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ABSTRACT Road is one of important traffic lifelines that could be damaged after disaster by landslide
rubble, buildings debris, and collapsed branches of trees. Therefore, road damage detection and assessment
using post-Disaster High-Resolution Remote Sensing Images is extremely important for finding optimal
paths and conducting rescue missions. In an emergency context, the existing methods based on change
detection for road damage detection are difficult to achieve due to the mismatch of different data sources,
especially for rural areas where the pre-disaster remote sensing imagery are hard to obtain. In this paper,
a novel method based on the Tracking, Learning, and Detector (TLD) framework for detecting the damaged
road region from post-disaster high-resolution remote sensing image is presented. First, a spoke wheel
operator is employed to define the initial template of road. Then, the TLD framework is used to identify
the suspected road damaged areas. Finally, the damaged road areas are extracted by pruning the false
damaged roads. The proposed method was evaluated using post-disaster high-resolution remote sensing
images collected over Beichuan, China in 2008 and Lushan, China in 2013. The results show that the
proposed method is feasible and effective for road damage detection and assessment. Our main conclusion
is that such an approach qualifies for practical use.

INDEX TERMS Road damaged detection, TLD model, LBP, random forest (RF).

I. INTRODUCTION
Earthquakes, floods, and wildfires, cause extensive destruc-
tion to infrastructure, flatten buildings, and block roads,
which results in heavy economy and social losses. Roads
are a lifeline. After a disaster occurs, road damage detection
and assessment are the foundation for emergency response
actions and rescue work. Various kinds of remote sensing
data, such as aerial or satellite images, Lidar and SAR, have
been widely used to identify, detect, and assess road dam-
age for disaster [1]–[5]. Specifically, high-resolution aerial
images can be obtained in a controlled fashion, both in terms
of time and flight planning and at much higher geomet-
ric, spectral, and radiometric resolution to meet emergency
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response needs. This is more suitable for fast and reli-
able post-disaster damage assessment due to accessibility
and rapid acquisition, including the identification of dam-
aged road area. Detecting damaged road region using high-
resolution aerial images can support faster and more effective
decision-making and disaster management.

Many approaches for detection and estimation of
road damage by earthquakes have been proposed. These
approaches can be categorized into three types. The visual
interpretation methods [6]–[9] are employed to detect and
assess the road damage using various remote sensing
images and GIS data, but depends on many auxiliary tools
(e.g., ArcGIS). Visual interpretation is the most widely
used in practice for road damage detection, as currently
it is the most accurate method. Unfortunately, it is time-
consuming and requires trained operators, and thus not
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appropriate for rapid damage assessment. Change detection
method [10]–[12], compare various pre- and post-disaster
features, can lead to more accurate and reliable results,
including the height feature changes from Lidar and stereo
images, texture feature change from optical images and the
backscattering, and correlation coefficients and coherence
from SAR images. However, multi-temporal techniques have
a major limitation in that many areas, especially in develop-
ing countries, do not have pre-disaster images. The match
between pre- and post-disaster is another challenging issue.
The single post-disaster image method is another way to
detect road damage using only one set of remote sensing
data collected after a seismic event [13]–[15]. Post-disaster
image methods are most suited for creating a very detailed
inventory, such as satellite, aerial and SAR images. This
approach mainly uses feature extraction supported by aux-
iliary pre-earthquake GIS vector data to detect road damaged
area. This method can also be used detect the extent of road
damage in real time. Given that its speed and automation,
this approach is the most commonly employed technique
for damaged road detection. Therefore, this method is more
suitable for detecting road damaged region for emergency
response actions and rescue work.

Based upon our initial work, in this paper, the motivation
for our method based on the Tracking Learning and Detec-
tor(TLD) framework is to detect the damaged road regions.
TLD framework was originally used to track the objects in
a video stream, which includes three sub-tasks: tracking,
learning and detection. The tracker follows the object from
frame to frame. The detector localizes all appearances that
have been observed so far and corrects the tracker if nec-
essary. The learning estimates detector’s errors and updates
it to avoid these errors in the future [16]. Each sub-task is
addressed by a single component and the components oper-
ate simultaneously. Since road tracking is similar to object
tracking in a video, we utilize TLD framework to detect
undamaged road regions. The surfaces of road vary in appear-
ances due to the influence of climate and natural corrosion.
In order to improve the stability of road detection, we train a
classifier with an iterative P-N learning strategy to discern
these differences. In the case of streaming video, detector
cannot locate the object if the object disappears from the
video stream, but the object can be re-located by the detector
once they reappear. Similarly, a road cannot be detected and
tracked if road regions are damaged, but the undamaged road
regions can be detected once reappearing in the road tracking.
Therefore, the following strategies are employed to detect
damaged road regions: (1) The spoke and wheel are used to
descript the initial road template; (2) The Tracking, Learning
and Detector framework is employed to obtain the suspected
damaged area of the road; (3) We prune the false damaged
road based on the color invariant. In experiments, the pro-
posed method is tested on high-resolution remote sensing
images from different scenes. The results will show that the
proposed method improves the precision and stability of road
damaged detection.

