluation is typically expressed in terms
of calibration (Def. 1), particularly as statistical error with
respect to the conditional expectation (Def. 2).
Definition 1 (Perfect Calibration [86], [87]): Calibration

is a property of an empirical estimator f , which states that on
finite-sample data it converges to a solution where the scoring
function reflects the probability v of being correct. Perfect
(in-domain) calibration, CE(f ,PS ) = 0, is satisfied if:

P(Ŷ = Y | f (X ) = v) = v, ∀v ∈ [0, 1]

Definition 2 (Calibration Error [88], [89]): The `p cali-
bration error of f : X → [0, 1] under distribution Z over
(X × Y ) with the norm p ∈ [1,∞) is given by:

CEp(f ,Z ) = E(x,y)∼Z
∥∥P[ŷ = y | f (x)]− f (x)

∥∥p (6)
To obtain a reliable probabilistic classifier in the traditional

IID setting, explicit in-domain re-calibration approaches are

effective [47], [90], [91]. However, there is no general prin-
ciple which states that a classifier, however calibrated on PS ,
would be calibrated on OOD data from PT . Infinitely many
possible shifts can violate the standard IID assumption at
varying degrees of severity, affecting calibration and uncer-
tainty estimation in unpredictable ways. With the aim of
still being able to rely on a classifier’s uncertainty cal-
ibration to predict future generalization, there is a need
to relax the IID assumption. An important condition for
meaningful uncertainty estimation is to impose realistic, yet
sufficiently restrictive assumptions on the nature of distri-
bution changes and how PS and PT relate. The covariate
shift [92], [93] assumption may be the most widely studied
when the real-world data distribution differs from the training
distribution.

Recently, [94] formalized the problem of calibrated pre-
diction under covariate shift with theoretical bounds on
calibration transfer over domains. Critically, related works
[95]–[99] prove with importance weighting that shared struc-
ture and high overlap in distribution support (or conversely,
low domain divergence) is crucial to upper bound the increase
of calibration error due to covariate shift. To put it plainly:
while one cannot guarantee calibration on OOD data in
the general case, if domains are reasonably close one can
expect to retain (some if not most) benefits from in-domain
calibration.

Specific to our work, we consider two experimental set-
tings (Subsection III-E) with different distribution shift [100]
between domains. Here we characterize each with the related
distribution shift assumptions. (i) Cross-domain classifica-
tion, where covariates differ PT (X ) 6= PS (X ), but label
distributions are identical PT (Y |X ) = PS (Y |X ) [92]. (ii)Nov-
elty detection, where label distributions disagree PT (Y |X ) 6=
PS (Y |X ), since the label sets differ between domains [Y ]T 6=
[Y ]S [101]. Whereas (i) is a clear case of covariate shift,
we reasonably assume for (ii) that covariates are gener-
ally close PT (X ) u PS (X ) and that the overall condi-
tional shift will be small. Rather than interpreting novelty
as a shift in label sets, one might define the probability of
seeing some labels under S as exactly zero, while under
T their probability is ε > 0. In practical text classifica-
tion settings, novel class inputs will typically start occur-
ring with small frequency in the real-world data distribution,
as well as not having completely different syntax and seman-
tics. This implies that ’excess’ calibration error (defined
as an expectation over the mixture) will only be impacted
slightly.
Clearly specifying distribution shift assumptions is

quintessential for reliably benchmarking uncertainty meth-
ods, since the calibration of each tested method can be
affected in different ways and produce results biased towards
an evaluation configuration. In our selected experimental
settings, we can justify uncertainty calibration under dis-
tribution shift as a reasonable methodology, without making
further claims on the general applicability of this evaluation
procedure.
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III. EXPERIMENTAL METHODOLOGY
In this work, our objective is to reliably benchmark both
existing and novel combinations of predictive uncertainty
methods in order to draw conclusions for text classification
applications. This Section describes our study’s experimental
methodology with which we generate the empirical evidence
presented in Section IV. Subsection III-A introduces our
hypotheses on complementary benefits for uncertainty esti-
mation and details the hybrid methods. Provided the focus
on text classification tasks, Subsection III-B motivates a set
of representative datasets, with a specification of different
text problem characteristics. Subsection III-C documents two
pre-selected text classification architectures, the first a simple
and more controllable configuration for uncertainty bench-
marking, the second a more complex NLP architecture for
which wewill compare relative gains in robustness. To ensure
correct performance benchmarking, Subsection III-D sum-
marizes the metrics used for evaluating calibration and
robustness. Finally, Subsection III-E expounds on the model
setups and experimental settings devised to compare predic-
tive uncertainty methods.

A. PROPOSED HYBRID APPROACHES
This Subsection stands central in our work in which we
motivate combinations of predictive uncertainty methods.
We build hypotheses on complementary benefits from com-
bining multiple uncertainty methods, for which we present
an overview of hybrid methods in scope of our experiments
(Table 1).
Given the obvious parallels and differences between both

procedures presented in Subsection II-D, we hypothesize
complementary benefits for uncertainty estimation and
robustness.
A. Whereas ensembles are adept at capturing multiple

modes, they do not approximate uncertainty surrounding
a singlemode in solution space. However, since there is a
lot of redundancy in function space, local neighborhood
uncertainty approximation might make only a minimal
contribution to the overall posterior uncertainty. [79] val-
idated that applying subspace sampling on an optimized
solution improves in-domain accuracy and calibration.
They note improvements relatively lower than increas-
ing ensemble size (M ), yet they did not analyze for joint
effectiveness.

B. A procedure can only be as good as the prior and
the likelihood function, which in approximation of the
intractable parameter posterior is limited by computa-
tional constraints (number of MC samples T , number
of ensemble models M ). By lack of any specific prior
constraining the optimization of independent ensem-
ble members, the regularization effect from VI-based
priors such as dropout may introduce smoothness
[102], [103], inducing a simpler optimization landscape
with less (possibly weak) hypotheses present. In turn,
by modeling an ensemble of VI approximate posteriors
less ensemble members could be required to reach the

TABLE 1. In total, we consider 18 model setups, based on combining
methods and options from each column. (*) Deterministic dropout can
only combine with Deep Ensembles. CE stands for cross-entropy loss.

same in/out-of-domain performance as measured by the
size and quality of captured solutions. Reference [79]
already observed that ensembles saturate after reaching
peak in-domain performance, with suboptimal models
taking over the benefit.

C. Important to note is that the influence of the prior
and variational parameters requires fine-tuning, since
over-regularization will reduce the optimization prob-
lem to onewith an over-smooth, possibly unimodal land-
scape [57], [81]. This eliminates any functional diversity
for whatever ensemble size, where the solution will be
overconfident. Alternatively, since the hypothesis space
for a NN is often so large, with many possible likely
models for finite data, that some posterior collapse will
often be desirable to reduce the number of considered
hypotheses. [7].

Table 1 summarizes all model setups and hybrid meth-
ods considered for our experiments. The most complete
combination is MC Concrete Dropout Heteroscedastic Deep
Ensemble, where each member m of the ensemble has opti-
mized the layer-wise dropout rate p and heteroscedastic loss
LHET, with the final predictive distribution over K classes
deriving from M times T stochastic MC Dropout samples
(M × T × K ).

We admit two baselines, Unregularized and Regularized.
Unregularized (p = 0) offers a clean comparison, dis-

counting any influence of sparsification (dropout) or nor-
malization of weight magnitude (weight decay). However,
it possibly overfits parameters to training data. In practice,
one would always apply some combination of regularization
(dropout, weight decay, batch normalization, data augmenta-
tion, . . . ) to counter overfitting. Regularized (p = 0.5) gives
an alternate point of comparison over uncertainty methods,
such that we can exclude that performance increase for an
uncertainty method does not only come from regularization,
which some such as MC Dropout rely upon.

Adhering to good practices and since we build ensembles
with default M = 5, we report the mean (and standard devi-
ation) for all individual models, making the results more sta-
tistically reliable than comparing to 1 independently trained
model.

B. DATASETS
We use six well-studied real-world text corpora characterized
by a different number of classes, classification task, and size
of the documents (Table 2).
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TABLE 2. D denotes the number of documents in the dataset, K the
number of classes, I the class imbalance ratio [104], W the average
number of words per document, V the total vocabulary size respectively.