The main contribution of our work is summarized as
follows:

(1)We analyze and summarize the challenges of road dam-
aged detection with respect to the prevailing Visual interpre-
tation method, change detection method and the post-disaster
image method.

(2) To address these issues, a novel road damaged detection
framework based on TLD from post-disaster remote sensing
images is proposed in this paper. In our framework, the road
detector is self-adaption and have subjective factors since the
learning model is constantly being updated to detect the new
road samples, which avoids detection errors since the surfaces
of road vary in appearances due to the influence of climate
and natural corrosion.

(3) We utilize color invariant to prune the false damaged
road due to the shadow and vegetation, which improves the
accuracy of road damaged detection.

(4) We experiment on three remote sensing datasets to
show that our framework achieves state-of-the art results on
post-disaster remote sensing images quantitatively, qualita-
tively, and efficiently.

The rest of the paper is organized as follows. Section II
presents our proposed a method to detect the damaged
road area based on TLD framework from Post-Disaster
High-Resolution Remote Sensing Images. Section III details
the extensive experiments and results of the proposed
method for road damage detection. Section IV presents some
conclusions.

II. METHODOLOGY
In this study, a novel method of road damaged detection from
post-disaster high-resolution remote sensing images based on
TLD framework is proposed. The proposed method has three
successive steps. First, initial location of road is manually set
by one or more valid seed points, a spoke wheel operator
is used to generate the initial road template according to
these seed point. Second, the suspected damaged area of the
road is extracted based on TLD framework. Finally, the false
damaged regions of the road are corrected based on color
invariant. The general framework of the proposed method is
shown in Figure 1.

A. THE DEFINITION OF INITIAL ROAD TEMPLATE
In our paper, we consider the problem of tracking an arbitrary
road in remote sensing image, where initial location of road
is manually set by one or more valid seed points. The initial
road template is generated according to the starting seed
point. In remote sensing image, roads are thin and long lin-
ear structures with the following geometric and radiometric
features: (1) The width of road is constant during a distance,
and roads are thin elongated structures with a bounded width.
(2) The local area of a road pixel is a nearly homogeneous
region, which is anisotropic and directionally rectangular.
The advantage of spoke wheel operator is that they can
transfer a 2-D local image intensity distribution into a set
of 1-D intensity functions. This makes it easier to find the
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FIGURE 1. The flowchart of methods.

directions of anisotropic structures in an image by comparing
the difference among the directional functions. Therefore,
we use a spoke wheel operator to describe the road template
[17], [18].

A spoke is a line segment with a length of m pixels. There
is a sequence of spokes Si(ϕi,m)(i = 0, . . . , 4n − 1) with
common seed point P and evenly spaced angles ϕi = π i/2n.
The pixels set in a spoke wheelW centered at the pixel P with
4n spokes is denoted byW (P,n,m).

The intersection between the road boundary and the spoke
is used to determine a local homogeneous region around a
pixel. However, the location of the road boundary cannot be
obtained in advance. In order to find the intersection of a
spoke and the boundary of a road, we start from p andmove in
the direction of the spoke, and observe the absolute intensity
differences between p and the pixels along the spoke. The
differences are small when the pixels are near to p; but they
may become larger when the pixels are far away from p. Let
Si be the ith spoke at pixel p. The cutting point, denoted by
Ei, on Si is the first pixel such that

|I (Ei)− I (p)| ≥ δ(W (p, n,m)), 0 < i < 4n (1)

where δ(W (p, n,m)) is the intensity standard deviation on
W(p, n, m).Notice that δ(W (p1, n,m)) 6= δ(W (p2, n,m))
usually holds if p1 6= p2.Therefore, the thresholding in (1)
is adaptive.