The first three datasets share the task of multi-class classi-
fication in three different text domains.
20News [105] is a collection of 20K newsgroup docu-

ments with balanced samples for 20 different newsgroups.
To allow for direct comparison, we use the dataset in the
benchmark format of [106].
IMDB movie reviews [107] (imdb) is a large senti-

ment classification dataset which links user-based reviews of
movies with labels on an ordinal scale between 1 and 10.
Since there are no standard splits for this dataset we generate
randomized (seed 42) stratified splits of 65% for training,
15% validation and 20% for testing.
CLINC-OOS (CLINC150) [108] is a recently become

popular intent detection dataset comprising 150 training sen-
tences for each of the 150 system-supported services. Next
to this, it offers a separate Out-of-Scope (OOS) subset with
1200 natural sentences which can be used for Out-of-Domain
(OOD) detection, more specifically detecting novel class
instances. This dataset differs from the previous two through
very short ‘‘intent’’ sentences requiring classification in a
large output space. For training and evaluation, we use the
predefined splits of TensorFlow Datasets.

We include two popular multi-label text classification
datasets, since they are often not considered for uncertainty
experiments. We argue that they should be included since
their multi-label nature is very common in text classification
where not all labels have to be mutually-exclusive, e.g., topic
categorization, subject attribution, . . .
Reuters ApteMod [109] is a multi-label news topic

categorization dataset with 90 possible topics and an aver-
age low label cardinality (C) of 1.24. We use the standard
ApteMod splits.
Arxiv Academic Paper Dataset (AAPD) [110]

comprises 55,840 computer science paper abstracts that have
been labeled with corresponding multiple subject matters.
Each academic paper has on average 2.41 subject targets with
a minimum of 2. For reproducibility purposes, we use the
same preprocessing steps and splits as in [110], [111] with
1K dev and 1K test samples.
Amazon Reviews [17] is a widely-used benchmark for

domain adaptation research in NLP. It consists of binary
sentiment classification datasets from four different domains:
Books, DVDs, Electronics and Kitchen appliances. Each
domain dataset contains 1K positive and 1K negative labeled
instances. Following the convention of previous works
[21], [112], we construct 12 balanced cross-domain sentiment

analysis tasks, where for each source dataset we randomly
hold out 400 test instances to evaluate in-domain and always
predict on the full target dataset. We reserve this dataset for
cross-domain experimentation only (Subsection III-E2).

C. ARCHITECTURE
This Subsectionmotivates the twoNLP architectures in scope
for the experiments.

1) TEXTCNN ARCHITECTURE
We use a 1-D Convolutional NN for text classification
(TextCNN), following the model structure of [113].We chose
this architecture for its comparative simplicity and solid out-
of-the-box performance on a range of text classification tasks.
Even as a light-weight model, it can deal with feeding
in text sequences of varying sizes and learning n-gram-like
structures over word embeddings, allowing a fair compari-
son across text datasets. An extensive hyperparameter study
determined that regularization does not impact performance
much [114].

2) TRANSFORMER ARCHITECTURE
Models in NLP have become increasingly deeper and more
complex with the advent of the Transformer architecture
[35]. [115] have combined multiple bidirectional Trans-
formers with wordpiece tokenization and self-supervised
pre-training objectives —masked language modeling and
next sentence prediction— to create the contextual rep-
resentation modeling architecture BERT. It allows for
fine-tuning on downstream tasks where BERT has out-
performed task-specific architectures even in low resource
settings. In our experiments we use BERTbase (uncased,
English): 12 layers, 768 hidden dimensions, 12 attention
heads, with a total number of 110M parameters.

3) COMPLEXITY
TextCNN comprises only 6M parameters with most param-
eters residing in the embedding matrix. However, it is
restricted to a fixed window size with the downside of not
being able to determine long-distance dependencies in text.
BERT, on the other hand, has already captured prior language
modeling knowledge thanks to pre-training. Nevertheless,
our experiments already involve significant computational
complexity, which is why we decided not to run all vari-
ations with BERT. TextCNN presents a more controllable
configuration, achieving decent performance and satisfying
for the evaluation of predictive uncertainty in text classi-
fication. We include an ablation study (Subsection IV-D2)
comparing specifically selected models trained with BERT
as base architecture.

D. EVALUATION METRICS
Since no single metric measures all desirable properties of
predictive uncertainty, we use a variety of conventional met-
rics to evaluate our models’ performance, (a) calibration
metrics, b) proper scoring rules and c) classification scores.
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FIGURE 2. Simplified block-diagrams for each of the NN architectures,
demonstrating on which layer weights dropout is applied.(a) The TextCNN
model architecture with 3 kernels (K1− 3), E word embedding
dimensionality and F number of feature maps per kernel. (b) The BERT
model architecture with L Transformers blocks, hidden size H and
number of self-attention heads A.

For in-domain evaluation, we use the following metrics:
• (a) Expected Calibration Error (ECE) [47], [88] is
an intuitive metric often used in practice to score the
calibration of maximum posterior predicted probabili-
ties. This metric separates the probability space in B bins

where for each bin the gap between observed accuracy
and bin confidence P̄b is measured, with a final average
weighted by number of samples per bin |bi|.

ECE =
B∑
i=1

|bi|
N

∣∣acc(bi)− P̄b (bi)∣∣ (7)

Alternative (theoretical) formulations have been devel-
oped for multi-class [116], [117] and multi-label calibration
[87], [118]. Measurements of ‘‘strong’’ calibration, over
the full predicted vector instead of the winning class, are
reported less in practice. Possible reasons are that they render
class-wise scorings, potentially based on adaptive thresholds,
or require estimation of kernel-based calibration error to
derive hypothesis tests. While we are mindful of alternatives,
‘‘weak’’ calibration measured by ECE meets the practical
requirements for our benchmarking.

Next to calibration, we turn to proper scoring rules [119],
which calculate scoring at the instance-level while measuring
both the quality of accuracy and calibration (decomposable
into refinement and calibration losses [120]).
• (b) Negative Log Likelihood (NLL) [121] is both a
popular loss function (cross-entropy) and scoring rule
which only penalizes (wrong) log probabilities qi given
to the true class, with I an indicator function defining the
true class. This measure more heavily penalizes sharp
probabilities, which are close to the wrong edge or class
by over/under-confidence.

LNLL(Q, y) = −
1
N

N∑
i=1

K∑
k=1

I (yi = k) · log
(
qi,k

)
(8)

• (b) Brier Score [122] is a scoring rule that measures the
accuracy of a probabilistic classifier and is related to the
mean-squared error loss function (MSE). Brier score is
more commonly used in industrial practice, since it is
an `2 metric (score between 0 and 1), yet it penalizes
tail probabilities less severely than NLL.

LBS(Q, y) =
1
N

N∑
i=1

K∑
k=1

(
I (yi = k)− qi,k

)2 (9)

For distribution shift evaluation, we use binary classifica-
tion metrics following [106], (c) AUROC and AUPR, both
threshold-independent measures with the latter accounting
better for class imbalance, which we use to summarize detec-
tion statistics of positive (out-of-domain) versus negative
(in-domain) instances. When evaluating a model trained in
a source domain on a target domain with a similar task,
we denote accuracy in the target domain asOODaccuracy as
opposed to accuracy in the source domain, which we denote
as ID accuracy.

E. EXPERIMENTAL DESIGN
We have determined three logical settings in text classifica-
tion to evaluate predictive uncertainty for each model setup.
We present experiments on in-domain uncertainty to form
baseline results, followed by cross-domain classification with
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a focus on out-of-domain detection, and finally we propose
novelty detection as a new protocol to evaluate predictive
uncertainty.

While there is no gold standard procedure for comparing
multiple (uncertainty) methods over multiple (text classifica-
tion) datasets, we opted for an established procedure with sta-
tistical testing via multiple comparisons [123], [124]. Since
we present an exhaustive list of model setups, we present our
results in terms of rank and critical difference diagrams in
order to analyze relative performance of each method over
different experimental settings.

Concretely, each dataset concerns independent measure-
ments, for which we rank eachmethod, then compare average
ranks, and in the event that we can reject the null-hypothesis
(H0: all methods have the same rank), we calculate post-hoc
tests with critical differences over methods. However, only
reporting ranks does not allow future researchers to compare
to our work, which is why we include detailed absolute
number results in the Appendix D.

1) IN-DOMAIN SETTING
To evaluate in-domain (ID) uncertainty, we will focus on
measuring calibration and prediction quality with proper
scoring rules (see Subsection III-D). The ID setting assumes
that the train and test examples are independent and identi-
cally distributed (IID). To capture all details, we compare per
task-setting, multi-class and multi-label, and finally zoom in
on dataset-specific observations. For the in-domain evalua-
tion, we focus on unique contributing effects per predictive
uncertainty method and the relation between method combi-
nations and evaluation metrics.
• When evaluating with proper scoring rules, does an
absolute increase in combination size (higher T or M )
correlate with better performance?

• What effect —equal over all tasks, datasets or
architectures— can be discerned per unique predictive
uncertainty method?