The road associated with each pixel is an anisotropic
structure; that is, the distance ‖Ei − p‖ in some directions is
much longer than that in other directions. To find the road
directions, we connect the cutting points on all spokes around
a pixel p in counterclockwise direction, which results in a
closed polygon. The minimal bounding box of the closed
polygon represents the road template of the pixel p, denoted
by F(p). Figure 2(b) shows a road template of the pixel p in
Figure 2(a).

B. EXTRACTING THE SUSPECTED DAMAGED REGION
This section investigates the suspected damaged road areas
detection based on the TLD framework. The key idea of
our method is that the TLD framework is used to detect
the undamaged road regions, but road regions are suspected
to be damaged if road cannot be detected and tracked. The

FIGURE 2. Define of a road template obtained using a spoke wheel
operator. (a) Spoke wheel (b) Road template centered at P.

proposed method is characterized as follows. First, road
tracking refers to the task of estimating a path and forms
the road network from the initial road template; the tracker
is likely to fail and never recover if road regions is dam-
aged. Second, road detector localizes all appearances of road
regions based on LBP feature. Finally, learning based on
P-N observes performance of tracker and detector, estimates
detector’s errors and generates training examples to avoid
these errors in the future. The learning component assumes
that both the tracker and the detector can fail. By the virtue of
the learning, the detector generalizes to more object appear-
ances and discriminates against background.

1) ROAD TRACKING
Road tracking refers to the task of estimating a path and
forming a road network from the initial road template in an
iterative line growing process along the road direction [14].
The key idea of road tracking is as follows in this paper. The
next road region is searched clockwise around the center point
P0. Our searching starts from the perpendicular to the current
direction of the road and finishes at its opposite direction.
There is a transformation relation between the center points
of the adjacent road template. The transformation relation is
as follows:

x1 = x0 + l cos(θ + θt ) (2)

y1 = y0 + l sin(θ + θt ) (3)
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where the point P0(x0,y0) is the center point of the current
road template, the point P1(x1,y1) is the center point of the
next road template. l is the step length between two center
points. θ is the main direction of road path. θt is the offset
of the main road direction. The rectangular region with the
center point P1 is the suspected road region. In this process,
we iteratively detect the feature of road surface in the road
network to decide whether to be damaged. Template tracking
of road is the most straightforward approach in that case.
The road region is described by a target template (an image
patch) and its tracking is defined as a transformation that
minimizes mismatch between the target template and the
candidate patch.

2) ROAD DETECTION
Our goal is to detect the road region from the suspected
damaged road region using the aforementionedmethod. Road
detection methods are typically based on the local image
features. The feature-based approaches usually follow the
processing steps: ¬ feature extraction,  feature recognition,
and ® model fitting [19]. The undamaged road regions have
two obvious characteristics: ¬ The surfaces of road vary
in appearances due to the influence of climate and natural
corrosion.  The local area of road is anisotropic and direc-
tionally rectangular, and each road pixel is within a locally
homogeneous region. LBP (Local Binary Patterns) [20], [21]
is a robust descriptor that summarizes texture information,
and invariant to illumination translation and scaling. There-
fore, LBP is suitable to describe the feature of road area.
Figure 3 illustrates the LBP workflow.

FIGURE 3. Image classification using LBP.

¬ The neighborhood (N ), usually defined by an angular
resolution (typically 8 sampling angles) and radius r of the
neighborhoods.

 The binarization function b(xc, xi) ∈ (0, 1) allows the
comparison between the reference point (central pixel) and
each one of the points xi in the neighborhood. LBP is appli-
cable when xc(and xi) are in an ordered set, with b(xc, xi) ∈
(0, 1)defined as

b(xc, xi) =

{
0 xi < xc
1 xi > xc

(4)

The output of the LBP at each center position xc is the code
resulting from the comparison of the value xc with each of
the xi in the neighborhood, with i∈N(xc). The LBP codes can
be represented by their numerical value as formally defined

FIGURE 4. The figure of road damaged detection.

in (5).

LBP(xc) =
∑

i∈|N (xc)|

2i × b(xc, xi) (5)

LBP codes can take 2|N | different values. In predictive tasks,
for typical choices of angular resolution, LBP codes are
compactly summarized into a histogram with 2|N | bins, being
this the feature vector representing the road region.

Based on the features, a RF(random forest) [22], [23]
classifier is used to train these samples that were manually
collected as road and non-road regions. Given a set of labeled
training samples, RF can learn a nonlinear decision boundary
to discriminate between the two classes.