2) CROSS-DOMAIN SETTING
Since we test over sentiment classification datasets frommul-
tiple domains (Amazon Product Reviews), we seek to ana-
lyze uncertainty reliability across domains. However, learned
knowledge from a source domain can often transfer to clas-
sification in the target domain. Provided this setting we
need to account for cross-domain generalization next to out-
of-domain detection, the latter which is the focus of our
experiments.

Cross-domain generalization - how well does a classifier
trained in a source domain perform on a dissimilar target
domain sharing a similar task? The aim of cross-domain
generalization is to learn a robust classifier, which can
perform well in multiple domains even if there is limited
labeled data in some of the domains. Domain discrepancy
is a major challenge, where, for instance, linguistic sen-
timent expressions used in one domain can be different
from that of the source domain. For example, ‘‘garbage

disposal’’ is neutral in kitchen appliances whereas a ‘‘garbage
movie’’ is strictly negative. This domain discrepancy chal-
lenge is often approached by adaptation [21], [125] or encour-
aging domain-agnostic feature representations [20], [112].
We propose to test out-of-domain detection with predictive
uncertainty as a viable fallback strategy when achieving gen-
eralization over domains is difficult.

Out-of-domain detection - how reliably can a classifier
trained in a source domain communicate uncertainty in a
target domain provided good/bad generalization?Whenever
a model does not generalize to OOD examples, we would
expect a model to be uncertain, allowing detection in order
to abstain or trigger conservative fallback strategies [126].
As a proxy to good/bad generalization we measure the gap
between in-domain and target domain accuracy as evidence
of train-test skew. We argue that our current setting is more
realistic than benchmarking OOD detection in totally dis-
parate domains such as evaluating a newswire classifier on
movie reviews.

Our analysis will be centered on the following question:
• How does domain similarity affect out-of-domain detec-
tion with uncertainty methods? Is there a clear increase
of uncertainty given a higher OOD generalization gap?

3) NOVELTY DETECTION SETTING
Novelty detection - how well can the model identify and
communicate uncertainty on samples of a novel class? In the
worst case, classifiers ‘‘fail silently’’ and wrongly attribute
high confidence to an in-distribution class [127], [128]. In the
best case, the model either lowers its confidence or signals
uncertainty. Prior work hypothesizes model uncertainty to be
mostly impacted [72], [129].

With this experiment we simulate the conditions of novel
class data by removing a single or multiple classes during
training. The resulting distribution shift is not too far from
the original domain and cannot be considered fully out-of-
distribution (as detailed in Subsection II-E).

We determine diverse novelty detection strategies adapted
per dataset. For 20news, we follow [12], [106] and take out
all odd-numbered classes to simulate novel distribution shift.
Since imdb is a sentiment classification dataset, we isolate
the middle class, rating ‘‘5’’ out of the 10 ratings, from
training and expect the models to allocate prediction mass
to a label close to the holdout class (ratings ‘‘4’’ or ‘‘6’’).
CLINC-OOS provides a separate out-of-scope intents set on
which we assess novel class robustness.

We devise a new strategy for the multi-label classification
datasets, where we would isolate a class that is very distinct
from the remaining classes, i.e., (i) by not appearing often
in the originally multi-label annotated dataset jointly with
the remaining classes, and (ii) occurring frequently enough
to guarantee representative results. We draw statistics on the
label co-occurrence rates of each dataset, and find that for
Reuters ‘‘Acquisitions’’ (id:0) occurs in 94% of documents
as a single topic, making it an ideal candidate for testing
novel class detection. For AAPDwe apply the similar strategy
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FIGURE 3. In-domain results with critical difference diagram comparing all methods by average rank, with the calculated
critical difference in the top-left and Friedman χ2 p-value top-right. Concrete Dropout Ensemble achieves the highest NLL
rank. While comparing over 5 datasets, the critical difference is large, with only the two aforementioned methods
significantly differing from MC Dropout.

and find the frequent label ‘‘CS.it’’ (id:0) to have relatively
low label- co-occurrence (2.49), even when there are at least
2 labels to be predicted per sample. We isolate all examples
where the novel class appears, either alone or in combination
with other labels.

We focus our analysis around three specific questions con-
cerning predictive uncertainty under distribution shift, and
compare generally to other modality benchmarks:
• Do hybrid predictive uncertainty methods incrementally
or critically improve detection of unseen class instances?

• Does calibration in the in-domain setting translate to
calibration under distribution shift?

• Do we see the same trends as in benchmarks from dif-
ferent modalities (Subsection I-A)?

IV. RESULTS
We will present the experimental results in a step-wise man-
ner to avoid confusion on the conclusions to be drawn. We
start with general and task-specific trends observed for the
in-domain setting, followed by the distribution shift exper-
iments, cross-domain classification and novelty detection.
Finally, we present 4 ablation studies on critical, learned
or empirically set hyperparameter values. In addition to the
visualizations and analyses presented in this main Section,
we include the raw evaluation data in Appendix D-B for
comparisons and reproducibility.

A. EXPERIMENT: IN-DOMAIN
Naively combining predictive uncertainty methods will not
give any absolute performance increase, as proper scoring
rules show no correlation (-0.01) with the absolute number
of predictive uncertainty methods combined. This requires
deeper analysis to identify which singular or hybrid methods
do significantly outperform baselines.

First, we visualize general results with critical difference
diagrams comparing all methods by average ranking over
datasets (Fig. 3). Critical difference (CD) can be interpreted
as the smallest difference between methods which is likely
to indicate a significant improvement. In short, the null
hypothesis —there is a significant difference between the

TABLE 3. In-domain (left) combined Brier and NLL proper scoring rule
pairwise comparison counts of wins/draws/losses and (right) ECE metric
reported for comparing in-domain calibration. For in-domain predictive
accuracy, ensembles clearly are superior. Considering only miscalibration,
Concrete Dropout generally adds calibration to predicted probabilities.
The combination with MC Dropout gives unpredictable ranking results.

methods— cannot be rejected for all methods connected
by a dark bar. We also report Friedman χ2, which is a
non-parametric statistical test that considers ranking methods
over different attempts, in our case datasets, requiring a min-
imum of 3 methods in comparison. This test checks whether
the measured average ranks are significantly different from
the mean rank that is expected under the null-hypothesis.
Table 3 shows more detailed pairwise comparison scores,

demonstrating that if both proper scoring rules are consid-
ered, plain ensembles and hybrid methods based on deep
ensembles are overall superior to single model uncertainty
prediction methods. However, the benefit resides more in
accuracy than calibration, where some single model predic-
tive uncertainty methods rank higher, specifically Concrete
Dropout.

For a most complete answer to unique effects per pre-
dictive uncertainty method, we need to analyze dataset-
specific results. Detailed results per dataset and metrics
(AppendixD-AFig. 22) reconfirm that amethod’s superiority
(i.e., for the whole application domain of in-domain text
classification) should not be concluded based on 1 single
dataset. Each dataset has specific problem characteristics,
which affect method ranking differently at varying magni-
tudes. However, the comparative performance of eachmethod
is not fully dependent on the dataset tested, with Deep Ensem-
ble performing reliably in-domain as evidenced by rank.
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B. EXPERIMENT: CROSS-DOMAIN
This Subsection is dedicated to analyzing predictive uncer-
tainty methods under domain shift. We first present results
on cross-domain generalization, followed by a challenging
OOD detection setting. Finally, we draw parallels between
both settings’ experimental results.

We conduct extensive experiments on the benchmark
Amazon product review datasets on a total of 12 source-
target domain configurations. Each domain is abbreviated
by its first uppercase letter: (B)ooks, (D)VD, (E)lectronics,
(K)itchen. Fig. 4 reports on the lowest cross-domain gen-
eralization gap between ID and OOD domain datasets.
We observe higher ID accuracy for Kitchen and Electronics,
which can indicate a relatively lower complexity of domain
sentiment. Importantly, the gap between Kitchen - Electron-
ics and Books - DVD are smallest overall, coinciding with
our intuitions on domain similarity. Remarkably, regularized
Deep Ensemble trained on Book reviews even scores higher
accuracy (+1.8%) on its target domain (B−→D).

To analyze the cross-domain performance of predictive
uncertainty methods we report average rank ID NLL and
OOD accuracy (Fig. 5). Heteroscedastic Concrete Dropout
Ensemble ranks highest in-domain when evaluated with
a proper scoring rule. Models without any regularization
achieve higher OOD accuracy scores, with Deep Ensemble
significantly outperforming more than half of the predictive
uncertainty methods (first black bar). A possible explanation
could be that most target domain data is more similar to the
source domain than expected, effectively giving an edge to
methods that achieve high ID accuracy.

To evaluate Out-of-domain detection, we report AUROC
ranks in Fig. 6 and additionally plot OOD detection over
generalization scores in Fig. 7. Concrete Dropout Ensemble
and variations outrank other methods on OOD detection.
Nevertheless, we must nuance the ranking results since the
magnitude of AUROC is generally low, close to random
(50-54%) with no class imbalance, over all 12 cross-domain
settings. These results might indicate that from the perspec-
tive of the methods tested, there are no salient differences
between the different domains. More specifically, Books and
DVD as a source have AUROC scores on target OOD domain
data centered around 51% and Kitchen and Electronics as
a source have comparable AUROC scores with 1 higher
AUROC (54%) cluster for OOD Books and DVD targets.

Additionally, Fig. 23 in Appendix D-A demonstrates a
similarly clear difference in correlation effect size of uncer-
tainty quantities with ID-OOD data depending on the target
domain, e.g., high overall mean correlation (0.3) for Kitchen
source evaluated on the disparate domain of Books, whereas
uncertainty correlation on Electronics averages around 0.1 for
the most correlated quantities.

C. EXPERIMENT: NOVELTY DETECTION
Before analyzing which predictive uncertainty methods pro-
vide better detection of instances of an unseen class, we report

on how uncertainty metrics (cf. Subsection II-C4) correlate
with novel class data.

In Fig. 8 the final rank over datasets confirms the supe-
rior robustness of predictive entropy as an uncertainty met-
ric. Logically, it is closely followed by maximum softmax
score. Next, model uncertainty correlates generally well with
novel class data. Interestingly, model uncertainty outperforms
entropy on AAPD, with most methods showing the need for
learning from more data to better approximate the model
parameters.

Similarly to the evaluation of in-domain performance,
we use CD diagrams (Fig. 10) with binary detection metrics
AUPR and AUROC to provide a ranking of predictive uncer-
tainty methods over datasets.

The absolute pairwise comparisons (Table 9) confirm
that hybrid predictive uncertainty methods improve detec-
tion of novel class data. Quite surprisingly, Deep Ensemble
which ranked absolute highest for in-domain, drops multiple
ranks in favour of combination ensembles (Heteroscedastic
Ensemble or even MC Concrete Dropout). The in-domain
calibration effect from Concrete Dropout appears to pass
over to this novelty detection setting. More importantly,
it also helps boost the novelty detection performance of Deep
Ensembles when jointly used (e.g., MC Concrete Dropout
Ensemble).

While comparing over 5 datasets, there is no critical dif-
ference between the average ranking of methods, which can
point to task or dataset-specific interactions.Fig. 11 shows the
variation of AUROC performance for the different methods,
from which we can observe that (non-finetuned) dropout
sampling (MC Dropout) under-performs in most datasets,
most clearly on AAPD, by severly underestimating uncer-
tainty on samples of a novel class. We also observe relative
benefits of the Heteroscedastic loss function for multi-class
text classification, which most clearly is represented in the
CLINC150 results. The same visualization allows us to eval-
uate the quality of uncertainty quantification for eachmethod.
Generally, epistemic uncertainty derived from ensembles
offers higher quality detection of novel class data than single
model predictive uncertainty. This effect is clearly visible
for multi-class classification where the ensembles clearly
group on top, as opposed to the results for the multi-label
datasets.

Additionally, we visually detail in Appendix D-A Fig. 24
density estimates for uncertainty quantities with respect to
in-domain versus novel data with most hybrid ensemble
methods demonstrating better separable densities.

D. EXPERIMENT: ABLATIONS
In this Subsection, we zoom in on the best performing uncer-
tainty prediction methods relative to the complementary ben-
efits hypothesized for hybrid approaches (Subsection III-A),
provide explanations for results specific to an architecture
(TextCNN vs. BERT, Subsection III-C3), and present abla-
tions on critical hyperparameters.
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FIGURE 4. Lowest accuracy generalization gap, in-domain (Acc_ID) minus out of domain (Acc_OOD) accuracy (y-axis), of all predictive
uncertainty methods per source−→target domain combination (x-axis).

FIGURE 5. Average rank of in-domain NLL for the 4 source datasets (left) and out-of-domain accuracy over 12 source-target configurations (right) for all
tested predictive uncertainty methods.

FIGURE 6. Average rank of OOD AUROC over 12 cross-domain settings for
predictive uncertainty methods.

FIGURE 7. AUROC detection magnitude (y-axis) mapped over OOD
accuracy (x-axis) with a legend on the right for methods that support
uncertainty estimation.

1) DIVERSITY
Diversity of samples drawn from a posterior, either via T
MC samples and/orM ensemble components, is an important
condition for efficient uncertainty estimation. If each sample

presents a similar function, the overall prediction can be
overconfident, and increasingly drawing samples will not
reduce this. We derive a small experimental setting from [79]
to measure function-space diversity for all predictive uncer-
tainty methods involving posterior sampling.

In Fig. 12 we analyze the relation between accuracy
and diversity as measured by Kullback-Leibler divergence
between a sampled prediction and the predictive mean,
1
T

∑T
t=1 KL(p(y

∗
|x∗, θ̂t )||p̄(y∗|x∗, θ̂ )). For a fair comparison,

we calculate diversity at the ensemble level if a predictive
uncertainty method consists of multiple models, else at the
dropout sample level.

While the diversity-accuracy plane does not provide a
one-on-one linear relationship, we note in Fig. 12 (a,b,d)
promising results for hybrid ensemble methods, which with
higher diversity improve on accuracy over Deep Ensemble.
The visual of imdb (c) registers overall low diversity, even
for simple predictive uncertainty methods which generally
achieve higher diversity, albeit by capturing multiple dissimi-
lar yet weaker functions. For AAPD (e), most methods are tied
for exact accuracy even with different diversities.

2) NLP ARCHITECTURE
We selected specific representative predictive uncertainty
methods on the basis of our previous experiments to run
with the Transformer BERT as base architecture. We argue
that the chosen architecture can have a non-negligible impact
on uncertainty estimation, and we compare with the simple
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FIGURE 8. We report the Pearson Correlation Coefficient (PCC) between uncertainty values and binary variable ID-OOD for 5 benchmark datasets. Higher
absolute correlation score points to stronger association of uncertainty and novelty detection. *Model Uncertainty (MU), Data Uncertainty (DU), Mutual
Information (MI).

FIGURE 9. Novelty detection CD diagram of AUROC.

yet controllable TextCNN architecture in order to investigate
whether the same conclusions hold for novelty detection.

The separate Out-of-Scope set of CLINC150 allows us
to easily evaluate novelty detection with BERT. We observe
in Fig. 14 on CLINC150 that BERT does increase novelty
detection over all metrics. Even without any hyperparam-
eter tuning Unregularized BERT outperforms all TextCNN
models. Overall, we register the same ranking of predictive
uncertainty methods, albeit a Deep Ensemble with BERT
is superior to hybrid ensembles. Crucially, we note that the
correlation of epistemic uncertainty with novelty detection
is higher for each TextCNN ensemble than for every single
BERT model.

Most notably, results on all other datasets are inconsistent
with the above. For comparison, we have trained an informed
sub-selection of predictive uncertainty methods with BERT
as base architecture (Fig. 13).

Generally, we observe in (a,b) higher ID accuracy for
BERT with relatively slighter gains when ensembling.
AUROC scores (c,d) are well below even single TextCNN
models, pointing to a crucial deficiency with BERT in a
novelty detection setting. The correlation of epistemic uncer-
tainty with novel class samples draws a similar picture (e,f).
MC Heteroscedastic Concrete Dropout Ensemble on imdb
does produce more correlated epistemic uncertainty than all
other methods.

3) ENSEMBLE SIZE M
Combining models to an ensemble generally benefits per-
formance both in and out-of-domain. Previous research
[55], [79] worked out that ensembling benefits stagnate with
larger model size M . Fig. 15 selectively reports novelty
detection metrics or uncertainty correlation scores for all
ensemble-based methods of different sizes.

AUROC score for CLINC150 (15b) is a representative
example of the expected effect of ensembling. Importantly,
it provides crucial evidence for our general hypothesis,
demonstrating that ensembling over predictive uncertainty
methods gives complementary benefits in novelty detection
settings. What is similarly interesting is that the relative ben-
efit of ensembling shows slightly different curves in certain
cases. Epistemic uncertainty for imdb (15c) already attains
similar performance at M=2, again showing comparatively
slower (since less required) increase at larger M for hybrid
ensembles. AAPD (15e) shows more stagnant behavior for the
reliability of entropy with growing ensemble size, irrespec-
tive of the predictive uncertainty method.