However, if road is damaged, we cannot detect the road
area using the aforementioned method unless we expand the
search area. As shown in Figure 4, for each step length l,
we will detect the road area from 0 to 1800. If road region
cannot be detected, we increase the step length l for detecting
the road area. And so on, until we find the road area. The
area between starting point A and ending point B is the road
damaged area.

3) ROAD SAMPLES LEARNING BASED ON P-N
Since we can discover variation in the appearances of the
same road, the single classifier and detector method is not
suitable for road detection. The P-N learning as a semi-
supervised learning method can iteratively learn and update
the classifier on the labeled and unlabeled samples, as road
sample learning guarantees improvement of the detector.
As shown in Figure 5, we utilized RF(random-forest) and
P-N learning to detect the roads from remote sensing images.
The key idea of P-N learning analyzes road by two types
of ‘‘experts’’: ¬ P-expert – recognizes missed detections,
and  N-expert – recognizes false alarms. The estimated
errors augment a training set of the detector, and the detector
is retrained to avoid these errors in the future. Both of the
experts make errors themselves, however, their independence
enables mutual compensation of their errors. Road tracking is
seen as an iterative line growing process, adjacent samples of
road track are considered as positive samples, while samples
far away from the road trajectory are considered as negative
samples. Positive constraints are used to find the unlabeled
data on the road trajectory, negative constraints are used to
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FIGURE 5. The flowchart of the P-N learning.

distinguish roads from complex background. P-N learning is
described in detail as following.

Let Ll = {(x, y)} be a labeled set for examples, x is
an example from a feature-space F and y is a label from
a space of labels Y = {−1,+1}. Lu is an unlabeled set of
examples. Both labeled Ll and unlabeled Lu are input into
the P-N learning, where l � u. The task of P-N learning
is to learn a classifier h: F -> Y from labeled set Ll and
bootstrap its performance by the unlabeled set Lu. Classifier
h is a function from a family H parameterized by θ . The P-N
learning consists of four blocks:

¬ Initial Classifier. The initial classifier h is trained by
the labeled training set Ll that were manually collected as
road and non-road regions. The training set is then passed to
supervise learning which trains a classifier, i.e. estimates the
initial parameters θ0.

 Online Learning. In the process of road tracking, the
road and background region are detected continuously. These
regions are input to the classifier for incremental learning.

® Classifier Correction. The learning process then pro-
ceeds by iterative bootstrapping. In iteration k, the classifier
trained in previous iteration classifies the entire unlabeled set,
Lku = h(xu|θk−1)for all xu ∈ Lu. The classification is analyzed
by the P-N experts, which estimate examples that have been
classified incorrectly. P-expert analyzes examples classified
as negative, estimates false negatives and adds them to train-
ing set with positive label. In iteration k , P-expert outputs
n+(k) positive examples. N-expert analyzes examples classi-
fied as positive, estimates false positives and adds them with
negative label to the training set. In iteration k , the N-expert
outputs n−(k) negative examples. The P-expert increases the
classifier’s generalizability. The N-expert increases the clas-
sifier’s discriminability.

¯ These examples are added with changed labels to the
training set. The iteration finishes by retraining the classifier,
i.e. estimation of θk . The process iterates until convergence
or exceeds the number of iterations.

C. PRUNING THE FALSE DAMAGED ROADS
Damaged road detection would be misjudged due to the cover
of shadows or vegetation. In order to prune false damaged
roads, we also adopt color invariance [24] to detect the

vegetation regions using the following equation:

V (i, j) =
4
π
× arctan(

G(i, j)− B(i, j)
G(i, j)+ B(i, j)

) (6)

Pixels with a color index larger than the threshold identified
by Otsu’s method are marked as vegetation or shadows. How-
ever, shadow and vegetation detection are not always accurate
no matter what algorithm is applied. This does not affect
our final detection result as the main reason for this is that
emergency managers need to know whether the vehicles can
pass over the road for emergency response actions and rescue
work.

III. EXPERIMENTAL RESULTS AND DISCUSSION
The experimental results and used datasets are described in
this section. To evaluate the quality of damaged road region
detection, we conducted qualitative, quantitative and effi-
ciency experiments to evaluate and test the performance of
the proposed method for road damaged detection. A visual
inspection of damaged detection images subjectively reveals
signs of clarity and completeness. An objective, empirical
evaluation using the precision, recall, and the detection run-
time for an image tested the proposed method in relation to
other methods. Precision and recall were employed for in the
objective empirical evaluation. These functions are defined
as:

Precision =
TP

TP+ FP
(7)

Recall =
TP

TP+FN
(8)

where TP is the damaged road pixels extracted by the pro-
posed method which are consistent with the reference data,
FN is the damaged road pixels which are in the reference data
but not in the extracted result, and FP is the extracted damaged
road pixels which are not in the reference data. In addi-
tion, parameter selection and sensitivity analysis were used
to further assess the practicability of the proposed method.
Experiments were carried out on a PC with an 8-GB memory
and an Intel Xeon CPU E3-1220 with 3.10 GHz onMATLAB
2019.