4) CONCRETE DROPOUT p
Fig. 17 relays an important observation on the dataset-wise
adaptation of Concrete Dropout: increasing the learned
dropout rate as is required for the problem at hand. This
reinforces the argument against fixed-rate dropout.

Reference [70] remarked that practitioners started to adopt
the strategy of fine-tuning dropout with a bottleneck pat-
tern, i.e., start with a higher dropout rate in early layers
and decrease the deeper you go in the network. Our results
(Fig. 16) shows discrepancy with this practice, specifically
for20news andCLINC150.We do note that both converged
to low dropout rates, which can provide the basis for this
differing behavior.

V. DISCUSSION
Our study investigates both scalable and hybrid procedures
for incorporating uncertainty into Deep Learning models for
text classification. Next to baseline in-domain uncertainty
evaluation, we have designed two experimental settings, nov-
elty detection and cross-domain classification, to analyze the
reliability of uncertainty. Additionally, we devised ablation
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FIGURE 10. Novelty detection CD diagram of AUROC.

FIGURE 11. Comparison with AUROC(↑) and Epistemic uncertainty PCC(↑) for task and dataset-specific differences in novel class detection.
Methods with 0 correlation do not support model uncertainty quantification.

FIGURE 12. Detailed accuracy scores mapped over diversity measured by KL divergence for each of the benchmark datasets.

studies to analyze important hyperparameters in connection
to our three hypotheses (Subsection III-A) on complementary
benefits for hybrid uncertainty prediction methods.

Benchmarking uncertainty methods We summarize our
findings succinctly and discuss the results of each experimen-
tal setting.
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FIGURE 13. Novelty detection scores mapped per architecture for the benchmark datasets without dedicated OOD split. The legend of Fig. 11 applies
here.

FIGURE 14. Detailed AUROC-epistemics (PCC) scores mapped per
architecture on CLINC150. Best performance: upper-right corner. The
legend of Fig. 11 applies here.

We find that individually (> indicating ‘‘outperforms’’
over all experiment settings):
Deep Ensemble > Concrete Dropout > (MC) Het-

eroscedastic ≥ MC Dropout
We find that jointly, by considering method combinations:
(MC) Concrete Dropout Ensemble ≥ (MC) Heteroscedas-

tic Ensemble > MC Concrete Dropout > Deep Ensemble >
Deep Ensemble Regularized > MC Dropout

In-domain results (Subsection IV-A) corroborate the supe-
riority of Deep Ensemble with high accuracy and proper
scores (NLL, Brier). Table 3 demonstrates that the improve-
ments come from accuracy as opposed to calibration, where
Concrete Dropout-based methods rule.

Cross-domain experiments (Subsection IV-B) give dif-
fering conclusions: cross-domain generalization results are
similar to in-domain, whereas out-of-domain detection fol-
lows novelty detection results. Our evaluation of uncertainty
quantities (Fig. 23) demonstrate reliably higher correlation of
uncertainty with domain discrepancy.We do take note of rela-
tively lowmagnitude AUROC (Fig. 6), which underlines how
challenging out-of-domain detection is in a domain adapta-
tion setting with comparably similar linguistic patterns.

Novelty detection (Subsection IV-C) in text classifica-
tion gives reverse results: Hybrid ensemble methods with
Concrete Dropout rank highest scored by AUROC, AUPR
and model uncertainty correlation, followed by other method
combinations that induce calibration. We do note that spe-
cific method performance is often tied to task and dataset
characteristics, with results averaged over the 5 benchmark
sets showing statistically non-significant differences between
methods. As shown in Table 9, standard Deep Ensemble,
i.e., without any regularization or prior from combiningmeth-
ods, perform worse outside the in-domain setting. The case
for standard MC Dropout is even worse with novel class
robustness (AUROC and AUPR) lower than the Unregular-
ized point-estimate model.

Remarkably, BERT performs worse than the simpler
TextCNN model at detecting distribution shift in the form
of novel class data (Fig. 14). Results on the OOS set of
CLINC150 differ from results obtained on all other datasets,
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FIGURE 15. Visualization of representative dataset-quantity/metric combinations mapped over stepwise increasing ensemble size M. Note that positive
and negative correlations are corollary to the quantity reported. Given the small relative differences, plots are best viewed online.

FIGURE 16. Learned layer-wise dropout probability per layer for each method with Concrete Dropout. The first 3 layers are the CNN kernels (K1− 3),
followed by the penultimate layer µ, possibly with σ for modeling heteroscedasticity. The legend of Fig. 17 applies here.

which we believe can be attributed to the short, in-domain
intent commands differing strongly in vocabulary with the
OOS samples, resulting in a comparatively less challenging
novelty detection setting. We contend that novelty detec-
tion is actually more challenging for BERT despite of its
pre-trained language modeling knowledge and because of the
strict requirement to fine-tune the task-specific final layer

with new supervision. Its ability to detect (and overly rely on,
e.g., [130]) statistically relevant yet possibly spurious cues
in language data will make it overconfident with transfer to a
new task when the IID assumption cannot be maintained.

Validating hybrid approaches We have empirically
analyzed individual-joint effectiveness in modeling pre-
dictive uncertainty and will answer our three hypotheses
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FIGURE 17. Top: Average epoch of convergence per dataset. Bottom:
Average learned Concrete Dropout probability per dataset over predictive
uncertainty methods. We observe very dataset-dependent dropout rates.

on complementary benefits from combining inter and
intra-modal posterior approximation.

Firstly [A], ensembling (increasing M ) proves to give rel-
atively higher performance benefits than stochastically sam-
pling predictions from an optimized solution (T ). The effect
is clearest in the in-domain setting (Table. 3) and is less
pronounced in the out-of-domain settings. For a given pre-
dictive uncertainty method, we cannot provide solid evidence
that uncertainty reliability always improves when subspace
sampling (increasing T , ‘‘MC’’). AUROC and AUPR rank-
ings (Figs. 10 and 6) present evidence in favour, although
Fig. 11 depicts a more fine-grained comparison over datasets
and uncertainty methods. Our analysis of diversity (Fig. 12)
shows promising results for hybrid ensemble methods, which
exhibit higher diversity in posterior samples resulting in
improved accuracy.

Secondly [B], our newly proposed hybrid uncertainty esti-
mation methods improve effectively over singular methods,
both in novelty detection (Table 9 and Figs. 10, 11) and out-
of-domain detection (Fig. 6). Additionally, in ablation studies
we find (Fig. 15) that combining predictive uncertainty meth-
ods in an ensemble attains higher performance with a lower
number of models (M < 5) compared to a Deep Ensemble
(M = 5).

Thirdly [C], Table 3 demonstrates that MC Concrete
Dropout improves over MC Dropout (p=0.5) on ECE and

proper scoring functions. The out-of-domain experiments
(detail: Fig. 11) similarly show that not fine-tuning dropout
to the dataset and task at hand is detrimental even when
combining models into an ensemble (e.g., MC Ensemble
vs. MC Concrete Dropout Ensemble). Ablation on Con-
crete Dropout (Fig. 17) points to very dataset-dependent
learned probability rates, which vary strongly layer-wise
(Fig. 16). We link the empirical superiority of MC Concrete
Dropout Ensemble to balanced posterior collapse, thanks to
the VI-based optimization of the dropout prior. We tenta-
tively claim that the former provides constrained hypothesis
support and a more fine-tuned influence of prior.

Benchmark comparison When comparing our results to
existing BDL benchmarks, most observations are consistent
for in-domain and out-of-domain performance.

Our in-domain results are most similar to [12], where
Deep Ensemble outperforms most methods, —albeit in their
survey they did not compare combinations of predictive
uncertainty—, in our benchmark closely followed by hybrid
ensemble methods. When evaluating over various data reten-
tion rates [11] observed that ‘‘an ensemble of MC Dropout
models’’ (our MC Ensemble) consistently outperforms all
other methods. This survey offers the closest point of com-
parison, although our experimental settings vary. While we
cannot directly compare cross-domain detection with other
benchmarks, we argue that our cross-domain classification
setting mimics their low data regime experiments.

Across different modalities and tasks, Deep Ensemble has
been reported to consistently outperform VI-based methods,
most specificallyMCDropout, with/without distribution shift
(image classification [12], molecule prediction [131], and
pendulum physics [132]). However, for a binary image classi-
fication problem, [11] report higher accuracy forMCDropout
compared to Deep Ensemble, whereas our results suggest that
MC Dropout can induce positive calibration, yet score lower
on accuracy and with proper scoring rules. In their experi-
ments they use a fixed dropout rate of 0.2 and fine-tuned
weight decay rate, making them fitting for their task at hand
and explaining possibly optimistic results. Another uncer-
tainty quantification benchmark [15] reports strong results
on image classification for various Monte Carlo methods,
although we cannot make a direct comparison. For further
discussion, we refer the reader to Appendix C-A.
Our results suggest that BERT performs worse in a nov-

elty detection setting, whereas [42] concludes that Trans-
formers are considerably more robust when compared across
domains, e.g., detection of news samples with a sentiment
classifier. We point out below that both settings are in fact
incomparable. We evaluate detection on novel samples which
have alike vocabulary characteristics to the source domain
albeit they are excluded from training supervision. Their
setting evaluates detection between very disparate domains
where linguistic patterns are significantly different and BERT
will most probably fallback to its pre-trained knowledge for
detection. In short, we do believe that pre-trained Transform-
ers could perform better under varying distribution shifts, yet
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with our results underpinning the exception of novel class
detection. More research is needed into how the inductive
bias from given NN architectures influences approximate
inference.

Take-homes For predictive uncertainty in text classifica-
tion, we derive a number of take-homes from the benchmark-
ing evidence, centered around practical facets to consider for
applications.

One has to consider (i) ease and cost of implementation,
(ii) computational and memory complexity, comprising train-
ing compute, test compute and storage/memory constraints,
(iii) the degree of fine-tuning required, (iv) type of super-
vision; multi-class with low/high number of classes (K ) or
multi-label with low/high cardinality (C), (v) expectation of
distribution shift; in the form of novel class data or unseen
language patterns, and (vi) support for uncertainty quantifi-
cation by source.

For a prototypical low K multi-class text classification
task, we advise Deep Ensemble for solid in-domain perfor-
mance and adequate distribution shift robustness. In the case
of memory or storage constraints, for example if your base
model already has high complexity, using (MC) Concrete
Dropout will provide calibration benefits both in and out-of-
domain, albeit at a slightly larger implementation cost. Sim-
ilarly, to constrain computational complexity, it can be more
sensible to rely on a TextCNN ensemble (5*6M parameters)
rather than BERT (110Mparameters). Considering time com-
plexity, we have added detailed compute, time and storage
statistics for evaluated methods (Appendix Subsection B-B).
We would advise against using MC Dropout if the dropout
rate and weight regularization are not fine-tuned for the prob-
lem at hand. Our benchmarking experiments demonstrate the
unpredictable behavior of fixed-rate MC Dropout, compared
to Concrete Dropout, which we used as a proxy for models
with fine-tuned dropout ratio. This (mal)practice should be
highlighted as it has substantial impact on uncertainty esti-
mation and robustness.

If K starts to increase, it warrants the effort to imple-
ment the Heteroscedastic loss function, which will make the
model more calibrated in-domain. Additionally, it enables
data uncertainty estimation for possible noisy ground truths,
which can happen more frequently with a larger number of
classes.

IfC grows larger, reliable epistemic uncertainty estimation
becomes more important, since the problem is made more
complex given the larger number of label combinations. Our
evidence is slightly contradicting, with results obtained on
Reuters suggesting MC Concrete Dropout Ensemble and
on AAPD warranting Deep Ensemble. What should be clear,
is that any form of ensembling is valuable in multi-label
classification to boost performance.

Under the expectation of distribution shift in the form of
novel class data, adding Concrete Dropout with stochastic
sampling to an ensemble, MC Concrete Dropout Ensem-
ble, gives relatively strong benefits compared to a regular

Deep Ensemble. Ablations also show that less models (M )
would be required to reach similar performance. Generally,
in-domain calibration inducing methods are more robust
when applied in the tested out-of-domain settings. For the
in-domain setting, the incorporation of data uncertainty incre-
mentally improves multi-class text classification. Ablation on
NLP architectures (Subsection IV-D2) points to a deficiency
of BERT for detecting novel class data and would similarly
be advised against in favour of simpler text classification
architectures.

VI. LIMITATIONS
As with the majority of benchmarking literature in Bayesian
Deep Learning, the design of the current study is subject to
limitations.

The first limitation concerns selection bias for text clas-
sification datasets. We benchmark 6 prototypical text classi-
fication datasets covering binary, multi-class, and multi-label
classification by topic, sentiment and intent. The task domain
of text classification is very large with additionally interesting
variations of (i) short social media or long business document
text, (ii) hierarchical or extreme multi-label text classifica-
tion, and (iii) challenging task settings such as fake news
detection or reading comprehension. Since these present open
sub-problems in text classification we did not consider them
for our benchmarking study, yet encourage analysis for future
research.

The second limitation is related to the representativeness
of uncertainty quantification methods. We specifically opted
for scalable procedures which have been increasingly gaining
attention by practitioners. In total we derive 18 method com-
binations from two competing predictive uncertainty proce-
dures, for which we already resort to statistical summaries
and rank-based evaluation to present results. Due to com-
putational constraints, retraining min. 5 ensembles of size
M = 5 per dataset and per experiment setup, we did not
consider a natural Bayesian extension of Deep Ensemble,
Bayesian Ensemble [10] where all weight initialization is
shared around a single prior. Additionally, in Appendix C we
include preliminary experiments with two new uncertainty
approaches, cyclical SG-MCMC [60] and SNGP [63], which
are less practical to benchmark, but bring promising ideas for
improved, high-quality uncertainty estimation.

Finally, evaluating the quality of uncertainty quantification
is an open problem in BDL, typically approached with proxy
setups, as is the case in our benchmarkwith a focus on novelty
detection and cross-domain generalization. Subsection II-E
presents a nuanced view of this evaluation practice. In addi-
tion, evaluating reliable uncertainty estimation in NLP as
opposed to other modalities is complicated due to the dis-
crete nature of language. Ideally, we would have extended
our benchmark with more probing setups covering situations
where we expect predictive uncertainty to be crucial, for
instance, when dealing with noisy supervision/inputs or low
data regimes.
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VII. CONCLUSION
In general, while seeking to optimize for a well-approximated
(whether or not Bayesian) posterior, current predictive uncer-
tainty methods are imperfect and very often practically
not useful. However, the need for practical and scalable
solutions to both incorporating and evaluating the quality
of uncertainty is huge, as it is a prerequisite to reliable
automation. Uncertainty quantification requires modality
to task-specific benchmarking to help practitioners safely
rely on them and inform researchers to prioritize the right
approaches.

In this work, we have presented empirical evidence from
benchmarking uncertaintymethods in text classification, con-
tributing and calling attention to the under-explored study
of uncertainty quality and model robustness in realistic NLP
data distributions.

Interestingly, we find that general behavior of predictive
uncertainty methods does not hold over different datasets,
with method performance often tied to the text classification
task. Overall, we cannot discern a clear winning predic-
tive uncertainty procedure, yet some methods clearly per-
form worse. Although a universal methodology is absent,
we observe that there are specific correlations between a
method’s performance and the problem setting representing
text classification task characteristics, for which we have
formulated practical take-homes.

An important contribution is the proposed novel combina-
tions of predictive uncertainty methods. Our benchmarking
experiments have revealed MC Concrete Dropout Ensem-
ble to be overall superior at novel class and out-of-domain
detection in text classification, even with a lower ensemble
size. Most notably, it outperforms Deep Ensemble which
has leading performance in recent BDL surveys on image
data.We linked complementary benefits of hybrid uncertainty
estimation methods to ongoing research on NN diversity in
function-space and have provided more evidence in support
of hybrid approaches. We have determined in an ablation
study that M , ensemble size, T , number of Monte Carlo
samples, and p, dropout probability rate, are crucial hyper-
parameters to take into consideration for improved robust-
ness and uncertainty estimation. Finally, we experimentally
validated predictive uncertainty methods on real-world text
classification tasks, including multi-label targets, coupling
our hypotheses and results to the NLP problem space. Cru-
cially, we found an important deficiency of BERT, compared
to a more simple NLP architecture TextCNN, with respect to
novel class robustness, limiting the applicability of transfer
learning from pre-trained Transformers under the expectation
of uncertainty and novel class instances.

To further improve calibration and robustness in the text
classification domain, and by extension uncertainty in NLP,
we need to better understand what will make existing or novel
uncertainty estimation techniques successful. This requires
the development of well-motivated tooling and protocols to
reliably assess the quality and fidelity of posterior approx-
imation. Generally, the role of priors in increasingly larger

TABLE 4. Compute and storage costs in Big-O notation [12] for
uncertainty methods.

models deserves more attention. While our work focused
on posterior geometry and weight-based priors in the form
of regularization, stronger, more meaningful functional pri-
ors exist, which should be exploited to encourage desirable
predictive behavior such as robustness to specific distribu-
tion shift. Particularly for NLP, more focused research is
required into what aspects —language data characteristics,
inherent task difficulty or ambiguity, architecture design,
learned representations, objectives, and effective parameter
usage— render NLP pipelines more complex to imbue with
reliable uncertainty and guarantee future out-of-distribution
robustness.