A. STUDY AREA AND DATA SOURCES
The experimental data were two groups of high-resolution
aerial images provided by the national disaster reduction
center of China for the urban areas of Beichuan and Lushan
city, Sichuan province, China. As depicted in Table 1, the
different locations, dates and sensors were included in each
group. This resulted in a large variability in image quality,
in the environmental conditions and typology of road damage
depicted in the images. The Resolution of images also varies
within each group.

B. EVALUATION OF THE RESULTS
1) QUALITATIVE EVALUATION
In order to verify the damaged detection effect, the detection
effect of our method is measured by the visual images after
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TABLE 1. Overview of the location and quantity of aerial image samples.

FIGURE 6. Road damage detection results: (a) Inscribed line of road extraction manually; (b) The damaged road regions detection result after
removing the fake damaged road regions due to the blocked regions by the vegetation. (c) The suspected damaged road regions detection result of
our method;.

detecting. The performance of the proposed method is illus-
trated through the testing result of the site of the Beichuan
and Lushan earthquake ruins as an example. The results of
damaged detection roads are shown in Figure 6, Figure 7 and
Figure 8.

As shown in Figure 6, there are experimental results of
damaged road region detection from the datum(Lushan1,
Sichuan province, China). Figure 6 (a) shows the inscribed
line of road extracted manually from remote sensing
images, Figure 6 (b) shows that some suspected damaged
road regions are extracted from remote sensing images,
Figure 6 (c) shows that damaged road regions are extracted
from remote sensing images after removing the false dam-
aged road regions due to regions blocked by the vegetation.
Road is covered by vegetation with obvious shadows, the
result show that our method can remove the false dam-
aged road regions because of the blocked area by the
vegetation.

As shown in Figure 7, there are experimental results of
damaged road region detection from the datum(Lushan1,
Sichuan province, China). Figure 7 (a) shows the inscribed
line of road extracted manually from remote sensing images,
Figure 7 (b) shows that some suspected damaged road regions
are extracted from remote sensing images, Figure 7 (c) shows
that damaged road regions are extracted from remote sensing
images after removing the fake damaged road regions due to
the blocked regions by the vegetation. However, a few falsely
detected damaged regions still exist in some regions. For
example, Figure 7(c) shows that the road regions are damaged
by landslides, but these regions are surrounded by vegetation,

our method determining this case as undamaged regions of
road, so this case cannot be detected.

As shown in Figure 8, there are experimental results of
damaged road region detection from the datum(Beichuan,
Sichuan province, China). Figure 8 (a) shows the inscribed
line of road extraction manually from remote sensing images,
Figure 8 (b) shows that some suspected damaged road regions
are extracted from remote sensing images, Figure 8(c) shows
that damaged road regions are extracted from remote sensing
images after removing the fake damaged road regions due to
the blocked regions by the vegetation. However, some few
falsely detected damaged regions still exist in some regions.
For example, Figure 8 (c) shows that existing debris or rubble
is on the road surface because the road was damaged in the
earthquake, but these road’s regions were only slightly dam-
aged, and cars can still pass on these roads. Our method deter-
mining this case as undamaged regions of road, so slightly
damaged road regions cannot be detected.

2) QUANTITATIVE EVALUATION
To further evaluate the performance of our method,
we utilized two indices to describe the performance of
the proposed method. Precision and recall were compared
to methods based on the gray-level co-occurrence matrix
(GLCM) [25], the HOG feature [26], the SURF feature [27]
and LBP feature. It can be seen from Table 2 that the detec-
tion results are better precision and recall than all alternate
features with undamaged road regions. Since the undamaged
road regions are flatten and the texture of its surface varies
less, the LBP feature is more suitable for describing road
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FIGURE 7. Road damage detection results: (a) Inscribed line of road extraction manually; (b) The suspected damaged road regions detection
result of our method; (c) The damaged road regions detection result after removing the fake damaged road regions due to the blocked
regions by the vegetation.

texture information than HOG, GLCM and SURF, suggesting
that the proposed method can obtain better results.