APPENDIX A
IMPLEMENTATION DETAILS
In this Section, we describe the implementation details for the
different datasets, architectures and inference methods used
in our benchmark.

A. SOFTWARE AND DATA
We have published our benchmarking software at https://
github.com/Jordy-VL/uncertainty-bench so that the com-
munity can continue to build on our work. We have
added detailed instructions for reproducibility and exten-
sibility. This allows anyone to test on a new dateset of
interest, implement a new uncertainty estimation method,
or evaluate on https://github.com/Jordy-VL/uncertainty-
bench/tree/main/datasets.

B. HYPERPARAMETER DEFAULTS
For each baseline architecture and uncertainty method com-
bination, we describe hyperparameter values in detail for
facilitating future replication.

Our choice of hyperparameter values for TextCNN is heav-
ily based on [114], for fine-tuning BERT on [44], [115] and
we draw inspiration from [41] for uncertainty estimation
method parameters. We seek to restrict hyperparameters as
much as empirically plausible to 1 static setting over datasets
per architecture.

We constrain the input vocabulary to the 20,000 most
frequent words (30K for 20news and AAPD), retain the
original document lengths, remapping tokens with a fre-
quency lower than 3 to UNK and PAD tokens are masked
throughout. For TextCNN 300-D embeddings are uniformly
initialized upon which three different kernels (3,4,5) oper-
ate with 100 feature maps per kernel followed by a max
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TABLE 5. CLINC-OOS models with training timings (in seconds) per epoch and total running time.

TABLE 6. CLINC-OOS models with inference timings presented in unit time for how many batches or samples can be processed in 1 second wall-clock
time over CPU and GPU. For the short sequences of CLINC, both models allow a batch size of 32.

pooling operation. For BERT we tokenize and encode using
the standard BERT tokenizer with maximum sequence length
determined per dataset [20news: 250, CLINC: 50, IMDB:
350 and Reuters/AAPD: 200].

Following the MC Dropout procedure we apply drop-
out [133] with a rate of 0.5 after each non-linear weights
layer, which is detailed per architecture in Fig. 2. We found a
global weight decay rate of 1e-4 [134], [135] to work well for
TextCNN, whereas we disabled weight decay for BERT since
it overpenalized model complexity, resulting in vanishing
gradients.

During training TextCNN, Adam optimizes cross-entropy
or heteroscedastic loss (see Section II-B4) with a learning rate
of 1e-3 for 45 epochs on batches of size 32. For fine-tuning
BERT, we schedule the learning rate starting from 1e-5 to
1e-6 with batch size 16 and train for 20 epochs (longer than
the original recommendation, following [136]). We use early

stopping conditioned on the validation loss with sufficient
epochs to ensure all models are trained until convergence.
Else the models might have learned to approximate well
the mean of the predictive posterior distribution, but not the
variance. At evaluation time, we estimate predictivemean and
uncertainties by drawing T samples from the approximated
predictive posterior distribution or by averaging overM mod-
els. We have empirically set T to 10 and for ensembles the
number of modelsM to 5.

APPENDIX B
PRACTICAL CONSIDERATIONS
A. TAKE-HOME SUMMARY
Concretely, for a multi-class problem with a large num-
ber of classes, incorporating input-dependent data uncer-
tainty improves accuracy and novelty detection. With high
label cardinality in multi-label classification, we recommend
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FIGURE 18. CD diagram of NLL for base and SNGP method combinations with a TextCNNv2 backbone.

FIGURE 19. CD diagram of AUROC for base and SNGP method combinations with a TextCNNv2 backbone.

ensembling for more reliable epistemic uncertainty estima-
tion. More generally, we advise against usingMC Dropout if
the dropout rate and weight regularization are not fine-tuned
for the problem at hand, drawing parallels to dropout proba-
bility rates adaptively learned with Concrete Dropout.
Hyperparameter considerations We reiterate important

hyperparameters and reasonable defaults for text classifica-
tion tasks similar to our benchmark setup and applications of
the above.
• Dropout rate p: the original work suggested a fixed
binary rate (p=0.5), whereas our experiments indicate
different rates are more applicable per dataset. It is best
to cross-validate layer-wise dropout probabilities for any
real-world application, where impossible it warrants the
low effort of incorporating Concrete Dropout, conse-
quently reducing experimentation time.

• Weight decay L2: best to start with small values
[1e-6 - 1e-4] and fine-tune accordingly. Take note to not
apply global weight decay in case of pre-trainedweights,
which already have high weight magnitudes, possibly
impeding learning.

• MC Dropout T : a small number (T=10) of stochas-
tic samples suffices, if large number of classes, scale
sub-linearlywithK . T also applies to the number of sam-
ples drawn to calculate heteroscedastic loss, so beware
increasing to too large values since it affects training
compute.

• Ensemble size M : a total of (M=5) ensemble models
is plenty, certainly when combining with fine-tuned
dropout rate at the individual model level.

B. COMPUTE VS. PERFORMANCE TRADE-OFF
Next to performance, practitioners are generally concerned
with computational and memory costs. [15] present similar
concerns in the benchmarking of uncertainty methods. Con-
sidering the cost of compute vs. storage, each uncertainty
method impacts both differently. Following [12], we present
computational and memory costs for evaluated methods sym-
bolically (Big-O), withm flops or storage for a trained model,
l represents flops or storage for the last layer, T denotes
sampling or replications, and ι GP inducing points.
Our experiments were carried out on a system with a

Intel Core i7-10750H 2.6 GHz CPU and NVIDIA GeForce
RTX 2070 Max-Q GPU.
Additionally, we provide an informative table with training

(Table 5) and test (Table 6) timings provided over all single
models on CLINC-OOS.

APPENDIX C
ADDITIONAL UNCERTAINTY APPROACHES
Next to the method combinations benchmarked in the main
work, we acknowledge two alternative approaches to uncer-
tainty estimation with appealing properties such as training
scalability and cheaper inference.

A. STOCHASTIC GRADIENT MCMC METHODS
There exists a wide range of sampling-based inference
methods in the stochastic gradient MCMC (SG-MCMC)
literature, which have become increasingly more tractable
and empirically successful for uncertainty estimation.
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FIGURE 20. AUROC scores over unique (abbreviated) methods per dataset. Error bars are computed over multiple runs (5 seeds) for non-ensembles.

FIGURE 21. Left: AUROC scores (y-axis) over all datasets with unique runs plotted for base (s = 0) and SNGP TextCNNv2 models with varying spectral
normalization multipliers (x-axis). Lines with shading indicate the trend observed between AUROC and s. Right: AUROC mean and stddev over runs,
sampling and datasets.

Specifically, we re-implemented an exemplary approach [60],
cyclical SG-MCMC (cSG-MCMC), which uses a cosine
cyclical learning rate schedule [137] to (i) better explore

the highly multimodal loss landscape and (ii) sample more
efficiently from the posterior. While this appealing approach
reduces computational complexity by only training a single
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FIGURE 22. Comparison with NLL(↓) for dataset-specific differences in method performance.

FIGURE 23. We report the Pearson Correlation Coefficient (PCC) between uncertainty values and binary variable ID-OOD for
Amazon product review datasets. A higher absolute correlation score points to stronger association of uncertainty and
out-of-domain detection. *Model Uncertainty (MU), Data Uncertainty (DU), Mutual Information (MI).

model, we experienced that it is very tricky to finetune
with many hyperparameters interplaying. Instead of bench-
marking these methods and reporting scores over ranges of
hyperparameters, we provide a discussion of the perceived
gap in theory and practice for this family of uncertainty
methods.

While the stochastic MCMC setting, estimating parameter
updates from minibatches, is computationally convenient,
it induces several theoretical challenges: i) minibatch noise
introduced from small subsets of data [138], ii) omission of
the Metropolis-Hastings correction step provides fundamen-
tally biased estimates of posterior expectations [139], and
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FIGURE 24. A selection of most interesting Gaussian kernel density plots over (abbreviated) model setup metrics evaluated on all datasets in
row order 20news (a-c), CLINC150 (d-f), imdb (g-i), Reuters (j-l), AAPD (m-o). Each plot captures probabilistic density over correct ID (green),
incorrect ID (red) and OOD (purple).From left to right, we have selected a high rank, middle rank, and low-rank method and uncertainty quantity
combination. The density estimates demonstrate clear empirical difference over all datasets for various uncertainty quantities.

iii) the suggested practice of temperature tempering implies
an approximation to the exact posterior instead of proper
convergence [140], [141].