We also compared the proposed method to damaged
road region detection with other methods. The study tested
the proposed method against the OCSVM method in
Reference [10], the GA and SVM Classification method
in Reference [11], and the knowledge-based detection
method [14]. Table 3 shows the accuracy results compared
to the other methods. Compared to the traditional supervise
learningmethod [10], [11], the Reference [14] utilizes knowl-
edge base to detect the damaged road regions, knowledge-
basedmethod for road damage detection, which achieves high
accuracy. Both Reference [10] and Reference [11] use feature
and SVM classifier to detect the damaged road area, single
datasets are used to train their classifier, but the surface of
road is variant due to the influence of climate and natural
corrosion, hence their classifier could not distinguish the
damaged and undamaged area for road. The Reference [14]
method does not require the pre-disaster data and achieves
high accuracies, but undamaged region may falsely be clas-
sified as the damaged region due to the influence of veg-
etation and shadow. As shown from Table 3, the proposed

approach can achieve the best precision and recall results
than the competing methods. Our method outperforms all the
competitive methods on datasets since Our approach takes
into account changes in the road surface and the fake damaged
road detection due to vegetation and shadow. Not only that,
in the next section wewill discuss the advances of our method
in terms of operational efficiency.

3) OPERATING EFFICIENCY
In addition to precision assessment, another important aspect
for road damage detection method is the testing speed.
Table 4 shows the run times of different methods for road
damage detection. Since Reference [10], Reference [11],
Reference [14] and our method are well suited for parallel
computation on GPU, we also give the corresponding run
times on GPU. As in [28], we do not count the memory
transfer time between CPU and GPU.

As illustrated in Table 4, we can see that the proposed
method can have a relatively high speed on CPU and GPU,
its running time is very competing in contrast to other exist-
ing methods. Further, the proposed method does not require
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FIGURE 8. Road damage detection results: (a) Inscribed line of road extraction manually; (b) The suspected damaged
road regions detection result of our method; (c) The damaged road regions detection result after removing the fake
damaged road regions.

TABLE 2. Performance accuracy of variant features.

the pre-disaster data and has the smaller complexity. Taking
detection performance and flexibility into consideration, our
method is very competitive for practical applications.

4) SENSITIVITY ANALYSIS
In the proposed road damage detection method, the step
length l in Figure 9 is a key parameter and need be man-
ually adjusted, which affects the detection accuracy. In our
experiments, we tested that the different values of l were

obtained the detection precision and recall, which were used
to evaluate the sensitivity of l to the detection results. The
experimental results of the datum are shown in Figure 9.
The highest overall quality for datum was achieved when l
was 25. The detection precision and recall tended to be stable
on this datum when l was 15–30, but the detection precision
and recall began to show a gradual decrease when l was
greater than 30. As shown in Figure 9, if the step length l is
greater than the length of damaged road, the template of road
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TABLE 3. Comparison with the experimental results of previous methods.

TABLE 4. The running time(s) of road damaged detection when the different method runs on the CPU/GPU.

FIGURE 9. Sensitivity test of the step length l.

detection will skip to the damaged road region. Therefore,
we can’t detect damaged roads when l is bigger and bigger.
According to this evaluation, the l set should have a value
in the range of (15, 30). In this way, 25 is selected as the
threshold value in this paper.

The proposed method detects the heavy damaged road
region rather than the slight damaged road regions. The main
reason for this is that emergency managers need to know the
damaged region of road for emergency response actions and
rescue work, but the slight damaged road regions do not affect
the passage of vehicles. Therefore, the proposed method is an
effective method to detect the damaged road regions in both
the qualitative and quantitative aspects.

IV. CONCLUSION
In this paper, we have presented a novel method for damaged
road region detection based on the TLD framework, which
can support emergency response actions and rescue work
after a disaster. Firstly, we use a spoke and wheel metaphor

to describe the road template. Then, the tracking-learning-
detection framework is used to extract the suspected dam-
aged region of the road. Finally, the damaged road areas are
extracted by pruning the false damaged roads. The experi-
mental results show that the proposed method is feasible and
effective in detecting the damaged road regions, and demon-
strate a practical significance to the study of techniques for
damaged road detection.

The proposed damaged road region detection method
based on road tracking detection has great potential in road
damage detection in emergency response actions and rescue
work after disasters. In the future, the proposed method will
be adapted to assess the road damage level assessment.
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