Closer to practice, [60]’s methods have been successfully
benchmarked [15], [140] with reported performance on OOD
detection for image classification datasets comparable to or
better than Deep Ensembles. An important caveat is that all
hyperparameters have beenmeticulously finetuned to the task
at hand. This is non-trivial given the additional specification
of the number of cycles as guided by a training budget,

proportion of burn-in steps, and finding an appropriately
tempered posterior. The original work [60] mentions little
dependence of results on these modifications to the optimiza-
tion procedure, yet we observed similar to [141] ‘‘the com-
plexity and fragility of hyper-parameter tuning, including the
learning rate schedule and those that govern the simulation of
a second-order Langevin dynamics’’. Additionally, making
combinations of uncertainty methods with cSG-MCMC is
non-trivial, since regularization in any form influences the
large scale curvature of the regions the optimizer explores.
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TABLE 7. Comparison over in-domain setup for TextCNN models. Results presented as mean ± std. dev. across datasets.

TABLE 8. Comparison over novelty detection setup for TextCNN models. Results presented as mean ± std. dev. across datasets.

TABLE 9. Comparison over novelty detection setup for BERT models. Results presented as mean ± std. dev. across datasets.

With regards to re-implementation, we experienced issues
with the indexing of sparse gradient updates for the embed-
ding lookup, an operation pervasive inNLP architectures. Our
original baseline models were trained with Adam optimizer,

which consistently outscored any of our cSG-MCMC exper-
iments built upon SGD modifications.

There is an unmistakable complexity with how to sam-
ple appropriately from the true posterior, as we now rely
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TABLE 10. Comparison over Amazon cross-domain setup for TextCNN models. Results presented as mean ± std. dev. across datasets.

TABLE 11. Comparison over in-domain setup for SNGP TextCNNv2 models. Results presented as mean ± std. dev. across datasets.

TABLE 12. Comparison over novelty detection setup for SNGP TextCNNv2 models. Results presented as mean ± std. dev. across datasets.

much on the training data, a ‘‘weak’’ regularizer, on how to
add noise for parameter space exploration. Concurrently, the

overparametrized regime is becoming commonplace in Deep
Learning, especially in NLP with the advent of Transformers,
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TABLE 13. Comparison over in-domain setup for TextCNN models. Results presented as mean ± std. dev. across 5 runs for non-ensembles.

TABLE 14. Comparison over novelty detection setup for TextCNN models. Results presented as mean ± std. dev. across 5 runs for non-ensembles.

TABLE 15. Comparison over Amazon cross-domain setup for TextCNN models. Results presented as mean ± std. dev. across 5 runs for non-ensembles.

which calls for more sensible priors for more than millions of
parameters [142] and a better understanding of how output
functions are affected [143]. We believe stronger priors are
available, not only over parameters P(θ) but rather over func-
tions P(fθ (x)) as specified by the choice of architecture [139],
which can make this family of methods an even more com-
petitive challenger.

B. SPECTRAL-NORMALIZED NEURAL GAUSSIAN PROCESS
Reference [63] propose with Spectral-normalized Neural
Gaussian Process (SNGP) a principled, scalable approach
to uncertainty estimation for deep NNs. They promote ‘‘dis-
tance awareness’’ as a necessary condition, which they
accomplish via spectral weight normalization and a GP out-
put layer. Thanks to the mean-field approximation [144]
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TABLE 16. Comparison over in-domain setup for SNGP TextCNNv2 models. Results presented as mean ± std. dev. across 5 runs for non-ensembles.

only a single forward pass suffices without MC sampling
to estimate the predictive distribution. Empirically, SNGP
was shown to outperform Deep Ensemble by some margin
on OOD detection for both image and text data. By demon-
strating the relative importance of the decision boundary of a
single model fθ (y|x) versus averaging over multiple models,
we are inspired to analyze the combination of SNGP with
alternate uncertainty methods.

We have re-implemented SNGP using components of
edward2 [145], Laplace approximation, random feature GP
and spectral normalization. In our experience, the most cru-
cial hyperparameters to finetune were the number of inducing
points (ι ≤ 1024) and spectral norm multiplier s. For the
latter, we follow the recommended tuning procedure to find
an appropriate value in the range {1, 2, 5, (10, 15)}, where we
heuristically increased the search space.

For simplicity and computational reasons, we use
TextCNN as base architecture. However, in order to correctly
apply spectral normalization to convolutional filters [146],
we had to re-implement TextCNN(v2) with 2D convolu-
tions and maxpooling. This in turn requires specifying a
fixed sequence length in advance, which invalidates directly
comparing to the experiment results of Section IV. We
additionally re-train base models with TextCNN(v2) and
combine SNGP with our Regularized baseline (Reg), with
MC Dropout (MCD), Concrete Dropout (CD) and Ensem-
ble (Ens). For SNGP ensembles, we empirically selected
s = 15 for the base model.

1) SNGP RESULTS
First, we present critical difference analyses for in-domain
classification (Fig. 18) and novelty detection (Fig. 19).
Ensembling SNGP models, Deep Ensemble SNGP, proves
superior in-domain, followed byConcrete Dropout Ensemble
with and without SNGP. For novely detection, (MC) Deep
Ensemble is most successful with small differences between
next high-ranked methods.

To our surprise, SNGP ranks quite low on the text classi-
fication tasks, although in the original work it demonstrated
OOD detection superior to Deep Ensemble. In what follows,
we analyze the novelty detection ranking of SNGP, specifi-
cally per dataset and for multiple values of s.

In order to zoom in on the relative ranking of SNGP (com-
bination) methods, we plot in Fig. 20 AUROC detection
scores for datasets with interesting trend changes. Overall,
SNGP underperforms on CLINC-OOS, with the exception
of Deep Ensemble SNGP. For 20news, SNGP and Deep
Ensemble SNGP rank high, although any additional regular-
ization with SNGP worsens detection, even as ensemble. For
Reuters, we observe the exact opposite to 20news, with
SNGP reporting high detection scores only when regulariza-
tion is added, e.g. Regularized SNGP. Remarkably, this trend
is reversed for the base model, with Unregularized scoring
particularly good.

Finally, Fig. 21 reports on how novelty detection varies
for different values of the spectral normalization multiplier
s. As the trend lines indicate, larger values of s generally
improve novelty detection, although AUROC varies more
(larger shading) between methods and datasets. This obser-
vation prompts us to investigate the optimality of s per
dataset. The right subplot shows that spectral norm multipli-
ers are very dataset-dependent and that searching further than
the originally suggested range can give great performance
boosts.

2) SNGP DISCUSSION
While SNGP was reported to outperform Deep Ensemble
in the original CLINC OOD detection experiments [63],
our results do not deliver the same ranking. While inves-
tigating the interaction of SNGP with different uncertainty
methods, we observe the nontrivial role of spectral nor-
malization, specifically setting the norm multiplier s to an
appropriate value. Additionally, we contribute the analysis
of the interplay with additional regularization mechanisms,
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TABLE 17. Comparison over novelty detection setup for SNGP TextCNNv2 models. Results presented as mean ± std. dev. across 5 runs for non-ensembles.

which was missing in the literature. The original work men-
tions that given an approximation with the power iteration
method, there is not a precise control of the true spectral
norm. Whereas spectral normalization keeps the magnitude
of updates to weights in check, Dropout regularization and
weight decaymay rescale layers’ spectral norm in unexpected
ways. We hope our experimentation demonstrates the need
for deeper understanding of how to combine multiple reg-
ularization mechanisms and maintain a good spectral norm
approximation for effective posterior approximation.

APPENDIX D
DETAILED EXPERIMENT RESULTS
A. ZOOM-IN BENCHMARK EVIDENCE
In this Subsection we report additional evidence in support of
our results, which did not suit the main manuscript.

B. ABSOLUTE BENCHMARK RESULTS
Next to reporting critical differences to analyze the relative
performance of uncertainty methods, we also report results
as summary statistics, following the methodology of [15].
Firstly, we report performance averaged over both runs and
datasets, with the standard deviation over datasets. We indi-
cate the best mean performance in bold. For various metrics
the standard deviation is very large, which shows that the
average over datasets for our benchmark would be a poor
measure of central tendency. Since we benchmark on three
multiclass and two multilabel datasets, any aggregate would
be biased towards multiclass performance, hence why we
specifically opted for rank and critical difference to analyze
relative performance of each method.

Additionally, we compute the performance averaged
over datasets, with the standard deviation over multiple
runs for all individual models. All raw model results
are available at https://github.com/Jordy-VL/uncertainty-
bench/tree/main/experiments/raw_results.

1) AVERAGED OVER DATASETS AND RUNS
See Tables 7–12.

2) AVERAGED OVER RUNS
See Tables 13–17.
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